spa.c revision 2a79c5fee1dab68e30266ba4356cf60b871aabcf
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains all the routines used when modifying on-disk SPA state.
* This includes opening, importing, destroying, exporting a pool, and syncing a
* pool.
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/dmu_traverse.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/fs/zfs.h>
#include <sys/callb.h>
static uint32_t spa_active_count;
/*
* ==========================================================================
* SPA state manipulation (open/create/destroy/import/export)
* ==========================================================================
*/
/*
* Activate an uninitialized pool.
*/
static void
spa_activate(spa_t *spa)
{
int t;
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
spa->spa_state = POOL_STATE_ACTIVE;
spa->spa_normal_class = metaslab_class_create();
spa->spa_vdev_retry_taskq = taskq_create("spa_vdev_retry",
4, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE);
for (t = 0; t < ZIO_TYPES; t++) {
spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
8, maxclsyspri, 50, INT_MAX,
TASKQ_PREPOPULATE);
spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
8, maxclsyspri, 50, INT_MAX,
TASKQ_PREPOPULATE);
}
rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
list_create(&spa->spa_dirty_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_dirty_node));
txg_list_create(&spa->spa_vdev_txg_list,
offsetof(struct vdev, vdev_txg_node));
}
/*
* Opposite of spa_activate().
*/
static void
spa_deactivate(spa_t *spa)
{
int t;
ASSERT(spa->spa_sync_on == B_FALSE);
ASSERT(spa->spa_dsl_pool == NULL);
ASSERT(spa->spa_root_vdev == NULL);
ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
txg_list_destroy(&spa->spa_vdev_txg_list);
list_destroy(&spa->spa_dirty_list);
rw_destroy(&spa->spa_traverse_lock);
for (t = 0; t < ZIO_TYPES; t++) {
taskq_destroy(spa->spa_zio_issue_taskq[t]);
taskq_destroy(spa->spa_zio_intr_taskq[t]);
spa->spa_zio_issue_taskq[t] = NULL;
spa->spa_zio_intr_taskq[t] = NULL;
}
taskq_destroy(spa->spa_vdev_retry_taskq);
spa->spa_vdev_retry_taskq = NULL;
metaslab_class_destroy(spa->spa_normal_class);
spa->spa_normal_class = NULL;
spa->spa_state = POOL_STATE_UNINITIALIZED;
}
/*
* Verify a pool configuration, and construct the vdev tree appropriately. This
* will create all the necessary vdevs in the appropriate layout, with each vdev
* in the CLOSED state. This will prep the pool before open/creation/import.
* All vdev validation is done by the vdev_alloc() routine.
*/
static vdev_t *
spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
{
nvlist_t **child;
uint_t c, children;
vdev_t *vd;
if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
return (NULL);
if (vd->vdev_ops->vdev_op_leaf)
return (vd);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0) {
vdev_free(vd);
return (NULL);
}
for (c = 0; c < children; c++) {
if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
vdev_free(vd);
return (NULL);
}
}
return (vd);
}
/*
* Opposite of spa_load().
*/
static void
spa_unload(spa_t *spa)
{
/*
* Stop syncing.
*/
if (spa->spa_sync_on) {
txg_sync_stop(spa->spa_dsl_pool);
spa->spa_sync_on = B_FALSE;
}
/*
* Wait for any outstanding prefetch I/O to complete.
*/
spa_config_enter(spa, RW_WRITER);
spa_config_exit(spa);
/*
* Close the dsl pool.
*/
if (spa->spa_dsl_pool) {
dsl_pool_close(spa->spa_dsl_pool);
spa->spa_dsl_pool = NULL;
}
/*
* Close all vdevs.
*/
if (spa->spa_root_vdev) {
vdev_free(spa->spa_root_vdev);
spa->spa_root_vdev = NULL;
}
}
/*
* Load an existing storage pool, using the pool's builtin spa_config as a
* source of configuration information. The 'readonly' flag will prevent us
* from writing any updated state to disk, and can be use when testing a pool
* for import.
*/
static int
spa_load(spa_t *spa, nvlist_t *config, int readonly, int import, int mosconfig)
{
int error = 0;
nvlist_t *nvroot = NULL;
vdev_t *rvd;
uberblock_t *ub = &spa->spa_uberblock;
uint64_t pool_guid;
zio_t *zio;
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
return (EINVAL);
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
&spa->spa_config_txg);
if (import && spa_guid_exists(pool_guid, 0))
return (EEXIST);
/*
* Parse the configuration into a vdev tree.
*/
spa_config_enter(spa, RW_WRITER);
rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
spa_config_exit(spa);
if (rvd == NULL)
return (EINVAL);
spa->spa_root_vdev = rvd;
ASSERT(spa_guid(spa) == pool_guid);
/*
* Try to open all vdevs, loading each label in the process.
*/
if (vdev_open(rvd) != 0)
return (ENXIO);
/*
* Find the best uberblock.
*/
bzero(ub, sizeof (uberblock_t));
zio = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
vdev_uberblock_load(zio, rvd, ub);
error = zio_wait(zio);
/*
* If we weren't able to find a single valid uberblock, return failure.
*/
if (ub->ub_txg == 0) {
dprintf("ub_txg is zero\n");
return (ENXIO);
}
/*
* If the vdev guid sum doesn't match the uberblock, we have an
* incomplete configuration.
*/
if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
rvd->vdev_state = VDEV_STATE_CANT_OPEN;
rvd->vdev_stat.vs_aux = VDEV_AUX_BAD_GUID_SUM;
dprintf("vdev_guid_sum %llx != ub_guid_sum %llx\n",
rvd->vdev_guid_sum, ub->ub_guid_sum);
return (ENXIO);
}
/*
* Initialize internal SPA structures.
*/
spa->spa_state = POOL_STATE_ACTIVE;
spa->spa_ubsync = spa->spa_uberblock;
spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
spa->spa_dsl_pool = dsl_pool_open(spa, spa->spa_first_txg);
spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
VERIFY(zap_lookup(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
sizeof (uint64_t), 1, &spa->spa_config_object) == 0);
if (!mosconfig) {
dmu_buf_t *db;
char *packed = NULL;
size_t nvsize = 0;
nvlist_t *newconfig = NULL;
db = dmu_bonus_hold(spa->spa_meta_objset,
spa->spa_config_object);
dmu_buf_read(db);
nvsize = *(uint64_t *)db->db_data;
dmu_buf_rele(db);
packed = kmem_alloc(nvsize, KM_SLEEP);
error = dmu_read_canfail(spa->spa_meta_objset,
spa->spa_config_object, 0, nvsize, packed);
if (error == 0)
error = nvlist_unpack(packed, nvsize, &newconfig, 0);
kmem_free(packed, nvsize);
if (error)
return (ENXIO);
spa_config_set(spa, newconfig);
spa_unload(spa);
spa_deactivate(spa);
spa_activate(spa);
return (spa_load(spa, newconfig, readonly, import, B_TRUE));
}
VERIFY(zap_lookup(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) == 0);
/*
* Load the vdev state for all top level vdevs.
*/
if ((error = vdev_load(rvd, import)) != 0)
return (error);
/*
* Propagate the leaf DTLs we just loaded all the way up the tree.
*/
spa_config_enter(spa, RW_WRITER);
vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
spa_config_exit(spa);
/*
* Check the state of the root vdev. If it can't be opened, it
* indicates one or more toplevel vdevs are faulted.
*/
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
return (ENXIO);
/*
* Claim log blocks that haven't been committed yet, and update all
* top-level vdevs to sync any config changes found in vdev_load().
* This must all happen in a single txg.
*/
if ((spa_mode & FWRITE) && !readonly) {
dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa),
spa_first_txg(spa));
dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
vdev_config_dirty(rvd);
dmu_tx_commit(tx);
spa->spa_sync_on = B_TRUE;
txg_sync_start(spa->spa_dsl_pool);
/*
* Wait for all claims to sync.
*/
txg_wait_synced(spa->spa_dsl_pool, 0);
}
return (0);
}
/*
* Pool Open/Import
*
* The import case is identical to an open except that the configuration is sent
* down from userland, instead of grabbed from the configuration cache. For the
* case of an open, the pool configuration will exist in the
* POOL_STATE_UNITIALIZED state.
*
* The stats information (gen/count/ustats) is used to gather vdev statistics at
* the same time open the pool, without having to keep around the spa_t in some
* ambiguous state.
*/
static int
spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
{
spa_t *spa;
int error;
int loaded = B_FALSE;
int locked = B_FALSE;
*spapp = NULL;
/*
* As disgusting as this is, we need to support recursive calls to this
* function because dsl_dir_open() is called during spa_load(), and ends
* up calling spa_open() again. The real fix is to figure out how to
* avoid dsl_dir_open() calling this in the first place.
*/
if (mutex_owner(&spa_namespace_lock) != curthread) {
mutex_enter(&spa_namespace_lock);
locked = B_TRUE;
}
if ((spa = spa_lookup(pool)) == NULL) {
if (locked)
mutex_exit(&spa_namespace_lock);
return (ENOENT);
}
if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
spa_activate(spa);
error = spa_load(spa, spa->spa_config,
B_FALSE, B_FALSE, B_FALSE);
if (error == EBADF) {
/*
* If vdev_load() returns EBADF, it indicates that one
* of the vdevs indicates that the pool has been
* exported or destroyed. If this is the case, the
* config cache is out of sync and we should remove the
* pool from the namespace.
*/
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
spa_config_sync();
if (locked)
mutex_exit(&spa_namespace_lock);
return (ENOENT);
} if (error) {
/*
* We can't open the pool, but we still have useful
* information: the state of each vdev after the
* attempted vdev_open(). Return this to the user.
*/
if (config != NULL && spa->spa_root_vdev != NULL)
*config = spa_config_generate(spa, NULL, -1ULL,
B_TRUE);
spa_unload(spa);
spa_deactivate(spa);
if (locked)
mutex_exit(&spa_namespace_lock);
*spapp = NULL;
return (error);
}
loaded = B_TRUE;
}
spa_open_ref(spa, tag);
if (locked)
mutex_exit(&spa_namespace_lock);
*spapp = spa;
if (config != NULL) {
spa_config_enter(spa, RW_READER);
*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
spa_config_exit(spa);
}
/*
* If we just loaded the pool, resilver anything that's out of date.
*/
if (loaded && (spa_mode & FWRITE))
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
return (0);
}
int
spa_open(const char *name, spa_t **spapp, void *tag)
{
return (spa_open_common(name, spapp, tag, NULL));
}
int
spa_get_stats(const char *name, nvlist_t **config)
{
int error;
spa_t *spa;
*config = NULL;
error = spa_open_common(name, &spa, FTAG, config);
if (spa != NULL)
spa_close(spa, FTAG);
return (error);
}
/*
* Pool Creation
*/
int
spa_create(const char *pool, nvlist_t *nvroot, char *altroot)
{
spa_t *spa;
dsl_pool_t *dp;
dmu_tx_t *tx;
int error;
uint64_t txg = TXG_INITIAL;
/*
* If this pool already exists, return failure.
*/
mutex_enter(&spa_namespace_lock);
if (spa_lookup(pool) != NULL) {
mutex_exit(&spa_namespace_lock);
return (EEXIST);
}
spa = spa_add(pool);
/*
* Allocate a new spa_t structure.
*/
spa_activate(spa);
spa->spa_uberblock.ub_txg = txg - 1;
spa->spa_ubsync = spa->spa_uberblock;
error = spa_vdev_add(spa, nvroot);
if (error) {
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
if (altroot != NULL) {
spa->spa_root = spa_strdup(altroot);
atomic_add_32(&spa_active_count, 1);
}
spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
spa->spa_meta_objset = dp->dp_meta_objset;
tx = dmu_tx_create_assigned(dp, txg);
/*
* Create the pool config object.
*/
spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_PACKED_NVLIST, 1 << 14,
DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
VERIFY(zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
sizeof (uint64_t), 1, &spa->spa_config_object, tx) == 0);
/*
* Create the deferred-free bplist object. Turn off compression
* because sync-to-convergence takes longer if the blocksize
* keeps changing.
*/
spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1 << 14, tx);
dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
ZIO_COMPRESS_OFF, tx);
VERIFY(zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) == 0);
dmu_tx_commit(tx);
spa->spa_sync_on = B_TRUE;
txg_sync_start(spa->spa_dsl_pool);
/*
* We explicitly wait for the first transaction to complete so that our
* bean counters are appropriately updated.
*/
txg_wait_synced(spa->spa_dsl_pool, txg);
spa_config_sync();
mutex_exit(&spa_namespace_lock);
return (0);
}
/*
* Import the given pool into the system. We set up the necessary spa_t and
* then call spa_load() to do the dirty work.
*/
int
spa_import(const char *pool, nvlist_t *config, char *altroot)
{
spa_t *spa;
int error;
if (!(spa_mode & FWRITE))
return (EROFS);
/*
* If a pool with this name exists, return failure.
*/
mutex_enter(&spa_namespace_lock);
if (spa_lookup(pool) != NULL) {
mutex_exit(&spa_namespace_lock);
return (EEXIST);
}
/*
* Create an initialize the spa structure
*/
spa = spa_add(pool);
spa_activate(spa);
/*
* Pass off the heavy lifting to spa_load(). We pass TRUE for mosconfig
* so that we don't try to open the pool if the config is damaged.
*/
error = spa_load(spa, config, B_FALSE, B_TRUE, B_TRUE);
if (error) {
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
/*
* Set the alternate root, if there is one.
*/
if (altroot != NULL) {
atomic_add_32(&spa_active_count, 1);
spa->spa_root = spa_strdup(altroot);
}
/*
* Initialize the config based on the in-core state.
*/
config = spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0);
spa_config_set(spa, config);
/*
* Sync the configuration cache.
*/
spa_config_sync();
mutex_exit(&spa_namespace_lock);
/*
* Resilver anything that's out of date.
*/
if (spa_mode & FWRITE)
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
return (0);
}
/*
* This (illegal) pool name is used when temporarily importing a spa_t in order
* to get the vdev stats associated with the imported devices.
*/
#define TRYIMPORT_NAME "$import"
nvlist_t *
spa_tryimport(nvlist_t *tryconfig)
{
nvlist_t *config = NULL;
char *poolname;
spa_t *spa;
uint64_t state;
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
return (NULL);
if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
return (NULL);
mutex_enter(&spa_namespace_lock);
spa = spa_add(TRYIMPORT_NAME);
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
/*
* Initialize the spa_t structure.
*/
spa_activate(spa);
/*
* Pass off the heavy lifting to spa_load(). We pass TRUE for mosconfig
* so we don't try to open the pool if the config is damaged.
*/
(void) spa_load(spa, tryconfig, B_TRUE, B_TRUE, B_TRUE);
/*
* If 'tryconfig' was at least parsable, return the current config.
*/
if (spa->spa_root_vdev != NULL) {
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
poolname) == 0);
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
state) == 0);
}
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (config);
}
/*
* Pool export/destroy
*
* The act of destroying or exporting a pool is very simple. We make sure there
* is no more pending I/O and any references to the pool are gone. Then, we
* update the pool state and sync all the labels to disk, removing the
* configuration from the cache afterwards.
*/
static int
spa_export_common(char *pool, int new_state)
{
spa_t *spa;
if (!(spa_mode & FWRITE))
return (EROFS);
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(pool)) == NULL) {
mutex_exit(&spa_namespace_lock);
return (ENOENT);
}
/*
* The pool will be in core if it's openable,
* in which case we can modify its state.
*/
if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
/*
* Objsets may be open only because they're dirty, so we
* have to force it to sync before checking spa_refcnt.
*/
spa_scrub_suspend(spa);
txg_wait_synced(spa->spa_dsl_pool, 0);
if (!spa_refcount_zero(spa)) {
spa_scrub_resume(spa);
mutex_exit(&spa_namespace_lock);
return (EBUSY);
}
/*
* Update the pool state.
*/
spa->spa_state = new_state;
spa_scrub_resume(spa);
VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
if (spa->spa_root != NULL)
atomic_add_32(&spa_active_count, -1);
/*
* We want this to be reflected on every label,
* so mark them all dirty. spa_unload() will do the
* final sync that pushes these changes out.
*/
vdev_config_dirty(spa->spa_root_vdev);
}
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
spa_unload(spa);
spa_deactivate(spa);
}
spa_remove(spa);
spa_config_sync();
mutex_exit(&spa_namespace_lock);
return (0);
}
/*
* Destroy a storage pool.
*/
int
spa_destroy(char *pool)
{
return (spa_export_common(pool, POOL_STATE_DESTROYED));
}
/*
* Export a storage pool.
*/
int
spa_export(char *pool)
{
return (spa_export_common(pool, POOL_STATE_EXPORTED));
}
/*
* ==========================================================================
* Device manipulation
* ==========================================================================
*/
/*
* Add capacity to a storage pool.
*/
int
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
{
uint64_t txg;
int c, error;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd;
txg = spa_vdev_enter(spa);
vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
if (vd == NULL)
return (spa_vdev_exit(spa, vd, txg, EINVAL));
if (rvd == NULL) /* spa_create() */
spa->spa_root_vdev = rvd = vd;
if ((error = vdev_create(vd, txg)) != 0)
return (spa_vdev_exit(spa, vd, txg, error));
/*
* Transfer each top-level vdev from the temporary root
* to the spa's root and initialize its metaslabs.
*/
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *tvd = vd->vdev_child[c];
if (vd != rvd) {
vdev_remove_child(vd, tvd);
tvd->vdev_id = rvd->vdev_children;
vdev_add_child(rvd, tvd);
}
vdev_init(tvd, txg);
vdev_config_dirty(tvd);
}
/*
* Update the config based on the new in-core state.
*/
spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
return (spa_vdev_exit(spa, vd, txg, 0));
}
/*
* Attach a device to a mirror. The arguments are the path to any device
* in the mirror, and the nvroot for the new device. If the path specifies
* a device that is not mirrored, we automatically insert the mirror vdev.
*
* If 'replacing' is specified, the new device is intended to replace the
* existing device; in this case the two devices are made into their own
* mirror using the 'replacing' vdev, which is functionally idendical to
* the mirror vdev (it actually reuses all the same ops) but has a few
* extra rules: you can't attach to it after it's been created, and upon
* completion of resilvering, the first disk (the one being replaced)
* is automatically detached.
*/
int
spa_vdev_attach(spa_t *spa, const char *path, nvlist_t *nvroot, int replacing)
{
uint64_t txg, open_txg;
int error;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
txg = spa_vdev_enter(spa);
oldvd = vdev_lookup_by_path(rvd, path);
if (oldvd == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
pvd = oldvd->vdev_parent;
/*
* The parent must be a mirror or the root, unless we're replacing;
* in that case, the parent can be anything but another replacing vdev.
*/
if (pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_root_ops &&
(!replacing || pvd->vdev_ops == &vdev_replacing_ops))
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
if (newrootvd == NULL || newrootvd->vdev_children != 1)
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
newvd = newrootvd->vdev_child[0];
if (!newvd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
if ((error = vdev_create(newrootvd, txg)) != 0)
return (spa_vdev_exit(spa, newrootvd, txg, error));
/*
* Compare the new device size with the replaceable/attachable
* device size.
*/
if (newvd->vdev_psize < vdev_get_rsize(oldvd))
return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
/*
* If this is an in-place replacement, update oldvd's path and devid
* to make it distinguishable from newvd, and unopenable from now on.
*/
if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
spa_strfree(oldvd->vdev_path);
oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
KM_SLEEP);
(void) sprintf(oldvd->vdev_path, "%s/%s",
newvd->vdev_path, "old");
if (oldvd->vdev_devid != NULL) {
spa_strfree(oldvd->vdev_devid);
oldvd->vdev_devid = NULL;
}
}
/*
* If the parent is not a mirror, or if we're replacing,
* insert the new mirror/replacing vdev above oldvd.
*/
if (pvd->vdev_ops != pvops)
pvd = vdev_add_parent(oldvd, pvops);
ASSERT(pvd->vdev_top->vdev_parent == rvd);
ASSERT(pvd->vdev_ops == pvops);
ASSERT(oldvd->vdev_parent == pvd);
/*
* Extract the new device from its root and add it to pvd.
*/
vdev_remove_child(newrootvd, newvd);
newvd->vdev_id = pvd->vdev_children;
vdev_add_child(pvd, newvd);
tvd = newvd->vdev_top;
ASSERT(pvd->vdev_top == tvd);
ASSERT(tvd->vdev_parent == rvd);
/*
* Update the config based on the new in-core state.
*/
spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
vdev_config_dirty(tvd);
/*
* Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
* upward when spa_vdev_exit() calls vdev_dtl_reassess().
*/
open_txg = txg + TXG_CONCURRENT_STATES - 1;
mutex_enter(&newvd->vdev_dtl_lock);
space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
open_txg - TXG_INITIAL + 1);
mutex_exit(&newvd->vdev_dtl_lock);
/*
* Mark newvd's DTL dirty in this txg.
*/
vdev_dirty(tvd, VDD_DTL, txg);
(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
dprintf("attached %s, replacing=%d\n", path, replacing);
(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
/*
* Kick off a resilver to update newvd.
*/
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
return (0);
}
/*
* Detach a device from a mirror or replacing vdev.
* If 'replace_done' is specified, only detach if the parent
* is a replacing vdev.
*/
int
spa_vdev_detach(spa_t *spa, const char *path, uint64_t guid, int replace_done)
{
uint64_t txg;
int c, t, error;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd, *pvd, *cvd, *tvd;
txg = spa_vdev_enter(spa);
vd = vdev_lookup_by_path(rvd, path);
if (vd == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
if (guid != 0 && vd->vdev_guid != guid)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
pvd = vd->vdev_parent;
/*
* If replace_done is specified, only remove this device if it's
* the first child of a replacing vdev.
*/
if (replace_done &&
(vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
/*
* Only mirror and replacing vdevs support detach.
*/
if (pvd->vdev_ops != &vdev_replacing_ops &&
pvd->vdev_ops != &vdev_mirror_ops)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
/*
* If there's only one replica, you can't detach it.
*/
if (pvd->vdev_children <= 1)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
/*
* If all siblings have non-empty DTLs, this device may have the only
* valid copy of the data, which means we cannot safely detach it.
*
* XXX -- as in the vdev_offline() case, we really want a more
* precise DTL check.
*/
for (c = 0; c < pvd->vdev_children; c++) {
uint64_t dirty;
cvd = pvd->vdev_child[c];
if (cvd == vd)
continue;
if (vdev_is_dead(cvd))
continue;
mutex_enter(&cvd->vdev_dtl_lock);
dirty = cvd->vdev_dtl_map.sm_space |
cvd->vdev_dtl_scrub.sm_space;
mutex_exit(&cvd->vdev_dtl_lock);
if (!dirty)
break;
}
if (c == pvd->vdev_children)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
/*
* Erase the disk labels so the disk can be used for other things.
* This must be done after all other error cases are handled,
* but before we disembowel vd (so we can still do I/O to it).
* But if we can't do it, don't treat the error as fatal --
* it may be that the unwritability of the disk is the reason
* it's being detached!
*/
error = vdev_label_init(vd, 0);
if (error)
dprintf("unable to erase labels on %s\n", vdev_description(vd));
/*
* Remove vd from its parent and compact the parent's children.
*/
vdev_remove_child(pvd, vd);
vdev_compact_children(pvd);
/*
* Remember one of the remaining children so we can get tvd below.
*/
cvd = pvd->vdev_child[0];
/*
* If the parent mirror/replacing vdev only has one child,
* the parent is no longer needed. Remove it from the tree.
*/
if (pvd->vdev_children == 1)
vdev_remove_parent(cvd);
/*
* We don't set tvd until now because the parent we just removed
* may have been the previous top-level vdev.
*/
tvd = cvd->vdev_top;
ASSERT(tvd->vdev_parent == rvd);
/*
* Reopen this top-level vdev to reassess health after detach.
*/
vdev_reopen(tvd, NULL);
/*
* If the device we just detached was smaller than the others,
* it may be possible to add metaslabs (i.e. grow the pool).
*/
vdev_metaslab_init(tvd, txg);
/*
* Update the config based on the new in-core state.
*/
spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
vdev_config_dirty(tvd);
/*
* Mark vd's DTL as dirty in this txg.
* vdev_dtl_sync() will see that vd->vdev_detached is set
* and free vd's DTL object in syncing context.
* But first make sure we're not on any *other* txg's DTL list,
* to prevent vd from being accessed after it's freed.
*/
vdev_dirty(tvd, VDD_DTL, txg);
vd->vdev_detached = B_TRUE;
for (t = 0; t < TXG_SIZE; t++)
(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
dprintf("detached %s\n", path);
return (spa_vdev_exit(spa, vd, txg, 0));
}
/*
* If there are any replacing vdevs that have finished replacing, detach them.
* We can't hold the config lock across detaches, so we lock the config,
* build a list of candidates, unlock the config, and try each candidate.
*/
typedef struct vdev_detach_link {
char *vdl_path;
uint64_t vdl_guid;
list_node_t vdl_node;
} vdev_detach_link_t;
static void
spa_vdev_replace_done_make_list(list_t *l, vdev_t *vd)
{
int c;
for (c = 0; c < vd->vdev_children; c++)
spa_vdev_replace_done_make_list(l, vd->vdev_child[c]);
if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
vdev_t *cvd0 = vd->vdev_child[0];
vdev_t *cvd1 = vd->vdev_child[1];
vdev_detach_link_t *vdl;
int dirty1;
mutex_enter(&cvd1->vdev_dtl_lock);
dirty1 = cvd1->vdev_dtl_map.sm_space |
cvd1->vdev_dtl_scrub.sm_space;
mutex_exit(&cvd1->vdev_dtl_lock);
if (!dirty1) {
vdl = kmem_zalloc(sizeof (*vdl), KM_SLEEP);
vdl->vdl_path = spa_strdup(cvd0->vdev_path);
vdl->vdl_guid = cvd0->vdev_guid;
list_insert_tail(l, vdl);
}
}
}
void
spa_vdev_replace_done(spa_t *spa)
{
vdev_detach_link_t *vdl;
list_t vdlist;
list_create(&vdlist, sizeof (vdev_detach_link_t),
offsetof(vdev_detach_link_t, vdl_node));
spa_config_enter(spa, RW_READER);
spa_vdev_replace_done_make_list(&vdlist, spa->spa_root_vdev);
spa_config_exit(spa);
while ((vdl = list_head(&vdlist)) != NULL) {
list_remove(&vdlist, vdl);
(void) spa_vdev_detach(spa, vdl->vdl_path, vdl->vdl_guid,
B_TRUE);
spa_strfree(vdl->vdl_path);
kmem_free(vdl, sizeof (*vdl));
}
list_destroy(&vdlist);
}
/*
* ==========================================================================
* SPA Scrubbing
* ==========================================================================
*/
static int spa_scrub_locked(spa_t *, pool_scrub_type_t, boolean_t);
static void
spa_scrub_io_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
zio_buf_free(zio->io_data, zio->io_size);
mutex_enter(&spa->spa_scrub_lock);
if (zio->io_error)
spa->spa_scrub_errors++;
if (--spa->spa_scrub_inflight == 0)
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&spa->spa_scrub_lock);
if (zio->io_error) {
vdev_t *vd = zio->io_vd;
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_scrub_errors++;
mutex_exit(&vd->vdev_stat_lock);
}
}
static void
spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags)
{
size_t size = BP_GET_LSIZE(bp);
void *data = zio_buf_alloc(size);
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_inflight++;
mutex_exit(&spa->spa_scrub_lock);
zio_nowait(zio_read(NULL, spa, bp, data, size,
spa_scrub_io_done, NULL, priority, flags));
}
/* ARGSUSED */
static int
spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
{
blkptr_t *bp = &bc->bc_blkptr;
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
if (bc->bc_errno || vd == NULL) {
/*
* We can't scrub this block, but we can continue to scrub
* the rest of the pool. Note the error and move along.
*/
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_errors++;
mutex_exit(&spa->spa_scrub_lock);
if (vd != NULL) {
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_scrub_errors++;
mutex_exit(&vd->vdev_stat_lock);
}
return (ERESTART);
}
ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
/*
* Keep track of how much data we've examined so that
* zpool(1M) status can make useful progress reports.
*/
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
mutex_exit(&vd->vdev_stat_lock);
if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
if (DVA_GET_GANG(&bp->blk_dva[0])) {
/*
* Gang members may be spread across multiple vdevs,
* so the best we can do is look at the pool-wide DTL.
* XXX -- it would be better to change our allocation
* policy to ensure that this can't happen.
*/
vd = spa->spa_root_vdev;
}
if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY |
ZIO_FLAG_RESILVER);
}
} else {
spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_SCRUB);
}
return (0);
}
static void
spa_scrub_thread(spa_t *spa)
{
callb_cpr_t cprinfo;
traverse_handle_t *th = spa->spa_scrub_th;
vdev_t *rvd = spa->spa_root_vdev;
pool_scrub_type_t scrub_type = spa->spa_scrub_type;
int error = 0;
boolean_t complete;
CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
/*
* If we're restarting due to a snapshot create/delete,
* wait for that to complete.
*/
txg_wait_synced(spa_get_dsl(spa), 0);
spa_config_enter(spa, RW_WRITER);
vdev_reopen(rvd, NULL); /* purge all vdev caches */
vdev_config_dirty(rvd); /* rewrite all disk labels */
vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
spa_config_exit(spa);
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_errors = 0;
spa->spa_scrub_active = 1;
while (!spa->spa_scrub_stop) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
while (spa->spa_scrub_suspend) {
spa->spa_scrub_active = 0;
cv_broadcast(&spa->spa_scrub_cv);
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
spa->spa_scrub_active = 1;
}
CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
if (spa->spa_scrub_restart_txg != 0)
break;
mutex_exit(&spa->spa_scrub_lock);
error = traverse_more(th);
mutex_enter(&spa->spa_scrub_lock);
if (error != EAGAIN)
break;
}
while (spa->spa_scrub_inflight)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
if (spa->spa_scrub_restart_txg != 0)
error = ERESTART;
spa->spa_scrub_active = 0;
cv_broadcast(&spa->spa_scrub_cv);
/*
* If the traverse completed, and there were no errors,
* then the scrub was completely successful.
*/
complete = (error == 0 && spa->spa_scrub_errors == 0);
dprintf("scrub to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
error, spa->spa_scrub_errors, spa->spa_scrub_stop);
mutex_exit(&spa->spa_scrub_lock);
/*
* If the scrub/resilver completed, update all DTLs to reflect this.
* Whether it succeeded or not, vacate all temporary scrub DTLs.
*/
spa_config_enter(spa, RW_WRITER);
vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
spa_config_exit(spa);
spa_vdev_replace_done(spa);
spa_config_enter(spa, RW_READER);
vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
spa_config_exit(spa);
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_type = POOL_SCRUB_NONE;
spa->spa_scrub_active = 0;
spa->spa_scrub_thread = NULL;
cv_broadcast(&spa->spa_scrub_cv);
/*
* If we were told to restart, our final act is to start a new scrub.
*/
if (error == ERESTART)
VERIFY(spa_scrub_locked(spa, scrub_type, B_TRUE) == 0);
CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */
thread_exit();
}
void
spa_scrub_suspend(spa_t *spa)
{
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_suspend++;
while (spa->spa_scrub_active) {
cv_broadcast(&spa->spa_scrub_cv);
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
}
while (spa->spa_scrub_inflight)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
mutex_exit(&spa->spa_scrub_lock);
}
void
spa_scrub_resume(spa_t *spa)
{
mutex_enter(&spa->spa_scrub_lock);
ASSERT(spa->spa_scrub_suspend != 0);
if (--spa->spa_scrub_suspend == 0)
cv_broadcast(&spa->spa_scrub_cv);
mutex_exit(&spa->spa_scrub_lock);
}
void
spa_scrub_restart(spa_t *spa, uint64_t txg)
{
/*
* Something happened (e.g. snapshot create/delete) that means
* we must restart any in-progress scrubs. The itinerary will
* fix this properly.
*/
mutex_enter(&spa->spa_scrub_lock);
spa->spa_scrub_restart_txg = txg;
mutex_exit(&spa->spa_scrub_lock);
}
static int
spa_scrub_locked(spa_t *spa, pool_scrub_type_t type, boolean_t force)
{
space_seg_t *ss;
uint64_t mintxg, maxtxg;
vdev_t *rvd = spa->spa_root_vdev;
int advance = 0;
if ((uint_t)type >= POOL_SCRUB_TYPES)
return (ENOTSUP);
/*
* If there's a scrub or resilver already in progress, stop it.
*/
while (spa->spa_scrub_thread != NULL) {
/*
* Don't stop a resilver unless forced.
*/
if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force)
return (EBUSY);
spa->spa_scrub_stop = 1;
cv_broadcast(&spa->spa_scrub_cv);
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
}
/*
* Terminate the previous traverse.
*/
if (spa->spa_scrub_th != NULL) {
traverse_fini(spa->spa_scrub_th);
spa->spa_scrub_th = NULL;
}
spa->spa_scrub_stop = 0;
spa->spa_scrub_type = type;
spa->spa_scrub_restart_txg = 0;
mintxg = TXG_INITIAL - 1;
maxtxg = spa_last_synced_txg(spa) + 1;
switch (type) {
case POOL_SCRUB_NONE:
break;
case POOL_SCRUB_RESILVER:
/*
* Determine the resilvering boundaries.
*
* Note: (mintxg, maxtxg) is an open interval,
* i.e. mintxg and maxtxg themselves are not included.
*
* Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
* so we don't claim to resilver a txg that's still changing.
*/
mutex_enter(&rvd->vdev_dtl_lock);
ss = avl_first(&rvd->vdev_dtl_map.sm_root);
mintxg = ss ? ss->ss_start - 1 : 0;
ss = avl_last(&rvd->vdev_dtl_map.sm_root);
maxtxg = ss ? ss->ss_end : 0;
maxtxg = MIN(maxtxg, spa_last_synced_txg(spa) + 1);
mutex_exit(&rvd->vdev_dtl_lock);
advance = ADVANCE_PRE | ADVANCE_PRUNE;
break;
case POOL_SCRUB_EVERYTHING:
/*
* A scrub is like a resilver, but not pruned by DTL.
*/
advance = ADVANCE_PRE;
break;
}
if (mintxg != 0 && maxtxg != 0 && type != POOL_SCRUB_NONE) {
spa->spa_scrub_maxtxg = maxtxg;
spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
advance, ZIO_FLAG_CANFAIL);
traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
spa->spa_scrub_thread = thread_create(NULL, 0,
spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
}
return (0);
}
int
spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
{
int error;
traverse_handle_t *th;
mutex_enter(&spa->spa_scrub_lock);
error = spa_scrub_locked(spa, type, force);
th = spa->spa_scrub_th;
mutex_exit(&spa->spa_scrub_lock);
if (th == NULL && type != POOL_SCRUB_NONE)
spa_vdev_replace_done(spa);
return (error);
}
/*
* ==========================================================================
* SPA syncing routines
* ==========================================================================
*/
static void
spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
{
bplist_t *bpl = &spa->spa_sync_bplist;
dmu_tx_t *tx;
blkptr_t blk;
uint64_t itor = 0;
zio_t *zio;
int error;
uint8_t c = 1;
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
while (bplist_iterate(bpl, &itor, &blk) == 0)
zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
error = zio_wait(zio);
ASSERT3U(error, ==, 0);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
bplist_vacate(bpl, tx);
/*
* Pre-dirty the first block so we sync to convergence faster.
* (Usually only the first block is needed.)
*/
dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
dmu_tx_commit(tx);
}
static void
spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
{
nvlist_t *config;
char *packed = NULL;
size_t nvsize = 0;
dmu_buf_t *db;
if (list_is_empty(&spa->spa_dirty_list))
return;
config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
spa_config_set(spa, config);
VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
packed = kmem_alloc(nvsize, KM_SLEEP);
VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR, 0) == 0);
dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
packed, tx);
kmem_free(packed, nvsize);
db = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object);
dmu_buf_will_dirty(db, tx);
*(uint64_t *)db->db_data = nvsize;
dmu_buf_rele(db);
}
/*
* Sync the specified transaction group. New blocks may be dirtied as
* part of the process, so we iterate until it converges.
*/
void
spa_sync(spa_t *spa, uint64_t txg)
{
dsl_pool_t *dp = spa->spa_dsl_pool;
objset_t *mos = spa->spa_meta_objset;
bplist_t *bpl = &spa->spa_sync_bplist;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd;
dmu_tx_t *tx;
int dirty_vdevs;
/*
* Lock out configuration changes.
*/
spa_config_enter(spa, RW_READER);
spa->spa_syncing_txg = txg;
spa->spa_sync_pass = 0;
bplist_open(bpl, mos, spa->spa_sync_bplist_obj);
/*
* If anything has changed in this txg, push the deferred frees
* from the previous txg. If not, leave them alone so that we
* don't generate work on an otherwise idle system.
*/
if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
!txg_list_empty(&dp->dp_dirty_dirs, txg))
spa_sync_deferred_frees(spa, txg);
/*
* Iterate to convergence.
*/
do {
spa->spa_sync_pass++;
tx = dmu_tx_create_assigned(dp, txg);
spa_sync_config_object(spa, tx);
dmu_tx_commit(tx);
dsl_pool_sync(dp, txg);
dirty_vdevs = 0;
while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
vdev_sync(vd, txg);
dirty_vdevs++;
}
tx = dmu_tx_create_assigned(dp, txg);
bplist_sync(bpl, tx);
dmu_tx_commit(tx);
} while (dirty_vdevs);
bplist_close(bpl);
dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
/*
* Rewrite the vdev configuration (which includes the uberblock)
* to commit the transaction group.
*/
while (spa_sync_labels(spa, txg)) {
dprintf("waiting for devices to heal\n");
delay(hz);
vdev_reopen(rvd, NULL);
}
/*
* Make a stable copy of the fully synced uberblock.
* We use this as the root for pool traversals.
*/
spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */
spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */
rw_enter(&spa->spa_traverse_lock, RW_WRITER);
spa->spa_traverse_wanted = 0;
spa->spa_ubsync = spa->spa_uberblock;
rw_exit(&spa->spa_traverse_lock);
spa_scrub_resume(spa); /* resume scrub with new ubsync */
/*
* Clean up the ZIL records for the synced txg.
*/
dsl_pool_zil_clean(dp);
/*
* Update usable space statistics.
*/
while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
vdev_sync_done(vd, txg);
/*
* It had better be the case that we didn't dirty anything
* since spa_sync_labels().
*/
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
ASSERT(bpl->bpl_queue == NULL);
spa_config_exit(spa);
}
/*
* Sync all pools. We don't want to hold the namespace lock across these
* operations, so we take a reference on the spa_t and drop the lock during the
* sync.
*/
void
spa_sync_allpools(void)
{
spa_t *spa = NULL;
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL) {
if (spa_state(spa) != POOL_STATE_ACTIVE)
continue;
spa_open_ref(spa, FTAG);
mutex_exit(&spa_namespace_lock);
txg_wait_synced(spa_get_dsl(spa), 0);
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
}
mutex_exit(&spa_namespace_lock);
}
/*
* ==========================================================================
* Miscellaneous routines
* ==========================================================================
*/
int
spa_busy(void)
{
return (spa_active_count != 0);
}
/*
* Remove all pools in the system.
*/
void
spa_evict_all(void)
{
spa_t *spa;
/*
* Remove all cached state. All pools should be closed now,
* so every spa in the AVL tree should be unreferenced.
*/
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(NULL)) != NULL) {
/*
* Stop all scrub and resilver activity. spa_scrub() needs to
* wait for the scrub thread, which may do a detach and sync the
* configs, which needs spa_namespace_lock. Drop the lock while
* maintaining a hold on the spa_t.
*/
spa_open_ref(spa, FTAG);
mutex_exit(&spa_namespace_lock);
VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
spa_unload(spa);
spa_deactivate(spa);
}
spa_remove(spa);
}
mutex_exit(&spa_namespace_lock);
}