ufs_vnops.c revision 342440ec94087b8c751c580ab9ed6c693d31d418
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley 4.3 BSD
* under license from the Regents of the University of California.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/ksynch.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/signal.h>
#include <sys/cred.h>
#include <sys/user.h>
#include <sys/buf.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/flock.h>
#include <sys/atomic.h>
#include <sys/kmem.h>
#include <sys/uio.h>
#include <sys/dnlc.h>
#include <sys/conf.h>
#include <sys/mman.h>
#include <sys/pathname.h>
#include <sys/debug.h>
#include <sys/vmsystm.h>
#include <sys/cmn_err.h>
#include <sys/filio.h>
#include <sys/policy.h>
#include <sys/fs/ufs_fs.h>
#include <sys/fs/ufs_lockfs.h>
#include <sys/fs/ufs_filio.h>
#include <sys/fs/ufs_inode.h>
#include <sys/fs/ufs_fsdir.h>
#include <sys/fs/ufs_quota.h>
#include <sys/fs/ufs_log.h>
#include <sys/fs/ufs_snap.h>
#include <sys/fs/ufs_trans.h>
#include <sys/fs/ufs_panic.h>
#include <sys/fs/ufs_bio.h>
#include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
#include <sys/errno.h>
#include <sys/fssnap_if.h>
#include <sys/unistd.h>
#include <sys/sunddi.h>
#include <sys/filio.h> /* _FIOIO */
#include <vm/hat.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_map.h>
#include <vm/seg_vn.h>
#include <vm/seg_kmem.h>
#include <vm/rm.h>
#include <sys/swap.h>
#include <fs/fs_subr.h>
#include <sys/fs/decomp.h>
static struct instats ins;
static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
caddr_t, struct page **, size_t, enum seg_rw, int);
static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
caller_context_t *);
static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
struct caller_context *);
static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
struct caller_context *);
static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
int *, caller_context_t *);
static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
caller_context_t *);
static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
caller_context_t *);
static int ufs_access(struct vnode *, int, int, struct cred *,
caller_context_t *);
static int ufs_lookup(struct vnode *, char *, struct vnode **,
struct pathname *, int, struct vnode *, struct cred *,
caller_context_t *, int *, pathname_t *);
static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
int, struct vnode **, struct cred *, int,
caller_context_t *, vsecattr_t *);
static int ufs_remove(struct vnode *, char *, struct cred *,
caller_context_t *, int);
static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
caller_context_t *, int);
static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
struct cred *, caller_context_t *, int);
static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
struct cred *, caller_context_t *, int, vsecattr_t *);
static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
caller_context_t *, int);
static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
caller_context_t *, int);
static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
struct cred *, caller_context_t *, int);
static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
caller_context_t *);
static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
static int ufs_rwlock(struct vnode *, int, caller_context_t *);
static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
struct flk_callback *, struct cred *,
caller_context_t *);
static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
cred_t *, caller_context_t *);
static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
struct page **, size_t, struct seg *, caddr_t,
enum seg_rw, struct cred *, caller_context_t *);
static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
caller_context_t *);
static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
caller_context_t *);
static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
caller_context_t *);
static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
caller_context_t *);
static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
struct cred *, caller_context_t *);
static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
daddr32_t *, int, int);
static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
caller_context_t *);
static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
caller_context_t *);
extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
/*
* For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
*
* XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
*/
struct vnodeops *ufs_vnodeops;
/* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
const fs_operation_def_t ufs_vnodeops_template[] = {
VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
VOPNAME_READ, { .vop_read = ufs_read },
VOPNAME_WRITE, { .vop_write = ufs_write },
VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
VOPNAME_ACCESS, { .vop_access = ufs_access },
VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
VOPNAME_CREATE, { .vop_create = ufs_create },
VOPNAME_REMOVE, { .vop_remove = ufs_remove },
VOPNAME_LINK, { .vop_link = ufs_link },
VOPNAME_RENAME, { .vop_rename = ufs_rename },
VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
VOPNAME_FID, { .vop_fid = ufs_fid },
VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
VOPNAME_SEEK, { .vop_seek = ufs_seek },
VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
VOPNAME_SPACE, { .vop_space = ufs_space },
VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
VOPNAME_MAP, { .vop_map = ufs_map },
VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
VOPNAME_DUMP, { .vop_dump = ufs_dump },
VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
NULL, NULL
};
#define MAX_BACKFILE_COUNT 9999
/*
* Created by ufs_dumpctl() to store a file's disk block info into memory.
* Used by ufs_dump() to dump data to disk directly.
*/
struct dump {
struct inode *ip; /* the file we contain */
daddr_t fsbs; /* number of blocks stored */
struct timeval32 time; /* time stamp for the struct */
daddr32_t dblk[1]; /* place holder for block info */
};
static struct dump *dump_info = NULL;
/*
* Previously there was no special action required for ordinary files.
* (Devices are handled through the device file system.)
* Now we support Large Files and Large File API requires open to
* fail if file is large.
* We could take care to prevent data corruption
* by doing an atomic check of size and truncate if file is opened with
* FTRUNC flag set but traditionally this is being done by the vfs/vnode
* layers. So taking care of truncation here is a change in the existing
* semantics of VOP_OPEN and therefore we chose not to implement any thing
* here. The check for the size of the file > 2GB is being done at the
* vfs layer in routine vn_open().
*/
/* ARGSUSED */
static int
ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
{
return (0);
}
/*ARGSUSED*/
static int
ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
struct cred *cr, caller_context_t *ct)
{
cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
cleanshares(vp, ttoproc(curthread)->p_pid);
/*
* Push partially filled cluster at last close.
* ``last close'' is approximated because the dnlc
* may have a hold on the vnode.
* Checking for VBAD here will also act as a forced umount check.
*/
if (vp->v_count <= 2 && vp->v_type != VBAD) {
struct inode *ip = VTOI(vp);
if (ip->i_delaylen) {
ins.in_poc.value.ul++;
(void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
B_ASYNC | B_FREE, cr);
ip->i_delaylen = 0;
}
}
return (0);
}
/*ARGSUSED*/
static int
ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
struct caller_context *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp = NULL;
int error = 0;
int intrans = 0;
ASSERT(RW_READ_HELD(&ip->i_rwlock));
/*
* Mandatory locking needs to be done before ufs_lockfs_begin()
* and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
*/
if (MANDLOCK(vp, ip->i_mode)) {
/*
* ufs_getattr ends up being called by chklock
*/
error = chklock(vp, FREAD, uiop->uio_loffset,
uiop->uio_resid, uiop->uio_fmode, ct);
if (error)
goto out;
}
ufsvfsp = ip->i_ufsvfs;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
if (error)
goto out;
/*
* In the case that a directory is opened for reading as a file
* (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
* The locking order had to be changed to avoid a deadlock with
* an update taking place on that directory at the same time.
*/
if ((ip->i_mode & IFMT) == IFDIR) {
rw_enter(&ip->i_contents, RW_READER);
error = rdip(ip, uiop, ioflag, cr);
rw_exit(&ip->i_contents);
if (error) {
if (ulp)
ufs_lockfs_end(ulp);
goto out;
}
if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
TRANS_ISTRANS(ufsvfsp)) {
rw_exit(&ip->i_rwlock);
TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
error);
ASSERT(!error);
TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
TOP_READ_SIZE);
rw_enter(&ip->i_rwlock, RW_READER);
}
} else {
/*
* Only transact reads to files opened for sync-read and
* sync-write on a file system that is not write locked.
*
* The ``not write locked'' check prevents problems with
* enabling/disabling logging on a busy file system. E.g.,
* logging exists at the beginning of the read but does not
* at the end.
*
*/
if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
TRANS_ISTRANS(ufsvfsp)) {
TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
error);
ASSERT(!error);
intrans = 1;
}
rw_enter(&ip->i_contents, RW_READER);
error = rdip(ip, uiop, ioflag, cr);
rw_exit(&ip->i_contents);
if (intrans) {
TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
TOP_READ_SIZE);
}
}
if (ulp) {
ufs_lockfs_end(ulp);
}
out:
return (error);
}
extern int ufs_HW; /* high water mark */
extern int ufs_LW; /* low water mark */
int ufs_WRITES = 1; /* XXX - enable/disable */
int ufs_throttles = 0; /* throttling count */
int ufs_allow_shared_writes = 1; /* directio shared writes */
static int
ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
{
int shared_write;
/*
* If the FDSYNC flag is set then ignore the global
* ufs_allow_shared_writes in this case.
*/
shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
/*
* Filter to determine if this request is suitable as a
* concurrent rewrite. This write must not allocate blocks
* by extending the file or filling in holes. No use trying
* through FSYNC descriptors as the inode will be synchronously
* updated after the write. The uio structure has not yet been
* checked for sanity, so assume nothing.
*/
return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
(uiop->uio_loffset >= (offset_t)0) &&
(uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
!(ioflag & FSYNC) && !bmap_has_holes(ip) &&
shared_write);
}
/*ARGSUSED*/
static int
ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
int retry = 1;
int error, resv, resid = 0;
int directio_status;
int exclusive;
int rewriteflg;
long start_resid = uiop->uio_resid;
ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
retry_mandlock:
/*
* Mandatory locking needs to be done before ufs_lockfs_begin()
* and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
* Check for forced unmounts normally done in ufs_lockfs_begin().
*/
if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
error = EIO;
goto out;
}
if (MANDLOCK(vp, ip->i_mode)) {
ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
/*
* ufs_getattr ends up being called by chklock
*/
error = chklock(vp, FWRITE, uiop->uio_loffset,
uiop->uio_resid, uiop->uio_fmode, ct);
if (error)
goto out;
}
/* i_rwlock can change in chklock */
exclusive = rw_write_held(&ip->i_rwlock);
rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
/*
* Check for fast-path special case of directio re-writes.
*/
if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
!exclusive && rewriteflg) {
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
if (error)
goto out;
rw_enter(&ip->i_contents, RW_READER);
error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
&directio_status);
if (directio_status == DIRECTIO_SUCCESS) {
uint_t i_flag_save;
if (start_resid != uiop->uio_resid)
error = 0;
/*
* Special treatment of access times for re-writes.
* If IMOD is not already set, then convert it
* to IMODACC for this operation. This defers
* entering a delta into the log until the inode
* is flushed. This mimics what is done for read
* operations and inode access time.
*/
mutex_enter(&ip->i_tlock);
i_flag_save = ip->i_flag;
ip->i_flag |= IUPD | ICHG;
ip->i_seq++;
ITIMES_NOLOCK(ip);
if ((i_flag_save & IMOD) == 0) {
ip->i_flag &= ~IMOD;
ip->i_flag |= IMODACC;
}
mutex_exit(&ip->i_tlock);
rw_exit(&ip->i_contents);
if (ulp)
ufs_lockfs_end(ulp);
goto out;
}
rw_exit(&ip->i_contents);
if (ulp)
ufs_lockfs_end(ulp);
}
if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
rw_exit(&ip->i_rwlock);
rw_enter(&ip->i_rwlock, RW_WRITER);
/*
* Mandatory locking could have been enabled
* after dropping the i_rwlock.
*/
if (MANDLOCK(vp, ip->i_mode))
goto retry_mandlock;
}
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
if (error)
goto out;
/*
* Amount of log space needed for this write
*/
if (!rewriteflg || !(ioflag & FDSYNC))
TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
/*
* Throttle writes.
*/
if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
mutex_enter(&ip->i_tlock);
while (ip->i_writes > ufs_HW) {
ufs_throttles++;
cv_wait(&ip->i_wrcv, &ip->i_tlock);
}
mutex_exit(&ip->i_tlock);
}
/*
* Enter Transaction
*
* If the write is a rewrite there is no need to open a transaction
* if the FDSYNC flag is set and not the FSYNC. In this case just
* set the IMODACC flag to modify do the update at a later time
* thus avoiding the overhead of the logging transaction that is
* not required.
*/
if (ioflag & (FSYNC|FDSYNC)) {
if (ulp) {
if (rewriteflg) {
uint_t i_flag_save;
rw_enter(&ip->i_contents, RW_READER);
mutex_enter(&ip->i_tlock);
i_flag_save = ip->i_flag;
ip->i_flag |= IUPD | ICHG;
ip->i_seq++;
ITIMES_NOLOCK(ip);
if ((i_flag_save & IMOD) == 0) {
ip->i_flag &= ~IMOD;
ip->i_flag |= IMODACC;
}
mutex_exit(&ip->i_tlock);
rw_exit(&ip->i_contents);
} else {
int terr = 0;
TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
terr);
ASSERT(!terr);
}
}
} else {
if (ulp)
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
}
/*
* Write the file
*/
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
/*
* In append mode start at end of file.
*/
uiop->uio_loffset = ip->i_size;
}
/*
* Mild optimisation, don't call ufs_trans_write() unless we have to
* Also, suppress file system full messages if we will retry.
*/
if (retry)
ip->i_flag |= IQUIET;
if (resid) {
TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
} else {
error = wrip(ip, uiop, ioflag, cr);
}
ip->i_flag &= ~IQUIET;
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
/*
* Leave Transaction
*/
if (ulp) {
if (ioflag & (FSYNC|FDSYNC)) {
if (!rewriteflg) {
int terr = 0;
TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
resv);
if (error == 0)
error = terr;
}
} else {
TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
}
ufs_lockfs_end(ulp);
}
out:
if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
/*
* Any blocks tied up in pending deletes?
*/
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
goto retry_mandlock;
}
if (error == ENOSPC && (start_resid != uiop->uio_resid))
error = 0;
return (error);
}
/*
* Don't cache write blocks to files with the sticky bit set.
* Used to keep swap files from blowing the page cache on a server.
*/
int stickyhack = 1;
/*
* Free behind hacks. The pager is busted.
* XXX - need to pass the information down to writedone() in a flag like B_SEQ
* or B_FREE_IF_TIGHT_ON_MEMORY.
*/
int freebehind = 1;
int smallfile = 0;
u_offset_t smallfile64 = 32 * 1024;
/*
* While we should, in most cases, cache the pages for write, we
* may also want to cache the pages for read as long as they are
* frequently re-usable.
*
* If cache_read_ahead = 1, the pages for read will go to the tail
* of the cache list when they are released, otherwise go to the head.
*/
int cache_read_ahead = 0;
/*
* Freebehind exists so that as we read large files sequentially we
* don't consume most of memory with pages from a few files. It takes
* longer to re-read from disk multiple small files as it does reading
* one large one sequentially. As system memory grows customers need
* to retain bigger chunks of files in memory. The advent of the
* cachelist opens up of the possibility freeing pages to the head or
* tail of the list.
*
* Not freeing a page is a bet that the page will be read again before
* it's segmap slot is needed for something else. If we loose the bet,
* it means some other thread is burdened with the page free we did
* not do. If we win we save a free and reclaim.
*
* Freeing it at the tail vs the head of cachelist is a bet that the
* page will survive until the next read. It's also saying that this
* page is more likely to be re-used than a page freed some time ago
* and never reclaimed.
*
* Freebehind maintains a range of file offset [smallfile1; smallfile2]
*
* 0 < offset < smallfile1 : pages are not freed.
* smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
* smallfile2 < offset : pages freed to head of cachelist.
*
* The range is computed at most once per second and depends on
* freemem and ncpus_online. Both parameters are bounded to be
* >= smallfile && >= smallfile64.
*
* smallfile1 = (free memory / ncpu) / 1000
* smallfile2 = (free memory / ncpu) / 10
*
* A few examples values:
*
* Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
* ncpus_online = 4 ncpus_online = 64
* ------------------ ----------------------- -----------------------
* 1G [256K; 25M] [32K; 1.5M]
* 10G [2.5M; 250M] [156K; 15M]
* 100G [25M; 2.5G] [1.5M; 150M]
*
*/
#define SMALLFILE1_D 1000
#define SMALLFILE2_D 10
static u_offset_t smallfile1 = 32 * 1024;
static u_offset_t smallfile2 = 32 * 1024;
static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
uint_t smallfile1_d = SMALLFILE1_D;
uint_t smallfile2_d = SMALLFILE2_D;
/*
* wrip does the real work of write requests for ufs.
*/
int
wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
{
rlim64_t limit = uio->uio_llimit;
u_offset_t off;
u_offset_t old_i_size;
struct fs *fs;
struct vnode *vp;
struct ufsvfs *ufsvfsp;
caddr_t base;
long start_resid = uio->uio_resid; /* save starting resid */
long premove_resid; /* resid before uiomove() */
uint_t flags;
int newpage;
int iupdat_flag, directio_status;
int n, on, mapon;
int error, pagecreate;
int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
int32_t iblocks;
int new_iblocks;
/*
* ip->i_size is incremented before the uiomove
* is done on a write. If the move fails (bad user
* address) reset ip->i_size.
* The better way would be to increment ip->i_size
* only if the uiomove succeeds.
*/
int i_size_changed = 0;
o_mode_t type;
int i_seq_needed = 0;
vp = ITOV(ip);
/*
* check for forced unmount - should not happen as
* the request passed the lockfs checks.
*/
if ((ufsvfsp = ip->i_ufsvfs) == NULL)
return (EIO);
fs = ip->i_fs;
ASSERT(RW_WRITE_HELD(&ip->i_contents));
/* check for valid filetype */
type = ip->i_mode & IFMT;
if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
(type != IFLNK) && (type != IFSHAD)) {
return (EIO);
}
/*
* the actual limit of UFS file size
* is UFS_MAXOFFSET_T
*/
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
if (uio->uio_loffset >= limit) {
proc_t *p = ttoproc(curthread);
mutex_enter(&p->p_lock);
(void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
p, RCA_UNSAFE_SIGINFO);
mutex_exit(&p->p_lock);
return (EFBIG);
}
/*
* if largefiles are disallowed, the limit is
* the pre-largefiles value of 2GB
*/
if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
limit = MIN(UFS_MAXOFFSET_T, limit);
else
limit = MIN(MAXOFF32_T, limit);
if (uio->uio_loffset < (offset_t)0) {
return (EINVAL);
}
if (uio->uio_resid == 0) {
return (0);
}
if (uio->uio_loffset >= limit)
return (EFBIG);
ip->i_flag |= INOACC; /* don't update ref time in getpage */
if (ioflag & (FSYNC|FDSYNC)) {
ip->i_flag |= ISYNC;
iupdat_flag = 1;
}
/*
* Try to go direct
*/
if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
uio->uio_llimit = limit;
error = ufs_directio_write(ip, uio, ioflag, 0, cr,
&directio_status);
/*
* If ufs_directio wrote to the file or set the flags,
* we need to update i_seq, but it may be deferred.
*/
if (start_resid != uio->uio_resid ||
(ip->i_flag & (ICHG|IUPD))) {
i_seq_needed = 1;
ip->i_flag |= ISEQ;
}
if (directio_status == DIRECTIO_SUCCESS)
goto out;
}
/*
* Behavior with respect to dropping/reacquiring vfs_dqrwlock:
*
* o shadow inodes: vfs_dqrwlock is not held at all
* o quota updates: vfs_dqrwlock is read or write held
* o other updates: vfs_dqrwlock is read held
*
* The first case is the only one where we do not hold
* vfs_dqrwlock at all while entering wrip().
* We must make sure not to downgrade/drop vfs_dqrwlock if we
* have it as writer, i.e. if we are updating the quota inode.
* There is no potential deadlock scenario in this case as
* ufs_getpage() takes care of this and avoids reacquiring
* vfs_dqrwlock in that case.
*
* This check is done here since the above conditions do not change
* and we possibly loop below, so save a few cycles.
*/
if ((type == IFSHAD) ||
(rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
do_dqrwlock = 0;
} else {
do_dqrwlock = 1;
}
/*
* Large Files: We cast MAXBMASK to offset_t
* inorder to mask out the higher bits. Since offset_t
* is a signed value, the high order bit set in MAXBMASK
* value makes it do the right thing by having all bits 1
* in the higher word. May be removed for _SOLARIS64_.
*/
fs = ip->i_fs;
do {
u_offset_t uoff = uio->uio_loffset;
off = uoff & (offset_t)MAXBMASK;
mapon = (int)(uoff & (offset_t)MAXBOFFSET);
on = (int)blkoff(fs, uoff);
n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
new_iblocks = 1;
if (type == IFREG && uoff + n >= limit) {
if (uoff >= limit) {
error = EFBIG;
goto out;
}
/*
* since uoff + n >= limit,
* therefore n >= limit - uoff, and n is an int
* so it is safe to cast it to an int
*/
n = (int)(limit - (rlim64_t)uoff);
}
if (uoff + n > ip->i_size) {
/*
* We are extending the length of the file.
* bmap is used so that we are sure that
* if we need to allocate new blocks, that it
* is done here before we up the file size.
*/
error = bmap_write(ip, uoff, (int)(on + n),
mapon == 0, NULL, cr);
/*
* bmap_write never drops i_contents so if
* the flags are set it changed the file.
*/
if (ip->i_flag & (ICHG|IUPD)) {
i_seq_needed = 1;
ip->i_flag |= ISEQ;
}
if (error)
break;
/*
* There is a window of vulnerability here.
* The sequence of operations: allocate file
* system blocks, uiomove the data into pages,
* and then update the size of the file in the
* inode, must happen atomically. However, due
* to current locking constraints, this can not
* be done.
*/
ASSERT(ip->i_writer == NULL);
ip->i_writer = curthread;
i_size_changed = 1;
/*
* If we are writing from the beginning of
* the mapping, we can just create the
* pages without having to read them.
*/
pagecreate = (mapon == 0);
} else if (n == MAXBSIZE) {
/*
* Going to do a whole mappings worth,
* so we can just create the pages w/o
* having to read them in. But before
* we do that, we need to make sure any
* needed blocks are allocated first.
*/
iblocks = ip->i_blocks;
error = bmap_write(ip, uoff, (int)(on + n),
BI_ALLOC_ONLY, NULL, cr);
/*
* bmap_write never drops i_contents so if
* the flags are set it changed the file.
*/
if (ip->i_flag & (ICHG|IUPD)) {
i_seq_needed = 1;
ip->i_flag |= ISEQ;
}
if (error)
break;
pagecreate = 1;
/*
* check if the new created page needed the
* allocation of new disk blocks.
*/
if (iblocks == ip->i_blocks)
new_iblocks = 0; /* no new blocks allocated */
} else {
pagecreate = 0;
/*
* In sync mode flush the indirect blocks which
* may have been allocated and not written on
* disk. In above cases bmap_write will allocate
* in sync mode.
*/
if (ioflag & (FSYNC|FDSYNC)) {
error = ufs_indirblk_sync(ip, uoff);
if (error)
break;
}
}
/*
* At this point we can enter ufs_getpage() in one
* of two ways:
* 1) segmap_getmapflt() calls ufs_getpage() when the
* forcefault parameter is true (pagecreate == 0)
* 2) uiomove() causes a page fault.
*
* We have to drop the contents lock to prevent the VM
* system from trying to reacquire it in ufs_getpage()
* should the uiomove cause a pagefault.
*
* We have to drop the reader vfs_dqrwlock here as well.
*/
rw_exit(&ip->i_contents);
if (do_dqrwlock) {
ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
rw_exit(&ufsvfsp->vfs_dqrwlock);
}
newpage = 0;
premove_resid = uio->uio_resid;
if (vpm_enable) {
/*
* Copy data. If new pages are created, part of
* the page that is not written will be initizliazed
* with zeros.
*/
error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
uio, !pagecreate, &newpage, 0, S_WRITE);
} else {
base = segmap_getmapflt(segkmap, vp, (off + mapon),
(uint_t)n, !pagecreate, S_WRITE);
/*
* segmap_pagecreate() returns 1 if it calls
* page_create_va() to allocate any pages.
*/
if (pagecreate)
newpage = segmap_pagecreate(segkmap, base,
(size_t)n, 0);
error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
}
/*
* If "newpage" is set, then a new page was created and it
* does not contain valid data, so it needs to be initialized
* at this point.
* Otherwise the page contains old data, which was overwritten
* partially or as a whole in uiomove.
* If there is only one iovec structure within uio, then
* on error uiomove will not be able to update uio->uio_loffset
* and we would zero the whole page here!
*
* If uiomove fails because of an error, the old valid data
* is kept instead of filling the rest of the page with zero's.
*/
if (!vpm_enable && newpage &&
uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
/*
* We created pages w/o initializing them completely,
* thus we need to zero the part that wasn't set up.
* This happens on most EOF write cases and if
* we had some sort of error during the uiomove.
*/
int nzero, nmoved;
nmoved = (int)(uio->uio_loffset - (off + mapon));
ASSERT(nmoved >= 0 && nmoved <= n);
nzero = roundup(on + n, PAGESIZE) - nmoved;
ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
(void) kzero(base + mapon + nmoved, (uint_t)nzero);
}
/*
* Unlock the pages allocated by page_create_va()
* in segmap_pagecreate()
*/
if (!vpm_enable && newpage)
segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
/*
* If the size of the file changed, then update the
* size field in the inode now. This can't be done
* before the call to segmap_pageunlock or there is
* a potential deadlock with callers to ufs_putpage().
* They will be holding i_contents and trying to lock
* a page, while this thread is holding a page locked
* and trying to acquire i_contents.
*/
if (i_size_changed) {
rw_enter(&ip->i_contents, RW_WRITER);
old_i_size = ip->i_size;
UFS_SET_ISIZE(uoff + n, ip);
TRANS_INODE(ufsvfsp, ip);
/*
* file has grown larger than 2GB. Set flag
* in superblock to indicate this, if it
* is not already set.
*/
if ((ip->i_size > MAXOFF32_T) &&
!(fs->fs_flags & FSLARGEFILES)) {
ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
mutex_enter(&ufsvfsp->vfs_lock);
fs->fs_flags |= FSLARGEFILES;
ufs_sbwrite(ufsvfsp);
mutex_exit(&ufsvfsp->vfs_lock);
}
mutex_enter(&ip->i_tlock);
ip->i_writer = NULL;
cv_broadcast(&ip->i_wrcv);
mutex_exit(&ip->i_tlock);
rw_exit(&ip->i_contents);
}
if (error) {
/*
* If we failed on a write, we may have already
* allocated file blocks as well as pages. It's
* hard to undo the block allocation, but we must
* be sure to invalidate any pages that may have
* been allocated.
*
* If the page was created without initialization
* then we must check if it should be possible
* to destroy the new page and to keep the old data
* on the disk.
*
* It is possible to destroy the page without
* having to write back its contents only when
* - the size of the file keeps unchanged
* - bmap_write() did not allocate new disk blocks
* it is possible to create big files using "seek" and
* write to the end of the file. A "write" to a
* position before the end of the file would not
* change the size of the file but it would allocate
* new disk blocks.
* - uiomove intended to overwrite the whole page.
* - a new page was created (newpage == 1).
*/
if (i_size_changed == 0 && new_iblocks == 0 &&
newpage) {
/* unwind what uiomove eventually last did */
uio->uio_resid = premove_resid;
/*
* destroy the page, do not write ambiguous
* data to the disk.
*/
flags = SM_DESTROY;
} else {
/*
* write the page back to the disk, if dirty,
* and remove the page from the cache.
*/
flags = SM_INVAL;
}
if (vpm_enable) {
/*
* Flush pages.
*/
(void) vpm_sync_pages(vp, off, n, flags);
} else {
(void) segmap_release(segkmap, base, flags);
}
} else {
flags = 0;
/*
* Force write back for synchronous write cases.
*/
if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
/*
* If the sticky bit is set but the
* execute bit is not set, we do a
* synchronous write back and free
* the page when done. We set up swap
* files to be handled this way to
* prevent servers from keeping around
* the client's swap pages too long.
* XXX - there ought to be a better way.
*/
if (IS_SWAPVP(vp)) {
flags = SM_WRITE | SM_FREE |
SM_DONTNEED;
iupdat_flag = 0;
} else {
flags = SM_WRITE;
}
} else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
/*
* Have written a whole block.
* Start an asynchronous write and
* mark the buffer to indicate that
* it won't be needed again soon.
*/
flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
}
if (vpm_enable) {
/*
* Flush pages.
*/
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
/*
* If the operation failed and is synchronous,
* then we need to unwind what uiomove() last
* did so we can potentially return an error to
* the caller. If this write operation was
* done in two pieces and the first succeeded,
* then we won't return an error for the second
* piece that failed. However, we only want to
* return a resid value that reflects what was
* really done.
*
* Failures for non-synchronous operations can
* be ignored since the page subsystem will
* retry the operation until it succeeds or the
* file system is unmounted.
*/
if (error) {
if ((ioflag & (FSYNC | FDSYNC)) ||
type == IFDIR) {
uio->uio_resid = premove_resid;
} else {
error = 0;
}
}
}
/*
* Re-acquire contents lock.
* If it was dropped, reacquire reader vfs_dqrwlock as well.
*/
if (do_dqrwlock)
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
/*
* If the uiomove() failed or if a synchronous
* page push failed, fix up i_size.
*/
if (error) {
if (i_size_changed) {
/*
* The uiomove failed, and we
* allocated blocks,so get rid
* of them.
*/
(void) ufs_itrunc(ip, old_i_size, 0, cr);
}
} else {
/*
* XXX - Can this be out of the loop?
*/
ip->i_flag |= IUPD | ICHG;
/*
* Only do one increase of i_seq for multiple
* pieces. Because we drop locks, record
* the fact that we changed the timestamp and
* are deferring the increase in case another thread
* pushes our timestamp update.
*/
i_seq_needed = 1;
ip->i_flag |= ISEQ;
if (i_size_changed)
ip->i_flag |= IATTCHG;
if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
(IEXEC >> 6))) != 0 &&
(ip->i_mode & (ISUID | ISGID)) != 0 &&
secpolicy_vnode_setid_retain(cr,
(ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
/*
* Clear Set-UID & Set-GID bits on
* successful write if not privileged
* and at least one of the execute bits
* is set. If we always clear Set-GID,
* mandatory file and record locking is
* unuseable.
*/
ip->i_mode &= ~(ISUID | ISGID);
}
}
/*
* In the case the FDSYNC flag is set and this is a
* "rewrite" we won't log a delta.
* The FSYNC flag overrides all cases.
*/
if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
TRANS_INODE(ufsvfsp, ip);
}
} while (error == 0 && uio->uio_resid > 0 && n != 0);
out:
/*
* Make sure i_seq is increased at least once per write
*/
if (i_seq_needed) {
ip->i_seq++;
ip->i_flag &= ~ISEQ; /* no longer deferred */
}
/*
* Inode is updated according to this table -
*
* FSYNC FDSYNC(posix.4)
* --------------------------
* always@ IATTCHG|IBDWRITE
*
* @ - If we are doing synchronous write the only time we should
* not be sync'ing the ip here is if we have the stickyhack
* activated, the file is marked with the sticky bit and
* no exec bit, the file length has not been changed and
* no new blocks have been allocated during this write.
*/
if ((ip->i_flag & ISYNC) != 0) {
/*
* we have eliminated nosync
*/
if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
((ioflag & FSYNC) && iupdat_flag)) {
ufs_iupdat(ip, 1);
}
}
/*
* If we've already done a partial-write, terminate
* the write but return no error unless the error is ENOSPC
* because the caller can detect this and free resources and
* try again.
*/
if ((start_resid != uio->uio_resid) && (error != ENOSPC))
error = 0;
ip->i_flag &= ~(INOACC | ISYNC);
ITIMES_NOLOCK(ip);
return (error);
}
/*
* rdip does the real work of read requests for ufs.
*/
int
rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
{
u_offset_t off;
caddr_t base;
struct fs *fs;
struct ufsvfs *ufsvfsp;
struct vnode *vp;
long oresid = uio->uio_resid;
u_offset_t n, on, mapon;
int error = 0;
int doupdate = 1;
uint_t flags;
int dofree, directio_status;
krw_t rwtype;
o_mode_t type;
vp = ITOV(ip);
ASSERT(RW_LOCK_HELD(&ip->i_contents));
ufsvfsp = ip->i_ufsvfs;
if (ufsvfsp == NULL)
return (EIO);
fs = ufsvfsp->vfs_fs;
/* check for valid filetype */
type = ip->i_mode & IFMT;
if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
(type != IFLNK) && (type != IFSHAD)) {
return (EIO);
}
if (uio->uio_loffset > UFS_MAXOFFSET_T) {
error = 0;
goto out;
}
if (uio->uio_loffset < (offset_t)0) {
return (EINVAL);
}
if (uio->uio_resid == 0) {
return (0);
}
if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
(!ufsvfsp->vfs_noatime)) {
mutex_enter(&ip->i_tlock);
ip->i_flag |= IACC;
mutex_exit(&ip->i_tlock);
}
/*
* Try to go direct
*/
if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
error = ufs_directio_read(ip, uio, cr, &directio_status);
if (directio_status == DIRECTIO_SUCCESS)
goto out;
}
rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
do {
offset_t diff;
u_offset_t uoff = uio->uio_loffset;
off = uoff & (offset_t)MAXBMASK;
mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
on = (u_offset_t)blkoff(fs, uoff);
n = MIN((u_offset_t)fs->fs_bsize - on,
(u_offset_t)uio->uio_resid);
diff = ip->i_size - uoff;
if (diff <= (offset_t)0) {
error = 0;
goto out;
}
if (diff < (offset_t)n)
n = (int)diff;
/*
* We update smallfile2 and smallfile1 at most every second.
*/
if (lbolt >= smallfile_update) {
uint64_t percpufreeb;
if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
smallfile1 = percpufreeb / smallfile1_d;
smallfile2 = percpufreeb / smallfile2_d;
smallfile1 = MAX(smallfile1, smallfile);
smallfile1 = MAX(smallfile1, smallfile64);
smallfile2 = MAX(smallfile1, smallfile2);
smallfile_update = lbolt + hz;
}
dofree = freebehind &&
ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
/*
* At this point we can enter ufs_getpage() in one of two
* ways:
* 1) segmap_getmapflt() calls ufs_getpage() when the
* forcefault parameter is true (value of 1 is passed)
* 2) uiomove() causes a page fault.
*
* We cannot hold onto an i_contents reader lock without
* risking deadlock in ufs_getpage() so drop a reader lock.
* The ufs_getpage() dolock logic already allows for a
* thread holding i_contents as writer to work properly
* so we keep a writer lock.
*/
if (rwtype == RW_READER)
rw_exit(&ip->i_contents);
if (vpm_enable) {
/*
* Copy data.
*/
error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
uio, 1, NULL, 0, S_READ);
} else {
base = segmap_getmapflt(segkmap, vp, (off + mapon),
(uint_t)n, 1, S_READ);
error = uiomove(base + mapon, (long)n, UIO_READ, uio);
}
flags = 0;
if (!error) {
/*
* If reading sequential we won't need this
* buffer again soon. For offsets in range
* [smallfile1, smallfile2] release the pages
* at the tail of the cache list, larger
* offsets are released at the head.
*/
if (dofree) {
flags = SM_FREE | SM_ASYNC;
if ((cache_read_ahead == 0) &&
(off > smallfile2))
flags |= SM_DONTNEED;
}
/*
* In POSIX SYNC (FSYNC and FDSYNC) read mode,
* we want to make sure that the page which has
* been read, is written on disk if it is dirty.
* And corresponding indirect blocks should also
* be flushed out.
*/
if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
flags &= ~SM_ASYNC;
flags |= SM_WRITE;
}
if (vpm_enable) {
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
} else {
if (vpm_enable) {
(void) vpm_sync_pages(vp, off, n, flags);
} else {
(void) segmap_release(segkmap, base, flags);
}
}
if (rwtype == RW_READER)
rw_enter(&ip->i_contents, rwtype);
} while (error == 0 && uio->uio_resid > 0 && n != 0);
out:
/*
* Inode is updated according to this table if FRSYNC is set.
*
* FSYNC FDSYNC(posix.4)
* --------------------------
* always IATTCHG|IBDWRITE
*/
/*
* The inode is not updated if we're logging and the inode is a
* directory with FRSYNC, FSYNC and FDSYNC flags set.
*/
if (ioflag & FRSYNC) {
if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
doupdate = 0;
}
if (doupdate) {
if ((ioflag & FSYNC) ||
((ioflag & FDSYNC) &&
(ip->i_flag & (IATTCHG|IBDWRITE)))) {
ufs_iupdat(ip, 1);
}
}
}
/*
* If we've already done a partial read, terminate
* the read but return no error.
*/
if (oresid != uio->uio_resid)
error = 0;
ITIMES(ip);
return (error);
}
/* ARGSUSED */
static int
ufs_ioctl(
struct vnode *vp,
int cmd,
intptr_t arg,
int flag,
struct cred *cr,
int *rvalp,
caller_context_t *ct)
{
struct lockfs lockfs, lockfs_out;
struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
char *comment, *original_comment;
struct fs *fs;
struct ulockfs *ulp;
offset_t off;
extern int maxphys;
int error;
int issync;
int trans_size;
/*
* forcibly unmounted
*/
if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO);
fs = ufsvfsp->vfs_fs;
if (cmd == Q_QUOTACTL) {
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
if (error)
return (error);
if (ulp) {
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
TOP_SETQUOTA_SIZE(fs));
}
error = quotactl(vp, arg, flag, cr);
if (ulp) {
TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
TOP_SETQUOTA_SIZE(fs));
ufs_lockfs_end(ulp);
}
return (error);
}
switch (cmd) {
case _FIOLFS:
/*
* file system locking
*/
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
if (copyin((caddr_t)arg, &lockfs,
sizeof (struct lockfs)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
struct lockfs32 lockfs32;
/* Translate ILP32 lockfs to LP64 lockfs */
if (copyin((caddr_t)arg, &lockfs32,
sizeof (struct lockfs32)))
return (EFAULT);
lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
lockfs.lf_key = (ulong_t)lockfs32.lf_key;
lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
lockfs.lf_comment =
(caddr_t)(uintptr_t)lockfs32.lf_comment;
}
#endif /* _SYSCALL32_IMPL */
if (lockfs.lf_comlen) {
if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
return (ENAMETOOLONG);
comment =
kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
if (copyin(lockfs.lf_comment, comment,
lockfs.lf_comlen)) {
kmem_free(comment, lockfs.lf_comlen);
return (EFAULT);
}
original_comment = lockfs.lf_comment;
lockfs.lf_comment = comment;
}
if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
lockfs.lf_comment = original_comment;
if ((flag & DATAMODEL_MASK) ==
DATAMODEL_NATIVE) {
(void) copyout(&lockfs, (caddr_t)arg,
sizeof (struct lockfs));
}
#ifdef _SYSCALL32_IMPL
else {
struct lockfs32 lockfs32;
/* Translate LP64 to ILP32 lockfs */
lockfs32.lf_lock =
(uint32_t)lockfs.lf_lock;
lockfs32.lf_flags =
(uint32_t)lockfs.lf_flags;
lockfs32.lf_key =
(uint32_t)lockfs.lf_key;
lockfs32.lf_comlen =
(uint32_t)lockfs.lf_comlen;
lockfs32.lf_comment =
(uint32_t)(uintptr_t)
lockfs.lf_comment;
(void) copyout(&lockfs32, (caddr_t)arg,
sizeof (struct lockfs32));
}
#endif /* _SYSCALL32_IMPL */
} else {
if (lockfs.lf_comlen)
kmem_free(comment, lockfs.lf_comlen);
}
return (error);
case _FIOLFSS:
/*
* get file system locking status
*/
if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
if (copyin((caddr_t)arg, &lockfs,
sizeof (struct lockfs)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
struct lockfs32 lockfs32;
/* Translate ILP32 lockfs to LP64 lockfs */
if (copyin((caddr_t)arg, &lockfs32,
sizeof (struct lockfs32)))
return (EFAULT);
lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
lockfs.lf_key = (ulong_t)lockfs32.lf_key;
lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
lockfs.lf_comment =
(caddr_t)(uintptr_t)lockfs32.lf_comment;
}
#endif /* _SYSCALL32_IMPL */
if (error = ufs_fiolfss(vp, &lockfs_out))
return (error);
lockfs.lf_lock = lockfs_out.lf_lock;
lockfs.lf_key = lockfs_out.lf_key;
lockfs.lf_flags = lockfs_out.lf_flags;
lockfs.lf_comlen = MIN(lockfs.lf_comlen,
lockfs_out.lf_comlen);
if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
if (copyout(&lockfs, (caddr_t)arg,
sizeof (struct lockfs)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* Translate LP64 to ILP32 lockfs */
struct lockfs32 lockfs32;
lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
lockfs32.lf_key = (uint32_t)lockfs.lf_key;
lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
lockfs32.lf_comment =
(uint32_t)(uintptr_t)lockfs.lf_comment;
if (copyout(&lockfs32, (caddr_t)arg,
sizeof (struct lockfs32)))
return (EFAULT);
}
#endif /* _SYSCALL32_IMPL */
if (lockfs.lf_comlen &&
lockfs.lf_comment && lockfs_out.lf_comment)
if (copyout(lockfs_out.lf_comment,
lockfs.lf_comment, lockfs.lf_comlen))
return (EFAULT);
return (0);
case _FIOSATIME:
/*
* set access time
*/
/*
* if mounted w/o atime, return quietly.
* I briefly thought about returning ENOSYS, but
* figured that most apps would consider this fatal
* but the idea is to make this as seamless as poss.
*/
if (ufsvfsp->vfs_noatime)
return (0);
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_SETATTR_MASK);
if (error)
return (error);
if (ulp) {
trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
TRANS_BEGIN_CSYNC(ufsvfsp, issync,
TOP_SETATTR, trans_size);
}
error = ufs_fiosatime(vp, (struct timeval *)arg,
flag, cr);
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync,
TOP_SETATTR, trans_size);
ufs_lockfs_end(ulp);
}
return (error);
case _FIOSDIO:
/*
* set delayed-io
*/
return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
case _FIOGDIO:
/*
* get delayed-io
*/
return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
case _FIOIO:
/*
* inode open
*/
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_VGET_MASK);
if (error)
return (error);
error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
if (ulp) {
ufs_lockfs_end(ulp);
}
return (error);
case _FIOFFS:
/*
* file system flush (push w/invalidate)
*/
if ((caddr_t)arg != NULL)
return (EINVAL);
return (ufs_fioffs(vp, NULL, cr));
case _FIOISBUSY:
/*
* Contract-private interface for Legato
* Purge this vnode from the DNLC and decide
* if this vnode is busy (*arg == 1) or not
* (*arg == 0)
*/
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
error = ufs_fioisbusy(vp, (int *)arg, cr);
return (error);
case _FIODIRECTIO:
return (ufs_fiodirectio(vp, (int)arg, cr));
case _FIOTUNE:
/*
* Tune the file system (aka setting fs attributes)
*/
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_SETATTR_MASK);
if (error)
return (error);
error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
if (ulp)
ufs_lockfs_end(ulp);
return (error);
case _FIOLOGENABLE:
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
return (ufs_fiologenable(vp, (void *)arg, cr, flag));
case _FIOLOGDISABLE:
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
case _FIOISLOG:
return (ufs_fioislog(vp, (void *)arg, cr, flag));
case _FIOSNAPSHOTCREATE_MULTI:
{
struct fiosnapcreate_multi fc, *fcp;
size_t fcm_size;
if (copyin((void *)arg, &fc, sizeof (fc)))
return (EFAULT);
if (fc.backfilecount > MAX_BACKFILE_COUNT)
return (EINVAL);
fcm_size = sizeof (struct fiosnapcreate_multi) +
(fc.backfilecount - 1) * sizeof (int);
fcp = (struct fiosnapcreate_multi *)
kmem_alloc(fcm_size, KM_SLEEP);
if (copyin((void *)arg, fcp, fcm_size)) {
kmem_free(fcp, fcm_size);
return (EFAULT);
}
error = ufs_snap_create(vp, fcp, cr);
/*
* Do copyout even if there is an error because
* the details of error is stored in fcp.
*/
if (copyout(fcp, (void *)arg, fcm_size))
error = EFAULT;
kmem_free(fcp, fcm_size);
return (error);
}
case _FIOSNAPSHOTDELETE:
{
struct fiosnapdelete fc;
if (copyin((void *)arg, &fc, sizeof (fc)))
return (EFAULT);
error = ufs_snap_delete(vp, &fc, cr);
if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
error = EFAULT;
return (error);
}
case _FIOGETSUPERBLOCK:
if (copyout(fs, (void *)arg, SBSIZE))
return (EFAULT);
return (0);
case _FIOGETMAXPHYS:
if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
return (EFAULT);
return (0);
/*
* The following 3 ioctls are for TSufs support
* although could potentially be used elsewhere
*/
case _FIO_SET_LUFS_DEBUG:
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
lufs_debug = (uint32_t)arg;
return (0);
case _FIO_SET_LUFS_ERROR:
if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
return (EPERM);
TRANS_SETERROR(ufsvfsp);
return (0);
case _FIO_GET_TOP_STATS:
{
fio_lufs_stats_t *ls;
ml_unit_t *ul = ufsvfsp->vfs_log;
ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
ls->ls_debug = ul->un_debug; /* return debug value */
/* Copy stucture if statistics are being kept */
if (ul->un_logmap->mtm_tops) {
ls->ls_topstats = *(ul->un_logmap->mtm_tops);
}
error = 0;
if (copyout(ls, (void *)arg, sizeof (*ls)))
error = EFAULT;
kmem_free(ls, sizeof (*ls));
return (error);
}
case _FIO_SEEK_DATA:
case _FIO_SEEK_HOLE:
if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
return (EFAULT);
/* offset paramater is in/out */
error = ufs_fio_holey(vp, cmd, &off);
if (error)
return (error);
if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
return (EFAULT);
return (0);
case _FIO_COMPRESSED:
{
/*
* This is a project private ufs ioctl() to mark
* the inode as that belonging to a compressed
* file. This is used to mark individual
* compressed files in a miniroot archive.
* The files compressed in this manner are
* automatically decompressed by the dcfs filesystem
* (via an interception in ufs_lookup - see decompvp())
* which is layered on top of ufs on a system running
* from the archive. See uts/common/fs/dcfs for details.
* This ioctl only marks the file as compressed - the
* actual compression is done by fiocompress (a
* userland utility) which invokes this ioctl().
*/
struct inode *ip = VTOI(vp);
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_SETATTR_MASK);
if (error)
return (error);
if (ulp) {
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
TOP_IUPDAT_SIZE(ip));
}
error = ufs_mark_compressed(vp);
if (ulp) {
TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
TOP_IUPDAT_SIZE(ip));
ufs_lockfs_end(ulp);
}
return (error);
}
default:
return (ENOTTY);
}
}
/* ARGSUSED */
static int
ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
struct cred *cr, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
int err;
if (vap->va_mask == AT_SIZE) {
/*
* for performance, if only the size is requested don't bother
* with anything else.
*/
UFS_GET_ISIZE(&vap->va_size, ip);
return (0);
}
/*
* inlined lockfs checks
*/
ufsvfsp = ip->i_ufsvfs;
if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
err = EIO;
goto out;
}
rw_enter(&ip->i_contents, RW_READER);
/*
* Return all the attributes. This should be refined so
* that it only returns what's asked for.
*/
/*
* Copy from inode table.
*/
vap->va_type = vp->v_type;
vap->va_mode = ip->i_mode & MODEMASK;
/*
* If there is an ACL and there is a mask entry, then do the
* extra work that completes the equivalent of an acltomode(3)
* call. According to POSIX P1003.1e, the acl mask should be
* returned in the group permissions field.
*
* - start with the original permission and mode bits (from above)
* - clear the group owner bits
* - add in the mask bits.
*/
if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
vap->va_mode |=
(ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
}
vap->va_uid = ip->i_uid;
vap->va_gid = ip->i_gid;
vap->va_fsid = ip->i_dev;
vap->va_nodeid = (ino64_t)ip->i_number;
vap->va_nlink = ip->i_nlink;
vap->va_size = ip->i_size;
if (vp->v_type == VCHR || vp->v_type == VBLK)
vap->va_rdev = ip->i_rdev;
else
vap->va_rdev = 0; /* not a b/c spec. */
mutex_enter(&ip->i_tlock);
ITIMES_NOLOCK(ip); /* mark correct time in inode */
vap->va_seq = ip->i_seq;
vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
mutex_exit(&ip->i_tlock);
switch (ip->i_mode & IFMT) {
case IFBLK:
vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
break;
case IFCHR:
vap->va_blksize = MAXBSIZE;
break;
default:
vap->va_blksize = ip->i_fs->fs_bsize;
break;
}
vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
rw_exit(&ip->i_contents);
err = 0;
out:
return (err);
}
/*ARGSUSED4*/
static int
ufs_setattr(
struct vnode *vp,
struct vattr *vap,
int flags,
struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct fs *fs;
struct ulockfs *ulp;
char *errmsg1;
char *errmsg2;
long blocks;
long int mask = vap->va_mask;
size_t len1, len2;
int issync;
int trans_size;
int dotrans;
int dorwlock;
int error;
int owner_change;
int dodqlock;
timestruc_t now;
vattr_t oldva;
int retry = 1;
int indeadlock;
/*
* Cannot set these attributes.
*/
if ((mask & AT_NOSET) || (mask & AT_XVATTR))
return (EINVAL);
/*
* check for forced unmount
*/
if (ufsvfsp == NULL)
return (EIO);
fs = ufsvfsp->vfs_fs;
if (fs->fs_ronly != 0)
return (EROFS);
again:
errmsg1 = NULL;
errmsg2 = NULL;
dotrans = 0;
dorwlock = 0;
dodqlock = 0;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
if (error)
goto out;
/*
* Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
* This follows the protocol for read()/write().
*/
if (vp->v_type != VDIR) {
/*
* ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
* avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
if (indeadlock) {
if (ulp)
ufs_lockfs_end(ulp);
goto again;
}
dorwlock = 1;
}
/*
* Truncate file. Must have write permission and not be a directory.
*/
if (mask & AT_SIZE) {
rw_enter(&ip->i_contents, RW_WRITER);
if (vp->v_type == VDIR) {
error = EISDIR;
goto update_inode;
}
if (error = ufs_iaccess(ip, IWRITE, cr))
goto update_inode;
rw_exit(&ip->i_contents);
error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
if (error) {
rw_enter(&ip->i_contents, RW_WRITER);
goto update_inode;
}
}
if (ulp) {
trans_size = (int)TOP_SETATTR_SIZE(ip);
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
++dotrans;
}
/*
* Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
* This follows the protocol established by
* ufs_link/create/remove/rename/mkdir/rmdir/symlink.
*/
if (vp->v_type == VDIR) {
ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
retry_dir);
if (indeadlock)
goto again;
dorwlock = 1;
}
/*
* Grab quota lock if we are changing the file's owner.
*/
if (mask & AT_UID) {
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
dodqlock = 1;
}
rw_enter(&ip->i_contents, RW_WRITER);
oldva.va_mode = ip->i_mode;
oldva.va_uid = ip->i_uid;
oldva.va_gid = ip->i_gid;
vap->va_mask &= ~AT_SIZE;
/*
* ufs_iaccess is "close enough"; that's because it doesn't
* map the defines.
*/
error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
ufs_iaccess, ip);
if (error)
goto update_inode;
mask = vap->va_mask;
/*
* Change file access modes.
*/
if (mask & AT_MODE) {
ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= ICHG;
if (stickyhack) {
mutex_enter(&vp->v_lock);
if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
vp->v_flag |= VSWAPLIKE;
else
vp->v_flag &= ~VSWAPLIKE;
mutex_exit(&vp->v_lock);
}
}
if (mask & (AT_UID|AT_GID)) {
if (mask & AT_UID) {
/*
* Don't change ownership of the quota inode.
*/
if (ufsvfsp->vfs_qinod == ip) {
ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
error = EINVAL;
goto update_inode;
}
/*
* No real ownership change.
*/
if (ip->i_uid == vap->va_uid) {
blocks = 0;
owner_change = 0;
}
/*
* Remove the blocks and the file, from the old user's
* quota.
*/
else {
blocks = ip->i_blocks;
owner_change = 1;
(void) chkdq(ip, -blocks, /* force */ 1, cr,
(char **)NULL, (size_t *)NULL);
(void) chkiq(ufsvfsp, /* change */ -1, ip,
(uid_t)ip->i_uid, /* force */ 1, cr,
(char **)NULL, (size_t *)NULL);
dqrele(ip->i_dquot);
}
ip->i_uid = vap->va_uid;
/*
* There is a real ownership change.
*/
if (owner_change) {
/*
* Add the blocks and the file to the new
* user's quota.
*/
ip->i_dquot = getinoquota(ip);
(void) chkdq(ip, blocks, /* force */ 1, cr,
&errmsg1, &len1);
(void) chkiq(ufsvfsp, /* change */ 1,
(struct inode *)NULL, (uid_t)ip->i_uid,
/* force */ 1, cr, &errmsg2, &len2);
}
}
if (mask & AT_GID) {
ip->i_gid = vap->va_gid;
}
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= ICHG;
}
/*
* Change file access or modified times.
*/
if (mask & (AT_ATIME|AT_MTIME)) {
/* Check that the time value is within ufs range */
if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
error = EOVERFLOW;
goto update_inode;
}
/*
* if the "noaccess" mount option is set and only atime
* update is requested, do nothing. No error is returned.
*/
if ((ufsvfsp->vfs_noatime) &&
((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
goto skip_atime;
if (mask & AT_ATIME) {
ip->i_atime.tv_sec = vap->va_atime.tv_sec;
ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
ip->i_flag &= ~IACC;
}
if (mask & AT_MTIME) {
ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
gethrestime(&now);
if (now.tv_sec > TIME32_MAX) {
/*
* In 2038, ctime sticks forever..
*/
ip->i_ctime.tv_sec = TIME32_MAX;
ip->i_ctime.tv_usec = 0;
} else {
ip->i_ctime.tv_sec = now.tv_sec;
ip->i_ctime.tv_usec = now.tv_nsec / 1000;
}
ip->i_flag &= ~(IUPD|ICHG);
ip->i_flag |= IMODTIME;
}
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IMOD;
}
skip_atime:
/*
* The presence of a shadow inode may indicate an ACL, but does
* not imply an ACL. Future FSD types should be handled here too
* and check for the presence of the attribute-specific data
* before referencing it.
*/
if (ip->i_shadow) {
/*
* XXX if ufs_iupdat is changed to sandbagged write fix
* ufs_acl_setattr to push ip to keep acls consistent
*
* Suppress out of inodes messages if we will retry.
*/
if (retry)
ip->i_flag |= IQUIET;
error = ufs_acl_setattr(ip, vap, cr);
ip->i_flag &= ~IQUIET;
}
update_inode:
/*
* Setattr always increases the sequence number
*/
ip->i_seq++;
/*
* if nfsd and not logging; push synchronously
*/
if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
ufs_iupdat(ip, 1);
} else {
ITIMES_NOLOCK(ip);
}
rw_exit(&ip->i_contents);
if (dodqlock) {
rw_exit(&ufsvfsp->vfs_dqrwlock);
}
if (dorwlock)
rw_exit(&ip->i_rwlock);
if (ulp) {
if (dotrans) {
int terr = 0;
TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
trans_size);
if (error == 0)
error = terr;
}
ufs_lockfs_end(ulp);
}
out:
/*
* If out of inodes or blocks, see if we can free something
* up from the delete queue.
*/
if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
if (errmsg1 != NULL)
kmem_free(errmsg1, len1);
if (errmsg2 != NULL)
kmem_free(errmsg2, len2);
goto again;
}
if (errmsg1 != NULL) {
uprintf(errmsg1);
kmem_free(errmsg1, len1);
}
if (errmsg2 != NULL) {
uprintf(errmsg2);
kmem_free(errmsg2, len2);
}
return (error);
}
/*ARGSUSED*/
static int
ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
int error;
if (ip->i_ufsvfs == NULL)
return (EIO);
rw_enter(&ip->i_contents, RW_READER);
/*
* The ufs_iaccess function wants to be called with
* mode bits expressed as "ufs specific" bits.
* I.e., VWRITE|VREAD|VEXEC do not make sense to
* ufs_iaccess() but IWRITE|IREAD|IEXEC do.
* But since they're the same we just pass the vnode mode
* bit but just verify that assumption at compile time.
*/
#if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
#error "ufs_access needs to map Vmodes to Imodes"
#endif
error = ufs_iaccess(ip, mode, cr);
rw_exit(&ip->i_contents);
return (error);
}
/* ARGSUSED */
static int
ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
int error;
int fastsymlink;
if (vp->v_type != VLNK) {
error = EINVAL;
goto nolockout;
}
/*
* If the symbolic link is empty there is nothing to read.
* Fast-track these empty symbolic links
*/
if (ip->i_size == 0) {
error = 0;
goto nolockout;
}
ufsvfsp = ip->i_ufsvfs;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
if (error)
goto nolockout;
/*
* The ip->i_rwlock protects the data blocks used for FASTSYMLINK
*/
again:
fastsymlink = 0;
if (ip->i_flag & IFASTSYMLNK) {
rw_enter(&ip->i_rwlock, RW_READER);
rw_enter(&ip->i_contents, RW_READER);
if (ip->i_flag & IFASTSYMLNK) {
if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
(ip->i_fs->fs_ronly == 0) &&
(!ufsvfsp->vfs_noatime)) {
mutex_enter(&ip->i_tlock);
ip->i_flag |= IACC;
mutex_exit(&ip->i_tlock);
}
error = uiomove((caddr_t)&ip->i_db[1],
MIN(ip->i_size, uiop->uio_resid),
UIO_READ, uiop);
ITIMES(ip);
++fastsymlink;
}
rw_exit(&ip->i_contents);
rw_exit(&ip->i_rwlock);
}
if (!fastsymlink) {
ssize_t size; /* number of bytes read */
caddr_t basep; /* pointer to input data */
ino_t ino;
long igen;
struct uio tuio; /* temp uio struct */
struct uio *tuiop;
iovec_t tiov; /* temp iovec struct */
char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
int tflag = 0; /* flag to indicate temp vars used */
ino = ip->i_number;
igen = ip->i_gen;
size = uiop->uio_resid;
basep = uiop->uio_iov->iov_base;
tuiop = uiop;
rw_enter(&ip->i_rwlock, RW_WRITER);
rw_enter(&ip->i_contents, RW_WRITER);
if (ip->i_flag & IFASTSYMLNK) {
rw_exit(&ip->i_contents);
rw_exit(&ip->i_rwlock);
goto again;
}
/* can this be a fast symlink and is it a user buffer? */
if (ip->i_size <= FSL_SIZE &&
(uiop->uio_segflg == UIO_USERSPACE ||
uiop->uio_segflg == UIO_USERISPACE)) {
bzero(&tuio, sizeof (struct uio));
/*
* setup a kernel buffer to read link into. this
* is to fix a race condition where the user buffer
* got corrupted before copying it into the inode.
*/
size = ip->i_size;
tiov.iov_len = size;
tiov.iov_base = kbuf;
tuio.uio_iov = &tiov;
tuio.uio_iovcnt = 1;
tuio.uio_offset = uiop->uio_offset;
tuio.uio_segflg = UIO_SYSSPACE;
tuio.uio_fmode = uiop->uio_fmode;
tuio.uio_extflg = uiop->uio_extflg;
tuio.uio_limit = uiop->uio_limit;
tuio.uio_resid = size;
basep = tuio.uio_iov->iov_base;
tuiop = &tuio;
tflag = 1;
}
error = rdip(ip, tuiop, 0, cr);
if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
rw_exit(&ip->i_contents);
rw_exit(&ip->i_rwlock);
goto out;
}
if (tflag == 0)
size -= uiop->uio_resid;
if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
ip->i_size == size) || (tflag == 1 &&
tuio.uio_resid == 0)) {
error = kcopy(basep, &ip->i_db[1], ip->i_size);
if (error == 0) {
ip->i_flag |= IFASTSYMLNK;
/*
* free page
*/
(void) VOP_PUTPAGE(ITOV(ip),
(offset_t)0, PAGESIZE,
(B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
cr, ct);
} else {
int i;
/* error, clear garbage left behind */
for (i = 1; i < NDADDR; i++)
ip->i_db[i] = 0;
for (i = 0; i < NIADDR; i++)
ip->i_ib[i] = 0;
}
}
if (tflag == 1) {
/* now, copy it into the user buffer */
error = uiomove((caddr_t)kbuf,
MIN(size, uiop->uio_resid),
UIO_READ, uiop);
}
rw_exit(&ip->i_contents);
rw_exit(&ip->i_rwlock);
}
out:
if (ulp) {
ufs_lockfs_end(ulp);
}
nolockout:
return (error);
}
/* ARGSUSED */
static int
ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct ulockfs *ulp;
int error;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
if (error)
return (error);
if (TRANS_ISTRANS(ufsvfsp)) {
/*
* First push out any data pages
*/
if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
(vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
0, CRED(), ct);
if (error)
goto out;
}
/*
* Delta any delayed inode times updates
* and push inode to log.
* All other inode deltas will have already been delta'd
* and will be pushed during the commit.
*/
if (!(syncflag & FDSYNC) &&
((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
if (ulp) {
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
TOP_SYNCIP_SIZE);
}
rw_enter(&ip->i_contents, RW_READER);
mutex_enter(&ip->i_tlock);
ip->i_flag &= ~IMODTIME;
mutex_exit(&ip->i_tlock);
ufs_iupdat(ip, I_SYNC);
rw_exit(&ip->i_contents);
if (ulp) {
TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
TOP_SYNCIP_SIZE);
}
}
/*
* Commit the Moby transaction
*
* Deltas have already been made so we just need to
* commit them with a synchronous transaction.
* TRANS_BEGIN_SYNC() will return an error
* if there are no deltas to commit, for an
* empty transaction.
*/
if (ulp) {
TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
error);
if (error) {
error = 0; /* commit wasn't needed */
goto out;
}
TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
TOP_COMMIT_SIZE);
}
} else { /* not logging */
if (!(IS_SWAPVP(vp)))
if (syncflag & FNODSYNC) {
/* Just update the inode only */
TRANS_IUPDAT(ip, 1);
error = 0;
} else if (syncflag & FDSYNC)
/* Do data-synchronous writes */
error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
else
/* Do synchronous writes */
error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
rw_enter(&ip->i_contents, RW_WRITER);
if (!error)
error = ufs_sync_indir(ip);
rw_exit(&ip->i_contents);
}
out:
if (ulp) {
ufs_lockfs_end(ulp);
}
return (error);
}
/*ARGSUSED*/
static void
ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
{
ufs_iinactive(VTOI(vp));
}
/*
* Unix file system operations having to do with directory manipulation.
*/
int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
/* ARGSUSED */
static int
ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
caller_context_t *ct, int *direntflags, pathname_t *realpnp)
{
struct inode *ip;
struct inode *sip;
struct inode *xip;
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
struct vnode *vp;
int error;
/*
* Check flags for type of lookup (regular file or attribute file)
*/
ip = VTOI(dvp);
if (flags & LOOKUP_XATTR) {
/*
* If not mounted with XATTR support then return EINVAL
*/
if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
return (EINVAL);
/*
* We don't allow recursive attributes...
* Maybe someday we will.
*/
if ((ip->i_cflags & IXATTR)) {
return (EINVAL);
}
if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
if (error) {
*vpp = NULL;
goto out;
}
vp = ITOV(sip);
dnlc_update(dvp, XATTR_DIR_NAME, vp);
}
/*
* Check accessibility of directory.
*/
if (vp == DNLC_NO_VNODE) {
VN_RELE(vp);
error = ENOENT;
goto out;
}
if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) {
VN_RELE(vp);
goto out;
}
*vpp = vp;
return (0);
}
/*
* Check for a null component, which we should treat as
* looking at dvp from within it's parent, so we don't
* need a call to ufs_iaccess(), as it has already been
* done.
*/
if (nm[0] == 0) {
VN_HOLD(dvp);
error = 0;
*vpp = dvp;
goto out;
}
/*
* Check for "." ie itself. this is a quick check and
* avoids adding "." into the dnlc (which have been seen
* to occupy >10% of the cache).
*/
if ((nm[0] == '.') && (nm[1] == 0)) {
/*
* Don't return without checking accessibility
* of the directory. We only need the lock if
* we are going to return it.
*/
if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) {
VN_HOLD(dvp);
*vpp = dvp;
}
goto out;
}
/*
* Fast path: Check the directory name lookup cache.
*/
if (vp = dnlc_lookup(dvp, nm)) {
/*
* Check accessibility of directory.
*/
if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) {
VN_RELE(vp);
goto out;
}
if (vp == DNLC_NO_VNODE) {
VN_RELE(vp);
error = ENOENT;
goto out;
}
xip = VTOI(vp);
ulp = NULL;
goto fastpath;
}
/*
* Keep the idle queue from getting too long by
* idling two inodes before attempting to allocate another.
* This operation must be performed before entering
* lockfs or a transaction.
*/
if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
if ((curthread->t_flag & T_DONTBLOCK) == 0) {
ins.in_lidles.value.ul += ufs_lookup_idle_count;
ufs_idle_some(ufs_lookup_idle_count);
}
retry_lookup:
ufsvfsp = ip->i_ufsvfs;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
if (error)
goto out;
error = ufs_dirlook(ip, nm, &xip, cr, 1);
fastpath:
if (error == 0) {
ip = xip;
*vpp = ITOV(ip);
/*
* If vnode is a device return special vnode instead.
*/
if (IS_DEVVP(*vpp)) {
struct vnode *newvp;
newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
cr);
VN_RELE(*vpp);
if (newvp == NULL)
error = ENOSYS;
else
*vpp = newvp;
} else if (ip->i_cflags & ICOMPRESS) {
struct vnode *newvp;
/*
* Compressed file, substitute dcfs vnode
*/
newvp = decompvp(*vpp, cr, ct);
VN_RELE(*vpp);
if (newvp == NULL)
error = ENOSYS;
else
*vpp = newvp;
}
}
if (ulp) {
ufs_lockfs_end(ulp);
}
if (error == EAGAIN)
goto retry_lookup;
out:
return (error);
}
/*ARGSUSED*/
static int
ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
int mode, struct vnode **vpp, struct cred *cr, int flag,
caller_context_t *ct, vsecattr_t *vsecp)
{
struct inode *ip;
struct inode *xip;
struct inode *dip;
struct vnode *xvp;
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
int error;
int issync;
int truncflag;
int trans_size;
int noentry;
int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
int retry = 1;
int indeadlock;
again:
ip = VTOI(dvp);
ufsvfsp = ip->i_ufsvfs;
truncflag = 0;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
if (error)
goto out;
if (ulp) {
trans_size = (int)TOP_CREATE_SIZE(ip);
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
}
if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
vap->va_mode &= ~VSVTX;
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
VN_HOLD(dvp);
/*
* Even though this is an error case, we need to grab the
* quota lock since the error handling code below is common.
*/
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
error = EEXIST;
} else {
xip = NULL;
noentry = 0;
/*
* ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
* to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
retry_dir);
if (indeadlock)
goto again;
xvp = dnlc_lookup(dvp, name);
if (xvp == DNLC_NO_VNODE) {
noentry = 1;
VN_RELE(xvp);
xvp = NULL;
}
if (xvp) {
rw_exit(&ip->i_rwlock);
if (error = ufs_iaccess(ip, IEXEC, cr)) {
VN_RELE(xvp);
} else {
error = EEXIST;
xip = VTOI(xvp);
}
} else {
/*
* Suppress file system full message if we will retry
*/
error = ufs_direnter_cm(ip, name, DE_CREATE,
vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
if (error == EAGAIN) {
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync,
TOP_CREATE, trans_size);
ufs_lockfs_end(ulp);
}
goto again;
}
rw_exit(&ip->i_rwlock);
}
ip = xip;
if (ip != NULL) {
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
}
}
/*
* If the file already exists and this is a non-exclusive create,
* check permissions and allow access for non-directories.
* Read-only create of an existing directory is also allowed.
* We fail an exclusive create of anything which already exists.
*/
if (error == EEXIST) {
dip = VTOI(dvp);
if (excl == NONEXCL) {
if ((((ip->i_mode & IFMT) == IFDIR) ||
((ip->i_mode & IFMT) == IFATTRDIR)) &&
(mode & IWRITE))
error = EISDIR;
else if (mode)
error = ufs_iaccess(ip, mode, cr);
else
error = 0;
}
if (error) {
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
VN_RELE(ITOV(ip));
goto unlock;
}
/*
* If the error EEXIST was set, then i_seq can not
* have been updated. The sequence number interface
* is defined such that a non-error VOP_CREATE must
* increase the dir va_seq it by at least one. If we
* have cleared the error, increase i_seq. Note that
* we are increasing the dir i_seq and in rare cases
* ip may actually be from the dvp, so we already have
* the locks and it will not be subject to truncation.
* In case we have to update i_seq of the parent
* directory dip, we have to defer it till we have
* released our locks on ip due to lock ordering requirements.
*/
if (ip != dip)
defer_dip_seq_update = 1;
else
ip->i_seq++;
if (((ip->i_mode & IFMT) == IFREG) &&
(vap->va_mask & AT_SIZE) && vap->va_size == 0) {
/*
* Truncate regular files, if requested by caller.
* Grab i_rwlock to make sure no one else is
* currently writing to the file (we promised
* bmap we would do this).
* Must get the locks in the correct order.
*/
if (ip->i_size == 0) {
ip->i_flag |= ICHG | IUPD;
ip->i_seq++;
TRANS_INODE(ufsvfsp, ip);
} else {
/*
* Large Files: Why this check here?
* Though we do it in vn_create() we really
* want to guarantee that we do not destroy
* Large file data by atomically checking
* the size while holding the contents
* lock.
*/
if (flag && !(flag & FOFFMAX) &&
((ip->i_mode & IFMT) == IFREG) &&
(ip->i_size > (offset_t)MAXOFF32_T)) {
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
error = EOVERFLOW;
goto unlock;
}
if (TRANS_ISTRANS(ufsvfsp))
truncflag++;
else {
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
ufs_tryirwlock_trans(&ip->i_rwlock,
RW_WRITER, TOP_CREATE,
retry_file);
if (indeadlock) {
VN_RELE(ITOV(ip));
goto again;
}
rw_enter(&ufsvfsp->vfs_dqrwlock,
RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
(void) ufs_itrunc(ip, (u_offset_t)0, 0,
cr);
rw_exit(&ip->i_rwlock);
}
}
if (error == 0) {
vnevent_create(ITOV(ip), ct);
}
}
}
if (error) {
if (ip != NULL) {
rw_exit(&ufsvfsp->vfs_dqrwlock);
rw_exit(&ip->i_contents);
}
goto unlock;
}
*vpp = ITOV(ip);
ITIMES(ip);
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
/*
* If vnode is a device return special vnode instead.
*/
if (!error && IS_DEVVP(*vpp)) {
struct vnode *newvp;
newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
VN_RELE(*vpp);
if (newvp == NULL) {
error = ENOSYS;
goto unlock;
}
truncflag = 0;
*vpp = newvp;
}
unlock:
/*
* Do the deferred update of the parent directory's sequence
* number now.
*/
if (defer_dip_seq_update == 1) {
rw_enter(&dip->i_contents, RW_READER);
mutex_enter(&dip->i_tlock);
dip->i_seq++;
mutex_exit(&dip->i_tlock);
rw_exit(&dip->i_contents);
}
if (ulp) {
int terr = 0;
TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
trans_size);
/*
* If we haven't had a more interesting failure
* already, then anything that might've happened
* here should be reported.
*/
if (error == 0)
error = terr;
}
if (!error && truncflag) {
ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
if (indeadlock) {
if (ulp)
ufs_lockfs_end(ulp);
VN_RELE(ITOV(ip));
goto again;
}
(void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
rw_exit(&ip->i_rwlock);
}
if (ulp)
ufs_lockfs_end(ulp);
/*
* If no inodes available, try to free one up out of the
* pending delete queue.
*/
if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
goto again;
}
out:
return (error);
}
extern int ufs_idle_max;
/*ARGSUSED*/
static int
ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
caller_context_t *ct, int flags)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct ulockfs *ulp;
vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
int indeadlock;
int error;
int issync;
int trans_size;
/*
* don't let the delete queue get too long
*/
if (ufsvfsp == NULL) {
error = EIO;
goto out;
}
if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
ufs_delete_drain(vp->v_vfsp, 1, 1);
retry_remove:
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
/*
* ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
* to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
if (indeadlock)
goto retry_remove;
error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
DR_REMOVE, cr, &rmvp);
rw_exit(&ip->i_rwlock);
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
ufs_lockfs_end(ulp);
}
/*
* This must be called after the remove transaction is closed.
*/
if (rmvp != NULL) {
/* Only send the event if there were no errors */
if (error == 0)
vnevent_remove(rmvp, vp, nm, ct);
VN_RELE(rmvp);
}
out:
return (error);
}
/*
* Link a file or a directory. Only privileged processes are allowed to
* make links to directories.
*/
/*ARGSUSED*/
static int
ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
caller_context_t *ct, int flags)
{
struct inode *sip;
struct inode *tdp = VTOI(tdvp);
struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
struct ulockfs *ulp;
struct vnode *realvp;
int error;
int issync;
int trans_size;
int isdev;
int indeadlock;
retry_link:
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
if (VOP_REALVP(svp, &realvp, ct) == 0)
svp = realvp;
/*
* Make sure link for extended attributes is valid
* We only support hard linking of attr in ATTRDIR to ATTRDIR
*
* Make certain we don't attempt to look at a device node as
* a ufs inode.
*/
isdev = IS_DEVVP(svp);
if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
((tdp->i_mode & IFMT) == IFATTRDIR)) ||
((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
((tdp->i_mode & IFMT) == IFDIR))) {
error = EINVAL;
goto unlock;
}
sip = VTOI(svp);
if ((svp->v_type == VDIR &&
secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
(sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
error = EPERM;
goto unlock;
}
/*
* ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
* to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
if (indeadlock)
goto retry_link;
error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
sip, cr, NULL);
rw_exit(&tdp->i_rwlock);
unlock:
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
ufs_lockfs_end(ulp);
}
if (!error) {
vnevent_link(svp, ct);
}
out:
return (error);
}
uint64_t ufs_rename_retry_cnt;
uint64_t ufs_rename_upgrade_retry_cnt;
uint64_t ufs_rename_dircheck_retry_cnt;
clock_t ufs_rename_backoff_delay = 1;
/*
* Rename a file or directory.
* We are given the vnode and entry string of the source and the
* vnode and entry string of the place we want to move the source
* to (the target). The essential operation is:
* unlink(target);
* link(source, target);
* unlink(source);
* but "atomically". Can't do full commit without saving state in
* the inode on disk, which isn't feasible at this time. Best we
* can do is always guarantee that the TARGET exists.
*/
/*ARGSUSED*/
static int
ufs_rename(
struct vnode *sdvp, /* old (source) parent vnode */
char *snm, /* old (source) entry name */
struct vnode *tdvp, /* new (target) parent vnode */
char *tnm, /* new (target) entry name */
struct cred *cr,
caller_context_t *ct,
int flags)
{
struct inode *sip = NULL; /* source inode */
struct inode *ip = NULL; /* check inode */
struct inode *sdp; /* old (source) parent inode */
struct inode *tdp; /* new (target) parent inode */
struct vnode *tvp = NULL; /* target vnode, if it exists */
struct vnode *realvp;
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
struct ufs_slot slot;
timestruc_t now;
int error;
int issync;
int trans_size;
krwlock_t *first_lock;
krwlock_t *second_lock;
krwlock_t *reverse_lock;
sdp = VTOI(sdvp);
slot.fbp = NULL;
ufsvfsp = sdp->i_ufsvfs;
retry_rename:
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
trans_size = (int)TOP_RENAME_SIZE(sdp));
if (VOP_REALVP(tdvp, &realvp, ct) == 0)
tdvp = realvp;
tdp = VTOI(tdvp);
/*
* We only allow renaming of attributes from ATTRDIR to ATTRDIR.
*/
if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
error = EINVAL;
goto unlock;
}
/*
* Look up inode of file we're supposed to rename.
*/
gethrestime(&now);
if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) {
if (error == EAGAIN) {
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync,
TOP_RENAME, trans_size);
ufs_lockfs_end(ulp);
}
goto retry_rename;
}
goto unlock;
}
/*
* Lock both the source and target directories (they may be
* the same) to provide the atomicity semantics that was
* previously provided by the per file system vfs_rename_lock
*
* with vfs_rename_lock removed to allow simultaneous renames
* within a file system, ufs_dircheckpath can deadlock while
* traversing back to ensure that source is not a parent directory
* of target parent directory. This is because we get into
* ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
* If the tdp and sdp of the simultaneous renames happen to be
* in the path of each other, it can lead to a deadlock. This
* can be avoided by getting the locks as RW_READER here and then
* upgrading to RW_WRITER after completing the ufs_dircheckpath.
*
* We hold the target directory's i_rwlock after calling
* ufs_lockfs_begin but in many other operations (like ufs_readdir)
* VOP_RWLOCK is explicitly called by the filesystem independent code
* before calling the file system operation. In these cases the order
* is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
* is called). This is fine as long as ufs_lockfs_begin acts as a VOP
* counter but with ufs_quiesce setting the SLOCK bit this becomes a
* synchronizing object which might lead to a deadlock. So we use
* rw_tryenter instead of rw_enter. If we fail to get this lock and
* find that SLOCK bit is set, we call ufs_lockfs_end and restart the
* operation.
*/
retry:
first_lock = &tdp->i_rwlock;
second_lock = &sdp->i_rwlock;
retry_firstlock:
if (!rw_tryenter(first_lock, RW_READER)) {
/*
* We didn't get the lock. Check if the SLOCK is set in the
* ufsvfs. If yes, we might be in a deadlock. Safer to give up
* and wait for SLOCK to be cleared.
*/
if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
trans_size);
ufs_lockfs_end(ulp);
goto retry_rename;
} else {
/*
* SLOCK isn't set so this is a genuine synchronization
* case. Let's try again after giving them a breather.
*/
delay(RETRY_LOCK_DELAY);
goto retry_firstlock;
}
}
/*
* Need to check if the tdp and sdp are same !!!
*/
if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
/*
* We didn't get the lock. Check if the SLOCK is set in the
* ufsvfs. If yes, we might be in a deadlock. Safer to give up
* and wait for SLOCK to be cleared.
*/
rw_exit(first_lock);
if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
trans_size);
ufs_lockfs_end(ulp);
goto retry_rename;
} else {
/*
* So we couldn't get the second level peer lock *and*
* the SLOCK bit isn't set. Too bad we can be
* contentding with someone wanting these locks otherway
* round. Reverse the locks in case there is a heavy
* contention for the second level lock.
*/
reverse_lock = first_lock;
first_lock = second_lock;
second_lock = reverse_lock;
ufs_rename_retry_cnt++;
goto retry_firstlock;
}
}
if (sip == tdp) {
error = EINVAL;
goto errout;
}
/*
* Make sure we can delete the source entry. This requires
* write permission on the containing directory.
* Check for sticky directories.
*/
rw_enter(&sdp->i_contents, RW_READER);
rw_enter(&sip->i_contents, RW_READER);
if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 ||
(error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
rw_exit(&sip->i_contents);
rw_exit(&sdp->i_contents);
goto errout;
}
/*
* If this is a rename of a directory and the parent is
* different (".." must be changed), then the source
* directory must not be in the directory hierarchy
* above the target, as this would orphan everything
* below the source directory. Also the user must have
* write permission in the source so as to be able to
* change "..".
*/
if ((((sip->i_mode & IFMT) == IFDIR) ||
((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
ino_t inum;
if ((error = ufs_iaccess(sip, IWRITE, cr))) {
rw_exit(&sip->i_contents);
rw_exit(&sdp->i_contents);
goto errout;
}
inum = sip->i_number;
rw_exit(&sip->i_contents);
rw_exit(&sdp->i_contents);
if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
/*
* If we got EAGAIN ufs_dircheckpath detected a
* potential deadlock and backed out. We need
* to retry the operation since sdp and tdp have
* to be released to avoid the deadlock.
*/
if (error == EAGAIN) {
rw_exit(&tdp->i_rwlock);
if (tdp != sdp)
rw_exit(&sdp->i_rwlock);
delay(ufs_rename_backoff_delay);
ufs_rename_dircheck_retry_cnt++;
goto retry;
}
goto errout;
}
} else {
rw_exit(&sip->i_contents);
rw_exit(&sdp->i_contents);
}
/*
* Check for renaming '.' or '..' or alias of '.'
*/
if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
error = EINVAL;
goto errout;
}
/*
* Simultaneous renames can deadlock in ufs_dircheckpath since it
* tries to traverse back the file tree with both tdp and sdp held
* as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
* as RW_READERS till ufs_dircheckpath is done.
* Now that ufs_dircheckpath is done with, we can upgrade the locks
* to RW_WRITER.
*/
if (!rw_tryupgrade(&tdp->i_rwlock)) {
/*
* The upgrade failed. We got to give away the lock
* as to avoid deadlocking with someone else who is
* waiting for writer lock. With the lock gone, we
* cannot be sure the checks done above will hold
* good when we eventually get them back as writer.
* So if we can't upgrade we drop the locks and retry
* everything again.
*/
rw_exit(&tdp->i_rwlock);
if (tdp != sdp)
rw_exit(&sdp->i_rwlock);
delay(ufs_rename_backoff_delay);
ufs_rename_upgrade_retry_cnt++;
goto retry;
}
if (tdp != sdp) {
if (!rw_tryupgrade(&sdp->i_rwlock)) {
/*
* The upgrade failed. We got to give away the lock
* as to avoid deadlocking with someone else who is
* waiting for writer lock. With the lock gone, we
* cannot be sure the checks done above will hold
* good when we eventually get them back as writer.
* So if we can't upgrade we drop the locks and retry
* everything again.
*/
rw_exit(&tdp->i_rwlock);
rw_exit(&sdp->i_rwlock);
delay(ufs_rename_backoff_delay);
ufs_rename_upgrade_retry_cnt++;
goto retry;
}
}
/*
* Now that all the locks are held check to make sure another thread
* didn't slip in and take out the sip.
*/
slot.status = NONE;
if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
sip->i_ctime.tv_sec > now.tv_sec) {
rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
rw_enter(&sdp->i_contents, RW_WRITER);
error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
&ip, cr, 0);
rw_exit(&sdp->i_contents);
rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
if (error) {
goto errout;
}
if (ip == NULL) {
error = ENOENT;
goto errout;
} else {
/*
* If the inode was found need to drop the v_count
* so as not to keep the filesystem from being
* unmounted at a later time.
*/
VN_RELE(ITOV(ip));
}
/*
* Release the slot.fbp that has the page mapped and
* locked SE_SHARED, and could be used in in
* ufs_direnter_lr() which needs to get the SE_EXCL lock
* on said page.
*/
if (slot.fbp) {
fbrelse(slot.fbp, S_OTHER);
slot.fbp = NULL;
}
}
/*
* Link source to the target. If a target exists, return its
* vnode pointer in tvp. We'll release it after sending the
* vnevent.
*/
if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) {
/*
* ESAME isn't really an error; it indicates that the
* operation should not be done because the source and target
* are the same file, but that no error should be reported.
*/
if (error == ESAME)
error = 0;
goto errout;
}
/*
* Unlink the source.
* Remove the source entry. ufs_dirremove() checks that the entry
* still reflects sip, and returns an error if it doesn't.
* If the entry has changed just forget about it. Release
* the source inode.
*/
if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
DR_RENAME, cr, NULL)) == ENOENT)
error = 0;
errout:
if (slot.fbp)
fbrelse(slot.fbp, S_OTHER);
rw_exit(&tdp->i_rwlock);
if (sdp != tdp) {
rw_exit(&sdp->i_rwlock);
}
unlock:
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
ufs_lockfs_end(ulp);
}
/*
* If no errors, send the appropriate events on the source
* and destination (a.k.a, target) vnodes, if they exist.
* This has to be done after the rename transaction has closed.
*/
if (error == 0) {
if (tvp != NULL)
vnevent_rename_dest(tvp, tdvp, tnm, ct);
/*
* Notify the target directory of the rename event
* if source and target directories are not same.
*/
if (sdvp != tdvp)
vnevent_rename_dest_dir(tdvp, ct);
/*
* Note that if ufs_direnter_lr() returned ESAME then
* this event will still be sent. This isn't expected
* to be a problem for anticipated usage by consumers.
*/
if (sip != NULL)
vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
}
if (tvp != NULL)
VN_RELE(tvp);
if (sip != NULL)
VN_RELE(ITOV(sip));
out:
return (error);
}
/*ARGSUSED*/
static int
ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
vsecattr_t *vsecp)
{
struct inode *ip;
struct inode *xip;
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
int error;
int issync;
int trans_size;
int indeadlock;
int retry = 1;
ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
/*
* Can't make directory in attr hidden dir
*/
if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
return (EINVAL);
again:
ip = VTOI(dvp);
ufsvfsp = ip->i_ufsvfs;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
trans_size = (int)TOP_MKDIR_SIZE(ip));
/*
* ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
* to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
if (indeadlock)
goto again;
error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
(retry ? IQUIET : 0));
if (error == EAGAIN) {
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
trans_size);
ufs_lockfs_end(ulp);
}
goto again;
}
rw_exit(&ip->i_rwlock);
if (error == 0) {
ip = xip;
*vpp = ITOV(ip);
} else if (error == EEXIST)
VN_RELE(ITOV(xip));
if (ulp) {
int terr = 0;
TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
ufs_lockfs_end(ulp);
if (error == 0)
error = terr;
}
out:
if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
goto again;
}
return (error);
}
/*ARGSUSED*/
static int
ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
caller_context_t *ct, int flags)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct ulockfs *ulp;
vnode_t *rmvp = NULL; /* Vnode of removed directory */
int error;
int issync;
int trans_size;
int indeadlock;
/*
* don't let the delete queue get too long
*/
if (ufsvfsp == NULL) {
error = EIO;
goto out;
}
if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
ufs_delete_drain(vp->v_vfsp, 1, 1);
retry_rmdir:
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
trans_size = TOP_RMDIR_SIZE);
/*
* ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
* to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
* possible, retries the operation.
*/
ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
if (indeadlock)
goto retry_rmdir;
error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr,
&rmvp);
rw_exit(&ip->i_rwlock);
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
trans_size);
ufs_lockfs_end(ulp);
}
/*
* This must be done AFTER the rmdir transaction has closed.
*/
if (rmvp != NULL) {
/* Only send the event if there were no errors */
if (error == 0)
vnevent_rmdir(rmvp, vp, nm, ct);
VN_RELE(rmvp);
}
out:
return (error);
}
/* ARGSUSED */
static int
ufs_readdir(
struct vnode *vp,
struct uio *uiop,
struct cred *cr,
int *eofp,
caller_context_t *ct,
int flags)
{
struct iovec *iovp;
struct inode *ip;
struct direct *idp;
struct dirent64 *odp;
struct fbuf *fbp;
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
caddr_t outbuf;
size_t bufsize;
uint_t offset;
uint_t bytes_wanted, total_bytes_wanted;
int incount = 0;
int outcount = 0;
int error;
ip = VTOI(vp);
ASSERT(RW_READ_HELD(&ip->i_rwlock));
if (uiop->uio_loffset >= MAXOFF32_T) {
if (eofp)
*eofp = 1;
return (0);
}
/*
* Check if we have been called with a valid iov_len
* and bail out if not, otherwise we may potentially loop
* forever further down.
*/
if (uiop->uio_iov->iov_len <= 0) {
error = EINVAL;
goto out;
}
/*
* Large Files: When we come here we are guaranteed that
* uio_offset can be used safely. The high word is zero.
*/
ufsvfsp = ip->i_ufsvfs;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
if (error)
goto out;
iovp = uiop->uio_iov;
total_bytes_wanted = iovp->iov_len;
/* Large Files: directory files should not be "large" */
ASSERT(ip->i_size <= MAXOFF32_T);
/* Force offset to be valid (to guard against bogus lseek() values) */
offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
/* Quit if at end of file or link count of zero (posix) */
if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
if (eofp)
*eofp = 1;
error = 0;
goto unlock;
}
/*
* Get space to change directory entries into fs independent format.
* Do fast alloc for the most commonly used-request size (filesystem
* block size).
*/
if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
bufsize = total_bytes_wanted;
outbuf = kmem_alloc(bufsize, KM_SLEEP);
odp = (struct dirent64 *)outbuf;
} else {
bufsize = total_bytes_wanted;
odp = (struct dirent64 *)iovp->iov_base;
}
nextblk:
bytes_wanted = total_bytes_wanted;
/* Truncate request to file size */
if (offset + bytes_wanted > (int)ip->i_size)
bytes_wanted = (int)(ip->i_size - offset);
/* Comply with MAXBSIZE boundary restrictions of fbread() */
if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
/*
* Read in the next chunk.
* We are still holding the i_rwlock.
*/
error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
if (error)
goto update_inode;
if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
(!ufsvfsp->vfs_noatime)) {
ip->i_flag |= IACC;
}
incount = 0;
idp = (struct direct *)fbp->fb_addr;
if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
"fs = %s\n",
(u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
fbrelse(fbp, S_OTHER);
error = ENXIO;
goto update_inode;
}
/* Transform to file-system independent format */
while (incount < bytes_wanted) {
/*
* If the current directory entry is mangled, then skip
* to the next block. It would be nice to set the FSBAD
* flag in the super-block so that a fsck is forced on
* next reboot, but locking is a problem.
*/
if (idp->d_reclen & 0x3) {
offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
break;
}
/* Skip to requested offset and skip empty entries */
if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
ushort_t this_reclen =
DIRENT64_RECLEN(idp->d_namlen);
/* Buffer too small for any entries */
if (!outcount && this_reclen > bufsize) {
fbrelse(fbp, S_OTHER);
error = EINVAL;
goto update_inode;
}
/* If would overrun the buffer, quit */
if (outcount + this_reclen > bufsize) {
break;
}
/* Take this entry */
odp->d_ino = (ino64_t)idp->d_ino;
odp->d_reclen = (ushort_t)this_reclen;
odp->d_off = (offset_t)(offset + idp->d_reclen);
/* use strncpy(9f) to zero out uninitialized bytes */
ASSERT(strlen(idp->d_name) + 1 <=
DIRENT64_NAMELEN(this_reclen));
(void) strncpy(odp->d_name, idp->d_name,
DIRENT64_NAMELEN(this_reclen));
outcount += odp->d_reclen;
odp = (struct dirent64 *)
((intptr_t)odp + odp->d_reclen);
ASSERT(outcount <= bufsize);
}
if (idp->d_reclen) {
incount += idp->d_reclen;
offset += idp->d_reclen;
idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
} else {
offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
break;
}
}
/* Release the chunk */
fbrelse(fbp, S_OTHER);
/* Read whole block, but got no entries, read another if not eof */
/*
* Large Files: casting i_size to int here is not a problem
* because directory sizes are always less than MAXOFF32_T.
* See assertion above.
*/
if (offset < (int)ip->i_size && !outcount)
goto nextblk;
/* Copy out the entry data */
if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
iovp->iov_base += outcount;
iovp->iov_len -= outcount;
uiop->uio_resid -= outcount;
uiop->uio_offset = offset;
} else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
uiop)) == 0)
uiop->uio_offset = offset;
update_inode:
ITIMES(ip);
if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
kmem_free(outbuf, bufsize);
if (eofp && error == 0)
*eofp = (uiop->uio_offset >= (int)ip->i_size);
unlock:
if (ulp) {
ufs_lockfs_end(ulp);
}
out:
return (error);
}
/*ARGSUSED*/
static int
ufs_symlink(
struct vnode *dvp, /* ptr to parent dir vnode */
char *linkname, /* name of symbolic link */
struct vattr *vap, /* attributes */
char *target, /* target path */
struct cred *cr, /* user credentials */
caller_context_t *ct,
int flags)
{
struct inode *ip, *dip = VTOI(dvp);
struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
struct ulockfs *ulp;
int error;
int issync;
int trans_size;
int residual;
int ioflag;
int retry = 1;
/*
* No symlinks in attrdirs at this time
*/
if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
return (EINVAL);
again:
ip = (struct inode *)NULL;
vap->va_type = VLNK;
vap->va_rdev = 0;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
if (error)
goto out;
if (ulp)
TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
trans_size = (int)TOP_SYMLINK_SIZE(dip));
/*
* We must create the inode before the directory entry, to avoid
* racing with readlink(). ufs_dirmakeinode requires that we
* hold the quota lock as reader, and directory locks as writer.
*/
rw_enter(&dip->i_rwlock, RW_WRITER);
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&dip->i_contents, RW_WRITER);
/*
* Suppress any out of inodes messages if we will retry on
* ENOSP
*/
if (retry)
dip->i_flag |= IQUIET;
error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
dip->i_flag &= ~IQUIET;
rw_exit(&dip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
rw_exit(&dip->i_rwlock);
if (error)
goto unlock;
/*
* OK. The inode has been created. Write out the data of the
* symbolic link. Since symbolic links are metadata, and should
* remain consistent across a system crash, we need to force the
* data out synchronously.
*
* (This is a change from the semantics in earlier releases, which
* only created symbolic links synchronously if the semi-documented
* 'syncdir' option was set, or if we were being invoked by the NFS
* server, which requires symbolic links to be created synchronously.)
*
* We need to pass in a pointer for the residual length; otherwise
* ufs_rdwri() will always return EIO if it can't write the data,
* even if the error was really ENOSPC or EDQUOT.
*/
ioflag = FWRITE | FDSYNC;
residual = 0;
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, RW_WRITER);
/*
* Suppress file system full messages if we will retry
*/
if (retry)
ip->i_flag |= IQUIET;
error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
(offset_t)0, UIO_SYSSPACE, &residual, cr);
ip->i_flag &= ~IQUIET;
if (error) {
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
goto remove;
}
/*
* If the link's data is small enough, we can cache it in the inode.
* This is a "fast symbolic link". We don't use the first direct
* block because that's actually used to point at the symbolic link's
* contents on disk; but we know that none of the other direct or
* indirect blocks can be used because symbolic links are restricted
* to be smaller than a file system block.
*/
ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
ip->i_flag |= IFASTSYMLNK;
} else {
int i;
/* error, clear garbage left behind */
for (i = 1; i < NDADDR; i++)
ip->i_db[i] = 0;
for (i = 0; i < NIADDR; i++)
ip->i_ib[i] = 0;
}
}
rw_exit(&ip->i_contents);
rw_exit(&ufsvfsp->vfs_dqrwlock);
/*
* OK. We've successfully created the symbolic link. All that
* remains is to insert it into the appropriate directory.
*/
rw_enter(&dip->i_rwlock, RW_WRITER);
error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL);
rw_exit(&dip->i_rwlock);
/*
* Fall through into remove-on-error code. We're either done, or we
* need to remove the inode (if we couldn't insert it).
*/
remove:
if (error && (ip != NULL)) {
rw_enter(&ip->i_contents, RW_WRITER);
ip->i_nlink--;
ip->i_flag |= ICHG;
ip->i_seq++;
ufs_setreclaim(ip);
rw_exit(&ip->i_contents);
}
unlock:
if (ip != NULL)
VN_RELE(ITOV(ip));
if (ulp) {
int terr = 0;
TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
trans_size);
ufs_lockfs_end(ulp);
if (error == 0)
error = terr;
}
/*
* We may have failed due to lack of an inode or of a block to
* store the target in. Try flushing the delete queue to free
* logically-available things up and try again.
*/
if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
goto again;
}
out:
return (error);
}
/*
* Ufs specific routine used to do ufs io.
*/
int
ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
struct cred *cr)
{
struct uio auio;
struct iovec aiov;
int error;
ASSERT(RW_LOCK_HELD(&ip->i_contents));
bzero((caddr_t)&auio, sizeof (uio_t));
bzero((caddr_t)&aiov, sizeof (iovec_t));
aiov.iov_base = base;
aiov.iov_len = len;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_loffset = offset;
auio.uio_segflg = (short)seg;
auio.uio_resid = len;
if (rw == UIO_WRITE) {
auio.uio_fmode = FWRITE;
auio.uio_extflg = UIO_COPY_DEFAULT;
auio.uio_llimit = curproc->p_fsz_ctl;
error = wrip(ip, &auio, ioflag, cr);
} else {
auio.uio_fmode = FREAD;
auio.uio_extflg = UIO_COPY_CACHED;
auio.uio_llimit = MAXOFFSET_T;
error = rdip(ip, &auio, ioflag, cr);
}
if (aresid) {
*aresid = auio.uio_resid;
} else if (auio.uio_resid) {
error = EIO;
}
return (error);
}
/*ARGSUSED*/
static int
ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
{
struct ufid *ufid;
struct inode *ip = VTOI(vp);
if (ip->i_ufsvfs == NULL)
return (EIO);
if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
return (ENOSPC);
}
ufid = (struct ufid *)fidp;
bzero((char *)ufid, sizeof (struct ufid));
ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
ufid->ufid_ino = ip->i_number;
ufid->ufid_gen = ip->i_gen;
return (0);
}
/* ARGSUSED2 */
static int
ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
int forcedirectio;
/*
* Read case is easy.
*/
if (!write_lock) {
rw_enter(&ip->i_rwlock, RW_READER);
return (V_WRITELOCK_FALSE);
}
/*
* Caller has requested a writer lock, but that inhibits any
* concurrency in the VOPs that follow. Acquire the lock shared
* and defer exclusive access until it is known to be needed in
* other VOP handlers. Some cases can be determined here.
*/
/*
* If directio is not set, there is no chance of concurrency,
* so just acquire the lock exclusive. Beware of a forced
* unmount before looking at the mount option.
*/
ufsvfsp = ip->i_ufsvfs;
forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
!ufs_allow_shared_writes) {
rw_enter(&ip->i_rwlock, RW_WRITER);
return (V_WRITELOCK_TRUE);
}
/*
* Mandatory locking forces acquiring i_rwlock exclusive.
*/
if (MANDLOCK(vp, ip->i_mode)) {
rw_enter(&ip->i_rwlock, RW_WRITER);
return (V_WRITELOCK_TRUE);
}
/*
* Acquire the lock shared in case a concurrent write follows.
* Mandatory locking could have become enabled before the lock
* was acquired. Re-check and upgrade if needed.
*/
rw_enter(&ip->i_rwlock, RW_READER);
if (MANDLOCK(vp, ip->i_mode)) {
rw_exit(&ip->i_rwlock);
rw_enter(&ip->i_rwlock, RW_WRITER);
return (V_WRITELOCK_TRUE);
}
return (V_WRITELOCK_FALSE);
}
/*ARGSUSED*/
static void
ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
{
struct inode *ip = VTOI(vp);
rw_exit(&ip->i_rwlock);
}
/* ARGSUSED */
static int
ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
caller_context_t *ct)
{
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
}
/* ARGSUSED */
static int
ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
if (ip->i_ufsvfs == NULL)
return (EIO);
/*
* If file is being mapped, disallow frlock.
* XXX I am not holding tlock while checking i_mapcnt because the
* current locking strategy drops all locks before calling fs_frlock.
* So, mapcnt could change before we enter fs_frlock making is
* meaningless to have held tlock in the first place.
*/
if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
return (EAGAIN);
return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
}
/* ARGSUSED */
static int
ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, cred_t *cr, caller_context_t *ct)
{
struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
struct ulockfs *ulp;
int error;
if ((error = convoff(vp, bfp, 0, offset)) == 0) {
if (cmd == F_FREESP) {
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_SPACE_MASK);
if (error)
return (error);
error = ufs_freesp(vp, bfp, flag, cr);
} else if (cmd == F_ALLOCSP) {
error = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_FALLOCATE_MASK);
if (error)
return (error);
error = ufs_allocsp(vp, bfp, cr);
} else
return (EINVAL); /* Command not handled here */
if (ulp)
ufs_lockfs_end(ulp);
}
return (error);
}
/*
* Used to determine if read ahead should be done. Also used to
* to determine when write back occurs.
*/
#define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
/*
* A faster version of ufs_getpage.
*
* We optimize by inlining the pvn_getpages iterator, eliminating
* calls to bmap_read if file doesn't have UFS holes, and avoiding
* the overhead of page_exists().
*
* When files has UFS_HOLES and ufs_getpage is called with S_READ,
* we set *protp to PROT_READ to avoid calling bmap_read. This approach
* victimizes performance when a file with UFS holes is faulted
* first in the S_READ mode, and then in the S_WRITE mode. We will get
* two MMU faults in this case.
*
* XXX - the inode fields which control the sequential mode are not
* protected by any mutex. The read ahead will act wild if
* multiple processes will access the file concurrently and
* some of them in sequential mode. One particulary bad case
* is if another thread will change the value of i_nextrio between
* the time this thread tests the i_nextrio value and then reads it
* again to use it as the offset for the read ahead.
*/
/*ARGSUSED*/
static int
ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, struct cred *cr, caller_context_t *ct)
{
u_offset_t uoff = (u_offset_t)off; /* type conversion */
u_offset_t pgoff;
u_offset_t eoff;
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct fs *fs;
struct ulockfs *ulp;
page_t **pl;
caddr_t pgaddr;
krw_t rwtype;
int err;
int has_holes;
int beyond_eof;
int seqmode;
int pgsize = PAGESIZE;
int dolock;
int do_qlock;
int trans_size;
ASSERT((uoff & PAGEOFFSET) == 0);
if (protp)
*protp = PROT_ALL;
/*
* Obey the lockfs protocol
*/
err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
rw == S_READ || rw == S_EXEC, protp);
if (err)
goto out;
fs = ufsvfsp->vfs_fs;
if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
!(vp->v_flag & VISSWAP)) {
/*
* Try to start a transaction, will return if blocking is
* expected to occur and the address space is not the
* kernel address space.
*/
trans_size = TOP_GETPAGE_SIZE(ip);
if (seg->s_as != &kas) {
TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
trans_size, err)
if (err == EWOULDBLOCK) {
/*
* Use EDEADLK here because the VM code
* can normally never see this error.
*/
err = EDEADLK;
ufs_lockfs_end(ulp);
goto out;
}
} else {
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
}
}
if (vp->v_flag & VNOMAP) {
err = ENOSYS;
goto unlock;
}
seqmode = ip->i_nextr == uoff && rw != S_CREATE;
rwtype = RW_READER; /* start as a reader */
dolock = (rw_owner(&ip->i_contents) != curthread);
/*
* If this thread owns the lock, i.e., this thread grabbed it
* as writer somewhere above, then we don't need to grab the
* lock as reader in this routine.
*/
do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
retrylock:
if (dolock) {
/*
* Grab the quota lock if we need to call
* bmap_write() below (with i_contents as writer).
*/
if (do_qlock && rwtype == RW_WRITER)
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
rw_enter(&ip->i_contents, rwtype);
}
/*
* We may be getting called as a side effect of a bmap using
* fbread() when the blocks might be being allocated and the
* size has not yet been up'ed. In this case we want to be
* able to return zero pages if we get back UFS_HOLE from
* calling bmap for a non write case here. We also might have
* to read some frags from the disk into a page if we are
* extending the number of frags for a given lbn in bmap().
* Large Files: The read of i_size here is atomic because
* i_contents is held here. If dolock is zero, the lock
* is held in bmap routines.
*/
beyond_eof = uoff + len >
P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
if (beyond_eof && seg != segkmap) {
if (dolock) {
rw_exit(&ip->i_contents);
if (do_qlock && rwtype == RW_WRITER)
rw_exit(&ufsvfsp->vfs_dqrwlock);
}
err = EFAULT;
goto unlock;
}
/*
* Must hold i_contents lock throughout the call to pvn_getpages
* since locked pages are returned from each call to ufs_getapage.
* Must *not* return locked pages and then try for contents lock
* due to lock ordering requirements (inode > page)
*/
has_holes = bmap_has_holes(ip);
if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
int blk_size;
u_offset_t offset;
/*
* We must acquire the RW_WRITER lock in order to
* call bmap_write().
*/
if (dolock && rwtype == RW_READER) {
rwtype = RW_WRITER;
/*
* Grab the quota lock before
* upgrading i_contents, but if we can't grab it
* don't wait here due to lock order:
* vfs_dqrwlock > i_contents.
*/
if (do_qlock &&
rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
== 0) {
rw_exit(&ip->i_contents);
goto retrylock;
}
if (!rw_tryupgrade(&ip->i_contents)) {
rw_exit(&ip->i_contents);
if (do_qlock)
rw_exit(&ufsvfsp->vfs_dqrwlock);
goto retrylock;
}
}
/*
* May be allocating disk blocks for holes here as
* a result of mmap faults. write(2) does the bmap_write
* in rdip/wrip, not here. We are not dealing with frags
* in this case.
*/
/*
* Large Files: We cast fs_bmask field to offset_t
* just as we do for MAXBMASK because uoff is a 64-bit
* data type. fs_bmask will still be a 32-bit type
* as we cannot change any ondisk data structures.
*/
offset = uoff & (offset_t)fs->fs_bmask;
while (offset < uoff + len) {
blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
err = bmap_write(ip, offset, blk_size,
BI_NORMAL, NULL, cr);
if (ip->i_flag & (ICHG|IUPD))
ip->i_seq++;
if (err)
goto update_inode;
offset += blk_size; /* XXX - make this contig */
}
}
/*
* Can be a reader from now on.
*/
if (dolock && rwtype == RW_WRITER) {
rw_downgrade(&ip->i_contents);
/*
* We can release vfs_dqrwlock early so do it, but make
* sure we don't try to release it again at the bottom.
*/
if (do_qlock) {
rw_exit(&ufsvfsp->vfs_dqrwlock);
do_qlock = 0;
}
}
/*
* We remove PROT_WRITE in cases when the file has UFS holes
* because we don't want to call bmap_read() to check each
* page if it is backed with a disk block.
*/
if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
*protp &= ~PROT_WRITE;
err = 0;
/*
* The loop looks up pages in the range [off, off + len).
* For each page, we first check if we should initiate an asynchronous
* read ahead before we call page_lookup (we may sleep in page_lookup
* for a previously initiated disk read).
*/
eoff = (uoff + len);
for (pgoff = uoff, pgaddr = addr, pl = plarr;
pgoff < eoff; /* empty */) {
page_t *pp;
u_offset_t nextrio;
se_t se;
int retval;
se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
/* Handle async getpage (faultahead) */
if (plarr == NULL) {
ip->i_nextrio = pgoff;
(void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
pgoff += pgsize;
pgaddr += pgsize;
continue;
}
/*
* Check if we should initiate read ahead of next cluster.
* We call page_exists only when we need to confirm that
* we have the current page before we initiate the read ahead.
*/
nextrio = ip->i_nextrio;
if (seqmode &&
pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
nextrio < ip->i_size && page_exists(vp, pgoff)) {
retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
/*
* We always read ahead the next cluster of data
* starting from i_nextrio. If the page (vp,nextrio)
* is actually in core at this point, the routine
* ufs_getpage_ra() will stop pre-fetching data
* until we read that page in a synchronized manner
* through ufs_getpage_miss(). So, we should increase
* i_nextrio if the page (vp, nextrio) exists.
*/
if ((retval == 0) && page_exists(vp, nextrio)) {
ip->i_nextrio = nextrio + pgsize;
}
}
if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
/*
* We found the page in the page cache.
*/
*pl++ = pp;
pgoff += pgsize;
pgaddr += pgsize;
len -= pgsize;
plsz -= pgsize;
} else {
/*
* We have to create the page, or read it from disk.
*/
if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
pl, plsz, rw, seqmode))
goto error;
while (*pl != NULL) {
pl++;
pgoff += pgsize;
pgaddr += pgsize;
len -= pgsize;
plsz -= pgsize;
}
}
}
/*
* Return pages up to plsz if they are in the page cache.
* We cannot return pages if there is a chance that they are
* backed with a UFS hole and rw is S_WRITE or S_CREATE.
*/
if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
ASSERT((protp == NULL) ||
!(has_holes && (*protp & PROT_WRITE)));
eoff = pgoff + plsz;
while (pgoff < eoff) {
page_t *pp;
if ((pp = page_lookup_nowait(vp, pgoff,
SE_SHARED)) == NULL)
break;
*pl++ = pp;
pgoff += pgsize;
plsz -= pgsize;
}
}
if (plarr)
*pl = NULL; /* Terminate page list */
ip->i_nextr = pgoff;
error:
if (err && plarr) {
/*
* Release any pages we have locked.
*/
while (pl > &plarr[0])
page_unlock(*--pl);
plarr[0] = NULL;
}
update_inode:
/*
* If the inode is not already marked for IACC (in rdip() for read)
* and the inode is not marked for no access time update (in wrip()
* for write) then update the inode access time and mod time now.
*/
if ((ip->i_flag & (IACC | INOACC)) == 0) {
if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
(fs->fs_ronly == 0) &&
(!ufsvfsp->vfs_noatime)) {
mutex_enter(&ip->i_tlock);
ip->i_flag |= IACC;
ITIMES_NOLOCK(ip);
mutex_exit(&ip->i_tlock);
}
}
}
if (dolock) {
rw_exit(&ip->i_contents);
if (do_qlock && rwtype == RW_WRITER)
rw_exit(&ufsvfsp->vfs_dqrwlock);
}
unlock:
if (ulp) {
if ((rw == S_CREATE || rw == S_WRITE) &&
!(vp->v_flag & VISSWAP)) {
TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
}
ufs_lockfs_end(ulp);
}
out:
return (err);
}
/*
* ufs_getpage_miss is called when ufs_getpage missed the page in the page
* cache. The page is either read from the disk, or it's created.
* A page is created (without disk read) if rw == S_CREATE, or if
* the page is not backed with a real disk block (UFS hole).
*/
/* ARGSUSED */
static int
ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
{
struct inode *ip = VTOI(vp);
page_t *pp;
daddr_t bn;
size_t io_len;
int crpage = 0;
int err;
int contig;
int bsize = ip->i_fs->fs_bsize;
/*
* Figure out whether the page can be created, or must be
* must be read from the disk.
*/
if (rw == S_CREATE)
crpage = 1;
else {
contig = 0;
if (err = bmap_read(ip, off, &bn, &contig))
return (err);
crpage = (bn == UFS_HOLE);
/*
* If its also a fallocated block that hasn't been written to
* yet, we will treat it just like a UFS_HOLE and create
* a zero page for it
*/
if (ISFALLOCBLK(ip, bn))
crpage = 1;
}
if (crpage) {
if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
addr)) == NULL) {
return (ufs_fault(vp,
"ufs_getpage_miss: page_create == NULL"));
}
if (rw != S_CREATE)
pagezero(pp, 0, PAGESIZE);
io_len = PAGESIZE;
} else {
u_offset_t io_off;
uint_t xlen;
struct buf *bp;
ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
/*
* If access is not in sequential order, we read from disk
* in bsize units.
*
* We limit the size of the transfer to bsize if we are reading
* from the beginning of the file. Note in this situation we
* will hedge our bets and initiate an async read ahead of
* the second block.
*/
if (!seq || off == 0)
contig = MIN(contig, bsize);
pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
&io_len, off, contig, 0);
/*
* Some other thread has entered the page.
* ufs_getpage will retry page_lookup.
*/
if (pp == NULL) {
pl[0] = NULL;
return (0);
}
/*
* Zero part of the page which we are not
* going to read from the disk.
*/
xlen = io_len & PAGEOFFSET;
if (xlen != 0)
pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
bp->b_edev = ip->i_dev;
bp->b_dev = cmpdev(ip->i_dev);
bp->b_blkno = bn;
bp->b_un.b_addr = (caddr_t)0;
bp->b_file = ip->i_vnode;
bp->b_offset = off;
if (ufsvfsp->vfs_log) {
lufs_read_strategy(ufsvfsp->vfs_log, bp);
} else if (ufsvfsp->vfs_snapshot) {
fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
} else {
ufsvfsp->vfs_iotstamp = lbolt;
ub.ub_getpages.value.ul++;
(void) bdev_strategy(bp);
lwp_stat_update(LWP_STAT_INBLK, 1);
}
ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
/*
* If the file access is sequential, initiate read ahead
* of the next cluster.
*/
if (seq && ip->i_nextrio < ip->i_size)
(void) ufs_getpage_ra(vp, off, seg, addr);
err = biowait(bp);
pageio_done(bp);
if (err) {
pvn_read_done(pp, B_ERROR);
return (err);
}
}
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
return (0);
}
/*
* Read ahead a cluster from the disk. Returns the length in bytes.
*/
static int
ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
{
struct inode *ip = VTOI(vp);
page_t *pp;
u_offset_t io_off = ip->i_nextrio;
ufsvfs_t *ufsvfsp;
caddr_t addr2 = addr + (io_off - off);
struct buf *bp;
daddr_t bn;
size_t io_len;
int err;
int contig;
int xlen;
int bsize = ip->i_fs->fs_bsize;
/*
* If the directio advisory is in effect on this file,
* then do not do buffered read ahead. Read ahead makes
* it more difficult on threads using directio as they
* will be forced to flush the pages from this vnode.
*/
if ((ufsvfsp = ip->i_ufsvfs) == NULL)
return (0);
if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
return (0);
/*
* Is this test needed?
*/
if (addr2 >= seg->s_base + seg->s_size)
return (0);
contig = 0;
err = bmap_read(ip, io_off, &bn, &contig);
/*
* If its a UFS_HOLE or a fallocated block, do not perform
* any read ahead's since there probably is nothing to read ahead
*/
if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
return (0);
/*
* Limit the transfer size to bsize if this is the 2nd block.
*/
if (io_off == (u_offset_t)bsize)
contig = MIN(contig, bsize);
if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
&io_len, io_off, contig, 1)) == NULL)
return (0);
/*
* Zero part of page which we are not going to read from disk
*/
if ((xlen = (io_len & PAGEOFFSET)) > 0)
pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
bp->b_edev = ip->i_dev;
bp->b_dev = cmpdev(ip->i_dev);
bp->b_blkno = bn;
bp->b_un.b_addr = (caddr_t)0;
bp->b_file = ip->i_vnode;
bp->b_offset = off;
if (ufsvfsp->vfs_log) {
lufs_read_strategy(ufsvfsp->vfs_log, bp);
} else if (ufsvfsp->vfs_snapshot) {
fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
} else {
ufsvfsp->vfs_iotstamp = lbolt;
ub.ub_getras.value.ul++;
(void) bdev_strategy(bp);
lwp_stat_update(LWP_STAT_INBLK, 1);
}
return (io_len);
}
int ufs_delay = 1;
/*
* Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
*
* LMXXX - the inode really ought to contain a pointer to one of these
* async args. Stuff gunk in there and just hand the whole mess off.
* This would replace i_delaylen, i_delayoff.
*/
/*ARGSUSED*/
static int
ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
struct cred *cr, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
int err = 0;
if (vp->v_count == 0) {
return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
}
/*
* XXX - Why should this check be made here?
*/
if (vp->v_flag & VNOMAP) {
err = ENOSYS;
goto errout;
}
if (ip->i_ufsvfs == NULL) {
err = EIO;
goto errout;
}
if (flags & B_ASYNC) {
if (ufs_delay && len &&
(flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
mutex_enter(&ip->i_tlock);
/*
* If nobody stalled, start a new cluster.
*/
if (ip->i_delaylen == 0) {
ip->i_delayoff = off;
ip->i_delaylen = len;
mutex_exit(&ip->i_tlock);
goto errout;
}
/*
* If we have a full cluster or they are not contig,
* then push last cluster and start over.
*/
if (ip->i_delaylen >= CLUSTSZ(ip) ||
ip->i_delayoff + ip->i_delaylen != off) {
u_offset_t doff;
size_t dlen;
doff = ip->i_delayoff;
dlen = ip->i_delaylen;
ip->i_delayoff = off;
ip->i_delaylen = len;
mutex_exit(&ip->i_tlock);
err = ufs_putpages(vp, doff, dlen,
flags, cr);
/* LMXXX - flags are new val, not old */
goto errout;
}
/*
* There is something there, it's not full, and
* it is contig.
*/
ip->i_delaylen += len;
mutex_exit(&ip->i_tlock);
goto errout;
}
/*
* Must have weird flags or we are not clustering.
*/
}
err = ufs_putpages(vp, off, len, flags, cr);
errout:
return (err);
}
/*
* If len == 0, do from off to EOF.
*
* The normal cases should be len == 0 & off == 0 (entire vp list),
* len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
* (from pageout).
*/
/*ARGSUSED*/
static int
ufs_putpages(
struct vnode *vp,
offset_t off,
size_t len,
int flags,
struct cred *cr)
{
u_offset_t io_off;
u_offset_t eoff;
struct inode *ip = VTOI(vp);
page_t *pp;
size_t io_len;
int err = 0;
int dolock;
if (vp->v_count == 0)
return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
/*
* Acquire the readers/write inode lock before locking
* any pages in this inode.
* The inode lock is held during i/o.
*/
if (len == 0) {
mutex_enter(&ip->i_tlock);
ip->i_delayoff = ip->i_delaylen = 0;
mutex_exit(&ip->i_tlock);
}
dolock = (rw_owner(&ip->i_contents) != curthread);
if (dolock) {
/*
* Must synchronize this thread and any possible thread
* operating in the window of vulnerability in wrip().
* It is dangerous to allow both a thread doing a putpage
* and a thread writing, so serialize them. The exception
* is when the thread in wrip() does something which causes
* a putpage operation. Then, the thread must be allowed
* to continue. It may encounter a bmap_read problem in
* ufs_putapage, but that is handled in ufs_putapage.
* Allow async writers to proceed, we don't want to block
* the pageout daemon.
*/
if (ip->i_writer == curthread)
rw_enter(&ip->i_contents, RW_READER);
else {
for (;;) {
rw_enter(&ip->i_contents, RW_READER);
mutex_enter(&ip->i_tlock);
/*
* If there is no thread in the critical
* section of wrip(), then proceed.
* Otherwise, wait until there isn't one.
*/
if (ip->i_writer == NULL) {
mutex_exit(&ip->i_tlock);
break;
}
rw_exit(&ip->i_contents);
/*
* Bounce async writers when we have a writer
* working on this file so we don't deadlock
* the pageout daemon.
*/
if (flags & B_ASYNC) {
mutex_exit(&ip->i_tlock);
return (0);
}
cv_wait(&ip->i_wrcv, &ip->i_tlock);
mutex_exit(&ip->i_tlock);
}
}
}
if (!vn_has_cached_data(vp)) {
if (dolock)
rw_exit(&ip->i_contents);
return (0);
}
if (len == 0) {
/*
* Search the entire vp list for pages >= off.
*/
err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
flags, cr);
} else {
/*
* Loop over all offsets in the range looking for
* pages to deal with.
*/
if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
eoff = MIN(off + len, eoff);
else
eoff = off + len;
for (io_off = off; io_off < eoff; io_off += io_len) {
/*
* If we are not invalidating, synchronously
* freeing or writing pages, use the routine
* page_lookup_nowait() to prevent reclaiming
* them from the free list.
*/
if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
pp = page_lookup(vp, io_off,
(flags & (B_INVAL | B_FREE)) ?
SE_EXCL : SE_SHARED);
} else {
pp = page_lookup_nowait(vp, io_off,
(flags & B_FREE) ? SE_EXCL : SE_SHARED);
}
if (pp == NULL || pvn_getdirty(pp, flags) == 0)
io_len = PAGESIZE;
else {
u_offset_t *io_offp = &io_off;
err = ufs_putapage(vp, pp, io_offp, &io_len,
flags, cr);
if (err != 0)
break;
/*
* "io_off" and "io_len" are returned as
* the range of pages we actually wrote.
* This allows us to skip ahead more quickly
* since several pages may've been dealt
* with by this iteration of the loop.
*/
}
}
}
if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
/*
* We have just sync'ed back all the pages on
* the inode, turn off the IMODTIME flag.
*/
mutex_enter(&ip->i_tlock);
ip->i_flag &= ~IMODTIME;
mutex_exit(&ip->i_tlock);
}
if (dolock)
rw_exit(&ip->i_contents);
return (err);
}
static void
ufs_iodone(buf_t *bp)
{
struct inode *ip;
ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
bp->b_iodone = NULL;
ip = VTOI(bp->b_pages->p_vnode);
mutex_enter(&ip->i_tlock);
if (ip->i_writes >= ufs_LW) {
if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
if (ufs_WRITES)
cv_broadcast(&ip->i_wrcv); /* wake all up */
} else {
ip->i_writes -= bp->b_bcount;
}
mutex_exit(&ip->i_tlock);
iodone(bp);
}
/*
* Write out a single page, possibly klustering adjacent
* dirty pages. The inode lock must be held.
*
* LMXXX - bsize < pagesize not done.
*/
/*ARGSUSED*/
int
ufs_putapage(
struct vnode *vp,
page_t *pp,
u_offset_t *offp,
size_t *lenp, /* return values */
int flags,
struct cred *cr)
{
u_offset_t io_off;
u_offset_t off;
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
struct fs *fs;
struct buf *bp;
size_t io_len;
daddr_t bn;
int err;
int contig;
int dotrans;
ASSERT(RW_LOCK_HELD(&ip->i_contents));
if (ufsvfsp == NULL) {
err = EIO;
goto out_trace;
}
fs = ip->i_fs;
ASSERT(fs->fs_ronly == 0);
/*
* If the modified time on the inode has not already been
* set elsewhere (e.g. for write/setattr) we set the time now.
* This gives us approximate modified times for mmap'ed files
* which are modified via stores in the user address space.
*/
if ((ip->i_flag & IMODTIME) == 0) {
mutex_enter(&ip->i_tlock);
ip->i_flag |= IUPD;
ip->i_seq++;
ITIMES_NOLOCK(ip);
mutex_exit(&ip->i_tlock);
}
/*
* Align the request to a block boundry (for old file systems),
* and go ask bmap() how contiguous things are for this file.
*/
off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
contig = 0;
err = bmap_read(ip, off, &bn, &contig);
if (err)
goto out;
if (bn == UFS_HOLE) { /* putpage never allocates */
/*
* logging device is in error mode; simply return EIO
*/
if (TRANS_ISERROR(ufsvfsp)) {
err = EIO;
goto out;
}
/*
* Oops, the thread in the window in wrip() did some
* sort of operation which caused a putpage in the bad
* range. In this case, just return an error which will
* cause the software modified bit on the page to set
* and the page will get written out again later.
*/
if (ip->i_writer == curthread) {
err = EIO;
goto out;
}
/*
* If the pager is trying to push a page in the bad range
* just tell him to try again later when things are better.
*/
if (flags & B_ASYNC) {
err = EAGAIN;
goto out;
}
err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
goto out;
}
/*
* If it is an fallocate'd block, reverse the negativity since
* we are now writing to it
*/
if (ISFALLOCBLK(ip, bn)) {
err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
if (err)
goto out;
bn = -bn;
}
/*
* Take the length (of contiguous bytes) passed back from bmap()
* and _try_ and get a set of pages covering that extent.
*/
pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
/*
* May have run out of memory and not clustered backwards.
* off p_offset
* [ pp - 1 ][ pp ]
* [ block ]
* We told bmap off, so we have to adjust the bn accordingly.
*/
if (io_off > off) {
bn += btod(io_off - off);
contig -= (io_off - off);
}
/*
* bmap was carefull to tell us the right size so use that.
* There might be unallocated frags at the end.
* LMXXX - bzero the end of the page? We must be writing after EOF.
*/
if (io_len > contig) {
ASSERT(io_len - contig < fs->fs_bsize);
io_len -= (io_len - contig);
}
/*
* Handle the case where we are writing the last page after EOF.
*
* XXX - just a patch for i-mt3.
*/
if (io_len == 0) {
ASSERT(pp->p_offset >=
(u_offset_t)(roundup(ip->i_size, PAGESIZE)));
io_len = PAGESIZE;
}
bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
ULOCKFS_SET_MOD(ITOUL(ip));
bp->b_edev = ip->i_dev;
bp->b_dev = cmpdev(ip->i_dev);
bp->b_blkno = bn;
bp->b_un.b_addr = (caddr_t)0;
bp->b_file = ip->i_vnode;
/*
* File contents of shadow or quota inodes are metadata, and updates
* to these need to be put into a logging transaction. All direct
* callers in UFS do that, but fsflush can come here _before_ the
* normal codepath. An example would be updating ACL information, for
* which the normal codepath would be:
* ufs_si_store()
* ufs_rdwri()
* wrip()
* segmap_release()
* VOP_PUTPAGE()
* Here, fsflush can pick up the dirty page before segmap_release()
* forces it out. If that happens, there's no transaction.
* We therefore need to test whether a transaction exists, and if not
* create one - for fsflush.
*/
dotrans =
(((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
((curthread->t_flag & T_DONTBLOCK) == 0) &&
(TRANS_ISTRANS(ufsvfsp)));
if (dotrans) {
curthread->t_flag |= T_DONTBLOCK;
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
}
if (TRANS_ISTRANS(ufsvfsp)) {
if ((ip->i_mode & IFMT) == IFSHAD) {
TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
} else if (ufsvfsp->vfs_qinod == ip) {
TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
0, 0);
}
}
if (dotrans) {
TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
curthread->t_flag &= ~T_DONTBLOCK;
}
/* write throttle */
ASSERT(bp->b_iodone == NULL);
bp->b_iodone = (int (*)())ufs_iodone;
mutex_enter(&ip->i_tlock);
ip->i_writes += bp->b_bcount;
mutex_exit(&ip->i_tlock);
if (bp->b_flags & B_ASYNC) {
if (ufsvfsp->vfs_log) {
lufs_write_strategy(ufsvfsp->vfs_log, bp);
} else if (ufsvfsp->vfs_snapshot) {
fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
} else {
ufsvfsp->vfs_iotstamp = lbolt;
ub.ub_putasyncs.value.ul++;
(void) bdev_strategy(bp);
lwp_stat_update(LWP_STAT_OUBLK, 1);
}
} else {
if (ufsvfsp->vfs_log) {
lufs_write_strategy(ufsvfsp->vfs_log, bp);
} else if (ufsvfsp->vfs_snapshot) {
fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
} else {
ufsvfsp->vfs_iotstamp = lbolt;
ub.ub_putsyncs.value.ul++;
(void) bdev_strategy(bp);
lwp_stat_update(LWP_STAT_OUBLK, 1);
}
err = biowait(bp);
pageio_done(bp);
pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
}
pp = NULL;
out:
if (err != 0 && pp != NULL)
pvn_write_done(pp, B_ERROR | B_WRITE | flags);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;
out_trace:
return (err);
}
uint64_t ufs_map_alock_retry_cnt;
uint64_t ufs_map_lockfs_retry_cnt;
/* ARGSUSED */
static int
ufs_map(struct vnode *vp,
offset_t off,
struct as *as,
caddr_t *addrp,
size_t len,
uchar_t prot,
uchar_t maxprot,
uint_t flags,
struct cred *cr,
caller_context_t *ct)
{
struct segvn_crargs vn_a;
struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
struct ulockfs *ulp;
int error, sig;
k_sigset_t smask;
caddr_t hint = *addrp;
if (vp->v_flag & VNOMAP) {
error = ENOSYS;
goto out;
}
if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
error = ENXIO;
goto out;
}
if (vp->v_type != VREG) {
error = ENODEV;
goto out;
}
retry_map:
*addrp = hint;
/*
* If file is being locked, disallow mapping.
*/
if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
error = EAGAIN;
goto out;
}
as_rangelock(as);
/*
* Note that if we are retrying (because ufs_lockfs_trybegin failed in
* the previous attempt), some other thread could have grabbed
* the same VA range if MAP_FIXED is set. In that case, choose_addr
* would unmap the valid VA range, that is ok.
*/
error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
if (error != 0) {
as_rangeunlock(as);
goto out;
}
/*
* a_lock has to be acquired before entering the lockfs protocol
* because that is the order in which pagefault works. Also we cannot
* block on a_lock here because this waiting writer will prevent
* further readers like ufs_read from progressing and could cause
* deadlock between ufs_read/ufs_map/pagefault when a quiesce is
* pending.
*/
while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) {
ufs_map_alock_retry_cnt++;
delay(RETRY_LOCK_DELAY);
}
/*
* We can't hold as->a_lock and wait for lockfs to succeed because
* the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
* instead.
*/
if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
/*
* ufs_lockfs_trybegin() did not succeed. It is safer to give up
* as->a_lock and wait for ulp->ul_fs_lock status to change.
*/
ufs_map_lockfs_retry_cnt++;
AS_LOCK_EXIT(as, &as->a_lock);
as_rangeunlock(as);
if (error == EIO)
goto out;
mutex_enter(&ulp->ul_lock);
while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
cv_wait(&ulp->ul_cv, &ulp->ul_lock);
} else {
sigintr(&smask, 1);
sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
sigunintr(&smask);
if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
!sig) || ufsvfsp->vfs_dontblock) {
mutex_exit(&ulp->ul_lock);
return (EINTR);
}
}
}
mutex_exit(&ulp->ul_lock);
goto retry_map;
}
vn_a.vp = vp;
vn_a.offset = (u_offset_t)off;
vn_a.type = flags & MAP_TYPE;
vn_a.prot = prot;
vn_a.maxprot = maxprot;
vn_a.cred = cr;
vn_a.amp = NULL;
vn_a.flags = flags & ~MAP_TYPE;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
if (ulp)
ufs_lockfs_end(ulp);
as_rangeunlock(as);
out:
return (error);
}
/* ARGSUSED */
static int
ufs_addmap(struct vnode *vp,
offset_t off,
struct as *as,
caddr_t addr,
size_t len,
uchar_t prot,
uchar_t maxprot,
uint_t flags,
struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
if (vp->v_flag & VNOMAP) {
return (ENOSYS);
}
mutex_enter(&ip->i_tlock);
ip->i_mapcnt += btopr(len);
mutex_exit(&ip->i_tlock);
return (0);
}
/*ARGSUSED*/
static int
ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uint_t prot, uint_t maxprot, uint_t flags,
struct cred *cr, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
if (vp->v_flag & VNOMAP) {
return (ENOSYS);
}
mutex_enter(&ip->i_tlock);
ip->i_mapcnt -= btopr(len); /* Count released mappings */
ASSERT(ip->i_mapcnt >= 0);
mutex_exit(&ip->i_tlock);
return (0);
}
/*
* Return the answer requested to poll() for non-device files
*/
struct pollhead ufs_pollhd;
/* ARGSUSED */
int
ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
caller_context_t *ct)
{
struct ufsvfs *ufsvfsp;
*revp = 0;
ufsvfsp = VTOI(vp)->i_ufsvfs;
if (!ufsvfsp) {
*revp = POLLHUP;
goto out;
}
if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
*revp |= POLLERR;
} else {
if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
!ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
*revp |= POLLOUT;
if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
!ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
*revp |= POLLWRBAND;
if (ev & POLLIN)
*revp |= POLLIN;
if (ev & POLLRDNORM)
*revp |= POLLRDNORM;
if (ev & POLLRDBAND)
*revp |= POLLRDBAND;
}
if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
*revp |= POLLPRI;
out:
*phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
return (0);
}
/* ARGSUSED */
static int
ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
caller_context_t *ct)
{
struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
struct ulockfs *ulp = NULL;
struct inode *sip = NULL;
int error;
struct inode *ip = VTOI(vp);
int issync;
error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
if (error)
return (error);
switch (cmd) {
/*
* Have to handle _PC_NAME_MAX here, because the normal way
* [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
* results in a lock ordering reversal between
* ufs_lockfs_{begin,end}() and
* ufs_thread_{suspend,continue}().
*
* Keep in sync with ufs_statvfs().
*/
case _PC_NAME_MAX:
*valp = MAXNAMLEN;
break;
case _PC_FILESIZEBITS:
if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
*valp = UFS_FILESIZE_BITS;
else
*valp = 32;
break;
case _PC_XATTR_EXISTS:
if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
error =
ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
if (error == 0 && sip != NULL) {
/* Start transaction */
if (ulp) {
TRANS_BEGIN_CSYNC(ufsvfsp, issync,
TOP_RMDIR, TOP_RMDIR_SIZE);
}
/*
* Is directory empty
*/
rw_enter(&sip->i_rwlock, RW_WRITER);
rw_enter(&sip->i_contents, RW_WRITER);
if (ufs_xattrdirempty(sip,
sip->i_number, CRED())) {
rw_enter(&ip->i_contents, RW_WRITER);
ufs_unhook_shadow(ip, sip);
rw_exit(&ip->i_contents);
*valp = 0;
} else
*valp = 1;
rw_exit(&sip->i_contents);
rw_exit(&sip->i_rwlock);
if (ulp) {
TRANS_END_CSYNC(ufsvfsp, error, issync,
TOP_RMDIR, TOP_RMDIR_SIZE);
}
VN_RELE(ITOV(sip));
} else if (error == ENOENT) {
*valp = 0;
error = 0;
}
} else {
error = fs_pathconf(vp, cmd, valp, cr, ct);
}
break;
case _PC_ACL_ENABLED:
*valp = _ACL_ACLENT_ENABLED;
break;
case _PC_MIN_HOLE_SIZE:
*valp = (ulong_t)ip->i_fs->fs_bsize;
break;
case _PC_SATTR_ENABLED:
case _PC_SATTR_EXISTS:
*valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) &&
(vp->v_type == VREG || vp->v_type == VDIR);
break;
default:
error = fs_pathconf(vp, cmd, valp, cr, ct);
}
if (ulp != NULL) {
ufs_lockfs_end(ulp);
}
return (error);
}
int ufs_pageio_writes, ufs_pageio_reads;
/*ARGSUSED*/
static int
ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, struct cred *cr, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ufsvfs *ufsvfsp;
page_t *npp = NULL, *opp = NULL, *cpp = pp;
struct buf *bp;
daddr_t bn;
size_t done_len = 0, cur_len = 0;
int err = 0;
int contig = 0;
int dolock;
int vmpss = 0;
struct ulockfs *ulp;
if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
vp->v_mpssdata != NULL) {
vmpss = 1;
}
dolock = (rw_owner(&ip->i_contents) != curthread);
/*
* We need a better check. Ideally, we would use another
* vnodeops so that hlocked and forcibly unmounted file
* systems would return EIO where appropriate and w/o the
* need for these checks.
*/
if ((ufsvfsp = ip->i_ufsvfs) == NULL)
return (EIO);
/*
* For vmpss (pp can be NULL) case respect the quiesce protocol.
* ul_lock must be taken before locking pages so we can't use it here
* if pp is non NULL because segvn already locked pages
* SE_EXCL. Instead we rely on the fact that a forced umount or
* applying a filesystem lock via ufs_fiolfs() will block in the
* implicit call to ufs_flush() until we unlock the pages after the
* return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
* above 0 until they are done. We have to be careful not to increment
* ul_vnops_cnt here after forceful unmount hlocks the file system.
*
* If pp is NULL use ul_lock to make sure we don't increment
* ul_vnops_cnt after forceful unmount hlocks the file system.
*/
if (vmpss || pp == NULL) {
ulp = &ufsvfsp->vfs_ulockfs;
if (pp == NULL)
mutex_enter(&ulp->ul_lock);
if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
if (pp == NULL) {
mutex_exit(&ulp->ul_lock);
}
return (vmpss ? EIO : EINVAL);
}
atomic_add_long(&ulp->ul_vnops_cnt, 1);
if (pp == NULL)
mutex_exit(&ulp->ul_lock);
if (ufs_quiesce_pend) {
if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
cv_broadcast(&ulp->ul_cv);
return (vmpss ? EIO : EINVAL);
}
}
if (dolock) {
/*
* segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
* handle a fault against a segment that maps vnode pages with
* large mappings. Segvn creates pages and holds them locked
* SE_EXCL during VOP_PAGEIO() call. In this case we have to
* use rw_tryenter() to avoid a potential deadlock since in
* lock order i_contents needs to be taken first.
* Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
*/
if (!vmpss) {
rw_enter(&ip->i_contents, RW_READER);
} else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
cv_broadcast(&ulp->ul_cv);
return (EDEADLK);
}
}
/*
* Return an error to segvn because the pagefault request is beyond
* PAGESIZE rounded EOF.
*/
if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
if (dolock)
rw_exit(&ip->i_contents);
if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
cv_broadcast(&ulp->ul_cv);
return (EFAULT);
}
if (pp == NULL) {
if (bmap_has_holes(ip)) {
err = ENOSYS;
} else {
err = EINVAL;
}
if (dolock)
rw_exit(&ip->i_contents);
if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
cv_broadcast(&ulp->ul_cv);
return (err);
}
/*
* Break the io request into chunks, one for each contiguous
* stretch of disk blocks in the target file.
*/
while (done_len < io_len) {
ASSERT(cpp);
contig = 0;
if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
&bn, &contig))
break;
if (bn == UFS_HOLE) { /* No holey swapfiles */
if (vmpss) {
err = EFAULT;
break;
}
err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
break;
}
cur_len = MIN(io_len - done_len, contig);
/*
* Zero out a page beyond EOF, when the last block of
* a file is a UFS fragment so that ufs_pageio() can be used
* instead of ufs_getpage() to handle faults against
* segvn segments that use large pages.
*/
page_list_break(&cpp, &npp, btopr(cur_len));
if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
size_t xlen = cur_len & PAGEOFFSET;
pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
}
bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
ASSERT(bp != NULL);
bp->b_edev = ip->i_dev;
bp->b_dev = cmpdev(ip->i_dev);
bp->b_blkno = bn;
bp->b_un.b_addr = (caddr_t)0;
bp->b_file = ip->i_vnode;
ufsvfsp->vfs_iotstamp = lbolt;
ub.ub_pageios.value.ul++;
if (ufsvfsp->vfs_snapshot)
fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
else
(void) bdev_strategy(bp);
if (flags & B_READ)
ufs_pageio_reads++;
else
ufs_pageio_writes++;
if (flags & B_READ)
lwp_stat_update(LWP_STAT_INBLK, 1);
else
lwp_stat_update(LWP_STAT_OUBLK, 1);
/*
* If the request is not B_ASYNC, wait for i/o to complete
* and re-assemble the page list to return to the caller.
* If it is B_ASYNC we leave the page list in pieces and
* cleanup() will dispose of them.
*/
if ((flags & B_ASYNC) == 0) {
err = biowait(bp);
pageio_done(bp);
if (err)
break;
page_list_concat(&opp, &cpp);
}
cpp = npp;
npp = NULL;
if (flags & B_READ)
cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
done_len += cur_len;
}
ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
if (err) {
if (flags & B_ASYNC) {
/* Cleanup unprocessed parts of list */
page_list_concat(&cpp, &npp);
if (flags & B_READ)
pvn_read_done(cpp, B_ERROR);
else
pvn_write_done(cpp, B_ERROR);
} else {
/* Re-assemble list and let caller clean up */
page_list_concat(&opp, &cpp);
page_list_concat(&opp, &npp);
}
}
if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
mutex_enter(&ip->i_tlock);
ip->i_flag |= IACC;
ITIMES_NOLOCK(ip);
mutex_exit(&ip->i_tlock);
}
if (dolock)
rw_exit(&ip->i_contents);
if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
cv_broadcast(&ulp->ul_cv);
return (err);
}
/*
* Called when the kernel is in a frozen state to dump data
* directly to the device. It uses a private dump data structure,
* set up by dump_ctl, to locate the correct disk block to which to dump.
*/
/*ARGSUSED*/
static int
ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
caller_context_t *ct)
{
u_offset_t file_size;
struct inode *ip = VTOI(vp);
struct fs *fs = ip->i_fs;
daddr_t dbn, lfsbn;
int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
int error = 0;
int ndbs, nfsbs;
/*
* forced unmount case
*/
if (ip->i_ufsvfs == NULL)
return (EIO);
/*
* Validate the inode that it has not been modified since
* the dump structure is allocated.
*/
mutex_enter(&ip->i_tlock);
if ((dump_info == NULL) ||
(dump_info->ip != ip) ||
(dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
(dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
mutex_exit(&ip->i_tlock);
return (-1);
}
mutex_exit(&ip->i_tlock);
/*
* See that the file has room for this write
*/
UFS_GET_ISIZE(&file_size, ip);
if (ldbtob(ldbn + dblks) > file_size)
return (ENOSPC);
/*
* Find the physical disk block numbers from the dump
* private data structure directly and write out the data
* in contiguous block lumps
*/
while (dblks > 0 && !error) {
lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
nfsbs = 1;
ndbs = disk_blks - ldbn % disk_blks;
while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
nfsbs]) == dbn + ndbs) {
nfsbs++;
ndbs += disk_blks;
}
if (ndbs > dblks)
ndbs = dblks;
error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
addr += ldbtob((offset_t)ndbs);
dblks -= ndbs;
ldbn += ndbs;
}
return (error);
}
/*
* Prepare the file system before and after the dump operation.
*
* action = DUMP_ALLOC:
* Preparation before dump, allocate dump private data structure
* to hold all the direct and indirect block info for dump.
*
* action = DUMP_FREE:
* Clean up after dump, deallocate the dump private data structure.
*
* action = DUMP_SCAN:
* Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
* if found, the starting file-relative DEV_BSIZE lbn is written
* to *bklp; that lbn is intended for use with VOP_DUMP()
*/
/*ARGSUSED*/
static int
ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
struct fs *fs;
daddr32_t *dblk, *storeblk;
daddr32_t *nextblk, *endblk;
struct buf *bp;
int i, entry, entries;
int n, ncontig;
/*
* check for forced unmount
*/
if (ufsvfsp == NULL)
return (EIO);
if (action == DUMP_ALLOC) {
/*
* alloc and record dump_info
*/
if (dump_info != NULL)
return (EINVAL);
ASSERT(vp->v_type == VREG);
fs = ufsvfsp->vfs_fs;
rw_enter(&ip->i_contents, RW_READER);
if (bmap_has_holes(ip)) {
rw_exit(&ip->i_contents);
return (EFAULT);
}
/*
* calculate and allocate space needed according to i_size
*/
entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
dump_info = kmem_alloc(sizeof (struct dump) +
(entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
if (dump_info == NULL) {
rw_exit(&ip->i_contents);
return (ENOMEM);
}
/* Start saving the info */
dump_info->fsbs = entries;
dump_info->ip = ip;
storeblk = &dump_info->dblk[0];
/* Direct Blocks */
for (entry = 0; entry < NDADDR && entry < entries; entry++)
*storeblk++ = ip->i_db[entry];
/* Indirect Blocks */
for (i = 0; i < NIADDR; i++) {
int error = 0;
bp = UFS_BREAD(ufsvfsp,
ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
if (bp->b_flags & B_ERROR)
error = EIO;
else {
dblk = bp->b_un.b_daddr;
if ((storeblk = save_dblks(ip, ufsvfsp,
storeblk, dblk, i, entries)) == NULL)
error = EIO;
}
brelse(bp);
if (error != 0) {
kmem_free(dump_info, sizeof (struct dump) +
(entries - 1) * sizeof (daddr32_t));
rw_exit(&ip->i_contents);
dump_info = NULL;
return (error);
}
}
/* and time stamp the information */
mutex_enter(&ip->i_tlock);
dump_info->time = ip->i_mtime;
mutex_exit(&ip->i_tlock);
rw_exit(&ip->i_contents);
} else if (action == DUMP_FREE) {
/*
* free dump_info
*/
if (dump_info == NULL)
return (EINVAL);
entries = dump_info->fsbs - 1;
kmem_free(dump_info, sizeof (struct dump) +
entries * sizeof (daddr32_t));
dump_info = NULL;
} else if (action == DUMP_SCAN) {
/*
* scan dump_info
*/
if (dump_info == NULL)
return (EINVAL);
dblk = dump_info->dblk;
nextblk = dblk + 1;
endblk = dblk + dump_info->fsbs - 1;
fs = ufsvfsp->vfs_fs;
ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
/*
* scan dblk[] entries; contig fs space is found when:
* ((current blkno + frags per block) == next blkno)
*/
n = 0;
while (n < ncontig && dblk < endblk) {
if ((*dblk + fs->fs_frag) == *nextblk)
n++;
else
n = 0;
dblk++;
nextblk++;
}
/*
* index is where size bytes of contig space begins;
* conversion from index to the file's DEV_BSIZE lbn
* is equivalent to: (index * fs_bsize) / DEV_BSIZE
*/
if (n == ncontig) {
i = (dblk - dump_info->dblk) - ncontig;
*blkp = i << (fs->fs_bshift - DEV_BSHIFT);
} else
return (EFAULT);
}
return (0);
}
/*
* Recursive helper function for ufs_dumpctl(). It follows the indirect file
* system blocks until it reaches the the disk block addresses, which are
* then stored into the given buffer, storeblk.
*/
static daddr32_t *
save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
daddr32_t *dblk, int level, int entries)
{
struct fs *fs = ufsvfsp->vfs_fs;
struct buf *bp;
int i;
if (level == 0) {
for (i = 0; i < NINDIR(fs); i++) {
if (storeblk - dump_info->dblk >= entries)
break;
*storeblk++ = dblk[i];
}
return (storeblk);
}
for (i = 0; i < NINDIR(fs); i++) {
if (storeblk - dump_info->dblk >= entries)
break;
bp = UFS_BREAD(ufsvfsp,
ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
if (bp->b_flags & B_ERROR) {
brelse(bp);
return (NULL);
}
storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
level - 1, entries);
brelse(bp);
if (storeblk == NULL)
return (NULL);
}
return (storeblk);
}
/* ARGSUSED */
static int
ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
struct cred *cr, caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ulockfs *ulp;
struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
ulong_t vsa_mask = vsap->vsa_mask;
int err = EINVAL;
vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
/*
* Only grab locks if needed - they're not needed to check vsa_mask
* or if the mask contains no acl flags.
*/
if (vsa_mask != 0) {
if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
ULOCKFS_GETATTR_MASK))
return (err);
rw_enter(&ip->i_contents, RW_READER);
err = ufs_acl_get(ip, vsap, flag, cr);
rw_exit(&ip->i_contents);
if (ulp)
ufs_lockfs_end(ulp);
}
return (err);
}
/* ARGSUSED */
static int
ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
caller_context_t *ct)
{
struct inode *ip = VTOI(vp);
struct ulockfs *ulp = NULL;
struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
ulong_t vsa_mask = vsap->vsa_mask;
int err;
int haverwlock = 1;
int trans_size;
int donetrans = 0;
int retry = 1;
ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
/* Abort now if the request is either empty or invalid. */
vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
if ((vsa_mask == 0) ||
((vsap->vsa_aclentp == NULL) &&
(vsap->vsa_dfaclentp == NULL))) {
err = EINVAL;
goto out;
}
/*
* Following convention, if this is a directory then we acquire the
* inode's i_rwlock after starting a UFS logging transaction;
* otherwise, we acquire it beforehand. Since we were called (and
* must therefore return) with the lock held, we will have to drop it,
* and later reacquire it, if operating on a directory.
*/
if (vp->v_type == VDIR) {
rw_exit(&ip->i_rwlock);
haverwlock = 0;
} else {
/* Upgrade the lock if required. */
if (!rw_write_held(&ip->i_rwlock)) {
rw_exit(&ip->i_rwlock);
rw_enter(&ip->i_rwlock, RW_WRITER);
}
}
again:
ASSERT(!(vp->v_type == VDIR && haverwlock));
if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
ulp = NULL;
retry = 0;
goto out;
}
/*
* Check that the file system supports this operation. Note that
* ufs_lockfs_begin() will have checked that the file system had
* not been forcibly unmounted.
*/
if (ufsvfsp->vfs_fs->fs_ronly) {
err = EROFS;
goto out;
}
if (ufsvfsp->vfs_nosetsec) {
err = ENOSYS;
goto out;
}
if (ulp) {
TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
donetrans = 1;
}
if (vp->v_type == VDIR) {
rw_enter(&ip->i_rwlock, RW_WRITER);
haverwlock = 1;
}
ASSERT(haverwlock);
/* Do the actual work. */
rw_enter(&ip->i_contents, RW_WRITER);
/*
* Suppress out of inodes messages if we will retry.
*/
if (retry)
ip->i_flag |= IQUIET;
err = ufs_acl_set(ip, vsap, flag, cr);
ip->i_flag &= ~IQUIET;
rw_exit(&ip->i_contents);
out:
if (ulp) {
if (donetrans) {
/*
* top_end_async() can eventually call
* top_end_sync(), which can block. We must
* therefore observe the lock-ordering protocol
* here as well.
*/
if (vp->v_type == VDIR) {
rw_exit(&ip->i_rwlock);
haverwlock = 0;
}
TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
}
ufs_lockfs_end(ulp);
}
/*
* If no inodes available, try scaring a logically-
* free one out of the delete queue to someplace
* that we can find it.
*/
if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
ufs_delete_drain_wait(ufsvfsp, 1);
retry = 0;
if (vp->v_type == VDIR && haverwlock) {
rw_exit(&ip->i_rwlock);
haverwlock = 0;
}
goto again;
}
/*
* If we need to reacquire the lock then it is safe to do so
* as a reader. This is because ufs_rwunlock(), which will be
* called by our caller after we return, does not differentiate
* between shared and exclusive locks.
*/
if (!haverwlock) {
ASSERT(vp->v_type == VDIR);
rw_enter(&ip->i_rwlock, RW_READER);
}
return (err);
}