dbuf.c revision 0b69c2f001a429251e2d38f25aca860396551214
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dbuf.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dmu_tx.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu_zfetch.h>
static void dbuf_destroy(dmu_buf_impl_t *db);
static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
static arc_done_func_t dbuf_write_done;
/*
* Global data structures and functions for the dbuf cache.
*/
taskq_t *dbuf_tq;
static kmem_cache_t *dbuf_cache;
/* ARGSUSED */
static int
dbuf_cons(void *vdb, void *unused, int kmflag)
{
dmu_buf_impl_t *db = vdb;
bzero(db, sizeof (dmu_buf_impl_t));
mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
refcount_create(&db->db_holds);
return (0);
}
/* ARGSUSED */
static void
dbuf_dest(void *vdb, void *unused)
{
dmu_buf_impl_t *db = vdb;
mutex_destroy(&db->db_mtx);
cv_destroy(&db->db_changed);
refcount_destroy(&db->db_holds);
}
/*
* dbuf hash table routines
*/
static dbuf_hash_table_t dbuf_hash_table;
static uint64_t dbuf_hash_count;
static uint64_t
dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
{
uintptr_t osv = (uintptr_t)os;
uint64_t crc = -1ULL;
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
return (crc);
}
#define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
((dbuf)->db.db_object == (obj) && \
(dbuf)->db_objset == (os) && \
(dbuf)->db_level == (level) && \
(dbuf)->db_blkid == (blkid))
dmu_buf_impl_t *
dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
objset_impl_t *os = dn->dn_objset;
uint64_t obj = dn->dn_object;
uint64_t hv = DBUF_HASH(os, obj, level, blkid);
uint64_t idx = hv & h->hash_table_mask;
dmu_buf_impl_t *db;
mutex_enter(DBUF_HASH_MUTEX(h, idx));
for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
if (DBUF_EQUAL(db, os, obj, level, blkid)) {
mutex_enter(&db->db_mtx);
if (db->db_state != DB_EVICTING) {
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (db);
}
mutex_exit(&db->db_mtx);
}
}
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (NULL);
}
/*
* Insert an entry into the hash table. If there is already an element
* equal to elem in the hash table, then the already existing element
* will be returned and the new element will not be inserted.
* Otherwise returns NULL.
*/
static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t *db)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
objset_impl_t *os = db->db_objset;
uint64_t obj = db->db.db_object;
int level = db->db_level;
uint64_t blkid = db->db_blkid;
uint64_t hv = DBUF_HASH(os, obj, level, blkid);
uint64_t idx = hv & h->hash_table_mask;
dmu_buf_impl_t *dbf;
mutex_enter(DBUF_HASH_MUTEX(h, idx));
for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
mutex_enter(&dbf->db_mtx);
if (dbf->db_state != DB_EVICTING) {
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (dbf);
}
mutex_exit(&dbf->db_mtx);
}
}
mutex_enter(&db->db_mtx);
db->db_hash_next = h->hash_table[idx];
h->hash_table[idx] = db;
mutex_exit(DBUF_HASH_MUTEX(h, idx));
atomic_add_64(&dbuf_hash_count, 1);
return (NULL);
}
/*
* Remove an entry from the hash table. This operation will
* fail if there are any existing holds on the db.
*/
static void
dbuf_hash_remove(dmu_buf_impl_t *db)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
db->db_level, db->db_blkid);
uint64_t idx = hv & h->hash_table_mask;
dmu_buf_impl_t *dbf, **dbp;
/*
* We musn't hold db_mtx to maintin lock ordering:
* DBUF_HASH_MUTEX > db_mtx.
*/
ASSERT(refcount_is_zero(&db->db_holds));
ASSERT(db->db_state == DB_EVICTING);
ASSERT(!MUTEX_HELD(&db->db_mtx));
mutex_enter(DBUF_HASH_MUTEX(h, idx));
dbp = &h->hash_table[idx];
while ((dbf = *dbp) != db) {
dbp = &dbf->db_hash_next;
ASSERT(dbf != NULL);
}
*dbp = db->db_hash_next;
db->db_hash_next = NULL;
mutex_exit(DBUF_HASH_MUTEX(h, idx));
atomic_add_64(&dbuf_hash_count, -1);
}
static arc_evict_func_t dbuf_do_evict;
static void
dbuf_evict_user(dmu_buf_impl_t *db)
{
ASSERT(MUTEX_HELD(&db->db_mtx));
if (db->db_level != 0 || db->db_d.db_evict_func == NULL)
return;
if (db->db_d.db_user_data_ptr_ptr)
*db->db_d.db_user_data_ptr_ptr = db->db.db_data;
db->db_d.db_evict_func(&db->db, db->db_d.db_user_ptr);
db->db_d.db_user_ptr = NULL;
db->db_d.db_user_data_ptr_ptr = NULL;
db->db_d.db_evict_func = NULL;
}
void
dbuf_evict(dmu_buf_impl_t *db)
{
int i;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db_buf == NULL);
#ifdef ZFS_DEBUG
for (i = 0; i < TXG_SIZE; i++) {
ASSERT(!list_link_active(&db->db_dirty_node[i]));
ASSERT(db->db_level != 0 || db->db_d.db_data_old[i] == NULL);
}
#endif
dbuf_clear(db);
dbuf_destroy(db);
}
void
dbuf_init(void)
{
uint64_t hsize = 1ULL << 16;
dbuf_hash_table_t *h = &dbuf_hash_table;
int i;
/*
* The hash table is big enough to fill all of physical memory
* with an average 4K block size. The table will take up
* totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
*/
while (hsize * 4096 < physmem * PAGESIZE)
hsize <<= 1;
retry:
h->hash_table_mask = hsize - 1;
h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
if (h->hash_table == NULL) {
/* XXX - we should really return an error instead of assert */
ASSERT(hsize > (1ULL << 10));
hsize >>= 1;
goto retry;
}
dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
sizeof (dmu_buf_impl_t),
0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
dbuf_tq = taskq_create("dbuf_tq", 8, maxclsyspri, 50, INT_MAX,
TASKQ_PREPOPULATE);
for (i = 0; i < DBUF_MUTEXES; i++)
mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
}
void
dbuf_fini(void)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
int i;
taskq_destroy(dbuf_tq);
dbuf_tq = NULL;
for (i = 0; i < DBUF_MUTEXES; i++)
mutex_destroy(&h->hash_mutexes[i]);
kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
kmem_cache_destroy(dbuf_cache);
}
/*
* Other stuff.
*/
#ifdef ZFS_DEBUG
static void
dbuf_verify(dmu_buf_impl_t *db)
{
int i;
dnode_t *dn = db->db_dnode;
ASSERT(MUTEX_HELD(&db->db_mtx));
if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
return;
ASSERT(db->db_objset != NULL);
if (dn == NULL) {
ASSERT(db->db_parent == NULL);
ASSERT(db->db_blkptr == NULL);
} else {
ASSERT3U(db->db.db_object, ==, dn->dn_object);
ASSERT3P(db->db_objset, ==, dn->dn_objset);
ASSERT3U(db->db_level, <, dn->dn_nlevels);
ASSERT(db->db_blkid == DB_BONUS_BLKID ||
list_head(&dn->dn_dbufs));
}
if (db->db_blkid == DB_BONUS_BLKID) {
ASSERT(dn != NULL);
ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen);
ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID);
} else {
ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
}
if (db->db_level == 0) {
/* we can be momentarily larger in dnode_set_blksz() */
if (db->db_blkid != DB_BONUS_BLKID && dn) {
ASSERT3U(db->db.db_size, >=, dn->dn_datablksz);
}
if (db->db.db_object == DMU_META_DNODE_OBJECT) {
for (i = 0; i < TXG_SIZE; i++) {
/*
* it should only be modified in syncing
* context, so make sure we only have
* one copy of the data.
*/
ASSERT(db->db_d.db_data_old[i] == NULL ||
db->db_d.db_data_old[i] == db->db_buf);
}
}
}
/* verify db->db_blkptr */
if (db->db_blkptr) {
if (db->db_parent == dn->dn_dbuf) {
/* db is pointed to by the dnode */
/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
if (db->db.db_object == DMU_META_DNODE_OBJECT)
ASSERT(db->db_parent == NULL);
else
ASSERT(db->db_parent != NULL);
ASSERT3P(db->db_blkptr, ==,
&dn->dn_phys->dn_blkptr[db->db_blkid]);
} else {
/* db is pointed to by an indirect block */
int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
ASSERT3U(db->db_parent->db.db_object, ==,
db->db.db_object);
/*
* dnode_grow_indblksz() can make this fail if we don't
* have the struct_rwlock. XXX indblksz no longer
* grows. safe to do this now?
*/
if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) {
ASSERT3P(db->db_blkptr, ==,
((blkptr_t *)db->db_parent->db.db_data +
db->db_blkid % epb));
}
}
}
if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
db->db.db_data && db->db_blkid != DB_BONUS_BLKID &&
db->db_state != DB_FILL && !dn->dn_free_txg) {
/*
* If the blkptr isn't set but they have nonzero data,
* it had better be dirty, otherwise we'll lose that
* data when we evict this buffer.
*/
if (db->db_dirtycnt == 0) {
uint64_t *buf = db->db.db_data;
int i;
for (i = 0; i < db->db.db_size >> 3; i++) {
ASSERT(buf[i] == 0);
}
}
}
}
#endif
static void
dbuf_update_data(dmu_buf_impl_t *db)
{
ASSERT(MUTEX_HELD(&db->db_mtx));
if (db->db_level == 0 && db->db_d.db_user_data_ptr_ptr) {
ASSERT(!refcount_is_zero(&db->db_holds));
*db->db_d.db_user_data_ptr_ptr = db->db.db_data;
}
}
static void
dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
{
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
db->db_buf = buf;
if (buf != NULL) {
ASSERT(buf->b_data != NULL);
db->db.db_data = buf->b_data;
if (!arc_released(buf))
arc_set_callback(buf, dbuf_do_evict, db);
dbuf_update_data(db);
} else {
dbuf_evict_user(db);
db->db.db_data = NULL;
db->db_state = DB_UNCACHED;
}
}
uint64_t
dbuf_whichblock(dnode_t *dn, uint64_t offset)
{
if (dn->dn_datablkshift) {
return (offset >> dn->dn_datablkshift);
} else {
ASSERT3U(offset, <, dn->dn_datablksz);
return (0);
}
}
static void
dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
mutex_enter(&db->db_mtx);
ASSERT3U(db->db_state, ==, DB_READ);
/*
* All reads are synchronous, so we must have a hold on the dbuf
*/
ASSERT(refcount_count(&db->db_holds) > 0);
ASSERT(db->db_buf == NULL);
ASSERT(db->db.db_data == NULL);
if (db->db_level == 0 && db->db_d.db_freed_in_flight) {
/* we were freed in flight; disregard any error */
arc_release(buf, db);
bzero(buf->b_data, db->db.db_size);
db->db_d.db_freed_in_flight = FALSE;
dbuf_set_data(db, buf);
db->db_state = DB_CACHED;
} else if (zio == NULL || zio->io_error == 0) {
dbuf_set_data(db, buf);
db->db_state = DB_CACHED;
} else {
ASSERT(db->db_blkid != DB_BONUS_BLKID);
ASSERT3P(db->db_buf, ==, NULL);
VERIFY(arc_buf_remove_ref(buf, db) == 1);
db->db_state = DB_UNCACHED;
}
cv_broadcast(&db->db_changed);
mutex_exit(&db->db_mtx);
dbuf_rele(db, NULL);
}
static void
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
{
blkptr_t *bp;
zbookmark_t zb;
uint32_t aflags = ARC_NOWAIT;
ASSERT(!refcount_is_zero(&db->db_holds));
/* We need the struct_rwlock to prevent db_blkptr from changing. */
ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock));
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db_state == DB_UNCACHED);
ASSERT(db->db_buf == NULL);
if (db->db_blkid == DB_BONUS_BLKID) {
ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size);
db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
if (db->db.db_size < DN_MAX_BONUSLEN)
bzero(db->db.db_data, DN_MAX_BONUSLEN);
bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data,
db->db.db_size);
dbuf_update_data(db);
db->db_state = DB_CACHED;
mutex_exit(&db->db_mtx);
return;
}
if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid))
bp = NULL;
else
bp = db->db_blkptr;
if (bp == NULL)
dprintf_dbuf(db, "blkptr: %s\n", "NULL");
else
dprintf_dbuf_bp(db, bp, "%s", "blkptr:");
if (bp == NULL || BP_IS_HOLE(bp)) {
ASSERT(bp == NULL || BP_IS_HOLE(bp));
dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
db->db.db_size, db));
bzero(db->db.db_data, db->db.db_size);
db->db_state = DB_CACHED;
*flags |= DB_RF_CACHED;
mutex_exit(&db->db_mtx);
return;
}
db->db_state = DB_READ;
mutex_exit(&db->db_mtx);
zb.zb_objset = db->db_objset->os_dsl_dataset ?
db->db_objset->os_dsl_dataset->ds_object : 0;
zb.zb_object = db->db.db_object;
zb.zb_level = db->db_level;
zb.zb_blkid = db->db_blkid;
dbuf_add_ref(db, NULL);
/* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */
(void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp,
db->db_level > 0 ? byteswap_uint64_array :
dmu_ot[db->db_dnode->dn_type].ot_byteswap,
dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
(*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
&aflags, &zb);
if (aflags & ARC_CACHED)
*flags |= DB_RF_CACHED;
}
int
dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
{
int err = 0;
int havepzio = (zio != NULL);
int prefetch;
/*
* We don't have to hold the mutex to check db_state because it
* can't be freed while we have a hold on the buffer.
*/
ASSERT(!refcount_is_zero(&db->db_holds));
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER);
prefetch = db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID &&
(flags & DB_RF_NOPREFETCH) == 0 && db->db_dnode != NULL;
mutex_enter(&db->db_mtx);
if (db->db_state == DB_CACHED) {
mutex_exit(&db->db_mtx);
if (prefetch)
dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
db->db.db_size, TRUE);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&db->db_dnode->dn_struct_rwlock);
} else if (db->db_state == DB_UNCACHED) {
if (zio == NULL) {
zio = zio_root(db->db_dnode->dn_objset->os_spa,
NULL, NULL, ZIO_FLAG_CANFAIL);
}
dbuf_read_impl(db, zio, &flags);
/* dbuf_read_impl has dropped db_mtx for us */
if (prefetch)
dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
db->db.db_size, flags & DB_RF_CACHED);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&db->db_dnode->dn_struct_rwlock);
if (!havepzio)
err = zio_wait(zio);
} else {
mutex_exit(&db->db_mtx);
if (prefetch)
dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
db->db.db_size, TRUE);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&db->db_dnode->dn_struct_rwlock);
mutex_enter(&db->db_mtx);
if ((flags & DB_RF_NEVERWAIT) == 0) {
while (db->db_state == DB_READ ||
db->db_state == DB_FILL) {
ASSERT(db->db_state == DB_READ ||
(flags & DB_RF_HAVESTRUCT) == 0);
cv_wait(&db->db_changed, &db->db_mtx);
}
if (db->db_state == DB_UNCACHED)
err = EIO;
}
mutex_exit(&db->db_mtx);
}
ASSERT(err || havepzio || db->db_state == DB_CACHED);
return (err);
}
static void
dbuf_noread(dmu_buf_impl_t *db)
{
ASSERT(!refcount_is_zero(&db->db_holds));
ASSERT(db->db_blkid != DB_BONUS_BLKID);
mutex_enter(&db->db_mtx);
while (db->db_state == DB_READ || db->db_state == DB_FILL)
cv_wait(&db->db_changed, &db->db_mtx);
if (db->db_state == DB_UNCACHED) {
ASSERT(db->db_buf == NULL);
ASSERT(db->db.db_data == NULL);
dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
db->db.db_size, db));
db->db_state = DB_FILL;
} else {
ASSERT3U(db->db_state, ==, DB_CACHED);
}
mutex_exit(&db->db_mtx);
}
/*
* This is our just-in-time copy function. It makes a copy of
* buffers, that have been modified in a previous transaction
* group, before we modify them in the current active group.
*
* This function is used in two places: when we are dirtying a
* buffer for the first time in a txg, and when we are freeing
* a range in a dnode that includes this buffer.
*
* Note that when we are called from dbuf_free_range() we do
* not put a hold on the buffer, we just traverse the active
* dbuf list for the dnode.
*/
static void
dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
{
arc_buf_t **quiescing, **syncing;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db.db_data != NULL);
ASSERT(db->db_blkid != DB_BONUS_BLKID);
quiescing = (arc_buf_t **)&db->db_d.db_data_old[(txg-1)&TXG_MASK];
syncing = (arc_buf_t **)&db->db_d.db_data_old[(txg-2)&TXG_MASK];
/*
* If this buffer is referenced from the current quiescing
* transaction group: either make a copy and reset the reference
* to point to the copy, or (if there a no active holders) just
* null out the current db_data pointer.
*/
if (*quiescing == db->db_buf) {
/*
* If the quiescing txg is "dirty", then we better not
* be referencing the same buffer from the syncing txg.
*/
ASSERT(*syncing != db->db_buf);
if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
int size = db->db.db_size;
*quiescing = arc_buf_alloc(
db->db_dnode->dn_objset->os_spa, size, db);
bcopy(db->db.db_data, (*quiescing)->b_data, size);
} else {
dbuf_set_data(db, NULL);
}
return;
}
/*
* If this buffer is referenced from the current syncing
* transaction group: either
* 1 - make a copy and reset the reference, or
* 2 - if there are no holders, just null the current db_data.
*/
if (*syncing == db->db_buf) {
ASSERT3P(*quiescing, ==, NULL);
ASSERT3U(db->db_dirtycnt, ==, 1);
if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
int size = db->db.db_size;
/* we can't copy if we have already started a write */
ASSERT(*syncing != db->db_data_pending);
*syncing = arc_buf_alloc(
db->db_dnode->dn_objset->os_spa, size, db);
bcopy(db->db.db_data, (*syncing)->b_data, size);
} else {
dbuf_set_data(db, NULL);
}
}
}
/*
* This is the "bonus buffer" version of the above routine
*/
static void
dbuf_fix_old_bonus_data(dmu_buf_impl_t *db, uint64_t txg)
{
void **quiescing, **syncing;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db.db_data != NULL);
ASSERT(db->db_blkid == DB_BONUS_BLKID);
quiescing = &db->db_d.db_data_old[(txg-1)&TXG_MASK];
syncing = &db->db_d.db_data_old[(txg-2)&TXG_MASK];
if (*quiescing == db->db.db_data) {
ASSERT(*syncing != db->db.db_data);
*quiescing = zio_buf_alloc(DN_MAX_BONUSLEN);
bcopy(db->db.db_data, *quiescing, DN_MAX_BONUSLEN);
} else if (*syncing == db->db.db_data) {
ASSERT3P(*quiescing, ==, NULL);
ASSERT3U(db->db_dirtycnt, ==, 1);
*syncing = zio_buf_alloc(DN_MAX_BONUSLEN);
bcopy(db->db.db_data, *syncing, DN_MAX_BONUSLEN);
}
}
void
dbuf_unoverride(dmu_buf_impl_t *db, uint64_t txg)
{
ASSERT(db->db_blkid != DB_BONUS_BLKID);
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] != IN_DMU_SYNC);
if (db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) {
/* free this block */
ASSERT(list_link_active(&db->db_dirty_node[txg&TXG_MASK]) ||
db->db_dnode->dn_free_txg == txg);
if (!BP_IS_HOLE(db->db_d.db_overridden_by[txg&TXG_MASK])) {
/* XXX can get silent EIO here */
(void) arc_free(NULL, db->db_dnode->dn_objset->os_spa,
txg, db->db_d.db_overridden_by[txg&TXG_MASK],
NULL, NULL, ARC_WAIT);
}
kmem_free(db->db_d.db_overridden_by[txg&TXG_MASK],
sizeof (blkptr_t));
db->db_d.db_overridden_by[txg&TXG_MASK] = NULL;
/* release the already-written buffer */
arc_release(db->db_d.db_data_old[txg&TXG_MASK], db);
}
}
void
dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
{
dmu_buf_impl_t *db, *db_next;
uint64_t txg = tx->tx_txg;
dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks);
mutex_enter(&dn->dn_dbufs_mtx);
for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
db_next = list_next(&dn->dn_dbufs, db);
ASSERT(db->db_blkid != DB_BONUS_BLKID);
if (db->db_level != 0)
continue;
dprintf_dbuf(db, "found buf %s\n", "");
if (db->db_blkid < blkid ||
db->db_blkid >= blkid+nblks)
continue;
/* found a level 0 buffer in the range */
if (dbuf_undirty(db, tx))
continue;
mutex_enter(&db->db_mtx);
if (db->db_state == DB_UNCACHED ||
db->db_state == DB_EVICTING) {
ASSERT(db->db.db_data == NULL);
mutex_exit(&db->db_mtx);
continue;
}
if (db->db_state == DB_READ || db->db_state == DB_FILL) {
/* will be handled in dbuf_read_done or dbuf_rele */
db->db_d.db_freed_in_flight = TRUE;
mutex_exit(&db->db_mtx);
continue;
}
if (refcount_count(&db->db_holds) == 0) {
ASSERT(db->db_buf);
dbuf_clear(db);
continue;
}
/* The dbuf is CACHED and referenced */
if (!list_link_active(&db->db_dirty_node[txg & TXG_MASK])) {
/*
* This dbuf is not currently dirty. We will either
* uncache it (if its not referenced in the open
* context) or reset its contents to empty.
*/
dbuf_fix_old_data(db, txg);
} else if (db->db_d.db_overridden_by[txg & TXG_MASK] != NULL) {
/*
* This dbuf is overridden. Clear that state.
*/
dbuf_unoverride(db, txg);
}
/* fill in with appropriate data */
if (db->db_state == DB_CACHED) {
ASSERT(db->db.db_data != NULL);
arc_release(db->db_buf, db);
bzero(db->db.db_data, db->db.db_size);
}
mutex_exit(&db->db_mtx);
}
mutex_exit(&dn->dn_dbufs_mtx);
}
static int
dbuf_new_block(dmu_buf_impl_t *db)
{
dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
uint64_t birth_txg = 0;
/* Don't count meta-objects */
if (ds == NULL)
return (FALSE);
/*
* We don't need any locking to protect db_blkptr:
* If it's syncing, then db_dirtied will be set so we'll
* ignore db_blkptr.
*/
ASSERT(MUTEX_HELD(&db->db_mtx)); /* XXX strictly necessary? */
/* If we have been dirtied since the last snapshot, its not new */
if (db->db_dirtied)
birth_txg = db->db_dirtied;
else if (db->db_blkptr)
birth_txg = db->db_blkptr->blk_birth;
if (birth_txg)
return (!dsl_dataset_block_freeable(ds, birth_txg));
else
return (TRUE);
}
void
dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
{
arc_buf_t *buf, *obuf;
int osize = db->db.db_size;
ASSERT(db->db_blkid != DB_BONUS_BLKID);
/* XXX does *this* func really need the lock? */
ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock));
/*
* This call to dbuf_will_dirty() with the dn_struct_rwlock held
* is OK, because there can be no other references to the db
* when we are changing its size, so no concurrent DB_FILL can
* be happening.
*/
/*
* XXX we should be doing a dbuf_read, checking the return
* value and returning that up to our callers
*/
dbuf_will_dirty(db, tx);
/* create the data buffer for the new block */
buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db);
/* copy old block data to the new block */
obuf = db->db_buf;
bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
/* zero the remainder */
if (size > osize)
bzero((uint8_t *)buf->b_data + osize, size - osize);
mutex_enter(&db->db_mtx);
dbuf_set_data(db, buf);
VERIFY(arc_buf_remove_ref(obuf, db) == 1);
db->db.db_size = size;
if (db->db_level == 0)
db->db_d.db_data_old[tx->tx_txg&TXG_MASK] = buf;
mutex_exit(&db->db_mtx);
dnode_willuse_space(db->db_dnode, size-osize, tx);
}
void
dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
dnode_t *dn = db->db_dnode;
objset_impl_t *os = dn->dn_objset;
int drop_struct_lock = FALSE;
int txgoff = tx->tx_txg & TXG_MASK;
ASSERT(tx->tx_txg != 0);
ASSERT(!refcount_is_zero(&db->db_holds));
DMU_TX_DIRTY_BUF(tx, db);
/*
* Shouldn't dirty a regular buffer in syncing context. Private
* objects may be dirtied in syncing context, but only if they
* were already pre-dirtied in open context.
* XXX We may want to prohibit dirtying in syncing context even
* if they did pre-dirty.
*/
ASSERT(!(dmu_tx_is_syncing(tx) &&
!BP_IS_HOLE(&dn->dn_objset->os_rootbp) &&
dn->dn_object != DMU_META_DNODE_OBJECT &&
dn->dn_objset->os_dsl_dataset != NULL &&
!dsl_dir_is_private(
dn->dn_objset->os_dsl_dataset->ds_dir)));
/*
* We make this assert for private objects as well, but after we
* check if we're already dirty. They are allowed to re-dirty
* in syncing context.
*/
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
dn->dn_dirtyctx == DN_UNDIRTIED ||
dn->dn_dirtyctx ==
(dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
mutex_enter(&db->db_mtx);
/* XXX make this true for indirects too? */
ASSERT(db->db_level != 0 || db->db_state == DB_CACHED ||
db->db_state == DB_FILL);
/*
* If this buffer is currently part of an "overridden" region,
* we now need to remove it from that region.
*/
if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID &&
db->db_d.db_overridden_by[txgoff] != NULL) {
dbuf_unoverride(db, tx->tx_txg);
}
mutex_enter(&dn->dn_mtx);
/*
* Don't set dirtyctx to SYNC if we're just modifying this as we
* initialize the objset.
*/
if (dn->dn_dirtyctx == DN_UNDIRTIED &&
!BP_IS_HOLE(&dn->dn_objset->os_rootbp)) {
dn->dn_dirtyctx =
(dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
ASSERT(dn->dn_dirtyctx_firstset == NULL);
dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
}
mutex_exit(&dn->dn_mtx);
/*
* If this buffer is already dirty, we're done.
*/
if (list_link_active(&db->db_dirty_node[txgoff])) {
mutex_exit(&db->db_mtx);
return;
}
/*
* Only valid if not already dirty.
*/
ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
(dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
ASSERT3U(dn->dn_nlevels, >, db->db_level);
ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
dn->dn_phys->dn_nlevels > db->db_level ||
dn->dn_next_nlevels[txgoff] > db->db_level ||
dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
/*
* We should only be dirtying in syncing context if it's the
* mos, a spa os, or we're initializing the os. However, we are
* allowed to dirty in syncing context provided we already
* dirtied it in open context. Hence we must make this
* assertion only if we're not already dirty.
*/
ASSERT(!dmu_tx_is_syncing(tx) ||
os->os_dsl_dataset == NULL ||
!dsl_dir_is_private(os->os_dsl_dataset->ds_dir) ||
!BP_IS_HOLE(&os->os_rootbp));
ASSERT(db->db.db_size != 0);
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
/*
* If this buffer is dirty in an old transaction group we need
* to make a copy of it so that the changes we make in this
* transaction group won't leak out when we sync the older txg.
*/
if (db->db_blkid == DB_BONUS_BLKID) {
ASSERT(db->db.db_data != NULL);
ASSERT(db->db_d.db_data_old[txgoff] == NULL);
dbuf_fix_old_bonus_data(db, tx->tx_txg);
db->db_d.db_data_old[txgoff] = db->db.db_data;
} else if (db->db_level == 0) {
/*
* Release the data buffer from the cache so that we
* can modify it without impacting possible other users
* of this cached data block. Note that indirect blocks
* and private objects are not released until the syncing
* state (since they are only modified then).
*/
ASSERT(db->db_buf != NULL);
ASSERT(db->db_d.db_data_old[txgoff] == NULL);
if (db->db.db_object != DMU_META_DNODE_OBJECT) {
arc_release(db->db_buf, db);
dbuf_fix_old_data(db, tx->tx_txg);
ASSERT(db->db_buf != NULL);
}
db->db_d.db_data_old[txgoff] = db->db_buf;
}
mutex_enter(&dn->dn_mtx);
/*
* We could have been freed_in_flight between the dbuf_noread
* and dbuf_dirty. We win, as though the dbuf_noread() had
* happened after the free.
*/
if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) {
dnode_clear_range(dn, db->db_blkid, 1, tx);
db->db_d.db_freed_in_flight = FALSE;
}
db->db_dirtied = tx->tx_txg;
list_insert_tail(&dn->dn_dirty_dbufs[txgoff], db);
mutex_exit(&dn->dn_mtx);
if (db->db_blkid != DB_BONUS_BLKID) {
/*
* Update the accounting.
*/
if (!dbuf_new_block(db) && db->db_blkptr) {
/*
* This is only a guess -- if the dbuf is dirty
* in a previous txg, we don't know how much
* space it will use on disk yet. We should
* really have the struct_rwlock to access
* db_blkptr, but since this is just a guess,
* it's OK if we get an odd answer.
*/
dnode_willuse_space(dn,
-bp_get_dasize(os->os_spa, db->db_blkptr), tx);
}
dnode_willuse_space(dn, db->db.db_size, tx);
}
/*
* This buffer is now part of this txg
*/
dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
db->db_dirtycnt += 1;
ASSERT3U(db->db_dirtycnt, <=, 3);
mutex_exit(&db->db_mtx);
if (db->db_blkid == DB_BONUS_BLKID) {
dnode_setdirty(dn, tx);
return;
}
if (db->db_level == 0)
dnode_new_blkid(dn, db->db_blkid, tx);
if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
drop_struct_lock = TRUE;
}
if (db->db_level < dn->dn_nlevels-1) {
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
dmu_buf_impl_t *parent;
parent = dbuf_hold_level(dn, db->db_level+1,
db->db_blkid >> epbs, FTAG);
if (drop_struct_lock)
rw_exit(&dn->dn_struct_rwlock);
dbuf_dirty(parent, tx);
dbuf_rele(parent, FTAG);
} else {
if (drop_struct_lock)
rw_exit(&dn->dn_struct_rwlock);
}
dnode_setdirty(dn, tx);
}
static int
dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
dnode_t *dn = db->db_dnode;
int txgoff = tx->tx_txg & TXG_MASK;
int64_t holds;
ASSERT(tx->tx_txg != 0);
ASSERT(db->db_blkid != DB_BONUS_BLKID);
mutex_enter(&db->db_mtx);
/*
* If this buffer is not dirty, we're done.
*/
if (!list_link_active(&db->db_dirty_node[txgoff])) {
mutex_exit(&db->db_mtx);
return (0);
}
/*
* If this buffer is currently held, we cannot undirty
* it, since one of the current holders may be in the
* middle of an update. Note that users of dbuf_undirty()
* should not place a hold on the dbuf before the call.
* XXX - this check assumes we are being called from
* dbuf_free_range(), perhaps we should move it there?
*/
if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
mutex_exit(&db->db_mtx);
mutex_enter(&dn->dn_mtx);
dnode_clear_range(dn, db->db_blkid, 1, tx);
mutex_exit(&dn->dn_mtx);
return (0);
}
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
dbuf_unoverride(db, tx->tx_txg);
ASSERT(db->db.db_size != 0);
if (db->db_level == 0) {
ASSERT(db->db_buf != NULL);
ASSERT(db->db_d.db_data_old[txgoff] != NULL);
if (db->db_d.db_data_old[txgoff] != db->db_buf)
VERIFY(arc_buf_remove_ref(
db->db_d.db_data_old[txgoff], db) == 1);
db->db_d.db_data_old[txgoff] = NULL;
}
/* XXX would be nice to fix up dn_towrite_space[] */
/* XXX undo db_dirtied? but how? */
/* db->db_dirtied = tx->tx_txg; */
mutex_enter(&dn->dn_mtx);
list_remove(&dn->dn_dirty_dbufs[txgoff], db);
mutex_exit(&dn->dn_mtx);
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
if ((holds = refcount_remove(&db->db_holds,
(void *)(uintptr_t)tx->tx_txg)) == 0) {
arc_buf_t *buf = db->db_buf;
ASSERT(arc_released(buf));
dbuf_set_data(db, NULL);
VERIFY(arc_buf_remove_ref(buf, db) == 1);
dbuf_evict(db);
return (1);
}
ASSERT(holds > 0);
mutex_exit(&db->db_mtx);
return (0);
}
#pragma weak dmu_buf_will_dirty = dbuf_will_dirty
void
dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
int rf = DB_RF_MUST_SUCCEED;
ASSERT(tx->tx_txg != 0);
ASSERT(!refcount_is_zero(&db->db_holds));
if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock))
rf |= DB_RF_HAVESTRUCT;
(void) dbuf_read(db, NULL, rf);
dbuf_dirty(db, tx);
}
void
dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
ASSERT(db->db_blkid != DB_BONUS_BLKID);
ASSERT(tx->tx_txg != 0);
ASSERT(db->db_level == 0);
ASSERT(!refcount_is_zero(&db->db_holds));
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
dmu_tx_private_ok(tx));
dbuf_noread(db);
dbuf_dirty(db, tx);
}
#pragma weak dmu_buf_fill_done = dbuf_fill_done
/* ARGSUSED */
void
dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
mutex_enter(&db->db_mtx);
DBUF_VERIFY(db);
if (db->db_state == DB_FILL) {
if (db->db_level == 0 && db->db_d.db_freed_in_flight) {
ASSERT(db->db_blkid != DB_BONUS_BLKID);
/* we were freed while filling */
/* XXX dbuf_undirty? */
bzero(db->db.db_data, db->db.db_size);
db->db_d.db_freed_in_flight = FALSE;
}
db->db_state = DB_CACHED;
cv_broadcast(&db->db_changed);
}
mutex_exit(&db->db_mtx);
}
/*
* "Clear" the contents of this dbuf. This will mark the dbuf
* EVICTING and clear *most* of its references. Unfortunetely,
* when we are not holding the dn_dbufs_mtx, we can't clear the
* entry in the dn_dbufs list. We have to wait until dbuf_destroy()
* in this case. For callers from the DMU we will usually see:
* dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
* For the arc callback, we will usually see:
* dbuf_do_evict()->dbuf_clear();dbuf_destroy()
* Sometimes, though, we will get a mix of these two:
* DMU: dbuf_clear()->arc_buf_evict()
* ARC: dbuf_do_evict()->dbuf_destroy()
*/
void
dbuf_clear(dmu_buf_impl_t *db)
{
dnode_t *dn = db->db_dnode;
dmu_buf_impl_t *parent = db->db_parent;
dmu_buf_impl_t *dndb = dn->dn_dbuf;
int dbuf_gone = FALSE;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(refcount_is_zero(&db->db_holds));
dbuf_evict_user(db);
if (db->db_state == DB_CACHED) {
ASSERT(db->db.db_data != NULL);
if (db->db_blkid == DB_BONUS_BLKID)
zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
db->db.db_data = NULL;
db->db_state = DB_UNCACHED;
}
ASSERT3U(db->db_state, ==, DB_UNCACHED);
ASSERT(db->db_data_pending == NULL);
db->db_state = DB_EVICTING;
db->db_blkptr = NULL;
if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
list_remove(&dn->dn_dbufs, db);
dnode_rele(dn, db);
}
if (db->db_buf)
dbuf_gone = arc_buf_evict(db->db_buf);
if (!dbuf_gone)
mutex_exit(&db->db_mtx);
/*
* If this dbuf is referened from an indirect dbuf,
* decrement the ref count on the indirect dbuf.
*/
if (parent && parent != dndb)
dbuf_rele(parent, db);
}
static int
dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
dmu_buf_impl_t **parentp, blkptr_t **bpp)
{
int nlevels, epbs;
*parentp = NULL;
*bpp = NULL;
ASSERT(blkid != DB_BONUS_BLKID);
if (dn->dn_phys->dn_nlevels == 0)
nlevels = 1;
else
nlevels = dn->dn_phys->dn_nlevels;
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT3U(level * epbs, <, 64);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
if (level >= nlevels ||
(blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
/* the buffer has no parent yet */
return (ENOENT);
} else if (level < nlevels-1) {
/* this block is referenced from an indirect block */
int err = dbuf_hold_impl(dn, level+1,
blkid >> epbs, fail_sparse, NULL, parentp);
if (err)
return (err);
err = dbuf_read(*parentp, NULL,
(DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
if (err) {
dbuf_rele(*parentp, NULL);
*parentp = NULL;
return (err);
}
*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
(blkid & ((1ULL << epbs) - 1));
return (0);
} else {
/* the block is referenced from the dnode */
ASSERT3U(level, ==, nlevels-1);
ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
blkid < dn->dn_phys->dn_nblkptr);
if (dn->dn_dbuf) {
dbuf_add_ref(dn->dn_dbuf, NULL);
*parentp = dn->dn_dbuf;
}
*bpp = &dn->dn_phys->dn_blkptr[blkid];
return (0);
}
}
static dmu_buf_impl_t *
dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
dmu_buf_impl_t *parent, blkptr_t *blkptr)
{
objset_impl_t *os = dn->dn_objset;
dmu_buf_impl_t *db, *odb;
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
ASSERT(dn->dn_type != DMU_OT_NONE);
db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
db->db_objset = os;
db->db.db_object = dn->dn_object;
db->db_level = level;
db->db_blkid = blkid;
db->db_dirtied = 0;
db->db_dirtycnt = 0;
db->db_dnode = dn;
db->db_parent = parent;
db->db_blkptr = blkptr;
bzero(&db->db_d, sizeof (db->db_d));
if (blkid == DB_BONUS_BLKID) {
ASSERT3P(parent, ==, dn->dn_dbuf);
db->db.db_size = dn->dn_bonuslen;
db->db.db_offset = DB_BONUS_BLKID;
db->db_state = DB_UNCACHED;
/* the bonus dbuf is not placed in the hash table */
return (db);
} else {
int blocksize =
db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz;
db->db.db_size = blocksize;
db->db.db_offset = db->db_blkid * blocksize;
}
/*
* Hold the dn_dbufs_mtx while we get the new dbuf
* in the hash table *and* added to the dbufs list.
* This prevents a possible deadlock with someone
* trying to look up this dbuf before its added to the
* dn_dbufs list.
*/
mutex_enter(&dn->dn_dbufs_mtx);
db->db_state = DB_EVICTING;
if ((odb = dbuf_hash_insert(db)) != NULL) {
/* someone else inserted it first */
kmem_cache_free(dbuf_cache, db);
mutex_exit(&dn->dn_dbufs_mtx);
return (odb);
}
list_insert_head(&dn->dn_dbufs, db);
db->db_state = DB_UNCACHED;
mutex_exit(&dn->dn_dbufs_mtx);
if (parent && parent != dn->dn_dbuf)
dbuf_add_ref(parent, db);
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
refcount_count(&dn->dn_holds) > 0);
(void) refcount_add(&dn->dn_holds, db);
dprintf_dbuf(db, "db=%p\n", db);
return (db);
}
static int
dbuf_do_evict(void *private)
{
arc_buf_t *buf = private;
dmu_buf_impl_t *db = buf->b_private;
if (!MUTEX_HELD(&db->db_mtx))
mutex_enter(&db->db_mtx);
ASSERT(refcount_is_zero(&db->db_holds));
if (db->db_state != DB_EVICTING) {
ASSERT(db->db_state == DB_CACHED);
DBUF_VERIFY(db);
db->db_buf = NULL;
dbuf_evict(db);
} else {
mutex_exit(&db->db_mtx);
dbuf_destroy(db);
}
return (0);
}
static void
dbuf_destroy(dmu_buf_impl_t *db)
{
ASSERT(refcount_is_zero(&db->db_holds));
if (db->db_blkid != DB_BONUS_BLKID) {
dnode_t *dn = db->db_dnode;
/*
* If this dbuf is still on the dn_dbufs list,
* remove it from that list.
*/
if (list_link_active(&db->db_link)) {
mutex_enter(&dn->dn_dbufs_mtx);
list_remove(&dn->dn_dbufs, db);
mutex_exit(&dn->dn_dbufs_mtx);
dnode_rele(dn, db);
}
dbuf_hash_remove(db);
}
db->db_parent = NULL;
db->db_dnode = NULL;
db->db_buf = NULL;
ASSERT(db->db.db_data == NULL);
ASSERT(db->db_hash_next == NULL);
ASSERT(db->db_blkptr == NULL);
ASSERT(db->db_data_pending == NULL);
kmem_cache_free(dbuf_cache, db);
}
void
dbuf_prefetch(dnode_t *dn, uint64_t blkid)
{
dmu_buf_impl_t *db = NULL;
blkptr_t *bp = NULL;
ASSERT(blkid != DB_BONUS_BLKID);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
if (dnode_block_freed(dn, blkid))
return;
/* dbuf_find() returns with db_mtx held */
if (db = dbuf_find(dn, 0, blkid)) {
if (refcount_count(&db->db_holds) > 0) {
/*
* This dbuf is active. We assume that it is
* already CACHED, or else about to be either
* read or filled.
*/
mutex_exit(&db->db_mtx);
return;
}
mutex_exit(&db->db_mtx);
db = NULL;
}
if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
if (bp && !BP_IS_HOLE(bp)) {
uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
zbookmark_t zb;
zb.zb_objset = dn->dn_objset->os_dsl_dataset ?
dn->dn_objset->os_dsl_dataset->ds_object : 0;
zb.zb_object = dn->dn_object;
zb.zb_level = 0;
zb.zb_blkid = blkid;
(void) arc_read(NULL, dn->dn_objset->os_spa, bp,
dmu_ot[dn->dn_type].ot_byteswap,
NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&aflags, &zb);
}
if (db)
dbuf_rele(db, NULL);
}
}
/*
* Returns with db_holds incremented, and db_mtx not held.
* Note: dn_struct_rwlock must be held.
*/
int
dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
void *tag, dmu_buf_impl_t **dbp)
{
dmu_buf_impl_t *db, *parent = NULL;
ASSERT(blkid != DB_BONUS_BLKID);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
ASSERT3U(dn->dn_nlevels, >, level);
*dbp = NULL;
top:
/* dbuf_find() returns with db_mtx held */
db = dbuf_find(dn, level, blkid);
if (db == NULL) {
blkptr_t *bp = NULL;
int err;
ASSERT3P(parent, ==, NULL);
err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
if (fail_sparse) {
if (err == 0 && bp && BP_IS_HOLE(bp))
err = ENOENT;
if (err) {
if (parent)
dbuf_rele(parent, NULL);
return (err);
}
}
if (err && err != ENOENT)
return (err);
db = dbuf_create(dn, level, blkid, parent, bp);
}
if (db->db_buf && refcount_is_zero(&db->db_holds)) {
arc_buf_add_ref(db->db_buf, db);
if (db->db_buf->b_data == NULL) {
dbuf_clear(db);
if (parent) {
dbuf_rele(parent, NULL);
parent = NULL;
}
goto top;
}
ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
}
ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
/*
* If this buffer is currently syncing out, and we are
* are still referencing it from db_data, we need to make
* a copy of it in case we decide we want to dirty it
* again in this txg.
*/
if (db->db_level == 0 && db->db_state == DB_CACHED &&
dn->dn_object != DMU_META_DNODE_OBJECT &&
db->db_data_pending == db->db_buf) {
int size = (db->db_blkid == DB_BONUS_BLKID) ?
DN_MAX_BONUSLEN : db->db.db_size;
dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
size, db));
bcopy(db->db_data_pending->b_data, db->db.db_data,
db->db.db_size);
}
(void) refcount_add(&db->db_holds, tag);
dbuf_update_data(db);
DBUF_VERIFY(db);
mutex_exit(&db->db_mtx);
/* NOTE: we can't rele the parent until after we drop the db_mtx */
if (parent)
dbuf_rele(parent, NULL);
ASSERT3P(db->db_dnode, ==, dn);
ASSERT3U(db->db_blkid, ==, blkid);
ASSERT3U(db->db_level, ==, level);
*dbp = db;
return (0);
}
dmu_buf_impl_t *
dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
{
dmu_buf_impl_t *db;
int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
return (err ? NULL : db);
}
dmu_buf_impl_t *
dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
{
dmu_buf_impl_t *db;
int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
return (err ? NULL : db);
}
dmu_buf_impl_t *
dbuf_create_bonus(dnode_t *dn)
{
dmu_buf_impl_t *db = dn->dn_bonus;
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
ASSERT(dn->dn_bonus == NULL);
db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL);
return (db);
}
#pragma weak dmu_buf_add_ref = dbuf_add_ref
void
dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
{
int64_t holds = refcount_add(&db->db_holds, tag);
ASSERT(holds > 1);
}
#pragma weak dmu_buf_rele = dbuf_rele
void
dbuf_rele(dmu_buf_impl_t *db, void *tag)
{
int64_t holds;
mutex_enter(&db->db_mtx);
DBUF_VERIFY(db);
holds = refcount_remove(&db->db_holds, tag);
ASSERT(holds >= 0);
if (holds == db->db_dirtycnt &&
db->db_level == 0 && db->db_d.db_immediate_evict)
dbuf_evict_user(db);
if (holds == 0) {
if (db->db_blkid == DB_BONUS_BLKID) {
mutex_exit(&db->db_mtx);
dnode_rele(db->db_dnode, db);
} else if (db->db_buf == NULL) {
/*
* This is a special case: we never associated this
* dbuf with any data allocated from the ARC.
*/
ASSERT3U(db->db_state, ==, DB_UNCACHED);
dbuf_evict(db);
} else if (arc_released(db->db_buf)) {
arc_buf_t *buf = db->db_buf;
/*
* This dbuf has anonymous data associated with it.
*/
dbuf_set_data(db, NULL);
VERIFY(arc_buf_remove_ref(buf, db) == 1);
dbuf_evict(db);
} else {
VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0);
mutex_exit(&db->db_mtx);
}
} else {
mutex_exit(&db->db_mtx);
}
}
#pragma weak dmu_buf_refcount = dbuf_refcount
uint64_t
dbuf_refcount(dmu_buf_impl_t *db)
{
return (refcount_count(&db->db_holds));
}
void *
dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
dmu_buf_evict_func_t *evict_func)
{
return (dmu_buf_update_user(db_fake, NULL, user_ptr,
user_data_ptr_ptr, evict_func));
}
void *
dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
dmu_buf_evict_func_t *evict_func)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
db->db_d.db_immediate_evict = TRUE;
return (dmu_buf_update_user(db_fake, NULL, user_ptr,
user_data_ptr_ptr, evict_func));
}
void *
dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
ASSERT(db->db_level == 0);
ASSERT((user_ptr == NULL) == (evict_func == NULL));
mutex_enter(&db->db_mtx);
if (db->db_d.db_user_ptr == old_user_ptr) {
db->db_d.db_user_ptr = user_ptr;
db->db_d.db_user_data_ptr_ptr = user_data_ptr_ptr;
db->db_d.db_evict_func = evict_func;
dbuf_update_data(db);
} else {
old_user_ptr = db->db_d.db_user_ptr;
}
mutex_exit(&db->db_mtx);
return (old_user_ptr);
}
void *
dmu_buf_get_user(dmu_buf_t *db_fake)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
ASSERT(!refcount_is_zero(&db->db_holds));
return (db->db_d.db_user_ptr);
}
void
dbuf_sync(dmu_buf_impl_t *db, zio_t *zio, dmu_tx_t *tx)
{
arc_buf_t **data;
uint64_t txg = tx->tx_txg;
dnode_t *dn = db->db_dnode;
objset_impl_t *os = dn->dn_objset;
int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
int checksum, compress;
zbookmark_t zb;
int blksz;
ASSERT(dmu_tx_is_syncing(tx));
dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
mutex_enter(&db->db_mtx);
/*
* To be synced, we must be dirtied. But we
* might have been freed after the dirty.
*/
if (db->db_state == DB_UNCACHED) {
/* This buffer has been freed since it was dirtied */
ASSERT(db->db.db_data == NULL);
} else if (db->db_state == DB_FILL) {
/* This buffer was freed and is now being re-filled */
ASSERT(db->db.db_data != db->db_d.db_data_old[txg&TXG_MASK]);
} else {
ASSERT3U(db->db_state, ==, DB_CACHED);
}
DBUF_VERIFY(db);
/*
* Don't need a lock on db_dirty (dn_mtx), because it can't
* be modified yet.
*/
if (db->db_blkid == DB_BONUS_BLKID) {
void **datap = &db->db_d.db_data_old[txg&TXG_MASK];
/*
* Simply copy the bonus data into the dnode. It will
* be written out when the dnode is synced (and it will
* be synced, since it must have been dirty for dbuf_sync
* to be called).
*/
/*
* Use dn_phys->dn_bonuslen since db.db_size is the length
* of the bonus buffer in the open transaction rather than
* the syncing transaction.
*/
ASSERT(*datap != NULL);
ASSERT3U(db->db_level, ==, 0);
ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
if (*datap != db->db.db_data)
zio_buf_free(*datap, DN_MAX_BONUSLEN);
db->db_d.db_data_old[txg&TXG_MASK] = NULL;
db->db_data_pending = NULL;
if (db->db_dirtied == txg)
db->db_dirtied = 0;
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
dbuf_rele(db, (void *)(uintptr_t)txg);
return;
}
if (db->db_level == 0) {
data = (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK];
blksz = arc_buf_size(*data);
/*
* This buffer is in the middle of an immdiate write.
* Wait for the synchronous IO to complete.
*/
while (db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC) {
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
cv_wait(&db->db_changed, &db->db_mtx);
ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK]);
}
/*
* If this buffer is currently "in use" (i.e., there are
* active holds and db_data still references it), then make
* a copy before we start the write so that any modifications
* from the open txg will not leak into this write.
*
* NOTE: this copy does not need to be made for objects only
* modified in the syncing context (e.g. DNONE_DNODE blocks)
* or if there is no actual write involved (bonus blocks).
*/
if (dn->dn_object != DMU_META_DNODE_OBJECT &&
db->db_d.db_overridden_by[txg&TXG_MASK] == NULL) {
if (refcount_count(&db->db_holds) > 1 &&
*data == db->db_buf) {
*data = arc_buf_alloc(os->os_spa, blksz, db);
bcopy(db->db.db_data, (*data)->b_data, blksz);
}
db->db_data_pending = *data;
} else if (dn->dn_object == DMU_META_DNODE_OBJECT) {
/*
* Private object buffers are released here rather
* than in dbuf_dirty() since they are only modified
* in the syncing context and we don't want the
* overhead of making multiple copies of the data.
*/
arc_release(db->db_buf, db);
}
} else {
data = &db->db_buf;
if (*data == NULL) {
/*
* This can happen if we dirty and then free
* the level-0 data blocks in the same txg. So
* this indirect remains unchanged.
*/
if (db->db_dirtied == txg)
db->db_dirtied = 0;
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
dbuf_rele(db, (void *)(uintptr_t)txg);
return;
}
blksz = db->db.db_size;
ASSERT3U(blksz, ==, 1<<dn->dn_phys->dn_indblkshift);
}
ASSERT(*data != NULL);
if (db->db_level > 0 && !arc_released(db->db_buf)) {
/*
* This indirect buffer was marked dirty, but
* never modified (if it had been modified, then
* we would have released the buffer). There is
* no reason to write anything.
*/
db->db_data_pending = NULL;
if (db->db_dirtied == txg)
db->db_dirtied = 0;
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
dbuf_rele(db, (void *)(uintptr_t)txg);
return;
} else if (db->db_blkptr == NULL &&
db->db_level == dn->dn_phys->dn_nlevels-1 &&
db->db_blkid < dn->dn_phys->dn_nblkptr) {
/*
* This buffer was allocated at a time when there was
* no available blkptrs from the dnode, or it was
* inappropriate to hook it in (i.e., nlevels mis-match).
*/
ASSERT(db->db_blkptr == NULL);
ASSERT(db->db_parent == NULL);
db->db_parent = dn->dn_dbuf;
db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
DBUF_VERIFY(db);
mutex_exit(&db->db_mtx);
} else if (db->db_blkptr == NULL) {
dmu_buf_impl_t *parent = db->db_parent;
mutex_exit(&db->db_mtx);
ASSERT(dn->dn_phys->dn_nlevels > 1);
if (parent == NULL) {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
(void) dbuf_hold_impl(dn, db->db_level+1,
db->db_blkid >> epbs, FALSE, FTAG, &parent);
rw_exit(&dn->dn_struct_rwlock);
dbuf_add_ref(parent, db);
db->db_parent = parent;
dbuf_rele(parent, FTAG);
}
(void) dbuf_read(parent, NULL, DB_RF_MUST_SUCCEED);
} else {
mutex_exit(&db->db_mtx);
}
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || db->db_parent != NULL);
if (db->db_level > 0 &&
db->db_blkid > dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)) {
/*
* Don't write indirect blocks past EOF.
* We get these when we truncate a file *after* dirtying
* blocks in the truncate range (we undirty the level 0
* blocks in dbuf_free_range(), but not the indirects).
*/
#ifdef ZFS_DEBUG
/*
* Verify that this indirect block is empty.
*/
blkptr_t *bplist;
int i;
mutex_enter(&db->db_mtx);
bplist = db->db.db_data;
for (i = 0; i < (1 << epbs); i++) {
if (!BP_IS_HOLE(&bplist[i])) {
panic("data past EOF: "
"db=%p level=%d id=%llu i=%d\n",
db, db->db_level,
(u_longlong_t)db->db_blkid, i);
}
}
mutex_exit(&db->db_mtx);
#endif
ASSERT(db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr));
mutex_enter(&db->db_mtx);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
dbuf_rele(db, (void *)(uintptr_t)txg);
return;
}
if (db->db_parent != dn->dn_dbuf) {
dmu_buf_impl_t *parent = db->db_parent;
mutex_enter(&db->db_mtx);
ASSERT(db->db_level == parent->db_level-1);
ASSERT(list_link_active(&parent->db_dirty_node[txg&TXG_MASK]));
/*
* We may have read this indirect block after we dirtied it,
* so never released it from the cache.
*/
arc_release(parent->db_buf, db->db_parent);
db->db_blkptr = (blkptr_t *)parent->db.db_data +
(db->db_blkid & ((1ULL << epbs) - 1));
DBUF_VERIFY(db);
mutex_exit(&db->db_mtx);
#ifdef ZFS_DEBUG
} else {
/*
* We don't need to dnode_setdirty(dn) because if we got
* here then the parent is already dirty.
*/
ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1);
ASSERT3P(db->db_blkptr, ==,
&dn->dn_phys->dn_blkptr[db->db_blkid]);
#endif
}
ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
if (db->db_level == 0 &&
db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) {
arc_buf_t **old =
(arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK];
blkptr_t **bpp = &db->db_d.db_overridden_by[txg&TXG_MASK];
int old_size = bp_get_dasize(os->os_spa, db->db_blkptr);
int new_size = bp_get_dasize(os->os_spa, *bpp);
ASSERT(db->db_blkid != DB_BONUS_BLKID);
dnode_diduse_space(dn, new_size-old_size);
mutex_enter(&dn->dn_mtx);
if (db->db_blkid > dn->dn_phys->dn_maxblkid)
dn->dn_phys->dn_maxblkid = db->db_blkid;
mutex_exit(&dn->dn_mtx);
dsl_dataset_block_born(os->os_dsl_dataset, *bpp, tx);
if (!BP_IS_HOLE(db->db_blkptr))
dsl_dataset_block_kill(os->os_dsl_dataset,
db->db_blkptr, os->os_synctx);
mutex_enter(&db->db_mtx);
*db->db_blkptr = **bpp;
kmem_free(*bpp, sizeof (blkptr_t));
*bpp = NULL;
if (*old != db->db_buf)
VERIFY(arc_buf_remove_ref(*old, db) == 1);
else if (!BP_IS_HOLE(db->db_blkptr))
arc_set_callback(db->db_buf, dbuf_do_evict, db);
else
ASSERT(arc_released(db->db_buf));
*old = NULL;
db->db_data_pending = NULL;
cv_broadcast(&db->db_changed);
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
dbuf_rele(db, (void *)(uintptr_t)txg);
return;
}
if (db->db_level > 0) {
/*
* XXX -- we should design a compression algorithm
* that specializes in arrays of bps.
*/
checksum = ZIO_CHECKSUM_FLETCHER_4;
compress = ZIO_COMPRESS_LZJB;
} else {
/*
* Allow dnode settings to override objset settings,
* except for metadata checksums.
*/
if (dmu_ot[dn->dn_type].ot_metadata) {
checksum = os->os_md_checksum;
compress = zio_compress_select(dn->dn_compress,
os->os_md_compress);
} else {
checksum = zio_checksum_select(dn->dn_checksum,
os->os_checksum);
compress = zio_compress_select(dn->dn_compress,
os->os_compress);
}
}
#ifdef ZFS_DEBUG
if (db->db_parent) {
ASSERT(list_link_active(
&db->db_parent->db_dirty_node[txg&TXG_MASK]));
ASSERT(db->db_parent == dn->dn_dbuf ||
db->db_parent->db_level > 0);
if (dn->dn_object == DMU_META_DNODE_OBJECT || db->db_level > 0)
ASSERT(*data == db->db_buf);
}
#endif
ASSERT3U(db->db_blkptr->blk_birth, <=, tx->tx_txg);
zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0;
zb.zb_object = db->db.db_object;
zb.zb_level = db->db_level;
zb.zb_blkid = db->db_blkid;
(void) arc_write(zio, os->os_spa, checksum, compress,
dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg,
db->db_blkptr, *data, dbuf_write_done, db,
ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, ARC_NOWAIT, &zb);
/*
* We can't access db after arc_write, since it could finish
* and be freed, and we have no locks on it.
*/
}
struct dbuf_arg {
objset_impl_t *os;
blkptr_t bp;
};
static void
dbuf_do_born(void *arg)
{
struct dbuf_arg *da = arg;
dsl_dataset_block_born(da->os->os_dsl_dataset,
&da->bp, da->os->os_synctx);
kmem_free(da, sizeof (struct dbuf_arg));
}
static void
dbuf_do_kill(void *arg)
{
struct dbuf_arg *da = arg;
dsl_dataset_block_kill(da->os->os_dsl_dataset,
&da->bp, da->os->os_synctx);
kmem_free(da, sizeof (struct dbuf_arg));
}
/* ARGSUSED */
static void
dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
dnode_t *dn = db->db_dnode;
objset_impl_t *os = dn->dn_objset;
uint64_t txg = zio->io_txg;
uint64_t fill = 0;
int i;
int old_size, new_size;
ASSERT3U(zio->io_error, ==, 0);
dprintf_dbuf_bp(db, &zio->io_bp_orig, "bp_orig: %s", "");
old_size = bp_get_dasize(os->os_spa, &zio->io_bp_orig);
new_size = bp_get_dasize(os->os_spa, zio->io_bp);
dnode_diduse_space(dn, new_size-old_size);
mutex_enter(&db->db_mtx);
ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL);
if (db->db_dirtied == txg)
db->db_dirtied = 0;
if (db->db_level == 0) {
arc_buf_t **old =
(arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK];
ASSERT(db->db_blkid != DB_BONUS_BLKID);
if (*old != db->db_buf)
VERIFY(arc_buf_remove_ref(*old, db) == 1);
else if (!BP_IS_HOLE(db->db_blkptr))
arc_set_callback(db->db_buf, dbuf_do_evict, db);
else
ASSERT(arc_released(db->db_buf));
*old = NULL;
db->db_data_pending = NULL;
mutex_enter(&dn->dn_mtx);
if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
!BP_IS_HOLE(db->db_blkptr))
dn->dn_phys->dn_maxblkid = db->db_blkid;
mutex_exit(&dn->dn_mtx);
if (dn->dn_type == DMU_OT_DNODE) {
dnode_phys_t *dnp = db->db.db_data;
for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
i--, dnp++) {
if (dnp->dn_type != DMU_OT_NONE)
fill++;
}
} else {
if (!BP_IS_HOLE(db->db_blkptr))
fill = 1;
}
} else {
blkptr_t *bp = db->db.db_data;
ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
if (!BP_IS_HOLE(db->db_blkptr)) {
int epbs =
dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, db->db.db_size);
ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
db->db.db_size);
ASSERT3U(dn->dn_phys->dn_maxblkid
>> (db->db_level * epbs), >=, db->db_blkid);
arc_set_callback(db->db_buf, dbuf_do_evict, db);
}
for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) {
if (BP_IS_HOLE(bp))
continue;
ASSERT3U(BP_GET_LSIZE(bp), ==,
db->db_level == 1 ? dn->dn_datablksz :
(1<<dn->dn_phys->dn_indblkshift));
fill += bp->blk_fill;
}
}
if (!BP_IS_HOLE(db->db_blkptr)) {
db->db_blkptr->blk_fill = fill;
BP_SET_TYPE(db->db_blkptr, dn->dn_type);
BP_SET_LEVEL(db->db_blkptr, db->db_level);
} else {
ASSERT3U(fill, ==, 0);
ASSERT3U(db->db_blkptr->blk_fill, ==, 0);
}
dprintf_dbuf_bp(db, db->db_blkptr,
"wrote %llu bytes to blkptr:", zio->io_size);
ASSERT(db->db_parent == NULL ||
list_link_active(&db->db_parent->db_dirty_node[txg&TXG_MASK]));
cv_broadcast(&db->db_changed);
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
mutex_exit(&db->db_mtx);
/* We must do this after we've set the bp's type and level */
if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp),
BP_IDENTITY(&zio->io_bp_orig))) {
struct dbuf_arg *da;
da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP);
da->os = os;
da->bp = *zio->io_bp;
(void) taskq_dispatch(dbuf_tq, dbuf_do_born, da, 0);
if (!BP_IS_HOLE(&zio->io_bp_orig)) {
da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP);
da->os = os;
da->bp = zio->io_bp_orig;
(void) taskq_dispatch(dbuf_tq, dbuf_do_kill, da, 0);
}
}
dbuf_rele(db, (void *)(uintptr_t)txg);
}