spa_misc.c revision 0125049cd6136d1d2ca9e982382a915b6d7916ce
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/fs/zfs.h>
/*
* SPA locking
*
* There are four basic locks for managing spa_t structures:
*
* spa_namespace_lock (global mutex)
*
* This lock must be acquired to do any of the following:
*
* - Lookup a spa_t by name
* - Add or remove a spa_t from the namespace
* - Increase spa_refcount from non-zero
* - Check if spa_refcount is zero
* - Rename a spa_t
* - add/remove/attach/detach devices
* - Held for the duration of create/destroy/import/export
*
* It does not need to handle recursion. A create or destroy may
* reference objects (files or zvols) in other pools, but by
* definition they must have an existing reference, and will never need
* to lookup a spa_t by name.
*
* spa_refcount (per-spa refcount_t protected by mutex)
*
* This reference count keep track of any active users of the spa_t. The
* spa_t cannot be destroyed or freed while this is non-zero. Internally,
* the refcount is never really 'zero' - opening a pool implicitly keeps
* some references in the DMU. Internally we check against SPA_MINREF, but
* present the image of a zero/non-zero value to consumers.
*
* spa_config_lock (per-spa crazy rwlock)
*
* This SPA special is a recursive rwlock, capable of being acquired from
* asynchronous threads. It has protects the spa_t from config changes,
* and must be held in the following circumstances:
*
* - RW_READER to perform I/O to the spa
* - RW_WRITER to change the vdev config
*
* spa_config_cache_lock (per-spa mutex)
*
* This mutex prevents the spa_config nvlist from being updated. No
* other locks are required to obtain this lock, although implicitly you
* must have the namespace lock or non-zero refcount to have any kind
* of spa_t pointer at all.
*
* The locking order is fairly straightforward:
*
* spa_namespace_lock -> spa_refcount
*
* The namespace lock must be acquired to increase the refcount from 0
* or to check if it is zero.
*
* spa_refcount -> spa_config_lock
*
* There must be at least one valid reference on the spa_t to acquire
* the config lock.
*
* spa_namespace_lock -> spa_config_lock
*
* The namespace lock must always be taken before the config lock.
*
*
* The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
* are globally visible.
*
* The namespace is manipulated using the following functions, all which require
* the spa_namespace_lock to be held.
*
* spa_lookup() Lookup a spa_t by name.
*
* spa_add() Create a new spa_t in the namespace.
*
* spa_remove() Remove a spa_t from the namespace. This also
* frees up any memory associated with the spa_t.
*
* spa_next() Returns the next spa_t in the system, or the
* first if NULL is passed.
*
* spa_evict_all() Shutdown and remove all spa_t structures in
* the system.
*
* spa_guid_exists() Determine whether a pool/device guid exists.
*
* The spa_refcount is manipulated using the following functions:
*
* spa_open_ref() Adds a reference to the given spa_t. Must be
* called with spa_namespace_lock held if the
* refcount is currently zero.
*
* spa_close() Remove a reference from the spa_t. This will
* not free the spa_t or remove it from the
* namespace. No locking is required.
*
* spa_refcount_zero() Returns true if the refcount is currently
* zero. Must be called with spa_namespace_lock
* held.
*
* The spa_config_lock is manipulated using the following functions:
*
* spa_config_enter() Acquire the config lock as RW_READER or
* RW_WRITER. At least one reference on the spa_t
* must exist.
*
* spa_config_exit() Release the config lock.
*
* spa_config_held() Returns true if the config lock is currently
* held in the given state.
*
* The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
*
* spa_vdev_enter() Acquire the namespace lock and the config lock
* for writing.
*
* spa_vdev_exit() Release the config lock, wait for all I/O
* to complete, sync the updated configs to the
* cache, and release the namespace lock.
*
* The spa_name() function also requires either the spa_namespace_lock
* or the spa_config_lock, as both are needed to do a rename. spa_rename() is
* also implemented within this file since is requires manipulation of the
* namespace.
*/
static avl_tree_t spa_namespace_avl;
kmutex_t spa_namespace_lock;
static kcondvar_t spa_namespace_cv;
static int spa_active_count;
int spa_max_replication_override = SPA_DVAS_PER_BP;
static kmutex_t spa_spare_lock;
static avl_tree_t spa_spare_avl;
kmem_cache_t *spa_buffer_pool;
int spa_mode;
#ifdef ZFS_DEBUG
int zfs_flags = ~0;
#else
int zfs_flags = 0;
#endif
/*
* zfs_recover can be set to nonzero to attempt to recover from
* otherwise-fatal errors, typically caused by on-disk corruption. When
* set, calls to zfs_panic_recover() will turn into warning messages.
*/
int zfs_recover = 0;
#define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */
/*
* ==========================================================================
* SPA namespace functions
* ==========================================================================
*/
/*
* Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
* Returns NULL if no matching spa_t is found.
*/
spa_t *
spa_lookup(const char *name)
{
spa_t search, *spa;
avl_index_t where;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
search.spa_name = (char *)name;
spa = avl_find(&spa_namespace_avl, &search, &where);
return (spa);
}
/*
* Create an uninitialized spa_t with the given name. Requires
* spa_namespace_lock. The caller must ensure that the spa_t doesn't already
* exist by calling spa_lookup() first.
*/
spa_t *
spa_add(const char *name, const char *altroot)
{
spa_t *spa;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
spa->spa_name = spa_strdup(name);
spa->spa_state = POOL_STATE_UNINITIALIZED;
spa->spa_freeze_txg = UINT64_MAX;
spa->spa_final_txg = UINT64_MAX;
refcount_create(&spa->spa_refcount);
refcount_create(&spa->spa_config_lock.scl_count);
avl_add(&spa_namespace_avl, spa);
/*
* Set the alternate root, if there is one.
*/
if (altroot) {
spa->spa_root = spa_strdup(altroot);
spa_active_count++;
}
return (spa);
}
/*
* Removes a spa_t from the namespace, freeing up any memory used. Requires
* spa_namespace_lock. This is called only after the spa_t has been closed and
* deactivated.
*/
void
spa_remove(spa_t *spa)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
ASSERT(spa->spa_scrub_thread == NULL);
avl_remove(&spa_namespace_avl, spa);
cv_broadcast(&spa_namespace_cv);
if (spa->spa_root) {
spa_strfree(spa->spa_root);
spa_active_count--;
}
if (spa->spa_name)
spa_strfree(spa->spa_name);
spa_config_set(spa, NULL);
refcount_destroy(&spa->spa_refcount);
refcount_destroy(&spa->spa_config_lock.scl_count);
mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
mutex_destroy(&spa->spa_config_lock.scl_lock);
mutex_destroy(&spa->spa_errlist_lock);
mutex_destroy(&spa->spa_errlog_lock);
mutex_destroy(&spa->spa_scrub_lock);
mutex_destroy(&spa->spa_config_cache_lock);
mutex_destroy(&spa->spa_async_lock);
mutex_destroy(&spa->spa_history_lock);
kmem_free(spa, sizeof (spa_t));
}
/*
* Given a pool, return the next pool in the namespace, or NULL if there is
* none. If 'prev' is NULL, return the first pool.
*/
spa_t *
spa_next(spa_t *prev)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (prev)
return (AVL_NEXT(&spa_namespace_avl, prev));
else
return (avl_first(&spa_namespace_avl));
}
/*
* ==========================================================================
* SPA refcount functions
* ==========================================================================
*/
/*
* Add a reference to the given spa_t. Must have at least one reference, or
* have the namespace lock held.
*/
void
spa_open_ref(spa_t *spa, void *tag)
{
ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
MUTEX_HELD(&spa_namespace_lock));
(void) refcount_add(&spa->spa_refcount, tag);
}
/*
* Remove a reference to the given spa_t. Must have at least one reference, or
* have the namespace lock held.
*/
void
spa_close(spa_t *spa, void *tag)
{
ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
MUTEX_HELD(&spa_namespace_lock));
(void) refcount_remove(&spa->spa_refcount, tag);
}
/*
* Check to see if the spa refcount is zero. Must be called with
* spa_namespace_lock held. We really compare against SPA_MINREF, which is the
* number of references acquired when opening a pool
*/
boolean_t
spa_refcount_zero(spa_t *spa)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
}
/*
* ==========================================================================
* SPA spare tracking
* ==========================================================================
*/
/*
* Spares are tracked globally due to the following constraints:
*
* - A spare may be part of multiple pools.
* - A spare may be added to a pool even if it's actively in use within
* another pool.
* - A spare in use in any pool can only be the source of a replacement if
* the target is a spare in the same pool.
*
* We keep track of all spares on the system through the use of a reference
* counted AVL tree. When a vdev is added as a spare, or used as a replacement
* spare, then we bump the reference count in the AVL tree. In addition, we set
* the 'vdev_isspare' member to indicate that the device is a spare (active or
* inactive). When a spare is made active (used to replace a device in the
* pool), we also keep track of which pool its been made a part of.
*
* The 'spa_spare_lock' protects the AVL tree. These functions are normally
* called under the spa_namespace lock as part of vdev reconfiguration. The
* separate spare lock exists for the status query path, which does not need to
* be completely consistent with respect to other vdev configuration changes.
*/
typedef struct spa_spare {
uint64_t spare_guid;
uint64_t spare_pool;
avl_node_t spare_avl;
int spare_count;
} spa_spare_t;
static int
spa_spare_compare(const void *a, const void *b)
{
const spa_spare_t *sa = a;
const spa_spare_t *sb = b;
if (sa->spare_guid < sb->spare_guid)
return (-1);
else if (sa->spare_guid > sb->spare_guid)
return (1);
else
return (0);
}
void
spa_spare_add(vdev_t *vd)
{
avl_index_t where;
spa_spare_t search;
spa_spare_t *spare;
mutex_enter(&spa_spare_lock);
ASSERT(!vd->vdev_isspare);
search.spare_guid = vd->vdev_guid;
if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
spare->spare_count++;
} else {
spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
spare->spare_guid = vd->vdev_guid;
spare->spare_count = 1;
avl_insert(&spa_spare_avl, spare, where);
}
vd->vdev_isspare = B_TRUE;
mutex_exit(&spa_spare_lock);
}
void
spa_spare_remove(vdev_t *vd)
{
spa_spare_t search;
spa_spare_t *spare;
avl_index_t where;
mutex_enter(&spa_spare_lock);
search.spare_guid = vd->vdev_guid;
spare = avl_find(&spa_spare_avl, &search, &where);
ASSERT(vd->vdev_isspare);
ASSERT(spare != NULL);
if (--spare->spare_count == 0) {
avl_remove(&spa_spare_avl, spare);
kmem_free(spare, sizeof (spa_spare_t));
} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
spare->spare_pool = 0ULL;
}
vd->vdev_isspare = B_FALSE;
mutex_exit(&spa_spare_lock);
}
boolean_t
spa_spare_exists(uint64_t guid, uint64_t *pool)
{
spa_spare_t search, *found;
avl_index_t where;
mutex_enter(&spa_spare_lock);
search.spare_guid = guid;
found = avl_find(&spa_spare_avl, &search, &where);
if (pool) {
if (found)
*pool = found->spare_pool;
else
*pool = 0ULL;
}
mutex_exit(&spa_spare_lock);
return (found != NULL);
}
void
spa_spare_activate(vdev_t *vd)
{
spa_spare_t search, *found;
avl_index_t where;
mutex_enter(&spa_spare_lock);
ASSERT(vd->vdev_isspare);
search.spare_guid = vd->vdev_guid;
found = avl_find(&spa_spare_avl, &search, &where);
ASSERT(found != NULL);
ASSERT(found->spare_pool == 0ULL);
found->spare_pool = spa_guid(vd->vdev_spa);
mutex_exit(&spa_spare_lock);
}
/*
* ==========================================================================
* SPA config locking
* ==========================================================================
*/
/*
* Acquire the config lock. The config lock is a special rwlock that allows for
* recursive enters. Because these enters come from the same thread as well as
* asynchronous threads working on behalf of the owner, we must unilaterally
* allow all reads access as long at least one reader is held (even if a write
* is requested). This has the side effect of write starvation, but write locks
* are extremely rare, and a solution to this problem would be significantly
* more complex (if even possible).
*
* We would like to assert that the namespace lock isn't held, but this is a
* valid use during create.
*/
void
spa_config_enter(spa_t *spa, krw_t rw, void *tag)
{
spa_config_lock_t *scl = &spa->spa_config_lock;
mutex_enter(&scl->scl_lock);
if (scl->scl_writer != curthread) {
if (rw == RW_READER) {
while (scl->scl_writer != NULL)
cv_wait(&scl->scl_cv, &scl->scl_lock);
} else {
while (scl->scl_writer != NULL ||
!refcount_is_zero(&scl->scl_count))
cv_wait(&scl->scl_cv, &scl->scl_lock);
scl->scl_writer = curthread;
}
}
(void) refcount_add(&scl->scl_count, tag);
mutex_exit(&scl->scl_lock);
}
/*
* Release the spa config lock, notifying any waiters in the process.
*/
void
spa_config_exit(spa_t *spa, void *tag)
{
spa_config_lock_t *scl = &spa->spa_config_lock;
mutex_enter(&scl->scl_lock);
ASSERT(!refcount_is_zero(&scl->scl_count));
if (refcount_remove(&scl->scl_count, tag) == 0) {
cv_broadcast(&scl->scl_cv);
scl->scl_writer = NULL; /* OK in either case */
}
mutex_exit(&scl->scl_lock);
}
/*
* Returns true if the config lock is held in the given manner.
*/
boolean_t
spa_config_held(spa_t *spa, krw_t rw)
{
spa_config_lock_t *scl = &spa->spa_config_lock;
boolean_t held;
mutex_enter(&scl->scl_lock);
if (rw == RW_WRITER)
held = (scl->scl_writer == curthread);
else
held = !refcount_is_zero(&scl->scl_count);
mutex_exit(&scl->scl_lock);
return (held);
}
/*
* ==========================================================================
* SPA vdev locking
* ==========================================================================
*/
/*
* Lock the given spa_t for the purpose of adding or removing a vdev.
* Grabs the global spa_namespace_lock plus the spa config lock for writing.
* It returns the next transaction group for the spa_t.
*/
uint64_t
spa_vdev_enter(spa_t *spa)
{
/*
* Suspend scrub activity while we mess with the config.
*/
spa_scrub_suspend(spa);
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, RW_WRITER, spa);
return (spa_last_synced_txg(spa) + 1);
}
/*
* Unlock the spa_t after adding or removing a vdev. Besides undoing the
* locking of spa_vdev_enter(), we also want make sure the transactions have
* synced to disk, and then update the global configuration cache with the new
* information.
*/
int
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
{
int config_changed = B_FALSE;
ASSERT(txg > spa_last_synced_txg(spa));
/*
* Reassess the DTLs.
*/
vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
/*
* If the config changed, notify the scrub thread that it must restart.
*/
if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
config_changed = B_TRUE;
spa_scrub_restart(spa, txg);
}
spa_config_exit(spa, spa);
/*
* Allow scrubbing to resume.
*/
spa_scrub_resume(spa);
/*
* Note: this txg_wait_synced() is important because it ensures
* that there won't be more than one config change per txg.
* This allows us to use the txg as the generation number.
*/
if (error == 0)
txg_wait_synced(spa->spa_dsl_pool, txg);
if (vd != NULL) {
ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
vdev_free(vd);
}
/*
* If the config changed, update the config cache.
*/
if (config_changed)
spa_config_sync();
mutex_exit(&spa_namespace_lock);
return (error);
}
/*
* ==========================================================================
* Miscellaneous functions
* ==========================================================================
*/
/*
* Rename a spa_t.
*/
int
spa_rename(const char *name, const char *newname)
{
spa_t *spa;
int err;
/*
* Lookup the spa_t and grab the config lock for writing. We need to
* actually open the pool so that we can sync out the necessary labels.
* It's OK to call spa_open() with the namespace lock held because we
* allow recursive calls for other reasons.
*/
mutex_enter(&spa_namespace_lock);
if ((err = spa_open(name, &spa, FTAG)) != 0) {
mutex_exit(&spa_namespace_lock);
return (err);
}
spa_config_enter(spa, RW_WRITER, FTAG);
avl_remove(&spa_namespace_avl, spa);
spa_strfree(spa->spa_name);
spa->spa_name = spa_strdup(newname);
avl_add(&spa_namespace_avl, spa);
/*
* Sync all labels to disk with the new names by marking the root vdev
* dirty and waiting for it to sync. It will pick up the new pool name
* during the sync.
*/
vdev_config_dirty(spa->spa_root_vdev);
spa_config_exit(spa, FTAG);
txg_wait_synced(spa->spa_dsl_pool, 0);
/*
* Sync the updated config cache.
*/
spa_config_sync();
spa_close(spa, FTAG);
mutex_exit(&spa_namespace_lock);
return (0);
}
/*
* Determine whether a pool with given pool_guid exists. If device_guid is
* non-zero, determine whether the pool exists *and* contains a device with the
* specified device_guid.
*/
boolean_t
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
{
spa_t *spa;
avl_tree_t *t = &spa_namespace_avl;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
continue;
if (spa->spa_root_vdev == NULL)
continue;
if (spa_guid(spa) == pool_guid) {
if (device_guid == 0)
break;
if (vdev_lookup_by_guid(spa->spa_root_vdev,
device_guid) != NULL)
break;
/*
* Check any devices we may in the process of adding.
*/
if (spa->spa_pending_vdev) {
if (vdev_lookup_by_guid(spa->spa_pending_vdev,
device_guid) != NULL)
break;
}
}
}
return (spa != NULL);
}
char *
spa_strdup(const char *s)
{
size_t len;
char *new;
len = strlen(s);
new = kmem_alloc(len + 1, KM_SLEEP);
bcopy(s, new, len);
new[len] = '\0';
return (new);
}
void
spa_strfree(char *s)
{
kmem_free(s, strlen(s) + 1);
}
uint64_t
spa_get_random(uint64_t range)
{
uint64_t r;
ASSERT(range != 0);
(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
return (r % range);
}
void
sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
{
int d;
if (bp == NULL) {
(void) snprintf(buf, len, "<NULL>");
return;
}
if (BP_IS_HOLE(bp)) {
(void) snprintf(buf, len, "<hole>");
return;
}
(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
(u_longlong_t)BP_GET_LEVEL(bp),
dmu_ot[BP_GET_TYPE(bp)].ot_name,
(u_longlong_t)BP_GET_LSIZE(bp),
(u_longlong_t)BP_GET_PSIZE(bp));
for (d = 0; d < BP_GET_NDVAS(bp); d++) {
const dva_t *dva = &bp->blk_dva[d];
(void) snprintf(buf + strlen(buf), len - strlen(buf),
"DVA[%d]=<%llu:%llx:%llx> ", d,
(u_longlong_t)DVA_GET_VDEV(dva),
(u_longlong_t)DVA_GET_OFFSET(dva),
(u_longlong_t)DVA_GET_ASIZE(dva));
}
(void) snprintf(buf + strlen(buf), len - strlen(buf),
"%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
BP_IS_GANG(bp) ? "gang" : "contiguous",
(u_longlong_t)bp->blk_birth,
(u_longlong_t)bp->blk_fill,
(u_longlong_t)bp->blk_cksum.zc_word[0],
(u_longlong_t)bp->blk_cksum.zc_word[1],
(u_longlong_t)bp->blk_cksum.zc_word[2],
(u_longlong_t)bp->blk_cksum.zc_word[3]);
}
void
spa_freeze(spa_t *spa)
{
uint64_t freeze_txg = 0;
spa_config_enter(spa, RW_WRITER, FTAG);
if (spa->spa_freeze_txg == UINT64_MAX) {
freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
spa->spa_freeze_txg = freeze_txg;
}
spa_config_exit(spa, FTAG);
if (freeze_txg != 0)
txg_wait_synced(spa_get_dsl(spa), freeze_txg);
}
void
zfs_panic_recover(const char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
va_end(adx);
}
/*
* ==========================================================================
* Accessor functions
* ==========================================================================
*/
krwlock_t *
spa_traverse_rwlock(spa_t *spa)
{
return (&spa->spa_traverse_lock);
}
int
spa_traverse_wanted(spa_t *spa)
{
return (spa->spa_traverse_wanted);
}
dsl_pool_t *
spa_get_dsl(spa_t *spa)
{
return (spa->spa_dsl_pool);
}
blkptr_t *
spa_get_rootblkptr(spa_t *spa)
{
return (&spa->spa_ubsync.ub_rootbp);
}
void
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
{
spa->spa_uberblock.ub_rootbp = *bp;
}
void
spa_altroot(spa_t *spa, char *buf, size_t buflen)
{
if (spa->spa_root == NULL)
buf[0] = '\0';
else
(void) strncpy(buf, spa->spa_root, buflen);
}
int
spa_sync_pass(spa_t *spa)
{
return (spa->spa_sync_pass);
}
char *
spa_name(spa_t *spa)
{
/*
* Accessing the name requires holding either the namespace lock or the
* config lock, both of which are required to do a rename.
*/
ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
return (spa->spa_name);
}
uint64_t
spa_guid(spa_t *spa)
{
/*
* If we fail to parse the config during spa_load(), we can go through
* the error path (which posts an ereport) and end up here with no root
* vdev. We stash the original pool guid in 'spa_load_guid' to handle
* this case.
*/
if (spa->spa_root_vdev != NULL)
return (spa->spa_root_vdev->vdev_guid);
else
return (spa->spa_load_guid);
}
uint64_t
spa_last_synced_txg(spa_t *spa)
{
return (spa->spa_ubsync.ub_txg);
}
uint64_t
spa_first_txg(spa_t *spa)
{
return (spa->spa_first_txg);
}
int
spa_state(spa_t *spa)
{
return (spa->spa_state);
}
uint64_t
spa_freeze_txg(spa_t *spa)
{
return (spa->spa_freeze_txg);
}
/*
* In the future, this may select among different metaslab classes
* depending on the zdp. For now, there's no such distinction.
*/
metaslab_class_t *
spa_metaslab_class_select(spa_t *spa)
{
return (spa->spa_normal_class);
}
/*
* Return how much space is allocated in the pool (ie. sum of all asize)
*/
uint64_t
spa_get_alloc(spa_t *spa)
{
return (spa->spa_root_vdev->vdev_stat.vs_alloc);
}
/*
* Return how much (raid-z inflated) space there is in the pool.
*/
uint64_t
spa_get_space(spa_t *spa)
{
return (spa->spa_root_vdev->vdev_stat.vs_space);
}
/*
* Return the amount of raid-z-deflated space in the pool.
*/
uint64_t
spa_get_dspace(spa_t *spa)
{
if (spa->spa_deflate)
return (spa->spa_root_vdev->vdev_stat.vs_dspace);
else
return (spa->spa_root_vdev->vdev_stat.vs_space);
}
/* ARGSUSED */
uint64_t
spa_get_asize(spa_t *spa, uint64_t lsize)
{
/*
* For now, the worst case is 512-byte RAID-Z blocks, in which
* case the space requirement is exactly 2x; so just assume that.
* Add to this the fact that we can have up to 3 DVAs per bp, and
* we have to multiply by a total of 6x.
*/
return (lsize * 6);
}
uint64_t
spa_version(spa_t *spa)
{
return (spa->spa_ubsync.ub_version);
}
int
spa_max_replication(spa_t *spa)
{
/*
* As of ZFS_VERSION == ZFS_VERSION_DITTO_BLOCKS, we are able to
* handle BPs with more than one DVA allocated. Set our max
* replication level accordingly.
*/
if (spa_version(spa) < ZFS_VERSION_DITTO_BLOCKS)
return (1);
return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
}
uint64_t
bp_get_dasize(spa_t *spa, const blkptr_t *bp)
{
int sz = 0, i;
if (!spa->spa_deflate)
return (BP_GET_ASIZE(bp));
for (i = 0; i < SPA_DVAS_PER_BP; i++) {
vdev_t *vd =
vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
vd->vdev_deflate_ratio;
}
return (sz);
}
/*
* ==========================================================================
* Initialization and Termination
* ==========================================================================
*/
static int
spa_name_compare(const void *a1, const void *a2)
{
const spa_t *s1 = a1;
const spa_t *s2 = a2;
int s;
s = strcmp(s1->spa_name, s2->spa_name);
if (s > 0)
return (1);
if (s < 0)
return (-1);
return (0);
}
int
spa_busy(void)
{
return (spa_active_count);
}
void
spa_init(int mode)
{
mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
offsetof(spa_t, spa_avl));
avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
offsetof(spa_spare_t, spare_avl));
spa_mode = mode;
refcount_init();
unique_init();
zio_init();
dmu_init();
zil_init();
spa_config_load();
}
void
spa_fini(void)
{
spa_evict_all();
zil_fini();
dmu_fini();
zio_fini();
refcount_fini();
avl_destroy(&spa_namespace_avl);
avl_destroy(&spa_spare_avl);
cv_destroy(&spa_namespace_cv);
mutex_destroy(&spa_namespace_lock);
}