vdev.c revision 0e34b6a7bff4918432f0aa6b1dfaf73ac9df45b1
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/zio.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
/*
* Virtual device management.
*/
static vdev_ops_t *vdev_ops_table[] = {
&vdev_root_ops,
&vdev_raidz_ops,
&vdev_mirror_ops,
&vdev_replacing_ops,
&vdev_disk_ops,
&vdev_file_ops,
&vdev_missing_ops,
NULL
};
/*
* Given a vdev type, return the appropriate ops vector.
*/
static vdev_ops_t *
vdev_getops(const char *type)
{
vdev_ops_t *ops, **opspp;
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
if (strcmp(ops->vdev_op_type, type) == 0)
break;
return (ops);
}
/*
* Default asize function: return the MAX of psize with the asize of
* all children. This is what's used by anything other than RAID-Z.
*/
uint64_t
vdev_default_asize(vdev_t *vd, uint64_t psize)
{
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift);
uint64_t csize;
uint64_t c;
for (c = 0; c < vd->vdev_children; c++) {
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
asize = MAX(asize, csize);
}
return (asize);
}
/*
* Get the replaceable or attachable device size.
* If the parent is a mirror or raidz, the replaceable size is the minimum
* psize of all its children. For the rest, just return our own psize.
*
* e.g.
* psize rsize
* root - -
* mirror/raidz - -
* disk1 20g 20g
* disk2 40g 20g
* disk3 80g 80g
*/
uint64_t
vdev_get_rsize(vdev_t *vd)
{
vdev_t *pvd, *cvd;
uint64_t c, rsize;
pvd = vd->vdev_parent;
/*
* If our parent is NULL or the root, just return our own psize.
*/
if (pvd == NULL || pvd->vdev_parent == NULL)
return (vd->vdev_psize);
rsize = 0;
for (c = 0; c < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];
rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
}
return (rsize);
}
vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd = spa->spa_root_vdev;
if (vdev < rvd->vdev_children)
return (rvd->vdev_child[vdev]);
return (NULL);
}
vdev_t *
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
{
int c;
vdev_t *mvd;
if (vd->vdev_guid == guid)
return (vd);
for (c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
NULL)
return (mvd);
return (NULL);
}
void
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
{
size_t oldsize, newsize;
uint64_t id = cvd->vdev_id;
vdev_t **newchild;
ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
ASSERT(cvd->vdev_parent == NULL);
cvd->vdev_parent = pvd;
if (pvd == NULL)
return;
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
oldsize = pvd->vdev_children * sizeof (vdev_t *);
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
newsize = pvd->vdev_children * sizeof (vdev_t *);
newchild = kmem_zalloc(newsize, KM_SLEEP);
if (pvd->vdev_child != NULL) {
bcopy(pvd->vdev_child, newchild, oldsize);
kmem_free(pvd->vdev_child, oldsize);
}
pvd->vdev_child = newchild;
pvd->vdev_child[id] = cvd;
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
}
void
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
{
int c;
uint_t id = cvd->vdev_id;
ASSERT(cvd->vdev_parent == pvd);
if (pvd == NULL)
return;
ASSERT(id < pvd->vdev_children);
ASSERT(pvd->vdev_child[id] == cvd);
pvd->vdev_child[id] = NULL;
cvd->vdev_parent = NULL;
for (c = 0; c < pvd->vdev_children; c++)
if (pvd->vdev_child[c])
break;
if (c == pvd->vdev_children) {
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
pvd->vdev_child = NULL;
pvd->vdev_children = 0;
}
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
}
/*
* Remove any holes in the child array.
*/
void
vdev_compact_children(vdev_t *pvd)
{
vdev_t **newchild, *cvd;
int oldc = pvd->vdev_children;
int newc, c;
ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
for (c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
newc++;
newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
for (c = newc = 0; c < oldc; c++) {
if ((cvd = pvd->vdev_child[c]) != NULL) {
newchild[newc] = cvd;
cvd->vdev_id = newc++;
}
}
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
pvd->vdev_child = newchild;
pvd->vdev_children = newc;
}
/*
* Allocate and minimally initialize a vdev_t.
*/
static vdev_t *
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
{
vdev_t *vd;
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
if (spa->spa_root_vdev == NULL) {
ASSERT(ops == &vdev_root_ops);
spa->spa_root_vdev = vd;
}
if (guid == 0) {
if (spa->spa_root_vdev == vd) {
/*
* The root vdev's guid will also be the pool guid,
* which must be unique among all pools.
*/
while (guid == 0 || spa_guid_exists(guid, 0))
guid = spa_get_random(-1ULL);
} else {
/*
* Any other vdev's guid must be unique within the pool.
*/
while (guid == 0 ||
spa_guid_exists(spa_guid(spa), guid))
guid = spa_get_random(-1ULL);
}
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
}
vd->vdev_spa = spa;
vd->vdev_id = id;
vd->vdev_guid = guid;
vd->vdev_guid_sum = guid;
vd->vdev_ops = ops;
vd->vdev_state = VDEV_STATE_CLOSED;
mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
txg_list_create(&vd->vdev_ms_list,
offsetof(struct metaslab, ms_txg_node));
txg_list_create(&vd->vdev_dtl_list,
offsetof(struct vdev, vdev_dtl_node));
vd->vdev_stat.vs_timestamp = gethrtime();
return (vd);
}
/*
* Free a vdev_t that has been removed from service.
*/
static void
vdev_free_common(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
if (vd->vdev_path)
spa_strfree(vd->vdev_path);
if (vd->vdev_devid)
spa_strfree(vd->vdev_devid);
txg_list_destroy(&vd->vdev_ms_list);
txg_list_destroy(&vd->vdev_dtl_list);
mutex_enter(&vd->vdev_dtl_lock);
space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
space_map_destroy(&vd->vdev_dtl_map);
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
space_map_destroy(&vd->vdev_dtl_scrub);
mutex_exit(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_dirty_lock);
if (vd == spa->spa_root_vdev)
spa->spa_root_vdev = NULL;
kmem_free(vd, sizeof (vdev_t));
}
/*
* Allocate a new vdev. The 'alloctype' is used to control whether we are
* creating a new vdev or loading an existing one - the behavior is slightly
* different for each case.
*/
vdev_t *
vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype)
{
vdev_ops_t *ops;
char *type;
uint64_t guid = 0, offline = 0;
vdev_t *vd;
ASSERT(spa_config_held(spa, RW_WRITER));
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
return (NULL);
if ((ops = vdev_getops(type)) == NULL)
return (NULL);
/*
* If this is a load, get the vdev guid from the nvlist.
* Otherwise, vdev_alloc_common() will generate one for us.
*/
if (alloctype == VDEV_ALLOC_LOAD) {
uint64_t label_id;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
label_id != id)
return (NULL);
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (NULL);
}
vd = vdev_alloc_common(spa, id, guid, ops);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
vd->vdev_path = spa_strdup(vd->vdev_path);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
vd->vdev_devid = spa_strdup(vd->vdev_devid);
/*
* Set the whole_disk property. If it's not specified, leave the value
* as -1.
*/
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
/*
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
&vd->vdev_not_present);
/*
* If we're a top-level vdev, try to load the allocation parameters.
*/
if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
&vd->vdev_ms_array);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
&vd->vdev_ms_shift);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
&vd->vdev_ashift);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
&vd->vdev_asize);
}
/*
* If we're a leaf vdev, try to load the DTL object
* and the offline state.
*/
vd->vdev_offline = B_FALSE;
if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
&vd->vdev_dtl.smo_object);
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &offline)
== 0)
vd->vdev_offline = offline;
}
/*
* Add ourselves to the parent's list of children.
*/
vdev_add_child(parent, vd);
return (vd);
}
void
vdev_free(vdev_t *vd)
{
int c;
/*
* vdev_free() implies closing the vdev first. This is simpler than
* trying to ensure complicated semantics for all callers.
*/
vdev_close(vd);
/*
* It's possible to free a vdev that's been added to the dirty
* list when in the middle of spa_vdev_add(). Handle that case
* correctly here.
*/
if (vd->vdev_is_dirty)
vdev_config_clean(vd);
/*
* Free all children.
*/
for (c = 0; c < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);
ASSERT(vd->vdev_child == NULL);
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
/*
* Discard allocation state.
*/
if (vd == vd->vdev_top)
vdev_metaslab_fini(vd);
ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
/*
* Remove this vdev from its parent's child list.
*/
vdev_remove_child(vd->vdev_parent, vd);
ASSERT(vd->vdev_parent == NULL);
vdev_free_common(vd);
}
/*
* Transfer top-level vdev state from svd to tvd.
*/
static void
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
{
spa_t *spa = svd->vdev_spa;
metaslab_t *msp;
vdev_t *vd;
int t;
ASSERT(tvd == tvd->vdev_top);
tvd->vdev_ms_array = svd->vdev_ms_array;
tvd->vdev_ms_shift = svd->vdev_ms_shift;
tvd->vdev_ms_count = svd->vdev_ms_count;
svd->vdev_ms_array = 0;
svd->vdev_ms_shift = 0;
svd->vdev_ms_count = 0;
tvd->vdev_mg = svd->vdev_mg;
tvd->vdev_mg->mg_vd = tvd;
tvd->vdev_ms = svd->vdev_ms;
tvd->vdev_smo = svd->vdev_smo;
svd->vdev_mg = NULL;
svd->vdev_ms = NULL;
svd->vdev_smo = NULL;
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
svd->vdev_stat.vs_alloc = 0;
svd->vdev_stat.vs_space = 0;
for (t = 0; t < TXG_SIZE; t++) {
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
tvd->vdev_dirty[t] = svd->vdev_dirty[t];
svd->vdev_dirty[t] = 0;
}
if (svd->vdev_is_dirty) {
vdev_config_clean(svd);
vdev_config_dirty(tvd);
}
tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
svd->vdev_reopen_wanted = 0;
}
static void
vdev_top_update(vdev_t *tvd, vdev_t *vd)
{
int c;
if (vd == NULL)
return;
vd->vdev_top = tvd;
for (c = 0; c < vd->vdev_children; c++)
vdev_top_update(tvd, vd->vdev_child[c]);
}
/*
* Add a mirror/replacing vdev above an existing vdev.
*/
vdev_t *
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
{
spa_t *spa = cvd->vdev_spa;
vdev_t *pvd = cvd->vdev_parent;
vdev_t *mvd;
ASSERT(spa_config_held(spa, RW_WRITER));
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
vdev_remove_child(pvd, cvd);
vdev_add_child(pvd, mvd);
cvd->vdev_id = mvd->vdev_children;
vdev_add_child(mvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
mvd->vdev_asize = cvd->vdev_asize;
mvd->vdev_ashift = cvd->vdev_ashift;
mvd->vdev_state = cvd->vdev_state;
if (mvd == mvd->vdev_top)
vdev_top_transfer(cvd, mvd);
return (mvd);
}
/*
* Remove a 1-way mirror/replacing vdev from the tree.
*/
void
vdev_remove_parent(vdev_t *cvd)
{
vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = mvd->vdev_parent;
ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
ASSERT(mvd->vdev_children == 1);
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
mvd->vdev_ops == &vdev_replacing_ops);
vdev_remove_child(mvd, cvd);
vdev_remove_child(pvd, mvd);
cvd->vdev_id = mvd->vdev_id;
vdev_add_child(pvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (cvd == cvd->vdev_top)
vdev_top_transfer(mvd, cvd);
ASSERT(mvd->vdev_children == 0);
vdev_free(mvd);
}
int
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
metaslab_class_t *mc = spa_metaslab_class_select(spa);
uint64_t c;
uint64_t oldc = vd->vdev_ms_count;
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
space_map_obj_t *smo = vd->vdev_smo;
metaslab_t **mspp = vd->vdev_ms;
int ret;
if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
return (0);
dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
ASSERT(oldc <= newc);
vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP);
vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
vd->vdev_ms_count = newc;
if (vd->vdev_mg == NULL) {
if (txg == 0) {
dmu_buf_t *db;
uint64_t *ms_array;
ms_array = kmem_zalloc(newc * sizeof (uint64_t),
KM_SLEEP);
if ((ret = dmu_read(spa->spa_meta_objset,
vd->vdev_ms_array, 0,
newc * sizeof (uint64_t), ms_array)) != 0) {
kmem_free(ms_array, newc * sizeof (uint64_t));
goto error;
}
for (c = 0; c < newc; c++) {
if (ms_array[c] == 0)
continue;
if ((ret = dmu_bonus_hold(
spa->spa_meta_objset, ms_array[c],
FTAG, &db)) != 0) {
kmem_free(ms_array,
newc * sizeof (uint64_t));
goto error;
}
ASSERT3U(db->db_size, ==, sizeof (*smo));
bcopy(db->db_data, &vd->vdev_smo[c],
db->db_size);
ASSERT3U(vd->vdev_smo[c].smo_object, ==,
ms_array[c]);
dmu_buf_rele(db, FTAG);
}
kmem_free(ms_array, newc * sizeof (uint64_t));
}
vd->vdev_mg = metaslab_group_create(mc, vd);
}
for (c = 0; c < oldc; c++) {
vd->vdev_smo[c] = smo[c];
vd->vdev_ms[c] = mspp[c];
mspp[c]->ms_smo = &vd->vdev_smo[c];
}
for (c = oldc; c < newc; c++)
metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c],
c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
if (oldc != 0) {
kmem_free(smo, oldc * sizeof (*smo));
kmem_free(mspp, oldc * sizeof (*mspp));
}
return (0);
error:
/*
* On error, undo any partial progress we may have made, and restore the
* old metaslab values.
*/
kmem_free(vd->vdev_smo, newc * sizeof (*smo));
kmem_free(vd->vdev_ms, newc * sizeof (*mspp));
vd->vdev_smo = smo;
vd->vdev_ms = mspp;
vd->vdev_ms_count = oldc;
return (ret);
}
void
vdev_metaslab_fini(vdev_t *vd)
{
uint64_t m;
uint64_t count = vd->vdev_ms_count;
if (vd->vdev_ms != NULL) {
for (m = 0; m < count; m++)
metaslab_fini(vd->vdev_ms[m]);
kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
vd->vdev_ms = NULL;
}
if (vd->vdev_smo != NULL) {
kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t));
vd->vdev_smo = NULL;
}
}
/*
* Prepare a virtual device for access.
*/
int
vdev_open(vdev_t *vd)
{
int error;
vdev_knob_t *vk;
int c;
uint64_t osize = 0;
uint64_t asize, psize;
uint64_t ashift = -1ULL;
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
vd->vdev_state == VDEV_STATE_OFFLINE);
if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
vd->vdev_fault_arg >>= 1;
else
vd->vdev_fault_mode = VDEV_FAULT_NONE;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) {
uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset);
*valp = vk->vk_default;
*valp = MAX(*valp, vk->vk_min);
*valp = MIN(*valp, vk->vk_max);
}
if (vd->vdev_ops->vdev_op_leaf) {
vdev_cache_init(vd);
vdev_queue_init(vd);
vd->vdev_cache_active = B_TRUE;
}
if (vd->vdev_offline) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
return (ENXIO);
}
error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
if (zio_injection_enabled && error == 0)
error = zio_handle_device_injection(vd, ENXIO);
dprintf("%s = %d, osize %llu, state = %d\n",
vdev_description(vd), error, osize, vd->vdev_state);
if (error) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
vd->vdev_stat.vs_aux);
return (error);
}
vd->vdev_state = VDEV_STATE_HEALTHY;
for (c = 0; c < vd->vdev_children; c++)
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_NONE);
break;
}
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
if (vd->vdev_children == 0) {
if (osize < SPA_MINDEVSIZE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (EOVERFLOW);
}
psize = osize;
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
} else {
if (osize < SPA_MINDEVSIZE -
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (EOVERFLOW);
}
psize = 0;
asize = osize;
}
vd->vdev_psize = psize;
if (vd->vdev_asize == 0) {
/*
* This is the first-ever open, so use the computed values.
*/
vd->vdev_asize = asize;
vd->vdev_ashift = ashift;
} else {
/*
* Make sure the alignment requirement hasn't increased.
*/
if (ashift > vd->vdev_ashift) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (EINVAL);
}
/*
* Make sure the device hasn't shrunk.
*/
if (asize < vd->vdev_asize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (EINVAL);
}
/*
* If all children are healthy and the asize has increased,
* then we've experienced dynamic LUN growth.
*/
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
asize > vd->vdev_asize) {
vd->vdev_asize = asize;
}
}
/*
* If we were able to open a vdev that was marked permanently
* unavailable, clear that state now.
*/
if (vd->vdev_not_present)
vd->vdev_not_present = 0;
/*
* This allows the ZFS DE to close cases appropriately. If a device
* goes away and later returns, we want to close the associated case.
* But it's not enough to simply post this only when a device goes from
* CANT_OPEN -> HEALTHY. If we reboot the system and the device is
* back, we also need to close the case (otherwise we will try to replay
* it). So we have to post this notifier every time. Since this only
* occurs during pool open or error recovery, this should not be an
* issue.
*/
zfs_post_ok(vd->vdev_spa, vd);
return (0);
}
/*
* Close a virtual device.
*/
void
vdev_close(vdev_t *vd)
{
vd->vdev_ops->vdev_op_close(vd);
if (vd->vdev_cache_active) {
vdev_cache_fini(vd);
vdev_queue_fini(vd);
vd->vdev_cache_active = B_FALSE;
}
if (vd->vdev_offline)
vd->vdev_state = VDEV_STATE_OFFLINE;
else
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
}
void
vdev_reopen(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int c;
ASSERT(spa_config_held(spa, RW_WRITER));
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_reopen(rvd->vdev_child[c]);
return;
}
/* only valid for top-level vdevs */
ASSERT3P(vd, ==, vd->vdev_top);
vdev_close(vd);
(void) vdev_open(vd);
/*
* Reassess root vdev's health.
*/
rvd->vdev_state = VDEV_STATE_HEALTHY;
for (c = 0; c < rvd->vdev_children; c++) {
uint64_t state = rvd->vdev_child[c]->vdev_state;
rvd->vdev_state = MIN(rvd->vdev_state, state);
}
}
int
vdev_create(vdev_t *vd, uint64_t txg)
{
int error;
/*
* Normally, partial opens (e.g. of a mirror) are allowed.
* For a create, however, we want to fail the request if
* there are any components we can't open.
*/
error = vdev_open(vd);
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
vdev_close(vd);
return (error ? error : ENXIO);
}
/*
* Recursively initialize all labels.
*/
if ((error = vdev_label_init(vd, txg)) != 0) {
vdev_close(vd);
return (error);
}
return (0);
}
/*
* The is the latter half of vdev_create(). It is distinct because it
* involves initiating transactions in order to do metaslab creation.
* For creation, we want to try to create all vdevs at once and then undo it
* if anything fails; this is much harder if we have pending transactions.
*/
void
vdev_init(vdev_t *vd, uint64_t txg)
{
/*
* Aim for roughly 200 metaslabs per vdev.
*/
vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
/*
* Initialize the vdev's metaslabs. This can't fail because
* there's nothing to read when creating all new metaslabs.
*/
VERIFY(vdev_metaslab_init(vd, txg) == 0);
}
void
vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg)
{
vdev_t *tvd = vd->vdev_top;
mutex_enter(&tvd->vdev_dirty_lock);
if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) {
tvd->vdev_dirty[txg & TXG_MASK] |= flags;
(void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list,
tvd, txg);
}
mutex_exit(&tvd->vdev_dirty_lock);
}
void
vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
{
mutex_enter(sm->sm_lock);
if (!space_map_contains(sm, txg, size))
space_map_add(sm, txg, size);
mutex_exit(sm->sm_lock);
}
int
vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
{
int dirty;
/*
* Quick test without the lock -- covers the common case that
* there are no dirty time segments.
*/
if (sm->sm_space == 0)
return (0);
mutex_enter(sm->sm_lock);
dirty = space_map_contains(sm, txg, size);
mutex_exit(sm->sm_lock);
return (dirty);
}
/*
* Reassess DTLs after a config change or scrub completion.
*/
void
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
{
spa_t *spa = vd->vdev_spa;
int c;
ASSERT(spa_config_held(spa, RW_WRITER));
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
/*
* We're successfully scrubbed everything up to scrub_txg.
* Therefore, excise all old DTLs up to that point, then
* fold in the DTLs for everything we couldn't scrub.
*/
if (scrub_txg != 0) {
space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
}
if (scrub_done)
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
mutex_exit(&vd->vdev_dtl_lock);
if (txg != 0) {
vdev_t *tvd = vd->vdev_top;
vdev_dirty(tvd, VDD_DTL, txg);
(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
}
return;
}
/*
* Make sure the DTLs are always correct under the scrub lock.
*/
if (vd == spa->spa_root_vdev)
mutex_enter(&spa->spa_scrub_lock);
mutex_enter(&vd->vdev_dtl_lock);
space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
mutex_exit(&vd->vdev_dtl_lock);
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
mutex_enter(&vd->vdev_dtl_lock);
space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
mutex_exit(&vd->vdev_dtl_lock);
}
if (vd == spa->spa_root_vdev)
mutex_exit(&spa->spa_scrub_lock);
}
static int
vdev_dtl_load(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
space_map_obj_t *smo = &vd->vdev_dtl;
dmu_buf_t *db;
int error;
ASSERT(vd->vdev_children == 0);
if (smo->smo_object == 0)
return (0);
if ((error = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object,
FTAG, &db)) != 0)
return (error);
ASSERT3U(db->db_size, ==, sizeof (*smo));
bcopy(db->db_data, smo, db->db_size);
dmu_buf_rele(db, FTAG);
mutex_enter(&vd->vdev_dtl_lock);
error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC,
spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc);
mutex_exit(&vd->vdev_dtl_lock);
return (error);
}
void
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
space_map_obj_t *smo = &vd->vdev_dtl;
space_map_t *sm = &vd->vdev_dtl_map;
space_map_t smsync;
kmutex_t smlock;
avl_tree_t *t = &sm->sm_root;
space_seg_t *ss;
dmu_buf_t *db;
dmu_tx_t *tx;
dprintf("%s in txg %llu pass %d\n",
vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (vd->vdev_detached) {
if (smo->smo_object != 0) {
int err = dmu_object_free(spa->spa_meta_objset,
smo->smo_object, tx);
ASSERT3U(err, ==, 0);
smo->smo_object = 0;
}
dmu_tx_commit(tx);
return;
}
if (smo->smo_object == 0) {
ASSERT(smo->smo_objsize == 0);
ASSERT(smo->smo_alloc == 0);
smo->smo_object = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
ASSERT(smo->smo_object != 0);
vdev_config_dirty(vd->vdev_top);
}
VERIFY(0 == dmu_free_range(spa->spa_meta_objset, smo->smo_object,
0, smo->smo_objsize, tx));
mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
&smlock);
mutex_enter(&smlock);
mutex_enter(&vd->vdev_dtl_lock);
for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss))
space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start);
mutex_exit(&vd->vdev_dtl_lock);
smo->smo_objsize = 0;
smo->smo_alloc = smsync.sm_space;
space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx);
space_map_destroy(&smsync);
mutex_exit(&smlock);
mutex_destroy(&smlock);
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object,
FTAG, &db));
dmu_buf_will_dirty(db, tx);
ASSERT3U(db->db_size, ==, sizeof (*smo));
bcopy(smo, db->db_data, db->db_size);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
}
int
vdev_load(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
int c, error;
nvlist_t *label;
uint64_t guid, state;
dprintf("loading %s\n", vdev_description(vd));
/*
* Recursively load all children.
*/
for (c = 0; c < vd->vdev_children; c++)
if ((error = vdev_load(vd->vdev_child[c])) != 0)
return (error);
/*
* If this is a leaf vdev, make sure its agrees with its disk labels.
*/
if (vd->vdev_ops->vdev_op_leaf) {
if (vdev_is_dead(vd))
return (0);
/*
* XXX state transitions don't propagate to parent here.
* Also, merely setting the state isn't sufficient because
* it's not persistent; a vdev_reopen() would make us
* forget all about it.
*/
if ((label = vdev_label_read_config(vd)) == NULL) {
dprintf("can't load label config\n");
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
&guid) != 0 || guid != spa_guid(spa)) {
dprintf("bad or missing pool GUID (%llu)\n", guid);
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) ||
guid != vd->vdev_guid) {
dprintf("bad or missing vdev guid (%llu != %llu)\n",
guid, vd->vdev_guid);
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
/*
* If we find a vdev with a matching pool guid and vdev guid,
* but the pool state is not active, it indicates that the user
* exported or destroyed the pool without affecting the config
* cache (if / was mounted readonly, for example). In this
* case, immediately return EBADF so the caller can remove it
* from the config.
*/
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
&state)) {
dprintf("missing pool state\n");
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
if (state != POOL_STATE_ACTIVE &&
(spa->spa_load_state == SPA_LOAD_OPEN ||
state != POOL_STATE_EXPORTED)) {
dprintf("pool state not active (%llu)\n", state);
nvlist_free(label);
return (EBADF);
}
nvlist_free(label);
}
/*
* If this is a top-level vdev, initialize its metaslabs.
*/
if (vd == vd->vdev_top) {
if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (0);
}
if ((error = vdev_metaslab_init(vd, 0)) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (0);
}
}
/*
* If this is a leaf vdev, load its DTL.
*/
if (vd->vdev_ops->vdev_op_leaf) {
error = vdev_dtl_load(vd);
if (error) {
dprintf("can't load DTL for %s, error %d\n",
vdev_description(vd), error);
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (0);
}
}
return (0);
}
void
vdev_sync_done(vdev_t *vd, uint64_t txg)
{
metaslab_t *msp;
dprintf("%s txg %llu\n", vdev_description(vd), txg);
while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
metaslab_sync_done(msp, txg);
}
void
vdev_add_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
ASSERT(vd == vd->vdev_top);
if (vd->vdev_ms_array == 0)
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
ASSERT(vd->vdev_ms_array != 0);
vdev_config_dirty(vd);
dmu_tx_commit(tx);
}
void
vdev_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
vdev_t *lvd;
metaslab_t *msp;
uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK];
uint8_t dirty = *dirtyp;
mutex_enter(&vd->vdev_dirty_lock);
*dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL);
mutex_exit(&vd->vdev_dirty_lock);
dprintf("%s txg %llu pass %d\n",
vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
if (dirty & VDD_ADD)
vdev_add_sync(vd, txg);
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL)
metaslab_sync(msp, txg);
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
vdev_dtl_sync(lvd, txg);
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
}
uint64_t
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
{
return (vd->vdev_ops->vdev_op_asize(vd, psize));
}
void
vdev_io_start(zio_t *zio)
{
zio->io_vd->vdev_ops->vdev_op_io_start(zio);
}
void
vdev_io_done(zio_t *zio)
{
zio->io_vd->vdev_ops->vdev_op_io_done(zio);
}
const char *
vdev_description(vdev_t *vd)
{
if (vd == NULL || vd->vdev_ops == NULL)
return ("<unknown>");
if (vd->vdev_path != NULL)
return (vd->vdev_path);
if (vd->vdev_parent == NULL)
return (spa_name(vd->vdev_spa));
return (vd->vdev_ops->vdev_op_type);
}
int
vdev_online(spa_t *spa, uint64_t guid)
{
vdev_t *rvd, *vd;
uint64_t txg;
txg = spa_vdev_enter(spa);
rvd = spa->spa_root_vdev;
if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
dprintf("ONLINE: %s\n", vdev_description(vd));
vd->vdev_offline = B_FALSE;
vd->vdev_tmpoffline = B_FALSE;
vdev_reopen(vd->vdev_top);
vdev_config_dirty(vd->vdev_top);
(void) spa_vdev_exit(spa, NULL, txg, 0);
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
return (0);
}
int
vdev_offline(spa_t *spa, uint64_t guid, int istmp)
{
vdev_t *rvd, *vd;
uint64_t txg;
txg = spa_vdev_enter(spa);
rvd = spa->spa_root_vdev;
if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
dprintf("OFFLINE: %s\n", vdev_description(vd));
/* vdev is already offlined, do nothing */
if (vd->vdev_offline)
return (spa_vdev_exit(spa, NULL, txg, 0));
/*
* If this device's top-level vdev has a non-empty DTL,
* don't allow the device to be offlined.
*
* XXX -- we should make this more precise by allowing the offline
* as long as the remaining devices don't have any DTL holes.
*/
if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
/*
* Set this device to offline state and reopen its top-level vdev.
* If this action results in the top-level vdev becoming unusable,
* undo it and fail the request.
*/
vd->vdev_offline = B_TRUE;
vdev_reopen(vd->vdev_top);
if (vdev_is_dead(vd->vdev_top)) {
vd->vdev_offline = B_FALSE;
vdev_reopen(vd->vdev_top);
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
}
vd->vdev_tmpoffline = istmp;
if (!istmp)
vdev_config_dirty(vd->vdev_top);
return (spa_vdev_exit(spa, NULL, txg, 0));
}
/*
* Clear the error counts associated with this vdev. Unlike vdev_online() and
* vdev_offline(), we assume the spa config is locked. We also clear all
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
*/
void
vdev_clear(spa_t *spa, vdev_t *vd)
{
int c;
if (vd == NULL)
vd = spa->spa_root_vdev;
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
for (c = 0; c < vd->vdev_children; c++)
vdev_clear(spa, vd->vdev_child[c]);
}
int
vdev_is_dead(vdev_t *vd)
{
return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
}
int
vdev_error_inject(vdev_t *vd, zio_t *zio)
{
int error = 0;
if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
return (0);
if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
return (0);
switch (vd->vdev_fault_mode) {
case VDEV_FAULT_RANDOM:
if (spa_get_random(vd->vdev_fault_arg) == 0)
error = EIO;
break;
case VDEV_FAULT_COUNT:
if ((int64_t)--vd->vdev_fault_arg <= 0)
vd->vdev_fault_mode = VDEV_FAULT_NONE;
error = EIO;
break;
}
if (error != 0) {
dprintf("returning %d for type %d on %s state %d offset %llx\n",
error, zio->io_type, vdev_description(vd),
vd->vdev_state, zio->io_offset);
}
return (error);
}
/*
* Get statistics for the given vdev.
*/
void
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
{
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
int c, t;
mutex_enter(&vd->vdev_stat_lock);
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
vs->vs_state = vd->vdev_state;
vs->vs_rsize = vdev_get_rsize(vd);
mutex_exit(&vd->vdev_stat_lock);
/*
* If we're getting stats on the root vdev, aggregate the I/O counts
* over all top-level vdevs (i.e. the direct children of the root).
*/
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++) {
vdev_t *cvd = rvd->vdev_child[c];
vdev_stat_t *cvs = &cvd->vdev_stat;
mutex_enter(&vd->vdev_stat_lock);
for (t = 0; t < ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
}
vs->vs_read_errors += cvs->vs_read_errors;
vs->vs_write_errors += cvs->vs_write_errors;
vs->vs_checksum_errors += cvs->vs_checksum_errors;
vs->vs_scrub_examined += cvs->vs_scrub_examined;
vs->vs_scrub_errors += cvs->vs_scrub_errors;
mutex_exit(&vd->vdev_stat_lock);
}
}
}
void
vdev_stat_update(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_t *pvd;
uint64_t txg = zio->io_txg;
vdev_stat_t *vs = &vd->vdev_stat;
zio_type_t type = zio->io_type;
int flags = zio->io_flags;
if (zio->io_error == 0) {
if (!(flags & ZIO_FLAG_IO_BYPASS)) {
mutex_enter(&vd->vdev_stat_lock);
vs->vs_ops[type]++;
vs->vs_bytes[type] += zio->io_size;
mutex_exit(&vd->vdev_stat_lock);
}
if ((flags & ZIO_FLAG_IO_REPAIR) &&
zio->io_delegate_list == NULL) {
mutex_enter(&vd->vdev_stat_lock);
if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))
vs->vs_scrub_repaired += zio->io_size;
else
vs->vs_self_healed += zio->io_size;
mutex_exit(&vd->vdev_stat_lock);
}
return;
}
if (flags & ZIO_FLAG_SPECULATIVE)
return;
if (!vdev_is_dead(vd)) {
mutex_enter(&vd->vdev_stat_lock);
if (type == ZIO_TYPE_READ) {
if (zio->io_error == ECKSUM)
vs->vs_checksum_errors++;
else
vs->vs_read_errors++;
}
if (type == ZIO_TYPE_WRITE)
vs->vs_write_errors++;
mutex_exit(&vd->vdev_stat_lock);
}
if (type == ZIO_TYPE_WRITE) {
if (txg == 0 || vd->vdev_children != 0)
return;
if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
}
if (!(flags & ZIO_FLAG_IO_REPAIR)) {
vdev_t *tvd = vd->vdev_top;
if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
return;
vdev_dirty(tvd, VDD_DTL, txg);
(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
}
}
}
void
vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
{
int c;
vdev_stat_t *vs = &vd->vdev_stat;
for (c = 0; c < vd->vdev_children; c++)
vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
mutex_enter(&vd->vdev_stat_lock);
if (type == POOL_SCRUB_NONE) {
/*
* Update completion and end time. Leave everything else alone
* so we can report what happened during the previous scrub.
*/
vs->vs_scrub_complete = complete;
vs->vs_scrub_end = gethrestime_sec();
} else {
vs->vs_scrub_type = type;
vs->vs_scrub_complete = 0;
vs->vs_scrub_examined = 0;
vs->vs_scrub_repaired = 0;
vs->vs_scrub_errors = 0;
vs->vs_scrub_start = gethrestime_sec();
vs->vs_scrub_end = 0;
}
mutex_exit(&vd->vdev_stat_lock);
}
/*
* Update the in-core space usage stats for this vdev and the root vdev.
*/
void
vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta)
{
ASSERT(vd == vd->vdev_top);
do {
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_space += space_delta;
vd->vdev_stat.vs_alloc += alloc_delta;
mutex_exit(&vd->vdev_stat_lock);
} while ((vd = vd->vdev_parent) != NULL);
}
/*
* Various knobs to tune a vdev.
*/
static vdev_knob_t vdev_knob[] = {
{
"cache_size",
"size of the read-ahead cache",
0,
1ULL << 30,
10ULL << 20,
offsetof(struct vdev, vdev_cache.vc_size)
},
{
"cache_bshift",
"log2 of cache blocksize",
SPA_MINBLOCKSHIFT,
SPA_MAXBLOCKSHIFT,
16,
offsetof(struct vdev, vdev_cache.vc_bshift)
},
{
"cache_max",
"largest block size to cache",
0,
SPA_MAXBLOCKSIZE,
1ULL << 14,
offsetof(struct vdev, vdev_cache.vc_max)
},
{
"min_pending",
"minimum pending I/Os to the disk",
1,
10000,
2,
offsetof(struct vdev, vdev_queue.vq_min_pending)
},
{
"max_pending",
"maximum pending I/Os to the disk",
1,
10000,
35,
offsetof(struct vdev, vdev_queue.vq_max_pending)
},
{
"scrub_limit",
"maximum scrub/resilver I/O queue",
0,
10000,
70,
offsetof(struct vdev, vdev_queue.vq_scrub_limit)
},
{
"agg_limit",
"maximum size of aggregated I/Os",
0,
SPA_MAXBLOCKSIZE,
SPA_MAXBLOCKSIZE,
offsetof(struct vdev, vdev_queue.vq_agg_limit)
},
{
"time_shift",
"deadline = pri + (lbolt >> time_shift)",
0,
63,
4,
offsetof(struct vdev, vdev_queue.vq_time_shift)
},
{
"ramp_rate",
"exponential I/O issue ramp-up rate",
1,
10000,
2,
offsetof(struct vdev, vdev_queue.vq_ramp_rate)
},
};
vdev_knob_t *
vdev_knob_next(vdev_knob_t *vk)
{
if (vk == NULL)
return (vdev_knob);
if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t))
return (NULL);
return (vk);
}
/*
* Mark a top-level vdev's config as dirty, placing it on the dirty list
* so that it will be written out next time the vdev configuration is synced.
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
*/
void
vdev_config_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int c;
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_config_dirty(rvd->vdev_child[c]);
} else {
ASSERT(vd == vd->vdev_top);
if (!vd->vdev_is_dirty) {
list_insert_head(&spa->spa_dirty_list, vd);
vd->vdev_is_dirty = B_TRUE;
}
}
}
void
vdev_config_clean(vdev_t *vd)
{
ASSERT(vd->vdev_is_dirty);
list_remove(&vd->vdev_spa->spa_dirty_list, vd);
vd->vdev_is_dirty = B_FALSE;
}
/*
* Set a vdev's state. If this is during an open, we don't update the parent
* state, because we're in the process of opening children depth-first.
* Otherwise, we propagate the change to the parent.
*
* If this routine places a device in a faulted state, an appropriate ereport is
* generated.
*/
void
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
{
uint64_t prev_state;
if (state == vd->vdev_state) {
vd->vdev_stat.vs_aux = aux;
return;
}
prev_state = vd->vdev_state;
vd->vdev_state = state;
vd->vdev_stat.vs_aux = aux;
if (state == VDEV_STATE_CANT_OPEN) {
/*
* If we fail to open a vdev during an import, we mark it as
* "not available", which signifies that it was never there to
* begin with. Failure to open such a device is not considered
* an error.
*/
if (!vd->vdev_not_present &&
vd != vd->vdev_spa->spa_root_vdev) {
const char *class;
switch (aux) {
case VDEV_AUX_OPEN_FAILED:
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
break;
case VDEV_AUX_CORRUPT_DATA:
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
break;
case VDEV_AUX_NO_REPLICAS:
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
break;
case VDEV_AUX_BAD_GUID_SUM:
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
break;
case VDEV_AUX_TOO_SMALL:
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
break;
case VDEV_AUX_BAD_LABEL:
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
break;
default:
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
}
zfs_ereport_post(class, vd->vdev_spa,
vd, NULL, prev_state, 0);
}
if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_not_present = 1;
}
if (isopen)
return;
if (vd->vdev_parent != NULL) {
int c;
int degraded = 0, faulted = 0;
int corrupted = 0;
vdev_t *parent, *child;
parent = vd->vdev_parent;
for (c = 0; c < parent->vdev_children; c++) {
child = parent->vdev_child[c];
if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
faulted++;
else if (child->vdev_state == VDEV_STATE_DEGRADED)
degraded++;
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
corrupted++;
}
vd->vdev_parent->vdev_ops->vdev_op_state_change(
vd->vdev_parent, faulted, degraded);
/*
* Root special: if this is a toplevel vdev that cannot be
* opened due to corrupted metadata, then propagate the root
* vdev's aux state as 'corrupt' rather than 'insufficient
* replicas'.
*/
if (corrupted && vd == vd->vdev_top)
vdev_set_state(vd->vdev_spa->spa_root_vdev,
B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
}
}