spa.h revision 0a48a24e663a04e34e2ed4e55390ad96f178dbea
3N/A/*
3N/A * CDDL HEADER START
3N/A *
3N/A * The contents of this file are subject to the terms of the
3N/A * Common Development and Distribution License (the "License").
3N/A * You may not use this file except in compliance with the License.
3N/A *
3N/A * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
3N/A * or http://www.opensolaris.org/os/licensing.
3N/A * See the License for the specific language governing permissions
3N/A * and limitations under the License.
3N/A *
3N/A * When distributing Covered Code, include this CDDL HEADER in each
3N/A * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
3N/A * If applicable, add the following below this CDDL HEADER, with the
3N/A * fields enclosed by brackets "[]" replaced with your own identifying
3N/A * information: Portions Copyright [yyyy] [name of copyright owner]
3N/A *
3N/A * CDDL HEADER END
3N/A */
1058N/A/*
3N/A * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
3N/A * Use is subject to license terms.
3N/A */
3N/A
3N/A#ifndef _SYS_SPA_H
3N/A#define _SYS_SPA_H
3N/A
850N/A#pragma ident "%Z%%M% %I% %E% SMI"
850N/A
850N/A#include <sys/avl.h>
850N/A#include <sys/zfs_context.h>
3N/A#include <sys/nvpair.h>
3N/A#include <sys/sysmacros.h>
3N/A#include <sys/types.h>
3N/A#include <sys/fs/zfs.h>
3N/A
850N/A#ifdef __cplusplus
3N/Aextern "C" {
3N/A#endif
3N/A
3N/A/*
193N/A * Forward references that lots of things need.
193N/A */
193N/Atypedef struct spa spa_t;
1020N/Atypedef struct vdev vdev_t;
1020N/Atypedef struct metaslab metaslab_t;
1020N/Atypedef struct zilog zilog_t;
1020N/Atypedef struct traverse_handle traverse_handle_t;
1020N/Atypedef struct spa_aux_vdev spa_aux_vdev_t;
3N/Astruct dsl_pool;
3N/A
193N/A/*
936N/A * General-purpose 32-bit and 64-bit bitfield encodings.
1020N/A */
3N/A#define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
3N/A#define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
3N/A#define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
3N/A#define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
1070N/A
3N/A#define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
3N/A#define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
1073N/A
3N/A#define BF32_SET(x, low, len, val) \
199N/A ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
199N/A#define BF64_SET(x, low, len, val) \
199N/A ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
199N/A
199N/A#define BF32_GET_SB(x, low, len, shift, bias) \
193N/A ((BF32_GET(x, low, len) + (bias)) << (shift))
193N/A#define BF64_GET_SB(x, low, len, shift, bias) \
3N/A ((BF64_GET(x, low, len) + (bias)) << (shift))
3N/A
3N/A#define BF32_SET_SB(x, low, len, shift, bias, val) \
943N/A BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
943N/A#define BF64_SET_SB(x, low, len, shift, bias, val) \
943N/A BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
1020N/A
943N/A/*
3N/A * We currently support nine block sizes, from 512 bytes to 128K.
1013N/A * We could go higher, but the benefits are near-zero and the cost
1013N/A * of COWing a giant block to modify one byte would become excessive.
1013N/A */
1013N/A#define SPA_MINBLOCKSHIFT 9
974N/A#define SPA_MAXBLOCKSHIFT 17
1013N/A#define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
271N/A#define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
271N/A
1013N/A#define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
271N/A
1013N/A/*
1013N/A * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
3N/A * The ASIZE encoding should be at least 64 times larger (6 more bits)
974N/A * to support up to 4-way RAID-Z mirror mode with worst-case gang block
974N/A * overhead, three DVAs per bp, plus one more bit in case we do anything
3N/A * else that expands the ASIZE.
1013N/A */
3N/A#define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
974N/A#define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
974N/A#define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
193N/A
974N/A/*
974N/A * All SPA data is represented by 128-bit data virtual addresses (DVAs).
3N/A * The members of the dva_t should be considered opaque outside the SPA.
3N/A */
3N/Atypedef struct dva {
1013N/A uint64_t dva_word[2];
974N/A} dva_t;
974N/A
974N/A/*
3N/A * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
3N/A */
3N/Atypedef struct zio_cksum {
3N/A uint64_t zc_word[4];
1028N/A} zio_cksum_t;
1013N/A
974N/A/*
3N/A * Each block is described by its DVAs, time of birth, checksum, etc.
3N/A * The word-by-word, bit-by-bit layout of the blkptr is as follows:
193N/A *
974N/A * 64 56 48 40 32 24 16 8 0
3N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
3N/A * 0 | vdev1 | GRID | ASIZE |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
199N/A * 1 |G| offset1 |
199N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 2 | vdev2 | GRID | ASIZE |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 3 |G| offset2 |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 4 | vdev3 | GRID | ASIZE |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 5 |G| offset3 |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 6 |E| lvl | type | cksum | comp | PSIZE | LSIZE |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * 7 | padding |
193N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
3N/A * 8 | padding |
936N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
89N/A * 9 | padding |
1020N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
89N/A * a | birth txg |
3N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
3N/A * b | fill count |
3N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
193N/A * c | checksum[0] |
974N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
974N/A * d | checksum[1] |
974N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
1020N/A * e | checksum[2] |
1013N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
974N/A * f | checksum[3] |
974N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
3N/A *
3N/A * Legend:
193N/A *
3N/A * vdev virtual device ID
974N/A * offset offset into virtual device
3N/A * LSIZE logical size
3N/A * PSIZE physical size (after compression)
974N/A * ASIZE allocated size (including RAID-Z parity and gang block headers)
1013N/A * GRID RAID-Z layout information (reserved for future use)
974N/A * cksum checksum function
1013N/A * comp compression function
271N/A * G gang block indicator
271N/A * E endianness
1013N/A * type DMU object type
271N/A * lvl level of indirection
3N/A * birth txg transaction group in which the block was born
3N/A * fill count number of non-zero blocks under this bp
974N/A * checksum[4] 256-bit checksum of the data this bp describes
1013N/A */
974N/Atypedef struct blkptr {
1013N/A dva_t blk_dva[3]; /* 128-bit Data Virtual Address */
1013N/A uint64_t blk_prop; /* size, compression, type, etc */
3N/A uint64_t blk_pad[3]; /* Extra space for the future */
3N/A uint64_t blk_birth; /* transaction group at birth */
974N/A uint64_t blk_fill; /* fill count */
1122N/A zio_cksum_t blk_cksum; /* 256-bit checksum */
974N/A} blkptr_t;
3N/A
#define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
#define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
/*
* Macros to get and set fields in a bp or DVA.
*/
#define DVA_GET_ASIZE(dva) \
BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0)
#define DVA_SET_ASIZE(dva, x) \
BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x)
#define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
#define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
#define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
#define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)
#define DVA_GET_OFFSET(dva) \
BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
#define DVA_SET_OFFSET(dva, x) \
BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
#define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
#define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
#define BP_GET_LSIZE(bp) \
(BP_IS_HOLE(bp) ? 0 : \
BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1))
#define BP_SET_LSIZE(bp, x) \
BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
#define BP_GET_PSIZE(bp) \
BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1)
#define BP_SET_PSIZE(bp, x) \
BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x)
#define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8)
#define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x)
#define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8)
#define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x)
#define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
#define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
#define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
#define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
#define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1))
#define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
#define BP_GET_ASIZE(bp) \
(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
DVA_GET_ASIZE(&(bp)->blk_dva[2]))
#define BP_GET_UCSIZE(bp) \
((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
#define BP_GET_NDVAS(bp) \
(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
#define BP_COUNT_GANG(bp) \
(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
DVA_GET_GANG(&(bp)->blk_dva[1]) + \
DVA_GET_GANG(&(bp)->blk_dva[2]))
#define DVA_EQUAL(dva1, dva2) \
((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
(dva1)->dva_word[0] == (dva2)->dva_word[0])
#define ZIO_CHECKSUM_EQUAL(zc1, zc2) \
(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
((zc1).zc_word[1] - (zc2).zc_word[1]) | \
((zc1).zc_word[2] - (zc2).zc_word[2]) | \
((zc1).zc_word[3] - (zc2).zc_word[3])))
#define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
#define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \
{ \
(zcp)->zc_word[0] = w0; \
(zcp)->zc_word[1] = w1; \
(zcp)->zc_word[2] = w2; \
(zcp)->zc_word[3] = w3; \
}
#define BP_IDENTITY(bp) (&(bp)->blk_dva[0])
#define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp))
#define BP_IS_HOLE(bp) ((bp)->blk_birth == 0)
#define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
#define BP_ZERO_DVAS(bp) \
{ \
(bp)->blk_dva[0].dva_word[0] = 0; \
(bp)->blk_dva[0].dva_word[1] = 0; \
(bp)->blk_dva[1].dva_word[0] = 0; \
(bp)->blk_dva[1].dva_word[1] = 0; \
(bp)->blk_dva[2].dva_word[0] = 0; \
(bp)->blk_dva[2].dva_word[1] = 0; \
(bp)->blk_birth = 0; \
}
#define BP_ZERO(bp) \
{ \
BP_ZERO_DVAS(bp) \
(bp)->blk_prop = 0; \
(bp)->blk_pad[0] = 0; \
(bp)->blk_pad[1] = 0; \
(bp)->blk_pad[2] = 0; \
(bp)->blk_fill = 0; \
ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
}
/*
* Note: the byteorder is either 0 or -1, both of which are palindromes.
* This simplifies the endianness handling a bit.
*/
#ifdef _BIG_ENDIAN
#define ZFS_HOST_BYTEORDER (0ULL)
#else
#define ZFS_HOST_BYTEORDER (-1ULL)
#endif
#define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
#define BP_SPRINTF_LEN 320
#include <sys/dmu.h>
#define BP_GET_BUFC_TYPE(bp) \
(((BP_GET_LEVEL(bp) > 0) || (dmu_ot[BP_GET_TYPE(bp)].ot_metadata)) ? \
ARC_BUFC_METADATA : ARC_BUFC_DATA);
/*
* Routines found in spa.c
*/
/* state manipulation functions */
extern int spa_open(const char *pool, spa_t **, void *tag);
extern int spa_get_stats(const char *pool, nvlist_t **config,
char *altroot, size_t buflen);
extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
const char *history_str, nvlist_t *zplprops);
extern int spa_check_rootconf(char *devpath, char *devid,
nvlist_t **bestconf, uint64_t *besttxg);
extern boolean_t spa_rootdev_validate(nvlist_t *nv);
extern int spa_import_rootpool(char *devpath, char *devid);
extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props);
extern int spa_import_faulted(const char *, nvlist_t *, nvlist_t *);
extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
extern int spa_destroy(char *pool);
extern int spa_export(char *pool, nvlist_t **oldconfig);
extern int spa_reset(char *pool);
extern void spa_async_request(spa_t *spa, int flag);
extern void spa_async_unrequest(spa_t *spa, int flag);
extern void spa_async_suspend(spa_t *spa);
extern void spa_async_resume(spa_t *spa);
extern spa_t *spa_inject_addref(char *pool);
extern void spa_inject_delref(spa_t *spa);
#define SPA_ASYNC_REMOVE 0x01
#define SPA_ASYNC_RESILVER_DONE 0x02
#define SPA_ASYNC_RESILVER 0x08
#define SPA_ASYNC_CONFIG_UPDATE 0x10
/* device manipulation */
extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
int replacing);
extern int spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done);
extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
/* spare state (which is global across all pools) */
extern void spa_spare_add(vdev_t *vd);
extern void spa_spare_remove(vdev_t *vd);
extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool);
extern void spa_spare_activate(vdev_t *vd);
/* L2ARC state (which is global across all pools) */
extern void spa_l2cache_add(vdev_t *vd);
extern void spa_l2cache_remove(vdev_t *vd);
extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
extern void spa_l2cache_activate(vdev_t *vd);
extern void spa_l2cache_drop(spa_t *spa);
extern void spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc);
/* scrubbing */
extern int spa_scrub(spa_t *spa, pool_scrub_type_t type);
/* spa syncing */
extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
extern void spa_sync_allpools(void);
/* spa namespace global mutex */
extern kmutex_t spa_namespace_lock;
/*
* SPA configuration functions in spa_config.c
*/
#define SPA_CONFIG_UPDATE_POOL 0
#define SPA_CONFIG_UPDATE_VDEVS 1
extern void spa_config_sync(spa_t *, boolean_t, boolean_t);
extern void spa_config_load(void);
extern nvlist_t *spa_all_configs(uint64_t *);
extern void spa_config_set(spa_t *spa, nvlist_t *config);
extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
int getstats);
extern void spa_config_update(spa_t *spa, int what);
extern void spa_config_update_common(spa_t *spa, int what, boolean_t isroot);
/*
* Miscellaneous SPA routines in spa_misc.c
*/
/* Namespace manipulation */
extern spa_t *spa_lookup(const char *name);
extern spa_t *spa_add(const char *name, const char *altroot);
extern void spa_remove(spa_t *spa);
extern spa_t *spa_next(spa_t *prev);
/* Refcount functions */
extern void spa_open_ref(spa_t *spa, void *tag);
extern void spa_close(spa_t *spa, void *tag);
extern boolean_t spa_refcount_zero(spa_t *spa);
/* Pool configuration lock */
extern void spa_config_enter(spa_t *spa, krw_t rw, void *tag);
extern void spa_config_exit(spa_t *spa, void *tag);
extern boolean_t spa_config_held(spa_t *spa, krw_t rw);
/* Pool vdev add/remove lock */
extern uint64_t spa_vdev_enter(spa_t *spa);
extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
/* Accessor functions */
extern krwlock_t *spa_traverse_rwlock(spa_t *spa);
extern boolean_t spa_traverse_wanted(spa_t *spa);
extern struct dsl_pool *spa_get_dsl(spa_t *spa);
extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
extern void spa_altroot(spa_t *, char *, size_t);
extern int spa_sync_pass(spa_t *spa);
extern char *spa_name(spa_t *spa);
extern uint64_t spa_guid(spa_t *spa);
extern uint64_t spa_last_synced_txg(spa_t *spa);
extern uint64_t spa_first_txg(spa_t *spa);
extern uint64_t spa_version(spa_t *spa);
extern int spa_state(spa_t *spa);
extern uint64_t spa_freeze_txg(spa_t *spa);
extern uint64_t spa_get_alloc(spa_t *spa);
extern uint64_t spa_get_space(spa_t *spa);
extern uint64_t spa_get_dspace(spa_t *spa);
extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize);
extern uint64_t spa_version(spa_t *spa);
extern int spa_max_replication(spa_t *spa);
extern int spa_busy(void);
extern uint8_t spa_get_failmode(spa_t *spa);
/* Miscellaneous support routines */
extern int spa_rename(const char *oldname, const char *newname);
extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
extern char *spa_strdup(const char *);
extern void spa_strfree(char *);
extern uint64_t spa_get_random(uint64_t range);
extern void sprintf_blkptr(char *buf, int len, const blkptr_t *bp);
extern void spa_freeze(spa_t *spa);
extern void spa_upgrade(spa_t *spa, uint64_t version);
extern void spa_evict_all(void);
extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
boolean_t l2cache);
extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
extern uint64_t bp_get_dasize(spa_t *spa, const blkptr_t *bp);
extern boolean_t spa_has_slogs(spa_t *spa);
extern boolean_t spa_is_root(spa_t *spa);
/* history logging */
typedef enum history_log_type {
LOG_CMD_POOL_CREATE,
LOG_CMD_NORMAL,
LOG_INTERNAL
} history_log_type_t;
typedef struct history_arg {
const char *ha_history_str;
history_log_type_t ha_log_type;
history_internal_events_t ha_event;
char ha_zone[MAXPATHLEN];
} history_arg_t;
extern char *spa_his_ievent_table[];
extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
char *his_buf);
extern int spa_history_log(spa_t *spa, const char *his_buf,
history_log_type_t what);
void spa_history_internal_log(history_internal_events_t event, spa_t *spa,
dmu_tx_t *tx, cred_t *cr, const char *fmt, ...);
/* error handling */
struct zbookmark;
struct zio;
extern void spa_log_error(spa_t *spa, struct zio *zio);
extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
struct zio *zio, uint64_t stateoroffset, uint64_t length);
extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
extern uint64_t spa_get_errlog_size(spa_t *spa);
extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
extern void spa_errlog_rotate(spa_t *spa);
extern void spa_errlog_drain(spa_t *spa);
extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
/* vdev cache */
extern void vdev_cache_stat_init(void);
extern void vdev_cache_stat_fini(void);
/* Initialization and termination */
extern void spa_init(int flags);
extern void spa_fini(void);
extern void spa_boot_init();
/* properties */
extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
/* asynchronous event notification */
extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name);
#ifdef ZFS_DEBUG
#define dprintf_bp(bp, fmt, ...) do { \
if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
sprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
kmem_free(__blkbuf, BP_SPRINTF_LEN); \
} \
_NOTE(CONSTCOND) } while (0)
#else
#define dprintf_bp(bp, fmt, ...)
#endif
extern int spa_mode; /* mode, e.g. FREAD | FWRITE */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SPA_H */