zap_leaf.c revision 9621b9b1b5a73bcacf144283477ff14c5845d6c4
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* The 512-byte leaf is broken into 32 16-byte chunks.
* chunk number n means l_chunk[n], even though the header precedes it.
* the names are stored null-terminated.
*/
#include <sys/zfs_context.h>
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#define CHAIN_END 0xffff /* end of the chunk chain */
/* somewhat arbitrary, could go up to around 100k ... */
#define MAX_ARRAY_BYTES (8<<10)
#define NCHUNKS(bytes) (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
/*
* XXX This will >> by a negative number when
* lh_prefix_len > 64-ZAP_LEAF_HASH_SHIFT.
*/
#define LEAF_HASH(l, h) \
((ZAP_LEAF_HASH_NUMENTRIES-1) & \
((h) >> (64 - ZAP_LEAF_HASH_SHIFT-(l)->lh_prefix_len)))
#define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
/* #define MEMCHECK */
static void
zap_memset(void *a, int c, size_t n)
{
char *cp = a;
char *cpend = cp + n;
while (cp < cpend)
*cp++ = c;
}
static void
stv(int len, void *addr, uint64_t value)
{
switch (len) {
case 1:
*(uint8_t *)addr = value;
return;
case 2:
*(uint16_t *)addr = value;
return;
case 4:
*(uint32_t *)addr = value;
return;
case 8:
*(uint64_t *)addr = value;
return;
}
ASSERT(!"bad int len");
}
static uint64_t
ldv(int len, const void *addr)
{
switch (len) {
case 1:
return (*(uint8_t *)addr);
case 2:
return (*(uint16_t *)addr);
case 4:
return (*(uint32_t *)addr);
case 8:
return (*(uint64_t *)addr);
}
ASSERT(!"bad int len");
return (0xFEEDFACEDEADBEEF);
}
void
zap_leaf_byteswap(zap_leaf_phys_t *buf)
{
int i;
buf->l_hdr.lhr_block_type = BSWAP_64(buf->l_hdr.lhr_block_type);
buf->l_hdr.lhr_next = BSWAP_64(buf->l_hdr.lhr_next);
buf->l_hdr.lhr_prefix = BSWAP_64(buf->l_hdr.lhr_prefix);
buf->l_hdr.lhr_magic = BSWAP_32(buf->l_hdr.lhr_magic);
buf->l_hdr.lhr_nfree = BSWAP_16(buf->l_hdr.lhr_nfree);
buf->l_hdr.lhr_nentries = BSWAP_16(buf->l_hdr.lhr_nentries);
buf->l_hdr.lhr_prefix_len = BSWAP_16(buf->l_hdr.lhr_prefix_len);
buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++)
buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
struct zap_leaf_entry *le;
switch (buf->l_chunk[i].l_free.lf_type) {
case ZAP_LEAF_ENTRY:
le = &buf->l_chunk[i].l_entry;
le->le_type = BSWAP_8(le->le_type);
le->le_int_size = BSWAP_8(le->le_int_size);
le->le_next = BSWAP_16(le->le_next);
le->le_name_chunk = BSWAP_16(le->le_name_chunk);
le->le_name_length = BSWAP_16(le->le_name_length);
le->le_value_chunk = BSWAP_16(le->le_value_chunk);
le->le_value_length = BSWAP_16(le->le_value_length);
le->le_cd = BSWAP_32(le->le_cd);
le->le_hash = BSWAP_64(le->le_hash);
break;
case ZAP_LEAF_FREE:
buf->l_chunk[i].l_free.lf_type =
BSWAP_8(buf->l_chunk[i].l_free.lf_type);
buf->l_chunk[i].l_free.lf_next =
BSWAP_16(buf->l_chunk[i].l_free.lf_next);
break;
case ZAP_LEAF_ARRAY:
/* zap_leaf_array */
buf->l_chunk[i].l_array.la_type =
BSWAP_8(buf->l_chunk[i].l_array.la_type);
buf->l_chunk[i].l_array.la_next =
BSWAP_16(buf->l_chunk[i].l_array.la_next);
/* la_array doesn't need swapping */
break;
default:
ASSERT(!"bad leaf type");
}
}
}
void
zap_leaf_init(zap_leaf_t *l)
{
int i;
ASSERT3U(sizeof (zap_leaf_phys_t), ==, l->l_dbuf->db_size);
zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
zap_memset(&l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
l->l_phys->l_chunk[i].l_free.lf_type = ZAP_LEAF_FREE;
l->l_phys->l_chunk[i].l_free.lf_next = i+1;
}
l->l_phys->l_chunk[ZAP_LEAF_NUMCHUNKS-1].l_free.lf_next = CHAIN_END;
l->lh_block_type = ZBT_LEAF;
l->lh_magic = ZAP_LEAF_MAGIC;
l->lh_nfree = ZAP_LEAF_NUMCHUNKS;
}
zap_leaf_t *
zap_leaf_chainmore(zap_leaf_t *l, zap_leaf_t *nl)
{
nl->lh_prefix = l->lh_prefix;
nl->lh_prefix_len = l->lh_prefix_len;
nl->l_next = l->l_next;
l->l_next = nl;
nl->lh_next = l->lh_next;
l->lh_next = nl->l_blkid;
return (nl);
}
/*
* Routines which manipulate leaf chunks (l_chunk[]).
*/
static uint16_t
zap_leaf_chunk_alloc(zap_leaf_t *l)
{
int chunk;
ASSERT(l->lh_nfree > 0);
chunk = l->l_phys->l_hdr.lh_freelist;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
ASSERT3U(l->l_phys->l_chunk[chunk].l_free.lf_type, ==, ZAP_LEAF_FREE);
l->l_phys->l_hdr.lh_freelist = l->l_phys->l_chunk[chunk].l_free.lf_next;
#ifdef MEMCHECK
zap_memset(&l->l_phys->l_chunk[chunk], 0xa1,
sizeof (l->l_phys->l_chunk[chunk]));
#endif
l->lh_nfree--;
return (chunk);
}
static void
zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
{
struct zap_leaf_free *zlf = &l->l_phys->l_chunk[chunk].l_free;
ASSERT3U(l->lh_nfree, <, ZAP_LEAF_NUMCHUNKS);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
ASSERT(zlf->lf_type != ZAP_LEAF_FREE);
#ifdef MEMCHECK
zap_memset(&l->l_phys->l_chunk[chunk], 0xf4,
sizeof (l->l_phys->l_chunk[chunk]));
#endif
zlf->lf_type = ZAP_LEAF_FREE;
zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
l->l_phys->l_hdr.lh_freelist = chunk;
l->lh_nfree++;
}
/*
* Routines which manipulate leaf arrays (zap_leaf_array type chunks).
*/
static uint16_t
zap_leaf_array_create(const zap_entry_handle_t *zeh, const char *buf,
int integer_size, int num_integers)
{
uint16_t chunk_head;
uint16_t *chunkp = &chunk_head;
int byten = 0;
uint64_t value;
int shift = (integer_size-1)*8;
int len = num_integers;
zap_leaf_t *l = zeh->zeh_found_leaf;
ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
while (len > 0) {
uint16_t chunk = zap_leaf_chunk_alloc(l);
struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
int i;
la->la_type = ZAP_LEAF_ARRAY;
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
if (byten == 0)
value = ldv(integer_size, buf);
la->la_array[i] = (value & (0xff << shift)) >> shift;
value <<= 8;
if (++byten == integer_size) {
byten = 0;
buf += integer_size;
if (--len == 0)
break;
}
}
*chunkp = chunk;
chunkp = &la->la_next;
}
*chunkp = CHAIN_END;
return (chunk_head);
}
static void
zap_leaf_array_free(zap_entry_handle_t *zeh, uint16_t *chunkp)
{
uint16_t chunk = *chunkp;
zap_leaf_t *l = zeh->zeh_found_leaf;
*chunkp = CHAIN_END;
while (chunk != CHAIN_END) {
int nextchunk = l->l_phys->l_chunk[chunk].l_array.la_next;
ASSERT3U(l->l_phys->l_chunk[chunk].l_array.la_type, ==,
ZAP_LEAF_ARRAY);
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
}
}
/* array_len and buf_len are in integers, not bytes */
static void
zap_leaf_array_read(const zap_entry_handle_t *zeh, uint16_t chunk,
int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
char *buf)
{
int len = MIN(array_len, buf_len);
int byten = 0;
uint64_t value = 0;
zap_leaf_t *l = zeh->zeh_found_leaf;
ASSERT3U(array_int_len, <=, buf_int_len);
/* Fast path for one 8-byte integer */
if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
uint8_t *ip = la->la_array;
uint64_t *buf64 = (uint64_t *)buf;
*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
(uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
(uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
(uint64_t)ip[6] << 8 | (uint64_t)ip[7];
return;
}
/* Fast path for an array of 1-byte integers (eg. the entry name) */
if (array_int_len == 1 && buf_int_len == 1 &&
buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
while (chunk != CHAIN_END) {
struct zap_leaf_array *la =
&l->l_phys->l_chunk[chunk].l_array;
bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES);
buf += ZAP_LEAF_ARRAY_BYTES;
chunk = la->la_next;
}
return;
}
while (len > 0) {
struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
int i;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
value = (value << 8) | la->la_array[i];
byten++;
if (byten == array_int_len) {
stv(buf_int_len, buf, value);
byten = 0;
len--;
if (len == 0)
return;
buf += buf_int_len;
}
}
chunk = la->la_next;
}
}
/*
* Only to be used on 8-bit arrays.
* array_len is actual len in bytes (not encoded le_value_length).
* buf is null-terminated.
*/
static int
zap_leaf_array_equal(const zap_entry_handle_t *zeh, int chunk,
int array_len, const char *buf)
{
int bseen = 0;
zap_leaf_t *l = zeh->zeh_found_leaf;
while (bseen < array_len) {
struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
if (bcmp(la->la_array, buf + bseen, toread))
break;
chunk = la->la_next;
bseen += toread;
}
return (bseen == array_len);
}
/*
* Routines which manipulate leaf entries.
*/
int
zap_leaf_lookup(zap_leaf_t *l,
const char *name, uint64_t h, zap_entry_handle_t *zeh)
{
uint16_t *chunkp;
struct zap_leaf_entry *le;
zeh->zeh_head_leaf = l;
again:
ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC);
for (chunkp = LEAF_HASH_ENTPTR(l, h);
*chunkp != CHAIN_END; chunkp = &le->le_next) {
uint16_t chunk = *chunkp;
le = &l->l_phys->l_chunk[chunk].l_entry;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
if (le->le_hash != h)
continue;
zeh->zeh_found_leaf = l;
if (zap_leaf_array_equal(zeh, le->le_name_chunk,
le->le_name_length, name)) {
zeh->zeh_num_integers = le->le_value_length;
zeh->zeh_integer_size = le->le_int_size;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
zeh->zeh_found_leaf = l;
return (0);
}
}
if (l->l_next) {
l = l->l_next;
goto again;
}
return (ENOENT);
}
/* Return (h1,cd1 >= h2,cd2) */
#define HCD_GTEQ(h1, cd1, h2, cd2) \
((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
int
zap_leaf_lookup_closest(zap_leaf_t *l,
uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
{
uint16_t chunk;
uint64_t besth = -1ULL;
uint32_t bestcd = ZAP_MAXCD;
uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES-1;
uint16_t lh;
struct zap_leaf_entry *le;
zeh->zeh_head_leaf = l;
again:
ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC);
for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
for (chunk = l->l_phys->l_hash[lh];
chunk != CHAIN_END; chunk = le->le_next) {
le = &l->l_phys->l_chunk[chunk].l_entry;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
ASSERT3U(bestlh, >=, lh);
bestlh = lh;
besth = le->le_hash;
bestcd = le->le_cd;
zeh->zeh_num_integers = le->le_value_length;
zeh->zeh_integer_size = le->le_int_size;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_fakechunk = chunk;
zeh->zeh_chunkp = &zeh->zeh_fakechunk;
zeh->zeh_found_leaf = l;
}
}
}
if (l->l_next) {
l = l->l_next;
goto again;
}
return (bestcd == ZAP_MAXCD ? ENOENT : 0);
}
int
zap_entry_read(const zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, void *buf)
{
struct zap_leaf_entry *le;
le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
if (le->le_int_size > integer_size)
return (EINVAL);
zap_leaf_array_read(zeh, le->le_value_chunk, le->le_int_size,
le->le_value_length, integer_size, num_integers, buf);
if (zeh->zeh_num_integers > num_integers)
return (EOVERFLOW);
return (0);
}
int
zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf)
{
struct zap_leaf_entry *le;
le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
zap_leaf_array_read(zeh, le->le_name_chunk, 1,
le->le_name_length, 1, buflen, buf);
if (le->le_name_length > buflen)
return (EOVERFLOW);
return (0);
}
int
zap_entry_update(zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, const void *buf)
{
int delta_chunks;
struct zap_leaf_entry *le;
le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
delta_chunks = NCHUNKS(num_integers * integer_size) -
NCHUNKS(le->le_value_length * le->le_int_size);
if (zeh->zeh_found_leaf->lh_nfree < delta_chunks)
return (EAGAIN);
/*
* We should search other chained leaves (via
* zap_entry_remove,create?) otherwise returning EAGAIN will
* just send us into an infinite loop if we have to chain
* another leaf block, rather than being able to split this
* block.
*/
zap_leaf_array_free(zeh, &le->le_value_chunk);
le->le_value_chunk =
zap_leaf_array_create(zeh, buf, integer_size, num_integers);
le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ?
(MAX_ARRAY_BYTES + 1) : (num_integers);
le->le_int_size = integer_size;
return (0);
}
void
zap_entry_remove(zap_entry_handle_t *zeh)
{
uint16_t entry_chunk;
struct zap_leaf_entry *le;
zap_leaf_t *l = zeh->zeh_found_leaf;
ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
entry_chunk = *zeh->zeh_chunkp;
le = &l->l_phys->l_chunk[entry_chunk].l_entry;
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
zap_leaf_array_free(zeh, &le->le_name_chunk);
zap_leaf_array_free(zeh, &le->le_value_chunk);
*zeh->zeh_chunkp = le->le_next;
zap_leaf_chunk_free(l, entry_chunk);
l->lh_nentries--;
}
int
zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd,
uint8_t integer_size, uint64_t num_integers, const void *buf,
zap_entry_handle_t *zeh)
{
uint16_t chunk;
uint16_t *chunkp;
struct zap_leaf_entry *le;
uint64_t namelen, valuelen;
int numchunks;
valuelen = integer_size * num_integers;
namelen = strlen(name) + 1;
ASSERT(namelen >= 2);
zeh->zeh_head_leaf = l;
if (namelen > MAXNAMELEN)
return (ENAMETOOLONG);
/* find the first leaf in the chain that has sufficient free space */
numchunks = 1 + NCHUNKS(namelen) + NCHUNKS(valuelen);
if (numchunks > ZAP_LEAF_NUMCHUNKS)
return (E2BIG);
if (cd == ZAP_MAXCD) {
for (cd = 0; cd < ZAP_MAXCD; cd++) {
zap_leaf_t *ll;
for (ll = l; ll; ll = ll->l_next) {
for (chunk = *LEAF_HASH_ENTPTR(ll, h);
chunk != CHAIN_END; chunk = le->le_next) {
le = &ll->l_phys->l_chunk
[chunk].l_entry;
if (le->le_hash == h &&
le->le_cd == cd) {
break;
}
}
/*
* if this cd is in use, no need to
* check more chained leafs
*/
if (chunk != CHAIN_END)
break;
}
/* If this cd is not in use, we are good. */
if (chunk == CHAIN_END)
break;
}
/* If we tried all the cd's, we lose. */
if (cd == ZAP_MAXCD)
return (ENOSPC);
}
for (; l; l = l->l_next)
if (l->lh_nfree >= numchunks)
break;
if (l == NULL)
return (EAGAIN);
zeh->zeh_found_leaf = l;
/* make the entry */
chunk = zap_leaf_chunk_alloc(l);
le = &l->l_phys->l_chunk[chunk].l_entry;
le->le_type = ZAP_LEAF_ENTRY;
le->le_name_chunk = zap_leaf_array_create(zeh, name, 1, namelen);
le->le_name_length = namelen;
le->le_value_chunk =
zap_leaf_array_create(zeh, buf, integer_size, num_integers);
le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ?
(MAX_ARRAY_BYTES + 1) : (num_integers);
le->le_int_size = integer_size;
le->le_hash = h;
le->le_cd = cd;
/* link it into the hash chain */
chunkp = LEAF_HASH_ENTPTR(l, h);
le->le_next = *chunkp;
*chunkp = chunk;
l->lh_nentries++;
zeh->zeh_num_integers = num_integers;
zeh->zeh_integer_size = le->le_int_size;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
return (0);
}
/*
* Routines for transferring entries between leafs.
*/
static void
zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
{
struct zap_leaf_entry *le = &l->l_phys->l_chunk[entry].l_entry;
uint16_t *ptr = LEAF_HASH_ENTPTR(l, le->le_hash);
le->le_next = *ptr;
*ptr = entry;
}
static void
zap_leaf_rehash_entries(zap_leaf_t *l)
{
int i;
if (l->lh_nentries == 0)
return;
/* break existing hash chains */
zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry;
if (le->le_type != ZAP_LEAF_ENTRY)
continue;
zap_leaf_rehash_entry(l, i);
}
}
static uint16_t
zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
{
uint16_t new_chunk;
uint16_t *nchunkp = &new_chunk;
while (chunk != CHAIN_END) {
uint16_t nchunk = zap_leaf_chunk_alloc(nl);
struct zap_leaf_array *nla =
&nl->l_phys->l_chunk[nchunk].l_array;
struct zap_leaf_array *la =
&l->l_phys->l_chunk[chunk].l_array;
int nextchunk = la->la_next;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS);
*nla = *la;
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
*nchunkp = nchunk;
nchunkp = &nla->la_next;
}
*nchunkp = CHAIN_END;
return (new_chunk);
}
static void
zap_leaf_transfer_entry(zap_t *zap, zap_leaf_t *l, int entry, zap_leaf_t *nhl,
dmu_tx_t *tx)
{
zap_leaf_t *nl;
struct zap_leaf_entry *le, *nle;
uint16_t chunk, nchunks;
le = &l->l_phys->l_chunk[entry].l_entry;
ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
/* find a leaf in the destination leaf chain with enough free space */
nchunks = 1 + NCHUNKS(le->le_name_length) +
NCHUNKS(le->le_value_length * le->le_int_size);
for (nl = nhl; nl; nl = nl->l_next)
if (nl->lh_nfree >= nchunks)
break;
if (nl == NULL) {
nl = zap_leaf_chainmore(nhl, zap_create_leaf(zap, tx));
dprintf("transfer_entry: chaining leaf %x/%d\n",
nl->lh_prefix, nl->lh_prefix_len);
}
chunk = zap_leaf_chunk_alloc(nl);
nle = &nl->l_phys->l_chunk[chunk].l_entry;
*nle = *le;
zap_leaf_rehash_entry(nl, chunk);
nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
nle->le_value_chunk =
zap_leaf_transfer_array(l, le->le_value_chunk, nl);
zap_leaf_chunk_free(l, entry);
l->lh_nentries--;
nl->lh_nentries++;
}
/*
* Transfer entries whose hash bit 'bit' is 1 to nl1, and 0 to nl0.
* Ignore leaf chaining in source (l), but chain in destinations.
* We'll re-chain all the entries in l as we go along.
*/
static void
zap_leaf_transfer_entries(zap_t *zap, zap_leaf_t *l,
zap_leaf_t *nl0, zap_leaf_t *nl1, int bit, dmu_tx_t *tx)
{
int i;
ASSERT(bit < 64 && bit >= 0);
/* break existing hash chains */
zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
if (nl0 != l)
zap_leaf_rehash_entries(nl0);
if (nl1 != nl0)
zap_leaf_rehash_entries(nl1);
for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry;
if (le->le_type != ZAP_LEAF_ENTRY)
continue;
/*
* We could find entries via hashtable instead. That
* would be O(hashents+numents) rather than
* O(numblks+numents), but this accesses memory more
* sequentially, and when we're called, the block is
* usually pretty full.
*/
if (le->le_hash & (1ULL << bit)) {
zap_leaf_transfer_entry(zap, l, i, nl1, tx);
} else {
if (nl0 == l)
zap_leaf_rehash_entry(l, i);
else
zap_leaf_transfer_entry(zap, l, i, nl0, tx);
}
}
}
/*
* nl will contain the entries whose hash prefix ends in 1
* handles leaf chaining
*/
zap_leaf_t *
zap_leaf_split(zap_t *zap, zap_leaf_t *hl, dmu_tx_t *tx)
{
zap_leaf_t *l = hl;
int bit = 64 - 1 - hl->lh_prefix_len;
zap_leaf_t *nl = zap_create_leaf(zap, tx);
/* set new prefix and prefix_len */
hl->lh_prefix <<= 1;
hl->lh_prefix_len++;
nl->lh_prefix = hl->lh_prefix | 1;
nl->lh_prefix_len = hl->lh_prefix_len;
/* transfer odd entries from first leaf in hl chain to nl */
zap_leaf_transfer_entries(zap, hl, hl, nl, bit, tx);
/* take rest of chain off hl */
l = hl->l_next;
hl->l_next = NULL;
hl->lh_next = 0;
/* transfer even entries from hl chain back to hl, odd entries to nl */
while (l) {
zap_leaf_t *next = l->l_next;
zap_leaf_transfer_entries(zap, l, hl, nl, bit, tx);
zap_destroy_leaf(zap, l, tx);
l = next;
}
return (nl);
}
void
zap_stats_leaf(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
{
int n, nchained = 0;
n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - l->lh_prefix_len;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_leafs_with_2n_pointers[n]++;
do {
int i;
n = l->lh_nentries/5;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_with_n5_entries[n]++;
n = ((1<<ZAP_BLOCK_SHIFT) -
l->lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
(1<<ZAP_BLOCK_SHIFT);
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_n_tenths_full[n]++;
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++) {
int nentries = 0;
int chunk = l->l_phys->l_hash[i];
while (chunk != CHAIN_END) {
struct zap_leaf_entry *le =
&l->l_phys->l_chunk[chunk].l_entry;
n = 1 + NCHUNKS(le->le_name_length) +
NCHUNKS(le->le_value_length *
le->le_int_size);
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_entries_using_n_chunks[n]++;
chunk = le->le_next;
nentries++;
}
n = nentries;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_buckets_with_n_entries[n]++;
}
nchained++;
l = l->l_next;
} while (l);
n = nchained-1;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_leafs_with_n_chained[n]++;
}