zfs_ioctl.c revision 3d7072f8bd27709dba14f6fe336f149d25d9e207
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dmu.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/nvpair.h>
#include <sys/pathname.h>
#include <sys/mount.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ctldir.h>
#include <sys/zvol.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
extern struct modlfs zfs_modlfs;
extern void zfs_init(void);
extern void zfs_fini(void);
ldi_ident_t zfs_li = NULL;
dev_info_t *zfs_dip;
typedef int zfs_ioc_func_t(zfs_cmd_t *);
typedef int zfs_secpolicy_func_t(const char *, cred_t *);
typedef struct zfs_ioc_vec {
zfs_ioc_func_t *zvec_func;
zfs_secpolicy_func_t *zvec_secpolicy;
enum {
no_name,
pool_name,
dataset_name
} zvec_namecheck;
} zfs_ioc_vec_t;
/* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */
void
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
{
const char *newfile;
char buf[256];
va_list adx;
/*
* Get rid of annoying "../common/" prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
va_start(adx, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
va_end(adx);
/*
* To get this data, use the zfs-dprintf probe as so:
* dtrace -q -n 'zfs-dprintf \
* /stringof(arg0) == "dbuf.c"/ \
* {printf("%s: %s", stringof(arg1), stringof(arg3))}'
* arg0 = file name
* arg1 = function name
* arg2 = line number
* arg3 = message
*/
DTRACE_PROBE4(zfs__dprintf,
char *, newfile, char *, func, int, line, char *, buf);
}
/*
* Policy for top-level read operations (list pools). Requires no privileges,
* and can be used in the local zone, as there is no associated dataset.
*/
/* ARGSUSED */
static int
zfs_secpolicy_none(const char *unused1, cred_t *cr)
{
return (0);
}
/*
* Policy for dataset read operations (list children, get statistics). Requires
* no privileges, but must be visible in the local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_read(const char *dataset, cred_t *cr)
{
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(dataset, NULL))
return (0);
return (ENOENT);
}
static int
zfs_dozonecheck(const char *dataset, cred_t *cr)
{
uint64_t zoned;
int writable = 1;
/*
* The dataset must be visible by this zone -- check this first
* so they don't see EPERM on something they shouldn't know about.
*/
if (!INGLOBALZONE(curproc) &&
!zone_dataset_visible(dataset, &writable))
return (ENOENT);
if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
return (ENOENT);
if (INGLOBALZONE(curproc)) {
/*
* If the fs is zoned, only root can access it from the
* global zone.
*/
if (secpolicy_zfs(cr) && zoned)
return (EPERM);
} else {
/*
* If we are in a local zone, the 'zoned' property must be set.
*/
if (!zoned)
return (EPERM);
/* must be writable by this zone */
if (!writable)
return (EPERM);
}
return (0);
}
/*
* Policy for dataset write operations (create children, set properties, etc).
* Requires SYS_MOUNT privilege, and must be writable in the local zone.
*/
int
zfs_secpolicy_write(const char *dataset, cred_t *cr)
{
int error;
if (error = zfs_dozonecheck(dataset, cr))
return (error);
return (secpolicy_zfs(cr));
}
/*
* Policy for operations that want to write a dataset's parent:
* create, destroy, snapshot, clone, restore.
*/
static int
zfs_secpolicy_parent(const char *dataset, cred_t *cr)
{
char parentname[MAXNAMELEN];
char *cp;
/*
* Remove the @bla or /bla from the end of the name to get the parent.
*/
(void) strncpy(parentname, dataset, sizeof (parentname));
cp = strrchr(parentname, '@');
if (cp != NULL) {
cp[0] = '\0';
} else {
cp = strrchr(parentname, '/');
if (cp == NULL)
return (ENOENT);
cp[0] = '\0';
}
return (zfs_secpolicy_write(parentname, cr));
}
/*
* Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
* SYS_CONFIG privilege, which is not available in a local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_config(const char *unused, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0)
return (EPERM);
return (0);
}
/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(const char *unused, cred_t *cr)
{
return (secpolicy_zinject(cr));
}
/*
* Returns the nvlist as specified by the user in the zfs_cmd_t.
*/
static int
get_nvlist(zfs_cmd_t *zc, nvlist_t **nvp)
{
char *packed;
size_t size;
int error;
nvlist_t *config = NULL;
/*
* Read in and unpack the user-supplied nvlist.
*/
if ((size = zc->zc_nvlist_src_size) == 0)
return (EINVAL);
packed = kmem_alloc(size, KM_SLEEP);
if ((error = xcopyin((void *)(uintptr_t)zc->zc_nvlist_src, packed,
size)) != 0) {
kmem_free(packed, size);
return (error);
}
if ((error = nvlist_unpack(packed, size, &config, 0)) != 0) {
kmem_free(packed, size);
return (error);
}
kmem_free(packed, size);
*nvp = config;
return (0);
}
static int
put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
{
char *packed = NULL;
size_t size;
int error;
VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0);
if (size > zc->zc_nvlist_dst_size) {
error = ENOMEM;
} else {
VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE,
KM_SLEEP) == 0);
error = xcopyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
size);
kmem_free(packed, size);
}
zc->zc_nvlist_dst_size = size;
return (error);
}
static int
zfs_ioc_pool_create(zfs_cmd_t *zc)
{
int error;
nvlist_t *config;
if ((error = get_nvlist(zc, &config)) != 0)
return (error);
error = spa_create(zc->zc_name, config, zc->zc_value[0] == '\0' ?
NULL : zc->zc_value);
nvlist_free(config);
return (error);
}
static int
zfs_ioc_pool_destroy(zfs_cmd_t *zc)
{
return (spa_destroy(zc->zc_name));
}
static int
zfs_ioc_pool_import(zfs_cmd_t *zc)
{
int error;
nvlist_t *config;
uint64_t guid;
if ((error = get_nvlist(zc, &config)) != 0)
return (error);
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
guid != zc->zc_guid)
error = EINVAL;
else
error = spa_import(zc->zc_name, config,
zc->zc_value[0] == '\0' ? NULL : zc->zc_value);
nvlist_free(config);
return (error);
}
static int
zfs_ioc_pool_export(zfs_cmd_t *zc)
{
return (spa_export(zc->zc_name, NULL));
}
static int
zfs_ioc_pool_configs(zfs_cmd_t *zc)
{
nvlist_t *configs;
int error;
if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (EEXIST);
error = put_nvlist(zc, configs);
nvlist_free(configs);
return (error);
}
static int
zfs_ioc_pool_stats(zfs_cmd_t *zc)
{
nvlist_t *config;
int error;
int ret = 0;
error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
sizeof (zc->zc_value));
if (config != NULL) {
ret = put_nvlist(zc, config);
nvlist_free(config);
/*
* The config may be present even if 'error' is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}
return (ret);
}
/*
* Try to import the given pool, returning pool stats as appropriate so that
* user land knows which devices are available and overall pool health.
*/
static int
zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
{
nvlist_t *tryconfig, *config;
int error;
if ((error = get_nvlist(zc, &tryconfig)) != 0)
return (error);
config = spa_tryimport(tryconfig);
nvlist_free(tryconfig);
if (config == NULL)
return (EINVAL);
error = put_nvlist(zc, config);
nvlist_free(config);
return (error);
}
static int
zfs_ioc_pool_scrub(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
spa_config_enter(spa, RW_READER, FTAG);
error = spa_scrub(spa, zc->zc_cookie, B_FALSE);
spa_config_exit(spa, FTAG);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_freeze(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
spa_freeze(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
spa_upgrade(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *hist_buf;
uint64_t size;
int error;
if ((size = zc->zc_history_len) == 0)
return (EINVAL);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < ZFS_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (ENOTSUP);
}
hist_buf = kmem_alloc(size, KM_SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
&zc->zc_history_len, hist_buf)) == 0) {
error = xcopyout(hist_buf, (char *)(uintptr_t)zc->zc_history,
zc->zc_history_len);
}
spa_close(spa, FTAG);
kmem_free(hist_buf, size);
return (error);
}
static int
zfs_ioc_pool_log_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *history_str = NULL;
size_t size;
int error;
size = zc->zc_history_len;
if (size == 0 || size > HIS_MAX_RECORD_LEN)
return (EINVAL);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < ZFS_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (ENOTSUP);
}
/* add one for the NULL delimiter */
size++;
history_str = kmem_alloc(size, KM_SLEEP);
if ((error = xcopyin((void *)(uintptr_t)zc->zc_history, history_str,
size)) != 0) {
spa_close(spa, FTAG);
kmem_free(history_str, size);
return (error);
}
history_str[size - 1] = '\0';
error = spa_history_log(spa, history_str, zc->zc_history_offset);
spa_close(spa, FTAG);
kmem_free(history_str, size);
return (error);
}
static int
zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
{
int error;
if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value))
return (error);
return (0);
}
static int
zfs_ioc_obj_to_path(zfs_cmd_t *zc)
{
objset_t *osp;
int error;
if ((error = dmu_objset_open(zc->zc_name, DMU_OST_ZFS,
DS_MODE_NONE | DS_MODE_READONLY, &osp)) != 0)
return (error);
error = zfs_obj_to_path(osp, zc->zc_obj, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_close(osp);
return (error);
}
static int
zfs_ioc_vdev_add(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *config;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
/*
* A root pool with concatenated devices is not supported.
* Thus, can not add a device to a root pool with one device.
*/
if (spa->spa_root_vdev->vdev_children == 1 && spa->spa_bootfs != 0) {
spa_close(spa, FTAG);
return (EDOM);
}
if ((error = get_nvlist(zc, &config)) == 0) {
error = spa_vdev_add(spa, config);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
switch (zc->zc_cookie) {
case VDEV_STATE_ONLINE:
error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
break;
case VDEV_STATE_OFFLINE:
error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_FAULTED:
error = vdev_fault(spa, zc->zc_guid);
break;
case VDEV_STATE_DEGRADED:
error = vdev_degrade(spa, zc->zc_guid);
break;
default:
error = EINVAL;
}
zc->zc_cookie = newstate;
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_attach(zfs_cmd_t *zc)
{
spa_t *spa;
int replacing = zc->zc_cookie;
nvlist_t *config;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc, &config)) == 0) {
error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_detach(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_vdev_detach(spa, zc->zc_guid, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
{
spa_t *spa;
char *path = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setpath(spa, guid, path);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_objset_stats(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
nvlist_t *nv;
retry:
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_STANDARD | DS_MODE_READONLY, &os);
if (error != 0) {
/*
* This is ugly: dmu_objset_open() can return EBUSY if
* the objset is held exclusively. Fortunately this hold is
* only for a short while, so we retry here.
* This avoids user code having to handle EBUSY,
* for example for a "zfs list".
*/
if (error == EBUSY) {
delay(1);
goto retry;
}
return (error);
}
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_all(os, &nv)) == 0) {
dmu_objset_stats(os, nv);
/*
* NB: zvol_get_stats() will read the objset contents,
* which we aren't supposed to do with a
* DS_MODE_STANDARD open, because it could be
* inconsistent. So this is a bit of a workaround...
*/
if (!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZVOL)
VERIFY(zvol_get_stats(os, nv) == 0);
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
spa_altroot(dmu_objset_spa(os), zc->zc_value, sizeof (zc->zc_value));
dmu_objset_close(os);
return (error);
}
static int
zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
char *p;
retry:
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_STANDARD | DS_MODE_READONLY, &os);
if (error != 0) {
/*
* This is ugly: dmu_objset_open() can return EBUSY if
* the objset is held exclusively. Fortunately this hold is
* only for a short while, so we retry here.
* This avoids user code having to handle EBUSY,
* for example for a "zfs list".
*/
if (error == EBUSY) {
delay(1);
goto retry;
}
if (error == ENOENT)
error = ESRCH;
return (error);
}
p = strrchr(zc->zc_name, '/');
if (p == NULL || p[1] != '\0')
(void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
p = zc->zc_name + strlen(zc->zc_name);
do {
error = dmu_dir_list_next(os,
sizeof (zc->zc_name) - (p - zc->zc_name), p,
NULL, &zc->zc_cookie);
if (error == ENOENT)
error = ESRCH;
} while (error == 0 && !INGLOBALZONE(curproc) &&
!zone_dataset_visible(zc->zc_name, NULL));
/*
* If it's a hidden dataset (ie. with a '$' in its name), don't
* try to get stats for it. Userland will skip over it.
*/
if (error == 0 && strchr(zc->zc_name, '$') == NULL)
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
dmu_objset_close(os);
return (error);
}
static int
zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
retry:
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_STANDARD | DS_MODE_READONLY, &os);
if (error != 0) {
/*
* This is ugly: dmu_objset_open() can return EBUSY if
* the objset is held exclusively. Fortunately this hold is
* only for a short while, so we retry here.
* This avoids user code having to handle EBUSY,
* for example for a "zfs list".
*/
if (error == EBUSY) {
delay(1);
goto retry;
}
if (error == ENOENT)
error = ESRCH;
return (error);
}
/*
* A dataset name of maximum length cannot have any snapshots,
* so exit immediately.
*/
if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) {
dmu_objset_close(os);
return (ESRCH);
}
error = dmu_snapshot_list_next(os,
sizeof (zc->zc_name) - strlen(zc->zc_name),
zc->zc_name + strlen(zc->zc_name), NULL, &zc->zc_cookie);
if (error == ENOENT)
error = ESRCH;
if (error == 0)
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
dmu_objset_close(os);
return (error);
}
static int
zfs_set_prop_nvlist(const char *name, dev_t dev, cred_t *cr, nvlist_t *nvl)
{
nvpair_t *elem;
int error;
const char *propname;
zfs_prop_t prop;
uint64_t intval;
char *strval;
char buf[MAXNAMELEN];
const char *p;
spa_t *spa;
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
propname = nvpair_name(elem);
if ((prop = zfs_name_to_prop(propname)) ==
ZFS_PROP_INVAL) {
/*
* If this is a user-defined property, it must be a
* string, and there is no further validation to do.
*/
if (!zfs_prop_user(propname) ||
nvpair_type(elem) != DATA_TYPE_STRING)
return (EINVAL);
VERIFY(nvpair_value_string(elem, &strval) == 0);
error = dsl_prop_set(name, propname, 1,
strlen(strval) + 1, strval);
if (error == 0)
continue;
else
return (error);
}
/*
* Check permissions for special properties.
*/
switch (prop) {
case ZFS_PROP_ZONED:
/*
* Disallow setting of 'zoned' from within a local zone.
*/
if (!INGLOBALZONE(curproc))
return (EPERM);
break;
case ZFS_PROP_QUOTA:
if (error = zfs_dozonecheck(name, cr))
return (error);
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
char setpoint[MAXNAMELEN];
int dslen;
/*
* Unprivileged users are allowed to modify the
* quota on things *under* (ie. contained by)
* the thing they own.
*/
if (dsl_prop_get_integer(name, "zoned", &zoned,
setpoint))
return (EPERM);
if (!zoned) /* this shouldn't happen */
return (EPERM);
dslen = strlen(name);
if (dslen <= strlen(setpoint))
return (EPERM);
}
break;
case ZFS_PROP_COMPRESSION:
/*
* If the user specified gzip compression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch them later.
*/
if (nvpair_type(elem) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(elem, &intval) == 0 &&
intval >= ZIO_COMPRESS_GZIP_1 &&
intval <= ZIO_COMPRESS_GZIP_9) {
if ((p = strchr(name, '/')) == NULL) {
p = name;
} else {
bcopy(name, buf, p - name);
buf[p - name] = '\0';
p = buf;
}
if (spa_open(p, &spa, FTAG) == 0) {
if (spa_version(spa) <
ZFS_VERSION_GZIP_COMPRESSION) {
spa_close(spa, FTAG);
return (ENOTSUP);
}
spa_close(spa, FTAG);
}
}
break;
}
switch (prop) {
case ZFS_PROP_QUOTA:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dir_set_quota(name,
intval)) != 0)
return (error);
break;
case ZFS_PROP_RESERVATION:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dir_set_reservation(name,
intval)) != 0)
return (error);
break;
case ZFS_PROP_VOLSIZE:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = zvol_set_volsize(name, dev,
intval)) != 0)
return (error);
break;
case ZFS_PROP_VOLBLOCKSIZE:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = zvol_set_volblocksize(name,
intval)) != 0)
return (error);
break;
default:
if (nvpair_type(elem) == DATA_TYPE_STRING) {
if (zfs_prop_get_type(prop) !=
prop_type_string)
return (EINVAL);
VERIFY(nvpair_value_string(elem, &strval) == 0);
if ((error = dsl_prop_set(name,
nvpair_name(elem), 1, strlen(strval) + 1,
strval)) != 0)
return (error);
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
const char *unused;
VERIFY(nvpair_value_uint64(elem, &intval) == 0);
switch (zfs_prop_get_type(prop)) {
case prop_type_number:
break;
case prop_type_boolean:
if (intval > 1)
return (EINVAL);
break;
case prop_type_string:
return (EINVAL);
case prop_type_index:
if (zfs_prop_index_to_string(prop,
intval, &unused) != 0)
return (EINVAL);
break;
default:
cmn_err(CE_PANIC, "unknown property "
"type");
break;
}
if ((error = dsl_prop_set(name, propname,
8, 1, &intval)) != 0)
return (error);
} else {
return (EINVAL);
}
break;
}
}
return (0);
}
static int
zfs_ioc_set_prop(zfs_cmd_t *zc)
{
nvlist_t *nvl;
int error;
zfs_prop_t prop;
/*
* If zc_value is set, then this is an attempt to inherit a value.
* Otherwise, zc_nvlist refers to a list of properties to set.
*/
if (zc->zc_value[0] != '\0') {
if (!zfs_prop_user(zc->zc_value) &&
((prop = zfs_name_to_prop(zc->zc_value)) ==
ZFS_PROP_INVAL ||
!zfs_prop_inheritable(prop)))
return (EINVAL);
return (dsl_prop_set(zc->zc_name, zc->zc_value, 0, 0, NULL));
}
if ((error = get_nvlist(zc, &nvl)) != 0)
return (error);
error = zfs_set_prop_nvlist(zc->zc_name, zc->zc_dev,
(cred_t *)(uintptr_t)zc->zc_cred, nvl);
nvlist_free(nvl);
return (error);
}
static int
zfs_ioc_pool_set_props(zfs_cmd_t *zc)
{
nvlist_t *nvl;
int error, reset_bootfs = 0;
uint64_t objnum;
zpool_prop_t prop;
nvpair_t *elem;
char *propname, *strval;
spa_t *spa;
vdev_t *rvdev;
char *vdev_type;
objset_t *os;
if ((error = get_nvlist(zc, &nvl)) != 0)
return (error);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
nvlist_free(nvl);
return (error);
}
if (spa_version(spa) < ZFS_VERSION_BOOTFS) {
nvlist_free(nvl);
spa_close(spa, FTAG);
return (ENOTSUP);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
propname = nvpair_name(elem);
if ((prop = zpool_name_to_prop(propname)) ==
ZFS_PROP_INVAL) {
nvlist_free(nvl);
spa_close(spa, FTAG);
return (EINVAL);
}
switch (prop) {
case ZPOOL_PROP_BOOTFS:
/*
* A bootable filesystem can not be on a RAIDZ pool
* nor a striped pool with more than 1 device.
*/
rvdev = spa->spa_root_vdev;
vdev_type =
rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
(strcmp(vdev_type, VDEV_TYPE_MIRROR) != 0 &&
rvdev->vdev_children > 1)) {
error = ENOTSUP;
break;
}
reset_bootfs = 1;
VERIFY(nvpair_value_string(elem, &strval) == 0);
if (strval == NULL || strval[0] == '\0') {
objnum = zpool_prop_default_numeric(
ZPOOL_PROP_BOOTFS);
break;
}
if (error = dmu_objset_open(strval, DMU_OST_ZFS,
DS_MODE_STANDARD | DS_MODE_READONLY, &os))
break;
objnum = dmu_objset_id(os);
dmu_objset_close(os);
break;
}
if (error)
break;
}
if (error == 0) {
if (reset_bootfs) {
VERIFY(nvlist_remove(nvl,
zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
DATA_TYPE_STRING) == 0);
VERIFY(nvlist_add_uint64(nvl,
zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
objnum) == 0);
}
error = spa_set_props(spa, nvl);
}
nvlist_free(nvl);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_props(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *nvp = NULL;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_props(spa, &nvp);
if (error == 0 && zc->zc_nvlist_dst != NULL)
error = put_nvlist(zc, nvp);
else
error = EFAULT;
spa_close(spa, FTAG);
if (nvp)
nvlist_free(nvp);
return (error);
}
static int
zfs_ioc_create_minor(zfs_cmd_t *zc)
{
return (zvol_create_minor(zc->zc_name, zc->zc_dev));
}
static int
zfs_ioc_remove_minor(zfs_cmd_t *zc)
{
return (zvol_remove_minor(zc->zc_name));
}
/*
* Search the vfs list for a specified resource. Returns a pointer to it
* or NULL if no suitable entry is found. The caller of this routine
* is responsible for releasing the returned vfs pointer.
*/
static vfs_t *
zfs_get_vfs(const char *resource)
{
struct vfs *vfsp;
struct vfs *vfs_found = NULL;
vfs_list_read_lock();
vfsp = rootvfs;
do {
if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) {
VFS_HOLD(vfsp);
vfs_found = vfsp;
break;
}
vfsp = vfsp->vfs_next;
} while (vfsp != rootvfs);
vfs_list_unlock();
return (vfs_found);
}
static void
zfs_create_cb(objset_t *os, void *arg, dmu_tx_t *tx)
{
zfs_create_data_t *zc = arg;
zfs_create_fs(os, (cred_t *)(uintptr_t)zc->zc_cred, tx);
}
static int
zfs_ioc_create(zfs_cmd_t *zc)
{
objset_t *clone;
int error = 0;
zfs_create_data_t cbdata = { 0 };
void (*cbfunc)(objset_t *os, void *arg, dmu_tx_t *tx);
dmu_objset_type_t type = zc->zc_objset_type;
switch (type) {
case DMU_OST_ZFS:
cbfunc = zfs_create_cb;
break;
case DMU_OST_ZVOL:
cbfunc = zvol_create_cb;
break;
default:
cbfunc = NULL;
}
if (strchr(zc->zc_name, '@'))
return (EINVAL);
if (zc->zc_nvlist_src != NULL &&
(error = get_nvlist(zc, &cbdata.zc_props)) != 0)
return (error);
cbdata.zc_cred = (cred_t *)(uintptr_t)zc->zc_cred;
cbdata.zc_dev = (dev_t)zc->zc_dev;
if (zc->zc_value[0] != '\0') {
/*
* We're creating a clone of an existing snapshot.
*/
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) {
nvlist_free(cbdata.zc_props);
return (EINVAL);
}
error = dmu_objset_open(zc->zc_value, type,
DS_MODE_STANDARD | DS_MODE_READONLY, &clone);
if (error) {
nvlist_free(cbdata.zc_props);
return (error);
}
error = dmu_objset_create(zc->zc_name, type, clone, NULL, NULL);
dmu_objset_close(clone);
} else {
if (cbfunc == NULL) {
nvlist_free(cbdata.zc_props);
return (EINVAL);
}
if (type == DMU_OST_ZVOL) {
uint64_t volsize, volblocksize;
if (cbdata.zc_props == NULL ||
nvlist_lookup_uint64(cbdata.zc_props,
zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&volsize) != 0) {
nvlist_free(cbdata.zc_props);
return (EINVAL);
}
if ((error = nvlist_lookup_uint64(cbdata.zc_props,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize)) != 0 && error != ENOENT) {
nvlist_free(cbdata.zc_props);
return (EINVAL);
}
if (error != 0)
volblocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
if ((error = zvol_check_volblocksize(
volblocksize)) != 0 ||
(error = zvol_check_volsize(volsize,
volblocksize)) != 0) {
nvlist_free(cbdata.zc_props);
return (error);
}
}
error = dmu_objset_create(zc->zc_name, type, NULL, cbfunc,
&cbdata);
}
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
if ((error = zfs_set_prop_nvlist(zc->zc_name,
zc->zc_dev, (cred_t *)(uintptr_t)zc->zc_cred,
cbdata.zc_props)) != 0)
(void) dmu_objset_destroy(zc->zc_name);
}
nvlist_free(cbdata.zc_props);
return (error);
}
static int
zfs_ioc_snapshot(zfs_cmd_t *zc)
{
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
return (dmu_objset_snapshot(zc->zc_name,
zc->zc_value, zc->zc_cookie));
}
int
zfs_unmount_snap(char *name, void *arg)
{
char *snapname = arg;
char *cp;
vfs_t *vfsp = NULL;
/*
* Snapshots (which are under .zfs control) must be unmounted
* before they can be destroyed.
*/
if (snapname) {
(void) strcat(name, "@");
(void) strcat(name, snapname);
vfsp = zfs_get_vfs(name);
cp = strchr(name, '@');
*cp = '\0';
} else if (strchr(name, '@')) {
vfsp = zfs_get_vfs(name);
}
if (vfsp) {
/*
* Always force the unmount for snapshots.
*/
int flag = MS_FORCE;
int err;
if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) {
VFS_RELE(vfsp);
return (err);
}
VFS_RELE(vfsp);
if ((err = dounmount(vfsp, flag, kcred)) != 0)
return (err);
}
return (0);
}
static int
zfs_ioc_destroy_snaps(zfs_cmd_t *zc)
{
int err;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
err = dmu_objset_find(zc->zc_name,
zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN);
if (err)
return (err);
return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value));
}
static int
zfs_ioc_destroy(zfs_cmd_t *zc)
{
if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) {
int err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
return (dmu_objset_destroy(zc->zc_name));
}
static int
zfs_ioc_rollback(zfs_cmd_t *zc)
{
return (dmu_objset_rollback(zc->zc_name));
}
static int
zfs_ioc_rename(zfs_cmd_t *zc)
{
int recursive = zc->zc_cookie & 1;
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
/*
* Unmount snapshot unless we're doing a recursive rename,
* in which case the dataset code figures out which snapshots
* to unmount.
*/
if (!recursive && strchr(zc->zc_name, '@') != NULL &&
zc->zc_objset_type == DMU_OST_ZFS) {
int err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive));
}
static int
zfs_ioc_recvbackup(zfs_cmd_t *zc)
{
file_t *fp;
int error, fd;
offset_t new_off;
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '@') == NULL)
return (EINVAL);
fd = zc->zc_cookie;
fp = getf(fd);
if (fp == NULL)
return (EBADF);
error = dmu_recvbackup(zc->zc_value, &zc->zc_begin_record,
&zc->zc_cookie, (boolean_t)zc->zc_guid, fp->f_vnode,
fp->f_offset);
new_off = fp->f_offset + zc->zc_cookie;
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &new_off) == 0)
fp->f_offset = new_off;
releasef(fd);
return (error);
}
static int
zfs_ioc_sendbackup(zfs_cmd_t *zc)
{
objset_t *fromsnap = NULL;
objset_t *tosnap;
file_t *fp;
int error;
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_STANDARD | DS_MODE_READONLY, &tosnap);
if (error)
return (error);
if (zc->zc_value[0] != '\0') {
char buf[MAXPATHLEN];
char *cp;
(void) strncpy(buf, zc->zc_name, sizeof (buf));
cp = strchr(buf, '@');
if (cp)
*(cp+1) = 0;
(void) strncat(buf, zc->zc_value, sizeof (buf));
error = dmu_objset_open(buf, DMU_OST_ANY,
DS_MODE_STANDARD | DS_MODE_READONLY, &fromsnap);
if (error) {
dmu_objset_close(tosnap);
return (error);
}
}
fp = getf(zc->zc_cookie);
if (fp == NULL) {
dmu_objset_close(tosnap);
if (fromsnap)
dmu_objset_close(fromsnap);
return (EBADF);
}
error = dmu_sendbackup(tosnap, fromsnap, fp->f_vnode);
releasef(zc->zc_cookie);
if (fromsnap)
dmu_objset_close(fromsnap);
dmu_objset_close(tosnap);
return (error);
}
static int
zfs_ioc_inject_fault(zfs_cmd_t *zc)
{
int id, error;
error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
&zc->zc_inject_record);
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
}
static int
zfs_ioc_clear_fault(zfs_cmd_t *zc)
{
return (zio_clear_fault((int)zc->zc_guid));
}
static int
zfs_ioc_inject_list_next(zfs_cmd_t *zc)
{
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
}
static int
zfs_ioc_error_log(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
size_t count = (size_t)zc->zc_nvlist_dst_size;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
&count);
if (error == 0)
zc->zc_nvlist_dst_size = count;
else
zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_clear(zfs_cmd_t *zc)
{
spa_t *spa;
vdev_t *vd;
int error;
uint64_t txg;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
txg = spa_vdev_enter(spa);
if (zc->zc_guid == 0) {
vd = NULL;
} else if ((vd = spa_lookup_by_guid(spa, zc->zc_guid)) == NULL) {
(void) spa_vdev_exit(spa, NULL, txg, ENODEV);
spa_close(spa, FTAG);
return (ENODEV);
}
vdev_clear(spa, vd);
(void) spa_vdev_exit(spa, NULL, txg, 0);
spa_close(spa, FTAG);
return (0);
}
static int
zfs_ioc_promote(zfs_cmd_t *zc)
{
char *cp;
/*
* We don't need to unmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(zc->zc_value, '@');
if (cp)
*cp = '\0';
(void) dmu_objset_find(zc->zc_value,
zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS);
return (dsl_dataset_promote(zc->zc_name));
}
static zfs_ioc_vec_t zfs_ioc_vec[] = {
{ zfs_ioc_pool_create, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_destroy, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_import, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_export, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_configs, zfs_secpolicy_none, no_name },
{ zfs_ioc_pool_stats, zfs_secpolicy_read, pool_name },
{ zfs_ioc_pool_tryimport, zfs_secpolicy_config, no_name },
{ zfs_ioc_pool_scrub, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_freeze, zfs_secpolicy_config, no_name },
{ zfs_ioc_pool_upgrade, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_get_history, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_log_history, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_add, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_remove, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_set_state, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_attach, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_detach, zfs_secpolicy_config, pool_name },
{ zfs_ioc_vdev_setpath, zfs_secpolicy_config, pool_name },
{ zfs_ioc_objset_stats, zfs_secpolicy_read, dataset_name },
{ zfs_ioc_dataset_list_next, zfs_secpolicy_read, dataset_name },
{ zfs_ioc_snapshot_list_next, zfs_secpolicy_read, dataset_name },
{ zfs_ioc_set_prop, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_create_minor, zfs_secpolicy_config, dataset_name },
{ zfs_ioc_remove_minor, zfs_secpolicy_config, dataset_name },
{ zfs_ioc_create, zfs_secpolicy_parent, dataset_name },
{ zfs_ioc_destroy, zfs_secpolicy_parent, dataset_name },
{ zfs_ioc_rollback, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_rename, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_recvbackup, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_sendbackup, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_inject_fault, zfs_secpolicy_inject, no_name },
{ zfs_ioc_clear_fault, zfs_secpolicy_inject, no_name },
{ zfs_ioc_inject_list_next, zfs_secpolicy_inject, no_name },
{ zfs_ioc_error_log, zfs_secpolicy_inject, pool_name },
{ zfs_ioc_clear, zfs_secpolicy_config, pool_name },
{ zfs_ioc_promote, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_destroy_snaps, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_snapshot, zfs_secpolicy_write, dataset_name },
{ zfs_ioc_dsobj_to_dsname, zfs_secpolicy_config, pool_name },
{ zfs_ioc_obj_to_path, zfs_secpolicy_config, no_name },
{ zfs_ioc_pool_set_props, zfs_secpolicy_config, pool_name },
{ zfs_ioc_pool_get_props, zfs_secpolicy_read, pool_name },
};
static int
zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
{
zfs_cmd_t *zc;
uint_t vec;
int error, rc;
if (getminor(dev) != 0)
return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp));
vec = cmd - ZFS_IOC;
if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
return (EINVAL);
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
error = xcopyin((void *)arg, zc, sizeof (zfs_cmd_t));
if (error == 0) {
zc->zc_cred = (uintptr_t)cr;
zc->zc_dev = dev;
error = zfs_ioc_vec[vec].zvec_secpolicy(zc->zc_name, cr);
}
/*
* Ensure that all pool/dataset names are valid before we pass down to
* the lower layers.
*/
if (error == 0) {
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
switch (zfs_ioc_vec[vec].zvec_namecheck) {
case pool_name:
if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
break;
case dataset_name:
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
break;
case no_name:
break;
}
}
if (error == 0)
error = zfs_ioc_vec[vec].zvec_func(zc);
rc = xcopyout(zc, (void *)arg, sizeof (zfs_cmd_t));
if (error == 0)
error = rc;
kmem_free(zc, sizeof (zfs_cmd_t));
return (error);
}
static int
zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH)
return (DDI_FAILURE);
if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0,
DDI_PSEUDO, 0) == DDI_FAILURE)
return (DDI_FAILURE);
zfs_dip = dip;
ddi_report_dev(dip);
return (DDI_SUCCESS);
}
static int
zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
if (spa_busy() || zfs_busy() || zvol_busy())
return (DDI_FAILURE);
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
zfs_dip = NULL;
ddi_prop_remove_all(dip);
ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = zfs_dip;
return (DDI_SUCCESS);
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* OK, so this is a little weird.
*
* /dev/zfs is the control node, i.e. minor 0.
* /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0.
*
* /dev/zfs has basically nothing to do except serve up ioctls,
* so most of the standard driver entry points are in zvol.c.
*/
static struct cb_ops zfs_cb_ops = {
zvol_open, /* open */
zvol_close, /* close */
zvol_strategy, /* strategy */
nodev, /* print */
nodev, /* dump */
zvol_read, /* read */
zvol_write, /* write */
zfsdev_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */
CB_REV, /* version */
nodev, /* async read */
nodev, /* async write */
};
static struct dev_ops zfs_dev_ops = {
DEVO_REV, /* version */
0, /* refcnt */
zfs_info, /* info */
nulldev, /* identify */
nulldev, /* probe */
zfs_attach, /* attach */
zfs_detach, /* detach */
nodev, /* reset */
&zfs_cb_ops, /* driver operations */
NULL /* no bus operations */
};
static struct modldrv zfs_modldrv = {
&mod_driverops, "ZFS storage pool version " ZFS_VERSION_STRING,
&zfs_dev_ops
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&zfs_modlfs,
(void *)&zfs_modldrv,
NULL
};
int
_init(void)
{
int error;
spa_init(FREAD | FWRITE);
zfs_init();
zvol_init();
if ((error = mod_install(&modlinkage)) != 0) {
zvol_fini();
zfs_fini();
spa_fini();
return (error);
}
error = ldi_ident_from_mod(&modlinkage, &zfs_li);
ASSERT(error == 0);
return (0);
}
int
_fini(void)
{
int error;
if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled)
return (EBUSY);
if ((error = mod_remove(&modlinkage)) != 0)
return (error);
zvol_fini();
zfs_fini();
spa_fini();
ldi_ident_release(zfs_li);
zfs_li = NULL;
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}