zfs_vnops.c revision dd6ef5383c0b29543894f993c2ab3ab8ab6e6f20
1612N/A/*
1612N/A * CDDL HEADER START
1612N/A *
1612N/A * The contents of this file are subject to the terms of the
1612N/A * Common Development and Distribution License (the "License").
1612N/A * You may not use this file except in compliance with the License.
1612N/A *
1612N/A * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1612N/A * or http://www.opensolaris.org/os/licensing.
1612N/A * See the License for the specific language governing permissions
1612N/A * and limitations under the License.
1612N/A *
1612N/A * When distributing Covered Code, include this CDDL HEADER in each
1612N/A * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1612N/A * If applicable, add the following below this CDDL HEADER, with the
1612N/A * fields enclosed by brackets "[]" replaced with your own identifying
1612N/A * information: Portions Copyright [yyyy] [name of copyright owner]
1612N/A *
1612N/A * CDDL HEADER END
1612N/A */
1612N/A/*
1612N/A * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
1612N/A * Use is subject to license terms.
1612N/A */
1612N/A
1612N/A#pragma ident "%Z%%M% %I% %E% SMI"
1612N/A
1612N/A#include <sys/types.h>
1612N/A#include <sys/param.h>
1612N/A#include <sys/time.h>
1612N/A#include <sys/systm.h>
1612N/A#include <sys/sysmacros.h>
1612N/A#include <sys/resource.h>
1612N/A#include <sys/vfs.h>
1612N/A#include <sys/vnode.h>
1612N/A#include <sys/file.h>
1612N/A#include <sys/stat.h>
1612N/A#include <sys/kmem.h>
1612N/A#include <sys/taskq.h>
1612N/A#include <sys/uio.h>
1612N/A#include <sys/vmsystm.h>
1612N/A#include <sys/atomic.h>
1612N/A#include <vm/seg_vn.h>
1612N/A#include <vm/pvn.h>
1612N/A#include <vm/as.h>
1612N/A#include <sys/mman.h>
1612N/A#include <sys/pathname.h>
1612N/A#include <sys/cmn_err.h>
1612N/A#include <sys/errno.h>
1612N/A#include <sys/unistd.h>
1612N/A#include <sys/zfs_vfsops.h>
1612N/A#include <sys/zfs_dir.h>
1612N/A#include <sys/zfs_acl.h>
1612N/A#include <sys/zfs_ioctl.h>
1612N/A#include <sys/fs/zfs.h>
1612N/A#include <sys/dmu.h>
1612N/A#include <sys/spa.h>
1612N/A#include <sys/txg.h>
1612N/A#include <sys/dbuf.h>
1612N/A#include <sys/zap.h>
1612N/A#include <sys/dirent.h>
1612N/A#include <sys/policy.h>
1612N/A#include <sys/sunddi.h>
1612N/A#include <sys/filio.h>
1612N/A#include "fs/fs_subr.h"
1612N/A#include <sys/zfs_ctldir.h>
1612N/A#include <sys/dnlc.h>
1612N/A#include <sys/zfs_rlock.h>
1612N/A
1612N/A/*
1612N/A * Programming rules.
1612N/A *
1612N/A * Each vnode op performs some logical unit of work. To do this, the ZPL must
1612N/A * properly lock its in-core state, create a DMU transaction, do the work,
1612N/A * record this work in the intent log (ZIL), commit the DMU transaction,
1612N/A * and wait the the intent log to commit if it's is a synchronous operation.
1612N/A * Morover, the vnode ops must work in both normal and log replay context.
1612N/A * The ordering of events is important to avoid deadlocks and references
1612N/A * to freed memory. The example below illustrates the following Big Rules:
1612N/A *
1612N/A * (1) A check must be made in each zfs thread for a mounted file system.
1612N/A * This is done avoiding races using ZFS_ENTER(zfsvfs).
1612N/A * A ZFS_EXIT(zfsvfs) is needed before all returns.
1612N/A *
1612N/A * (2) VN_RELE() should always be the last thing except for zil_commit()
1612N/A * and ZFS_EXIT(). This is for 3 reasons:
1612N/A * First, if it's the last reference, the vnode/znode
1612N/A * can be freed, so the zp may point to freed memory. Second, the last
* reference will call zfs_zinactive(), which may induce a lot of work --
* pushing cached pages (which acquires range locks) and syncing out
* cached atime changes. Third, zfs_zinactive() may require a new tx,
* which could deadlock the system if you were already holding one.
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
* In normal operation, this will be TXG_NOWAIT. During ZIL replay,
* it will be a specific txg. Either way, dmu_tx_assign() never blocks.
* This is critical because we don't want to block while holding locks.
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing to
* use a non-blocking assign can deadlock the system. The scenario:
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
* then drop all locks, call txg_wait_open(), and try again.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, seq, ioflag)
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* ZFS_ENTER(zfsvfs); // exit if unmounted
* top:
* zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign
* if (error) {
* dmu_tx_abort(tx); // abort DMU tx
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
* txg_wait_open(dmu_objset_pool(os), 0);
* goto top;
* }
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* seq = zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* zil_commit(zilog, seq, ioflag); // synchronous when necessary
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // done, report error
*/
/* ARGSUSED */
static int
zfs_open(vnode_t **vpp, int flag, cred_t *cr)
{
return (0);
}
/* ARGSUSED */
static int
zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
{
/*
* Clean up any locks held by this process on the vp.
*/
cleanlocks(vp, ddi_get_pid(), 0);
cleanshares(vp, ddi_get_pid());
return (0);
}
/*
* Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
* data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
*/
static int
zfs_holey(vnode_t *vp, int cmd, offset_t *off)
{
znode_t *zp = VTOZ(vp);
uint64_t noff = (uint64_t)*off; /* new offset */
uint64_t file_sz;
int error;
boolean_t hole;
file_sz = zp->z_phys->zp_size;
if (noff >= file_sz) {
return (ENXIO);
}
if (cmd == _FIO_SEEK_HOLE)
hole = B_TRUE;
else
hole = B_FALSE;
error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
/* end of file? */
if ((error == ESRCH) || (noff > file_sz)) {
/*
* Handle the virtual hole at the end of file.
*/
if (hole) {
*off = file_sz;
return (0);
}
return (ENXIO);
}
if (noff < *off)
return (error);
*off = noff;
return (error);
}
/* ARGSUSED */
static int
zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
int *rvalp)
{
offset_t off;
int error;
zfsvfs_t *zfsvfs;
switch (com) {
case _FIOFFS:
return (zfs_sync(vp->v_vfsp, 0, cred));
/*
* The following two ioctls are used by bfu. Faking out,
* necessary to avoid bfu errors.
*/
case _FIOGDIO:
case _FIOSDIO:
return (0);
case _FIO_SEEK_DATA:
case _FIO_SEEK_HOLE:
if (ddi_copyin((void *)data, &off, sizeof (off), flag))
return (EFAULT);
zfsvfs = VTOZ(vp)->z_zfsvfs;
ZFS_ENTER(zfsvfs);
/* offset parameter is in/out */
error = zfs_holey(vp, com, &off);
ZFS_EXIT(zfsvfs);
if (error)
return (error);
if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
return (EFAULT);
return (0);
}
return (ENOTTY);
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
static int
mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int64_t start, off;
int len = nbytes;
int error = 0;
start = uio->uio_loffset;
off = start & PAGEOFFSET;
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
page_t *pp;
uint64_t bytes = MIN(PAGESIZE - off, len);
/*
* We don't want a new page to "appear" in the middle of
* the file update (because it may not get the write
* update data), so we grab a lock to block
* zfs_getpage().
*/
rw_enter(&zp->z_map_lock, RW_WRITER);
if (pp = page_lookup(vp, start, SE_SHARED)) {
caddr_t va;
rw_exit(&zp->z_map_lock);
va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
error = uiomove(va+off, bytes, UIO_WRITE, uio);
if (error == 0) {
dmu_write(zfsvfs->z_os, zp->z_id,
woff, bytes, va+off, tx);
}
ppmapout(va);
page_unlock(pp);
} else {
error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
woff, bytes, uio, tx);
rw_exit(&zp->z_map_lock);
}
len -= bytes;
woff += bytes;
off = 0;
if (error)
break;
}
return (error);
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
static int
mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio)
{
int64_t start, off, bytes;
int len = nbytes;
int error = 0;
start = uio->uio_loffset;
off = start & PAGEOFFSET;
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
page_t *pp;
bytes = MIN(PAGESIZE - off, len);
if (pp = page_lookup(vp, start, SE_SHARED)) {
caddr_t va;
va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
error = uiomove(va + off, bytes, UIO_READ, uio);
ppmapout(va);
page_unlock(pp);
} else {
/* XXX use dmu_read here? */
error = uiomove(addr, bytes, UIO_READ, uio);
}
len -= bytes;
addr += bytes;
off = 0;
if (error)
break;
}
return (error);
}
uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
/*
* Read bytes from specified file into supplied buffer.
*
* IN: vp - vnode of file to be read from.
* uio - structure supplying read location, range info,
* and return buffer.
* ioflag - SYNC flags; used to provide FRSYNC semantics.
* cr - credentials of caller.
*
* OUT: uio - updated offset and range, buffer filled.
*
* RETURN: 0 if success
* error code if failure
*
* Side Effects:
* vp - atime updated if byte count > 0
*/
/* ARGSUSED */
static int
zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint64_t delta;
ssize_t n, size, cnt, ndone;
int error, i, numbufs;
dmu_buf_t *dbp, **dbpp;
rl_t *rl;
ZFS_ENTER(zfsvfs);
/*
* Validate file offset
*/
if (uio->uio_loffset < (offset_t)0) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/*
* Fasttrack empty reads
*/
if (uio->uio_resid == 0) {
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Check for mandatory locks
*/
if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
if (error = chklock(vp, FREAD,
uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
/*
* If we're in FRSYNC mode, sync out this znode before reading it.
*/
zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC);
/*
* Lock the range against changes.
*/
rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
/*
* If we are reading past end-of-file we can skip
* to the end; but we might still need to set atime.
*/
if (uio->uio_loffset >= zp->z_phys->zp_size) {
cnt = 0;
error = 0;
goto out;
}
cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) {
ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
n = MIN(zfs_read_chunk_size,
zp->z_phys->zp_size - uio->uio_loffset);
n = MIN(n, cnt);
error = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id,
uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp);
if (error)
goto out;
/*
* Compute the adjustment to align the dmu buffers
* with the uio buffer.
*/
delta = uio->uio_loffset - dbpp[0]->db_offset;
for (i = 0; i < numbufs; i++) {
if (n < 0)
break;
dbp = dbpp[i];
size = dbp->db_size - delta;
/*
* XXX -- this is correct, but may be suboptimal.
* If the pages are all clean, we don't need to
* go through mappedread(). Maybe the VMODSORT
* stuff can help us here.
*/
if (vn_has_cached_data(vp)) {
error = mappedread(vp, (caddr_t)dbp->db_data +
delta, (n < size ? n : size), uio);
} else {
error = uiomove((caddr_t)dbp->db_data + delta,
(n < size ? n : size), UIO_READ, uio);
}
if (error) {
dmu_buf_rele_array(dbpp, numbufs, FTAG);
goto out;
}
n -= dbp->db_size;
if (delta) {
n += delta;
delta = 0;
}
}
dmu_buf_rele_array(dbpp, numbufs, FTAG);
}
out:
zfs_range_unlock(zp, rl);
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Fault in the pages of the first n bytes specified by the uio structure.
* 1 byte in each page is touched and the uio struct is unmodified.
* Any error will exit this routine as this is only a best
* attempt to get the pages resident. This is a copy of ufs_trans_touch().
*/
static void
zfs_prefault_write(ssize_t n, struct uio *uio)
{
struct iovec *iov;
ulong_t cnt, incr;
caddr_t p;
uint8_t tmp;
iov = uio->uio_iov;
while (n) {
cnt = MIN(iov->iov_len, n);
if (cnt == 0) {
/* empty iov entry */
iov++;
continue;
}
n -= cnt;
/*
* touch each page in this segment.
*/
p = iov->iov_base;
while (cnt) {
switch (uio->uio_segflg) {
case UIO_USERSPACE:
case UIO_USERISPACE:
if (fuword8(p, &tmp))
return;
break;
case UIO_SYSSPACE:
if (kcopy(p, &tmp, 1))
return;
break;
}
incr = MIN(cnt, PAGESIZE);
p += incr;
cnt -= incr;
}
/*
* touch the last byte in case it straddles a page.
*/
p--;
switch (uio->uio_segflg) {
case UIO_USERSPACE:
case UIO_USERISPACE:
if (fuword8(p, &tmp))
return;
break;
case UIO_SYSSPACE:
if (kcopy(p, &tmp, 1))
return;
break;
}
iov++;
}
}
/*
* Write the bytes to a file.
*
* IN: vp - vnode of file to be written to.
* uio - structure supplying write location, range info,
* and data buffer.
* ioflag - FAPPEND flag set if in append mode.
* cr - credentials of caller.
*
* OUT: uio - updated offset and range.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - ctime|mtime updated if byte count > 0
*/
/* ARGSUSED */
static int
zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
rlim64_t limit = uio->uio_llimit;
ssize_t start_resid = uio->uio_resid;
ssize_t tx_bytes;
uint64_t end_size;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
offset_t woff;
ssize_t n, nbytes;
rl_t *rl;
int max_blksz = zfsvfs->z_max_blksz;
int error;
/*
* Fasttrack empty write
*/
n = start_resid;
if (n == 0)
return (0);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
ZFS_ENTER(zfsvfs);
/*
* Pre-fault the initial pages to ensure slow (eg NFS) pages
* don't hold up txg.
*/
zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio);
/*
* If in append mode, set the io offset pointer to eof.
*/
if (ioflag & FAPPEND) {
/*
* Range lock for a file append:
* The value for the start of range will be determined by
* zfs_range_lock() (to guarantee append semantics).
* If this write will cause the block size to increase,
* zfs_range_lock() will lock the entire file, so we must
* later reduce the range after we grow the block size.
*/
rl = zfs_range_lock(zp, 0, n, RL_APPEND);
if (rl->r_len == UINT64_MAX) {
/* overlocked, zp_size can't change */
woff = uio->uio_loffset = zp->z_phys->zp_size;
} else {
woff = uio->uio_loffset = rl->r_off;
}
} else {
woff = uio->uio_loffset;
/*
* Validate file offset
*/
if (woff < 0) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/*
* If we need to grow the block size then zfs_range_lock()
* will lock a wider range than we request here.
* Later after growing the block size we reduce the range.
*/
rl = zfs_range_lock(zp, woff, n, RL_WRITER);
}
if (woff >= limit) {
error = EFBIG;
goto no_tx_done;
}
if ((woff + n) > limit || woff > (limit - n))
n = limit - woff;
/*
* Check for mandatory locks
*/
if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
(error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0)
goto no_tx_done;
end_size = MAX(zp->z_phys->zp_size, woff + n);
top:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
goto no_tx_done;
}
/*
* If zfs_range_lock() over-locked we grow the blocksize
* and then reduce the lock range.
*/
if (rl->r_len == UINT64_MAX) {
uint64_t new_blksz;
if (zp->z_blksz > max_blksz) {
ASSERT(!ISP2(zp->z_blksz));
new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
} else {
new_blksz = MIN(end_size, max_blksz);
}
zfs_grow_blocksize(zp, new_blksz, tx);
zfs_range_reduce(zp, rl, woff, n);
}
/*
* The file data does not fit in the znode "cache", so we
* will be writing to the file block data buffers.
* Each buffer will be written in a separate transaction;
* this keeps the intent log records small and allows us
* to do more fine-grained space accounting.
*/
while (n > 0) {
/*
* XXX - should we really limit each write to z_max_blksz?
* Perhaps we should use SPA_MAXBLOCKSIZE chunks?
*/
nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
rw_enter(&zp->z_map_lock, RW_READER);
tx_bytes = uio->uio_resid;
if (vn_has_cached_data(vp)) {
rw_exit(&zp->z_map_lock);
error = mappedwrite(vp, woff, nbytes, uio, tx);
} else {
error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
woff, nbytes, uio, tx);
rw_exit(&zp->z_map_lock);
}
tx_bytes -= uio->uio_resid;
if (error) {
/* XXX - do we need to "clean up" the dmu buffer? */
break;
}
ASSERT(tx_bytes == nbytes);
/*
* Clear Set-UID/Set-GID bits on successful write if not
* privileged and at least one of the excute bits is set.
*
* It would be nice to to this after all writes have
* been done, but that would still expose the ISUID/ISGID
* to another app after the partial write is committed.
*/
mutex_enter(&zp->z_acl_lock);
if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
(S_IXUSR >> 6))) != 0 &&
(zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
secpolicy_vnode_setid_retain(cr,
(zp->z_phys->zp_mode & S_ISUID) != 0 &&
zp->z_phys->zp_uid == 0) != 0) {
zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
}
mutex_exit(&zp->z_acl_lock);
n -= nbytes;
if (n <= 0)
break;
/*
* We have more work ahead of us, so wrap up this transaction
* and start another. Exact same logic as tx_done below.
*/
while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
dmu_buf_will_dirty(zp->z_dbuf, tx);
(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
uio->uio_loffset);
}
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
ioflag, uio);
dmu_tx_commit(tx);
/* Pre-fault the next set of pages */
zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio);
/*
* Start another transaction.
*/
woff = uio->uio_loffset;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
if (error == ERESTART &&
zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
goto no_tx_done;
}
}
tx_done:
if (tx_bytes != 0) {
/*
* Update the file size if it has changed; account
* for possible concurrent updates.
*/
while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
dmu_buf_will_dirty(zp->z_dbuf, tx);
(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
uio->uio_loffset);
}
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
ioflag, uio);
}
dmu_tx_commit(tx);
no_tx_done:
zfs_range_unlock(zp, rl);
/*
* If we're in replay mode, or we made no progress, return error.
* Otherwise, it's at least a partial write, so it's successful.
*/
if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
ZFS_EXIT(zfsvfs);
return (error);
}
zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC));
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Get data to generate a TX_WRITE intent log record.
*/
int
zfs_get_data(void *arg, lr_write_t *lr, char *buf)
{
zfsvfs_t *zfsvfs = arg;
objset_t *os = zfsvfs->z_os;
znode_t *zp;
uint64_t off = lr->lr_offset;
rl_t *rl;
int dlen = lr->lr_length; /* length of user data */
int error = 0;
ASSERT(dlen != 0);
/*
* Nothing to do if the file has been removed
*/
if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
return (ENOENT);
if (zp->z_reap) {
VN_RELE(ZTOV(zp));
return (ENOENT);
}
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) { /* immediate write */
dmu_buf_t *db;
rl = zfs_range_lock(zp, off, dlen, RL_READER);
/* test for truncation needs to be done while range locked */
if (off >= zp->z_phys->zp_size) {
error = ENOENT;
goto out;
}
VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, off, FTAG, &db));
bcopy((char *)db->db_data + off - db->db_offset, buf, dlen);
dmu_buf_rele(db, FTAG);
} else { /* indirect write */
uint64_t boff; /* block starting offset */
/*
* Have to lock the whole block to ensure when it's
* written out and it's checksum is being calculated
* that no one can change the data. We need to re-check
* blocksize after we get the lock in case it's changed!
*/
for (;;) {
boff = off & ~(zp->z_blksz - 1);
dlen = zp->z_blksz;
rl = zfs_range_lock(zp, boff, dlen, RL_READER);
if (zp->z_blksz == dlen)
break;
zfs_range_unlock(zp, rl);
}
/* test for truncation needs to be done while range locked */
if (off >= zp->z_phys->zp_size) {
error = ENOENT;
goto out;
}
txg_suspend(dmu_objset_pool(os));
error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff,
&lr->lr_blkptr, lr->lr_common.lrc_txg);
txg_resume(dmu_objset_pool(os));
}
out:
zfs_range_unlock(zp, rl);
VN_RELE(ZTOV(zp));
return (error);
}
/*ARGSUSED*/
static int
zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
error = zfs_zaccess_rwx(zp, mode, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Lookup an entry in a directory, or an extended attribute directory.
* If it exists, return a held vnode reference for it.
*
* IN: dvp - vnode of directory to search.
* nm - name of entry to lookup.
* pnp - full pathname to lookup [UNUSED].
* flags - LOOKUP_XATTR set if looking for an attribute.
* rdir - root directory vnode [UNUSED].
* cr - credentials of caller.
*
* OUT: vpp - vnode of located entry, NULL if not found.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* NA
*/
/* ARGSUSED */
static int
zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
int flags, vnode_t *rdir, cred_t *cr)
{
znode_t *zdp = VTOZ(dvp);
zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
*vpp = NULL;
if (flags & LOOKUP_XATTR) {
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_phys->zp_flags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Do we have permission to get into attribute directory?
*/
if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) {
VN_RELE(*vpp);
}
ZFS_EXIT(zfsvfs);
return (error);
}
if (dvp->v_type != VDIR) {
ZFS_EXIT(zfsvfs);
return (ENOTDIR);
}
/*
* Check accessibility of directory.
*/
if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) {
/*
* Convert device special files
*/
if (IS_DEVVP(*vpp)) {
vnode_t *svp;
svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
VN_RELE(*vpp);
if (svp == NULL)
error = ENOSYS;
else
*vpp = svp;
}
}
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
* an error. Return the vp of the created or trunc'd file.
*
* IN: dvp - vnode of directory to put new file entry in.
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - large file flag [UNUSED].
*
* OUT: vpp - vnode of created or trunc'd entry.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dvp - ctime|mtime updated if new entry created
* vp - ctime|mtime always, atime if new
*/
/* ARGSUSED */
static int
zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
int mode, vnode_t **vpp, cred_t *cr, int flag)
{
znode_t *zp, *dzp = VTOZ(dvp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
objset_t *os = zfsvfs->z_os;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
rl_t *rl;
int error;
uint64_t zoid;
ZFS_ENTER(zfsvfs);
top:
*vpp = NULL;
if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
vap->va_mode &= ~VSVTX;
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
VN_HOLD(dvp);
zp = dzp;
dl = NULL;
error = 0;
} else {
/* possible VN_HOLD(zp) */
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) {
if (strcmp(name, "..") == 0)
error = EISDIR;
ZFS_EXIT(zfsvfs);
return (error);
}
}
zoid = zp ? zp->z_id : -1ULL;
if (zp == NULL) {
/*
* Create a new file object and update the directory
* to reference it.
*/
if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
(vap->va_type != VREG)) {
error = EINVAL;
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
dmu_tx_hold_bonus(tx, dzp->z_id);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, SPA_MAXBLOCKSIZE);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_dirent_unlock(dl);
if (error == ERESTART &&
zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
ASSERT(zp->z_id == zoid);
(void) zfs_link_create(dl, zp, tx, ZNEW);
seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name);
dmu_tx_commit(tx);
} else {
/*
* A directory entry already exists for this name.
*/
/*
* Can't truncate an existing file if in exclusive mode.
*/
if (excl == EXCL) {
error = EEXIST;
goto out;
}
/*
* Can't open a directory for writing.
*/
if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
error = EISDIR;
goto out;
}
/*
* Verify requested access to file.
*/
if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) {
goto out;
}
/*
* Truncate regular files if requested.
*/
/*
* Need to update dzp->z_seq?
*/
mutex_enter(&dzp->z_lock);
dzp->z_seq++;
mutex_exit(&dzp->z_lock);
if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) &&
(vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
/*
* Truncate the file.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_bonus(tx, zoid);
dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END);
/* Lock the whole range of the file */
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_range_unlock(zp, rl);
if (dl)
zfs_dirent_unlock(dl);
VN_RELE(ZTOV(zp));
if (error == ERESTART &&
zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_freesp(zp, 0, 0, mode, tx, cr);
if (error == 0) {
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
seq = zfs_log_truncate(zilog, tx,
TX_TRUNCATE, zp, 0, 0);
}
zfs_range_unlock(zp, rl);
dmu_tx_commit(tx);
}
}
out:
if (dl)
zfs_dirent_unlock(dl);
if (error) {
if (zp)
VN_RELE(ZTOV(zp));
} else {
*vpp = ZTOV(zp);
/*
* If vnode is for a device return a specfs vnode instead.
*/
if (IS_DEVVP(*vpp)) {
struct vnode *svp;
svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
VN_RELE(*vpp);
if (svp == NULL) {
error = ENOSYS;
}
*vpp = svp;
}
}
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove an entry from a directory.
*
* IN: dvp - vnode of directory to remove entry from.
* name - name of entry to remove.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dvp - ctime|mtime
* vp - ctime (if nlink > 0)
*/
static int
zfs_remove(vnode_t *dvp, char *name, cred_t *cr)
{
znode_t *zp, *dzp = VTOZ(dvp);
znode_t *xzp = NULL;
vnode_t *vp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
uint64_t acl_obj, xattr_obj;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int may_delete_now, delete_now = FALSE;
int reaped;
int error;
ZFS_ENTER(zfsvfs);
top:
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
ZFS_EXIT(zfsvfs);
return (error);
}
vp = ZTOV(zp);
if (error = zfs_zaccess_delete(dzp, zp, cr)) {
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
if (vp->v_type == VDIR) {
error = EPERM;
goto out;
}
vnevent_remove(vp);
dnlc_remove(dvp, name);
mutex_enter(&vp->v_lock);
may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
mutex_exit(&vp->v_lock);
/*
* We may delete the znode now, or we may put it on the delete queue;
* it depends on whether we're the last link, and on whether there are
* other holds on the vnode. So we dmu_tx_hold() the right things to
* allow for either case.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_bonus(tx, zp->z_id);
if (may_delete_now)
dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
/* are there any extended attributes? */
if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
/*
* XXX - There is a possibility that the delete
* of the parent file could succeed, but then we get
* an ENOSPC when we try to delete the xattrs...
* so we would need to re-try the deletes periodically
*/
/* XXX - do we need this if we are deleting? */
dmu_tx_hold_bonus(tx, xattr_obj);
}
/* are there any additional acls */
if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
may_delete_now)
dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_dirent_unlock(dl);
VN_RELE(vp);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dl, zp, tx, 0, &reaped);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (reaped) {
mutex_enter(&vp->v_lock);
delete_now = may_delete_now &&
vp->v_count == 1 && !vn_has_cached_data(vp) &&
zp->z_phys->zp_xattr == xattr_obj &&
zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
mutex_exit(&vp->v_lock);
}
if (delete_now) {
if (zp->z_phys->zp_xattr) {
error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
ASSERT3U(error, ==, 0);
ASSERT3U(xzp->z_phys->zp_links, ==, 2);
dmu_buf_will_dirty(xzp->z_dbuf, tx);
mutex_enter(&xzp->z_lock);
xzp->z_reap = 1;
xzp->z_phys->zp_links = 0;
mutex_exit(&xzp->z_lock);
zfs_dq_add(xzp, tx);
zp->z_phys->zp_xattr = 0; /* probably unnecessary */
}
mutex_enter(&zp->z_lock);
mutex_enter(&vp->v_lock);
vp->v_count--;
ASSERT3U(vp->v_count, ==, 0);
mutex_exit(&vp->v_lock);
zp->z_active = 0;
mutex_exit(&zp->z_lock);
zfs_znode_delete(zp, tx);
VFS_RELE(zfsvfs->z_vfs);
} else if (reaped) {
zfs_dq_add(zp, tx);
}
seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name);
dmu_tx_commit(tx);
out:
zfs_dirent_unlock(dl);
if (!delete_now) {
VN_RELE(vp);
} else if (xzp) {
/* this rele delayed to prevent nesting transactions */
VN_RELE(ZTOV(xzp));
}
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create a new directory and insert it into dvp using the name
* provided. Return a pointer to the inserted directory.
*
* IN: dvp - vnode of directory to add subdir to.
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
*
* OUT: vpp - vnode of created directory.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dvp - ctime|mtime updated
* vp - ctime|mtime|atime updated
*/
static int
zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
{
znode_t *zp, *dzp = VTOZ(dvp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
zfs_dirlock_t *dl;
uint64_t zoid = 0;
dmu_tx_t *tx;
int error;
ASSERT(vap->va_type == VDIR);
ZFS_ENTER(zfsvfs);
if (dzp->z_phys->zp_flags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
top:
*vpp = NULL;
/*
* First make sure the new directory doesn't exist.
*/
if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) {
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Add a new entry to the directory.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, SPA_MAXBLOCKSIZE);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_dirent_unlock(dl);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
/*
* Now put new name in parent dir.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
*vpp = ZTOV(zp);
seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
* IN: dvp - vnode of directory to remove from.
* name - name of directory to be removed.
* cwd - vnode of current working directory.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dvp - ctime|mtime updated
*/
static int
zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
{
znode_t *dzp = VTOZ(dvp);
znode_t *zp;
vnode_t *vp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
ZFS_ENTER(zfsvfs);
top:
zp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
ZFS_EXIT(zfsvfs);
return (error);
}
vp = ZTOV(zp);
if (error = zfs_zaccess_delete(dzp, zp, cr)) {
goto out;
}
if (vp->v_type != VDIR) {
error = ENOTDIR;
goto out;
}
if (vp == cwd) {
error = EINVAL;
goto out;
}
vnevent_rmdir(vp);
/*
* Grab a lock on the parent pointer make sure we play well
* with the treewalk and directory rename code.
*/
rw_enter(&zp->z_parent_lock, RW_WRITER);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_bonus(tx, zp->z_id);
dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
rw_exit(&zp->z_parent_lock);
zfs_dirent_unlock(dl);
VN_RELE(vp);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_link_destroy(dl, zp, tx, 0, NULL);
if (error == 0)
seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name);
dmu_tx_commit(tx);
rw_exit(&zp->z_parent_lock);
out:
zfs_dirent_unlock(dl);
VN_RELE(vp);
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Read as many directory entries as will fit into the provided
* buffer from the given directory cursor position (specified in
* the uio structure.
*
* IN: vp - vnode of directory to read.
* uio - structure supplying read location, range info,
* and return buffer.
* cr - credentials of caller.
*
* OUT: uio - updated offset and range, buffer filled.
* eofp - set to true if end-of-file detected.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - atime updated
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
/* ARGSUSED */
static int
zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp)
{
znode_t *zp = VTOZ(vp);
iovec_t *iovp;
dirent64_t *odp;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
objset_t *os;
caddr_t outbuf;
size_t bufsize;
zap_cursor_t zc;
zap_attribute_t zap;
uint_t bytes_wanted;
ushort_t this_reclen;
uint64_t offset; /* must be unsigned; checks for < 1 */
off64_t *next;
int local_eof;
int outcount;
int error;
uint8_t prefetch;
ZFS_ENTER(zfsvfs);
/*
* If we are not given an eof variable,
* use a local one.
*/
if (eofp == NULL)
eofp = &local_eof;
/*
* Check for valid iov_len.
*/
if (uio->uio_iov->iov_len <= 0) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/*
* Quit if directory has been removed (posix)
*/
if ((*eofp = zp->z_reap) != 0) {
ZFS_EXIT(zfsvfs);
return (0);
}
error = 0;
os = zfsvfs->z_os;
offset = uio->uio_loffset;
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (offset <= 3) {
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
}
/*
* Get space to change directory entries into fs independent format.
*/
iovp = uio->uio_iov;
bytes_wanted = iovp->iov_len;
if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
bufsize = bytes_wanted;
outbuf = kmem_alloc(bufsize, KM_SLEEP);
odp = (struct dirent64 *)outbuf;
} else {
bufsize = bytes_wanted;
odp = (struct dirent64 *)iovp->iov_base;
}
/*
* Transform to file-system independent format
*/
outcount = 0;
while (outcount < bytes_wanted) {
/*
* Special case `.', `..', and `.zfs'.
*/
if (offset == 0) {
(void) strcpy(zap.za_name, ".");
zap.za_first_integer = zp->z_id;
this_reclen = DIRENT64_RECLEN(1);
} else if (offset == 1) {
(void) strcpy(zap.za_name, "..");
zap.za_first_integer = zp->z_phys->zp_parent;
this_reclen = DIRENT64_RECLEN(2);
} else if (offset == 2 && zfs_show_ctldir(zp)) {
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_first_integer = ZFSCTL_INO_ROOT;
this_reclen =
DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1);
} else {
/*
* Grab next entry.
*/
if (error = zap_cursor_retrieve(&zc, &zap)) {
if ((*eofp = (error == ENOENT)) != 0)
break;
else
goto update;
}
if (zap.za_integer_length != 8 ||
zap.za_num_integers != 1) {
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld\n",
(u_longlong_t)zp->z_id,
(u_longlong_t)offset);
error = ENXIO;
goto update;
}
this_reclen = DIRENT64_RECLEN(strlen(zap.za_name));
}
/*
* Will this entry fit in the buffer?
*/
if (outcount + this_reclen > bufsize) {
/*
* Did we manage to fit anything in the buffer?
*/
if (!outcount) {
error = EINVAL;
goto update;
}
break;
}
/*
* Add this entry:
*/
odp->d_ino = (ino64_t)zap.za_first_integer;
odp->d_reclen = (ushort_t)this_reclen;
/* NOTE: d_off is the offset for the *next* entry */
next = &(odp->d_off);
(void) strncpy(odp->d_name, zap.za_name,
DIRENT64_NAMELEN(this_reclen));
outcount += this_reclen;
odp = (dirent64_t *)((intptr_t)odp + this_reclen);
ASSERT(outcount <= bufsize);
/* Prefetch znode */
if (prefetch)
dmu_prefetch(os, zap.za_first_integer, 0, 0);
/*
* Move to the next entry, fill in the previous offset.
*/
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
zap_cursor_advance(&zc);
offset = zap_cursor_serialize(&zc);
} else {
offset += 1;
}
*next = offset;
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
iovp->iov_base += outcount;
iovp->iov_len -= outcount;
uio->uio_resid -= outcount;
} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
/*
* Reset the pointer.
*/
offset = uio->uio_loffset;
}
update:
zap_cursor_fini(&zc);
if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
kmem_free(outbuf, bufsize);
if (error == ENOENT)
error = 0;
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
uio->uio_loffset = offset;
ZFS_EXIT(zfsvfs);
return (error);
}
static int
zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
/*
* Regardless of whether this is required for standards conformance,
* this is the logical behavior when fsync() is called on a file with
* dirty pages. We use B_ASYNC since the ZIL transactions are already
* going to be pushed out as part of the zil_commit().
*/
if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
(vp->v_type == VREG) && !(IS_SWAPVP(vp)))
(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr);
ZFS_ENTER(zfsvfs);
zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Get the requested file attributes and place them in the provided
* vattr structure.
*
* IN: vp - vnode of file.
* vap - va_mask identifies requested attributes.
* flags - [UNUSED]
* cr - credentials of caller.
*
* OUT: vap - attribute values.
*
* RETURN: 0 (always succeeds)
*/
/* ARGSUSED */
static int
zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
znode_phys_t *pzp = zp->z_phys;
int error;
ZFS_ENTER(zfsvfs);
/*
* Return all attributes. It's cheaper to provide the answer
* than to determine whether we were asked the question.
*/
mutex_enter(&zp->z_lock);
vap->va_type = vp->v_type;
vap->va_mode = pzp->zp_mode & MODEMASK;
vap->va_uid = zp->z_phys->zp_uid;
vap->va_gid = zp->z_phys->zp_gid;
vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
vap->va_nodeid = zp->z_id;
vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */
vap->va_size = pzp->zp_size;
vap->va_rdev = vp->v_rdev;
vap->va_seq = zp->z_seq;
ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
/*
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
* Also, if we are the owner don't bother, since owner should
* always be allowed to read basic attributes of file.
*/
if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) &&
(zp->z_phys->zp_uid != crgetuid(cr))) {
if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) {
mutex_exit(&zp->z_lock);
ZFS_EXIT(zfsvfs);
return (error);
}
}
mutex_exit(&zp->z_lock);
dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
if (zp->z_blksz == 0) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
vap->va_blksize = zfsvfs->z_max_blksz;
}
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
* IN: vp - vnode of file to be modified.
* vap - new attribute values.
* flags - ATTR_UTIME set if non-default time values provided.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - ctime updated, mtime updated if size changed.
*/
/* ARGSUSED */
static int
zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
struct znode *zp = VTOZ(vp);
znode_phys_t *pzp = zp->z_phys;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
dmu_tx_t *tx;
rl_t *rl;
uint_t mask = vap->va_mask;
uint_t mask_applied = 0;
vattr_t oldva;
int trim_mask = FALSE;
int saved_mask;
uint64_t new_mode;
znode_t *attrzp;
int need_policy = FALSE;
int err;
if (mask == 0)
return (0);
if (mask & AT_NOSET)
return (EINVAL);
if (mask & AT_SIZE && vp->v_type == VDIR)
return (EISDIR);
if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO)
return (EINVAL);
ZFS_ENTER(zfsvfs);
top:
rl = NULL;
attrzp = NULL;
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
ZFS_EXIT(zfsvfs);
return (EROFS);
}
/*
* First validate permissions
*/
if (mask & AT_SIZE) {
err = zfs_zaccess(zp, ACE_WRITE_DATA, cr);
if (err) {
ZFS_EXIT(zfsvfs);
return (err);
}
}
if (mask & (AT_ATIME|AT_MTIME))
need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr);
if (mask & (AT_UID|AT_GID)) {
int idmask = (mask & (AT_UID|AT_GID));
int take_owner;
int take_group;
/*
* NOTE: even if a new mode is being set,
* we may clear S_ISUID/S_ISGID bits.
*/
if (!(mask & AT_MODE))
vap->va_mode = pzp->zp_mode;
/*
* Take ownership or chgrp to group we are a member of
*/
take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr);
/*
* If both AT_UID and AT_GID are set then take_owner and
* take_group must both be set in order to allow taking
* ownership.
*
* Otherwise, send the check through secpolicy_vnode_setattr()
*
*/
if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
((idmask == AT_UID) && take_owner) ||
((idmask == AT_GID) && take_group)) {
if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) {
/*
* Remove setuid/setgid for non-privileged users
*/
secpolicy_setid_clear(vap, cr);
trim_mask = TRUE;
saved_mask = vap->va_mask;
} else {
need_policy = TRUE;
}
} else {
need_policy = TRUE;
}
}
if (mask & AT_MODE)
need_policy = TRUE;
if (need_policy) {
mutex_enter(&zp->z_lock);
oldva.va_mode = pzp->zp_mode;
oldva.va_uid = zp->z_phys->zp_uid;
oldva.va_gid = zp->z_phys->zp_gid;
mutex_exit(&zp->z_lock);
/*
* If trim_mask is set then take ownership
* has been granted. In that case remove
* UID|GID from mask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/
if (trim_mask)
vap->va_mask &= ~(AT_UID|AT_GID);
err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
(int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp);
if (err) {
ZFS_EXIT(zfsvfs);
return (err);
}
if (trim_mask)
vap->va_mask |= (saved_mask & (AT_UID|AT_GID));
}
/*
* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask
*/
mask = vap->va_mask;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
if (mask & AT_MODE) {
uint64_t pmode = pzp->zp_mode;
new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
if (zp->z_phys->zp_acl.z_acl_extern_obj)
dmu_tx_hold_write(tx,
pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE);
else
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, ZFS_ACL_SIZE(MAX_ACL_SIZE));
}
if (mask & AT_SIZE) {
uint64_t off = vap->va_size;
/*
* Range lock the entire file, to ensure the truncate
* is serialised.
*/
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
ASSERT(rl != NULL);
if (off < zp->z_phys->zp_size)
dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END);
else if (zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz)
/* we will rewrite this block if we grow */
dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size);
}
if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) {
err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp);
if (err) {
dmu_tx_abort(tx);
if (rl != NULL)
zfs_range_unlock(zp, rl);
ZFS_EXIT(zfsvfs);
return (err);
}
dmu_tx_hold_bonus(tx, attrzp->z_id);
}
err = dmu_tx_assign(tx, zfsvfs->z_assign);
if (err) {
if (attrzp)
VN_RELE(ZTOV(attrzp));
dmu_tx_abort(tx);
if (rl != NULL)
zfs_range_unlock(zp, rl);
if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (err);
}
dmu_buf_will_dirty(zp->z_dbuf, tx);
/*
* Set each attribute requested.
* We group settings according to the locks they need to acquire.
*
* Note: you cannot set ctime directly, although it will be
* updated as a side-effect of calling this function.
*/
if (mask & AT_SIZE) {
/*
* XXX - Note, we are not providing any open
* mode flags here (like FNDELAY), so we may
* block if there are locks present... this
* should be addressed in openat().
*/
err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr);
if (err) {
mutex_enter(&zp->z_lock);
goto out;
}
mask_applied |= AT_SIZE;
}
mask_applied = mask; /* no errors after this point */
mutex_enter(&zp->z_lock);
if (mask & AT_MODE) {
err = zfs_acl_chmod_setattr(zp, new_mode, tx);
ASSERT3U(err, ==, 0);
}
if (attrzp)
mutex_enter(&attrzp->z_lock);
if (mask & AT_UID) {
zp->z_phys->zp_uid = (uint64_t)vap->va_uid;
if (attrzp) {
attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid;
}
}
if (mask & AT_GID) {
zp->z_phys->zp_gid = (uint64_t)vap->va_gid;
if (attrzp)
attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid;
}
if (attrzp)
mutex_exit(&attrzp->z_lock);
if (mask & AT_ATIME)
ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
if (mask & AT_MTIME)
ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
if (mask_applied & AT_SIZE)
zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
else if (mask_applied != 0)
zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
out:
if (mask_applied != 0)
seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap,
mask_applied);
mutex_exit(&zp->z_lock);
if (attrzp)
VN_RELE(ZTOV(attrzp));
if (rl != NULL)
zfs_range_unlock(zp, rl);
dmu_tx_commit(tx);
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (err);
}
/*
* Search back through the directory tree, using the ".." entries.
* Lock each directory in the chain to prevent concurrent renames.
* Fail any attempt to move a directory into one of its own descendants.
* XXX - z_parent_lock can overlap with map or grow locks
*/
typedef struct zfs_zlock {
krwlock_t *zl_rwlock; /* lock we acquired */
znode_t *zl_znode; /* znode we held */
struct zfs_zlock *zl_next; /* next in list */
} zfs_zlock_t;
static int
zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
znode_t *zp = tdzp;
uint64_t rootid = zp->z_zfsvfs->z_root;
uint64_t *oidp = &zp->z_id;
krwlock_t *rwlp = &szp->z_parent_lock;
krw_t rw = RW_WRITER;
/*
* First pass write-locks szp and compares to zp->z_id.
* Later passes read-lock zp and compare to zp->z_parent.
*/
do {
zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
zl->zl_rwlock = rwlp;
zl->zl_znode = NULL;
zl->zl_next = *zlpp;
*zlpp = zl;
rw_enter(rwlp, rw);
if (*oidp == szp->z_id) /* We're a descendant of szp */
return (EINVAL);
if (*oidp == rootid) /* We've hit the top */
return (0);
if (rw == RW_READER) { /* i.e. not the first pass */
int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
if (error)
return (error);
zl->zl_znode = zp;
}
oidp = &zp->z_phys->zp_parent;
rwlp = &zp->z_parent_lock;
rw = RW_READER;
} while (zp->z_id != sdzp->z_id);
return (0);
}
/*
* Drop locks and release vnodes that were held by zfs_rename_lock().
*/
static void
zfs_rename_unlock(zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
while ((zl = *zlpp) != NULL) {
if (zl->zl_znode != NULL)
VN_RELE(ZTOV(zl->zl_znode));
rw_exit(zl->zl_rwlock);
*zlpp = zl->zl_next;
kmem_free(zl, sizeof (*zl));
}
}
/*
* Move an entry from the provided source directory to the target
* directory. Change the entry name as indicated.
*
* IN: sdvp - Source directory containing the "old entry".
* snm - Old entry name.
* tdvp - Target directory to contain the "new entry".
* tnm - New entry name.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* sdvp,tdvp - ctime|mtime updated
*/
static int
zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr)
{
znode_t *tdzp, *szp, *tzp;
znode_t *sdzp = VTOZ(sdvp);
zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
vnode_t *realvp;
zfs_dirlock_t *sdl, *tdl;
dmu_tx_t *tx;
zfs_zlock_t *zl;
int cmp, serr, terr, error;
ZFS_ENTER(zfsvfs);
/*
* Make sure we have the real vp for the target directory.
*/
if (VOP_REALVP(tdvp, &realvp) == 0)
tdvp = realvp;
if (tdvp->v_vfsp != sdvp->v_vfsp) {
ZFS_EXIT(zfsvfs);
return (EXDEV);
}
tdzp = VTOZ(tdvp);
top:
szp = NULL;
tzp = NULL;
zl = NULL;
/*
* This is to prevent the creation of links into attribute space
* by renaming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*/
if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
(sdzp->z_phys->zp_flags & ZFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/*
* Lock source and target directory entries. To prevent deadlock,
* a lock ordering must be defined. We lock the directory with
* the smallest object id first, or if it's a tie, the one with
* the lexically first name.
*/
if (sdzp->z_id < tdzp->z_id) {
cmp = -1;
} else if (sdzp->z_id > tdzp->z_id) {
cmp = 1;
} else {
cmp = strcmp(snm, tnm);
if (cmp == 0) {
/*
* POSIX: "If the old argument and the new argument
* both refer to links to the same existing file,
* the rename() function shall return successfully
* and perform no other action."
*/
ZFS_EXIT(zfsvfs);
return (0);
}
}
if (cmp < 0) {
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
} else {
terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
}
if (serr) {
/*
* Source entry invalid or not there.
*/
if (!terr) {
zfs_dirent_unlock(tdl);
if (tzp)
VN_RELE(ZTOV(tzp));
}
if (strcmp(snm, "..") == 0)
serr = EINVAL;
ZFS_EXIT(zfsvfs);
return (serr);
}
if (terr) {
zfs_dirent_unlock(sdl);
VN_RELE(ZTOV(szp));
if (strcmp(tnm, "..") == 0)
terr = EINVAL;
ZFS_EXIT(zfsvfs);
return (terr);
}
/*
* Must have write access at the source to remove the old entry
* and write access at the target to create the new entry.
* Note that if target and source are the same, this can be
* done in a single check.
*/
if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
goto out;
if (ZTOV(szp)->v_type == VDIR) {
/*
* Check to make sure rename is valid.
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
*/
if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
goto out;
}
/*
* Does target exist?
*/
if (tzp) {
/*
* Source and target must be the same type.
*/
if (ZTOV(szp)->v_type == VDIR) {
if (ZTOV(tzp)->v_type != VDIR) {
error = ENOTDIR;
goto out;
}
} else {
if (ZTOV(tzp)->v_type == VDIR) {
error = EISDIR;
goto out;
}
}
/*
* POSIX dictates that when the source and target
* entries refer to the same file object, rename
* must do nothing and exit without error.
*/
if (szp->z_id == tzp->z_id) {
error = 0;
goto out;
}
}
vnevent_rename_src(ZTOV(szp));
if (tzp)
vnevent_rename_dest(ZTOV(tzp));
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */
dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
if (sdzp != tdzp)
dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */
if (tzp)
dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */
dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
VN_RELE(ZTOV(szp));
if (tzp)
VN_RELE(ZTOV(tzp));
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
if (tzp) /* Attempt to remove the existing target */
error = zfs_link_destroy(tdl, tzp, tx, 0, NULL);
if (error == 0) {
error = zfs_link_create(tdl, szp, tx, ZRENAMING);
if (error == 0) {
error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
ASSERT(error == 0);
seq = zfs_log_rename(zilog, tx, TX_RENAME,
sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
}
}
dmu_tx_commit(tx);
out:
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
VN_RELE(ZTOV(szp));
if (tzp)
VN_RELE(ZTOV(tzp));
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Insert the indicated symbolic reference entry into the directory.
*
* IN: dvp - Directory to contain new symbolic link.
* link - Name for new symlink entry.
* vap - Attributes of new entry.
* target - Target path of new symlink.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dvp - ctime|mtime updated
*/
static int
zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr)
{
znode_t *zp, *dzp = VTOZ(dvp);
zfs_dirlock_t *dl;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
uint64_t zoid;
int len = strlen(link);
int error;
ASSERT(vap->va_type == VLNK);
ZFS_ENTER(zfsvfs);
top:
if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (len > MAXPATHLEN) {
ZFS_EXIT(zfsvfs);
return (ENAMETOOLONG);
}
/*
* Attempt to lock directory; fail if entry already exists.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) {
ZFS_EXIT(zfsvfs);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
dmu_tx_hold_bonus(tx, dzp->z_id);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_dirent_unlock(dl);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
dmu_buf_will_dirty(dzp->z_dbuf, tx);
/*
* Create a new object for the symlink.
* Put the link content into bonus buffer if it will fit;
* otherwise, store it just like any other file data.
*/
zoid = 0;
if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len);
if (len != 0)
bcopy(link, zp->z_phys + 1, len);
} else {
dmu_buf_t *dbp;
zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
/*
* Nothing can access the znode yet so no locking needed
* for growing the znode's blocksize.
*/
zfs_grow_blocksize(zp, len, tx);
VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp));
dmu_buf_will_dirty(dbp, tx);
ASSERT3U(len, <=, dbp->db_size);
bcopy(link, dbp->db_data, len);
dmu_buf_rele(dbp, FTAG);
}
zp->z_phys->zp_size = len;
/*
* Insert the new object into the directory.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
out:
if (error == 0)
seq = zfs_log_symlink(zilog, tx, TX_SYMLINK,
dzp, zp, name, link);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
VN_RELE(ZTOV(zp));
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Return, in the buffer contained in the provided uio structure,
* the symbolic path referred to by vp.
*
* IN: vp - vnode of symbolic link.
* uoip - structure to contain the link path.
* cr - credentials of caller.
*
* OUT: uio - structure to contain the link path.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - atime updated
*/
/* ARGSUSED */
static int
zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
size_t bufsz;
int error;
ZFS_ENTER(zfsvfs);
bufsz = (size_t)zp->z_phys->zp_size;
if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
error = uiomove(zp->z_phys + 1,
MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
} else {
dmu_buf_t *dbp;
error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
if (error) {
ZFS_EXIT(zfsvfs);
return (error);
}
error = uiomove(dbp->db_data,
MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
dmu_buf_rele(dbp, FTAG);
}
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Insert a new entry into directory tdvp referencing svp.
*
* IN: tdvp - Directory to contain new entry.
* svp - vnode of new entry.
* name - name of new entry.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* tdvp - ctime|mtime updated
* svp - ctime updated
*/
/* ARGSUSED */
static int
zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr)
{
znode_t *dzp = VTOZ(tdvp);
znode_t *tzp, *szp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
uint64_t seq = 0;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
vnode_t *realvp;
int error;
ASSERT(tdvp->v_type == VDIR);
ZFS_ENTER(zfsvfs);
if (VOP_REALVP(svp, &realvp) == 0)
svp = realvp;
if (svp->v_vfsp != tdvp->v_vfsp) {
ZFS_EXIT(zfsvfs);
return (EXDEV);
}
szp = VTOZ(svp);
top:
/*
* We do not support links between attributes and non-attributes
* because of the potential security risk of creating links
* into "normal" file space in order to circumvent restrictions
* imposed in attribute space.
*/
if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
(dzp->z_phys->zp_flags & ZFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/*
* POSIX dictates that we return EPERM here.
* Better choices include ENOTSUP or EISDIR.
*/
if (svp->v_type == VDIR) {
ZFS_EXIT(zfsvfs);
return (EPERM);
}
if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) &&
secpolicy_basic_link(cr) != 0) {
ZFS_EXIT(zfsvfs);
return (EPERM);
}
if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Attempt to lock directory; fail if entry already exists.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) {
ZFS_EXIT(zfsvfs);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, szp->z_id);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_dirent_unlock(dl);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_link_create(dl, szp, tx, 0);
if (error == 0)
seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* zfs_null_putapage() is used when the file system has been force
* unmounted. It just drops the pages.
*/
/* ARGSUSED */
static int
zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
size_t *lenp, int flags, cred_t *cr)
{
pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
return (0);
}
/* ARGSUSED */
static int
zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
size_t *lenp, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
dmu_tx_t *tx;
rl_t *rl;
u_offset_t off;
ssize_t len;
caddr_t va;
int err;
top:
off = pp->p_offset;
rl = zfs_range_lock(zp, off, PAGESIZE, RL_WRITER);
/*
* Can't push pages past end-of-file.
*/
if (off >= zp->z_phys->zp_size) {
zfs_range_unlock(zp, rl);
return (EIO);
}
len = MIN(PAGESIZE, zp->z_phys->zp_size - off);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_write(tx, zp->z_id, off, len);
dmu_tx_hold_bonus(tx, zp->z_id);
err = dmu_tx_assign(tx, zfsvfs->z_assign);
if (err != 0) {
dmu_tx_abort(tx);
zfs_range_unlock(zp, rl);
if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
goto out;
}
va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
ppmapout(va);
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
(void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL);
dmu_tx_commit(tx);
zfs_range_unlock(zp, rl);
pvn_write_done(pp, B_WRITE | flags);
if (offp)
*offp = off;
if (lenp)
*lenp = len;
out:
return (err);
}
/*
* Copy the portion of the file indicated from pages into the file.
* The pages are stored in a page list attached to the files vnode.
*
* IN: vp - vnode of file to push page data to.
* off - position in file to put data.
* len - amount of data to write.
* flags - flags to control the operation.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - ctime|mtime updated
*/
static int
zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
page_t *pp;
size_t io_len;
u_offset_t io_off;
uint64_t filesz;
int error = 0;
ZFS_ENTER(zfsvfs);
ASSERT(zp->z_dbuf_held && zp->z_phys);
if (len == 0) {
/*
* Search the entire vp list for pages >= off.
*/
error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
flags, cr);
goto out;
}
filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
if (off > filesz) {
/* past end of file */
ZFS_EXIT(zfsvfs);
return (0);
}
len = MIN(len, filesz - off);
for (io_off = off; io_off < off + len; io_off += io_len) {
if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
pp = page_lookup(vp, io_off,
(flags & (B_INVAL | B_FREE)) ?
SE_EXCL : SE_SHARED);
} else {
pp = page_lookup_nowait(vp, io_off,
(flags & B_FREE) ? SE_EXCL : SE_SHARED);
}
if (pp != NULL && pvn_getdirty(pp, flags)) {
int err;
/*
* Found a dirty page to push
*/
err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
if (err)
error = err;
} else {
io_len = PAGESIZE;
}
}
out:
zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC);
ZFS_EXIT(zfsvfs);
return (error);
}
void
zfs_inactive(vnode_t *vp, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
rw_enter(&zfsvfs->z_um_lock, RW_READER);
if (zfsvfs->z_unmounted2) {
ASSERT(zp->z_dbuf_held == 0);
if (vn_has_cached_data(vp)) {
(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
B_INVAL, cr);
}
mutex_enter(&zp->z_lock);
vp->v_count = 0; /* count arrives as 1 */
if (zp->z_dbuf == NULL) {
mutex_exit(&zp->z_lock);
zfs_znode_free(zp);
} else {
mutex_exit(&zp->z_lock);
}
rw_exit(&zfsvfs->z_um_lock);
VFS_RELE(zfsvfs->z_vfs);
return;
}
/*
* Attempt to push any data in the page cache. If this fails
* we will get kicked out later in zfs_zinactive().
*/
if (vn_has_cached_data(vp)) {
(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
cr);
}
if (zp->z_atime_dirty && zp->z_reap == 0) {
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
dmu_buf_will_dirty(zp->z_dbuf, tx);
mutex_enter(&zp->z_lock);
zp->z_atime_dirty = 0;
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
}
}
zfs_zinactive(zp);
rw_exit(&zfsvfs->z_um_lock);
}
/*
* Bounds-check the seek operation.
*
* IN: vp - vnode seeking within
* ooff - old file offset
* noffp - pointer to new file offset
*
* RETURN: 0 if success
* EINVAL if new offset invalid
*/
/* ARGSUSED */
static int
zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
{
if (vp->v_type == VDIR)
return (0);
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
}
/*
* Pre-filter the generic locking function to trap attempts to place
* a mandatory lock on a memory mapped file.
*/
static int
zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
flk_callback_t *flk_cbp, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
/*
* We are following the UFS semantics with respect to mapcnt
* here: If we see that the file is mapped already, then we will
* return an error, but we don't worry about races between this
* function and zfs_map().
*/
if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
ZFS_EXIT(zfsvfs);
return (EAGAIN);
}
error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If we can't find a page in the cache, we will create a new page
* and fill it with file data. For efficiency, we may try to fill
* multiple pages at once (klustering).
*/
static int
zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
{
znode_t *zp = VTOZ(vp);
page_t *pp, *cur_pp;
objset_t *os = zp->z_zfsvfs->z_os;
caddr_t va;
u_offset_t io_off, total;
uint64_t oid = zp->z_id;
size_t io_len;
uint64_t filesz;
int err;
/*
* If we are only asking for a single page don't bother klustering.
*/
filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || off > filesz) {
io_off = off;
io_len = PAGESIZE;
pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
} else {
/*
* Try to fill a kluster of pages (a blocks worth).
*/
size_t klen;
u_offset_t koff;
if (!ISP2(zp->z_blksz)) {
/* Only one block in the file. */
klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
koff = 0;
} else {
klen = plsz;
koff = P2ALIGN(off, (u_offset_t)klen);
}
ASSERT(koff <= filesz);
if (koff + klen > filesz)
klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff;
pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
&io_len, koff, klen, 0);
}
if (pp == NULL) {
/*
* Some other thread entered the page before us.
* Return to zfs_getpage to retry the lookup.
*/
*pl = NULL;
return (0);
}
/*
* Fill the pages in the kluster.
*/
cur_pp = pp;
for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
ASSERT(io_off == cur_pp->p_offset);
va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
err = dmu_read(os, oid, io_off, PAGESIZE, va);
ppmapout(va);
if (err) {
/* On error, toss the entire kluster */
pvn_read_done(pp, B_ERROR);
return (err);
}
cur_pp = cur_pp->p_next;
}
out:
/*
* Fill in the page list array from the kluster. If
* there are too many pages in the kluster, return
* as many pages as possible starting from the desired
* offset `off'.
* NOTE: the page list will always be null terminated.
*/
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
return (0);
}
/*
* Return pointers to the pages for the file region [off, off + len]
* in the pl array. If plsz is greater than len, this function may
* also return page pointers from before or after the specified
* region (i.e. some region [off', off' + plsz]). These additional
* pages are only returned if they are already in the cache, or were
* created as part of a klustered read.
*
* IN: vp - vnode of file to get data from.
* off - position in file to get data from.
* len - amount of data to retrieve.
* plsz - length of provided page list.
* seg - segment to obtain pages for.
* addr - virtual address of fault.
* rw - mode of created pages.
* cr - credentials of caller.
*
* OUT: protp - protection mode of created pages.
* pl - list of pages created.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - atime updated
*/
/* ARGSUSED */
static int
zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
page_t *pp, **pl0 = pl;
rl_t *rl;
int cnt = 0, need_unlock = 0, err = 0;
ZFS_ENTER(zfsvfs);
if (protp)
*protp = PROT_ALL;
ASSERT(zp->z_dbuf_held && zp->z_phys);
/* no faultahead (for now) */
if (pl == NULL) {
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Make sure nobody restructures the file in the middle of the getpage.
*/
rl = zfs_range_lock(zp, off, len, RL_READER);
/* can't fault past EOF */
if (off >= zp->z_phys->zp_size) {
zfs_range_unlock(zp, rl);
ZFS_EXIT(zfsvfs);
return (EFAULT);
}
/*
* If we already own the lock, then we must be page faulting
* in the middle of a write to this file (i.e., we are writing
* to this file using data from a mapped region of the file).
*/
if (!rw_owner(&zp->z_map_lock)) {
rw_enter(&zp->z_map_lock, RW_WRITER);
need_unlock = TRUE;
}
/*
* Loop through the requested range [off, off + len] looking
* for pages. If we don't find a page, we will need to create
* a new page and fill it with data from the file.
*/
while (len > 0) {
if (plsz < PAGESIZE)
break;
if (pp = page_lookup(vp, off, SE_SHARED)) {
*pl++ = pp;
off += PAGESIZE;
addr += PAGESIZE;
len -= PAGESIZE;
plsz -= PAGESIZE;
} else {
err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
/*
* klustering may have changed our region
* to be block aligned.
*/
if (((pp = *pl) != 0) && (off != pp->p_offset)) {
int delta = off - pp->p_offset;
len += delta;
off -= delta;
addr -= delta;
}
while (*pl) {
pl++;
cnt++;
off += PAGESIZE;
addr += PAGESIZE;
plsz -= PAGESIZE;
if (len > PAGESIZE)
len -= PAGESIZE;
else
len = 0;
}
if (err) {
/*
* Release any pages we have locked.
*/
while (pl > pl0)
page_unlock(*--pl);
goto out;
}
}
}
/*
* Fill out the page array with any pages already in the cache.
*/
while (plsz > 0) {
pp = page_lookup_nowait(vp, off, SE_SHARED);
if (pp == NULL)
break;
*pl++ = pp;
off += PAGESIZE;
plsz -= PAGESIZE;
}
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
out:
*pl = NULL;
if (need_unlock)
rw_exit(&zp->z_map_lock);
zfs_range_unlock(zp, rl);
ZFS_EXIT(zfsvfs);
return (err);
}
/*
* Request a memory map for a section of a file. This code interacts
* with common code and the VM system as follows:
*
* common code calls mmap(), which ends up in smmap_common()
*
* this calls VOP_MAP(), which takes you into (say) zfs
*
* zfs_map() calls as_map(), passing segvn_create() as the callback
*
* segvn_create() creates the new segment and calls VOP_ADDMAP()
*
* zfs_addmap() updates z_mapcnt
*/
static int
zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
segvn_crargs_t vn_a;
int error;
ZFS_ENTER(zfsvfs);
if (vp->v_flag & VNOMAP) {
ZFS_EXIT(zfsvfs);
return (ENOSYS);
}
if (off < 0 || len > MAXOFFSET_T - off) {
ZFS_EXIT(zfsvfs);
return (ENXIO);
}
if (vp->v_type != VREG) {
ZFS_EXIT(zfsvfs);
return (ENODEV);
}
/*
* If file is locked, disallow mapping.
*/
if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
ZFS_EXIT(zfsvfs);
return (EAGAIN);
}
as_rangelock(as);
if ((flags & MAP_FIXED) == 0) {
map_addr(addrp, len, off, 1, flags);
if (*addrp == NULL) {
as_rangeunlock(as);
ZFS_EXIT(zfsvfs);
return (ENOMEM);
}
} else {
/*
* User specified address - blow away any previous mappings
*/
(void) as_unmap(as, *addrp, len);
}
vn_a.vp = vp;
vn_a.offset = (u_offset_t)off;
vn_a.type = flags & MAP_TYPE;
vn_a.prot = prot;
vn_a.maxprot = maxprot;
vn_a.cred = cr;
vn_a.amp = NULL;
vn_a.flags = flags & ~MAP_TYPE;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map(as, *addrp, len, segvn_create, &vn_a);
as_rangeunlock(as);
ZFS_EXIT(zfsvfs);
return (error);
}
/* ARGSUSED */
static int
zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
{
uint64_t pages = btopr(len);
atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
return (0);
}
/*
* The reason we push dirty pages as part of zfs_delmap() is so that we get a
* more accurate mtime for the associated file. Since we don't have a way of
* detecting when the data was actually modified, we have to resort to
* heuristics. If an explicit msync() is done, then we mark the mtime when the
* last page is pushed. The problem occurs when the msync() call is omitted,
* which by far the most common case:
*
* open()
* mmap()
* <modify memory>
* munmap()
* close()
* <time lapse>
* putpage() via fsflush
*
* If we wait until fsflush to come along, we can have a modification time that
* is some arbitrary point in the future. In order to prevent this in the
* common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
* torn down.
*/
/* ARGSUSED */
static int
zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
{
uint64_t pages = btopr(len);
ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
vn_has_cached_data(vp))
(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr);
return (0);
}
/*
* Free or allocate space in a file. Currently, this function only
* supports the `F_FREESP' command. However, this command is somewhat
* misnamed, as its functionality includes the ability to allocate as
* well as free space.
*
* IN: vp - vnode of file to free data in.
* cmd - action to take (only F_FREESP supported).
* bfp - section of file to free/alloc.
* flag - current file open mode flags.
* offset - current file offset.
* cr - credentials of caller [UNUSED].
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - ctime|mtime updated
*/
/* ARGSUSED */
static int
zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
offset_t offset, cred_t *cr, caller_context_t *ct)
{
dmu_tx_t *tx;
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
rl_t *rl;
uint64_t seq = 0;
uint64_t off, len;
int error;
ZFS_ENTER(zfsvfs);
top:
if (cmd != F_FREESP) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
if (error = convoff(vp, bfp, 0, offset)) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (bfp->l_len < 0) {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
off = bfp->l_start;
len = bfp->l_len; /* 0 means from off to end of file */
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
/*
* If we will change zp_size (in zfs_freesp) then lock the whole file,
* otherwise just lock the range being freed.
*/
if (len == 0 || off + len > zp->z_phys->zp_size) {
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
} else {
rl = zfs_range_lock(zp, off, len, RL_WRITER);
/* recheck, in case zp_size changed */
if (off + len > zp->z_phys->zp_size) {
/* lost race: file size changed, lock whole file */
zfs_range_unlock(zp, rl);
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
}
}
if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz &&
off >= zp->z_phys->zp_size) {
/*
* We are increasing the length of the file,
* and this may mean a block size increase.
*/
dmu_tx_hold_write(tx, zp->z_id, 0,
MIN(off + len, zfsvfs->z_max_blksz));
} else if (off < zp->z_phys->zp_size) {
/*
* If len == 0, we are truncating the file.
*/
dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
}
error = dmu_tx_assign(tx, zfsvfs->z_assign);
if (error) {
dmu_tx_abort(tx);
zfs_range_unlock(zp, rl);
if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
goto top;
}
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_freesp(zp, off, len, flag, tx, cr);
if (error == 0) {
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
}
zfs_range_unlock(zp, rl);
dmu_tx_commit(tx);
zil_commit(zilog, seq, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
static int
zfs_fid(vnode_t *vp, fid_t *fidp)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint32_t gen = (uint32_t)zp->z_phys->zp_gen;
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int size, i;
ZFS_ENTER(zfsvfs);
size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
if (fidp->fid_len < size) {
fidp->fid_len = size;
ZFS_EXIT(zfsvfs);
return (ENOSPC);
}
zfid = (zfid_short_t *)fidp;
zfid->zf_len = size;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* Must have a non-zero generation number to distinguish from .zfs */
if (gen == 0)
gen = 1;
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
if (size == LONG_FID_LEN) {
uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
zfid_long_t *zlfid;
zlfid = (zfid_long_t *)fidp;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
/* XXX - this should be the generation number for the objset */
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
zlfid->zf_setgen[i] = 0;
}
ZFS_EXIT(zfsvfs);
return (0);
}
static int
zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
{
znode_t *zp, *xzp;
zfsvfs_t *zfsvfs;
zfs_dirlock_t *dl;
int error;
switch (cmd) {
case _PC_LINK_MAX:
*valp = ULONG_MAX;
return (0);
case _PC_FILESIZEBITS:
*valp = 64;
return (0);
case _PC_XATTR_EXISTS:
zp = VTOZ(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
*valp = 0;
error = zfs_dirent_lock(&dl, zp, "", &xzp,
ZXATTR | ZEXISTS | ZSHARED);
if (error == 0) {
zfs_dirent_unlock(dl);
if (!zfs_dirempty(xzp))
*valp = 1;
VN_RELE(ZTOV(xzp));
} else if (error == ENOENT) {
/*
* If there aren't extended attributes, it's the
* same as having zero of them.
*/
error = 0;
}
ZFS_EXIT(zfsvfs);
return (error);
case _PC_ACL_ENABLED:
*valp = _ACL_ACE_ENABLED;
return (0);
case _PC_MIN_HOLE_SIZE:
*valp = (ulong_t)SPA_MINBLOCKSIZE;
return (0);
default:
return (fs_pathconf(vp, cmd, valp, cr));
}
}
/*ARGSUSED*/
static int
zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
error = zfs_getacl(zp, vsecp, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*ARGSUSED*/
static int
zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
error = zfs_setacl(zp, vsecp, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Predeclare these here so that the compiler assumes that
* this is an "old style" function declaration that does
* not include arguments => we won't get type mismatch errors
* in the initializations that follow.
*/
static int zfs_inval();
static int zfs_isdir();
static int
zfs_inval()
{
return (EINVAL);
}
static int
zfs_isdir()
{
return (EISDIR);
}
/*
* Directory vnode operations template
*/
vnodeops_t *zfs_dvnodeops;
const fs_operation_def_t zfs_dvnodeops_template[] = {
VOPNAME_OPEN, zfs_open,
VOPNAME_CLOSE, zfs_close,
VOPNAME_READ, zfs_isdir,
VOPNAME_WRITE, zfs_isdir,
VOPNAME_IOCTL, zfs_ioctl,
VOPNAME_GETATTR, zfs_getattr,
VOPNAME_SETATTR, zfs_setattr,
VOPNAME_ACCESS, zfs_access,
VOPNAME_LOOKUP, zfs_lookup,
VOPNAME_CREATE, zfs_create,
VOPNAME_REMOVE, zfs_remove,
VOPNAME_LINK, zfs_link,
VOPNAME_RENAME, zfs_rename,
VOPNAME_MKDIR, zfs_mkdir,
VOPNAME_RMDIR, zfs_rmdir,
VOPNAME_READDIR, zfs_readdir,
VOPNAME_SYMLINK, zfs_symlink,
VOPNAME_FSYNC, zfs_fsync,
VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
VOPNAME_FID, zfs_fid,
VOPNAME_SEEK, zfs_seek,
VOPNAME_PATHCONF, zfs_pathconf,
VOPNAME_GETSECATTR, zfs_getsecattr,
VOPNAME_SETSECATTR, zfs_setsecattr,
NULL, NULL
};
/*
* Regular file vnode operations template
*/
vnodeops_t *zfs_fvnodeops;
const fs_operation_def_t zfs_fvnodeops_template[] = {
VOPNAME_OPEN, zfs_open,
VOPNAME_CLOSE, zfs_close,
VOPNAME_READ, zfs_read,
VOPNAME_WRITE, zfs_write,
VOPNAME_IOCTL, zfs_ioctl,
VOPNAME_GETATTR, zfs_getattr,
VOPNAME_SETATTR, zfs_setattr,
VOPNAME_ACCESS, zfs_access,
VOPNAME_LOOKUP, zfs_lookup,
VOPNAME_RENAME, zfs_rename,
VOPNAME_FSYNC, zfs_fsync,
VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive,
VOPNAME_FID, zfs_fid,
VOPNAME_SEEK, zfs_seek,
VOPNAME_FRLOCK, zfs_frlock,
VOPNAME_SPACE, zfs_space,
VOPNAME_GETPAGE, zfs_getpage,
VOPNAME_PUTPAGE, zfs_putpage,
VOPNAME_MAP, (fs_generic_func_p) zfs_map,
VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap,
VOPNAME_DELMAP, zfs_delmap,
VOPNAME_PATHCONF, zfs_pathconf,
VOPNAME_GETSECATTR, zfs_getsecattr,
VOPNAME_SETSECATTR, zfs_setsecattr,
VOPNAME_VNEVENT, fs_vnevent_support,
NULL, NULL
};
/*
* Symbolic link vnode operations template
*/
vnodeops_t *zfs_symvnodeops;
const fs_operation_def_t zfs_symvnodeops_template[] = {
VOPNAME_GETATTR, zfs_getattr,
VOPNAME_SETATTR, zfs_setattr,
VOPNAME_ACCESS, zfs_access,
VOPNAME_RENAME, zfs_rename,
VOPNAME_READLINK, zfs_readlink,
VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
VOPNAME_FID, zfs_fid,
VOPNAME_PATHCONF, zfs_pathconf,
VOPNAME_VNEVENT, fs_vnevent_support,
NULL, NULL
};
/*
* Extended attribute directory vnode operations template
* This template is identical to the directory vnodes
* operation template except for restricted operations:
* VOP_MKDIR()
* VOP_SYMLINK()
* Note that there are other restrictions embedded in:
* zfs_create() - restrict type to VREG
* zfs_link() - no links into/out of attribute space
* zfs_rename() - no moves into/out of attribute space
*/
vnodeops_t *zfs_xdvnodeops;
const fs_operation_def_t zfs_xdvnodeops_template[] = {
VOPNAME_OPEN, zfs_open,
VOPNAME_CLOSE, zfs_close,
VOPNAME_IOCTL, zfs_ioctl,
VOPNAME_GETATTR, zfs_getattr,
VOPNAME_SETATTR, zfs_setattr,
VOPNAME_ACCESS, zfs_access,
VOPNAME_LOOKUP, zfs_lookup,
VOPNAME_CREATE, zfs_create,
VOPNAME_REMOVE, zfs_remove,
VOPNAME_LINK, zfs_link,
VOPNAME_RENAME, zfs_rename,
VOPNAME_MKDIR, zfs_inval,
VOPNAME_RMDIR, zfs_rmdir,
VOPNAME_READDIR, zfs_readdir,
VOPNAME_SYMLINK, zfs_inval,
VOPNAME_FSYNC, zfs_fsync,
VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
VOPNAME_FID, zfs_fid,
VOPNAME_SEEK, zfs_seek,
VOPNAME_PATHCONF, zfs_pathconf,
VOPNAME_GETSECATTR, zfs_getsecattr,
VOPNAME_SETSECATTR, zfs_setsecattr,
VOPNAME_VNEVENT, fs_vnevent_support,
NULL, NULL
};
/*
* Error vnode operations template
*/
vnodeops_t *zfs_evnodeops;
const fs_operation_def_t zfs_evnodeops_template[] = {
VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
VOPNAME_PATHCONF, zfs_pathconf,
NULL, NULL
};