socktpi.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/cred.h>
#include <sys/kmem.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/debug.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/user.h>
#include <sys/termios.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/ddi.h>
#include <sys/esunddi.h>
#include <sys/flock.h>
#include <sys/modctl.h>
#include <sys/vtrace.h>
#include <sys/cmn_err.h>
#include <sys/pathname.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <sys/un.h>
#include <sys/strsun.h>
#include <sys/tiuser.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h> /* TI_GETMYNAME, TI_GETPEERNAME */
#include <c2/audit.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/tcp.h>
#include <fs/sockfs/nl7c.h>
#include <sys/zone.h>
/*
* Possible failures when memory can't be allocated. The documented behavior:
*
* 5.5: 4.X: XNET:
* accept: ENOMEM/ENOSR/EINTR - (EINTR) ENOMEM/ENOBUFS/ENOSR/
* EINTR
* (4.X does not document EINTR but returns it)
* bind: ENOSR - ENOBUFS/ENOSR
* connect: EINTR EINTR ENOBUFS/ENOSR/EINTR
* getpeername: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR
* getsockname: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR
* (4.X getpeername and getsockname do not fail in practice)
* getsockopt: ENOMEM/ENOSR - ENOBUFS/ENOSR
* listen: - - ENOBUFS
* recv: ENOMEM/ENOSR/EINTR EINTR ENOBUFS/ENOMEM/ENOSR/
* EINTR
* send: ENOMEM/ENOSR/EINTR ENOBUFS/EINTR ENOBUFS/ENOMEM/ENOSR/
* EINTR
* setsockopt: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR
* shutdown: ENOMEM/ENOSR - ENOBUFS/ENOSR
* socket: ENOMEM/ENOSR ENOBUFS ENOBUFS/ENOMEM/ENOSR
* socketpair: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR
*
* Resolution. When allocation fails:
* recv: return EINTR
* send: return EINTR
* connect, accept: EINTR
* bind, listen, shutdown (unbind, unix_close, disconnect): sleep
* socket, socketpair: ENOBUFS
* getpeername, getsockname: sleep
* getsockopt, setsockopt: sleep
*/
#ifdef SOCK_TEST
/*
* Variables that make sockfs do something other than the standard TPI
* for the AF_INET transports.
*
* solisten_tpi_tcp:
* TCP can handle a O_T_BIND_REQ with an increased backlog even though
* the transport is already bound. This is needed to avoid loosing the
* port number should listen() do a T_UNBIND_REQ followed by a
* O_T_BIND_REQ.
*
* soconnect_tpi_udp:
* UDP and ICMP can handle a T_CONN_REQ.
* This is needed to make the sequence of connect(), getsockname()
* return the local IP address used to send packets to the connected to
* destination.
*
* soconnect_tpi_tcp:
* TCP can handle a T_CONN_REQ without seeing a O_T_BIND_REQ.
* Set this to non-zero to send TPI conformant messages to TCP in this
* respect. This is a performance optimization.
*
* soaccept_tpi_tcp:
* TCP can handle a T_CONN_REQ without the acceptor being bound.
* This is a performance optimization that has been picked up in XTI.
*
* soaccept_tpi_multioptions:
* When inheriting SOL_SOCKET options from the listener to the accepting
* socket send them as a single message for AF_INET{,6}.
*/
int solisten_tpi_tcp = 0;
int soconnect_tpi_udp = 0;
int soconnect_tpi_tcp = 0;
int soaccept_tpi_tcp = 0;
int soaccept_tpi_multioptions = 1;
#else /* SOCK_TEST */
#define soconnect_tpi_tcp 0
#define soconnect_tpi_udp 0
#define solisten_tpi_tcp 0
#define soaccept_tpi_tcp 0
#define soaccept_tpi_multioptions 1
#endif /* SOCK_TEST */
#ifdef SOCK_TEST
extern int do_useracc;
extern clock_t sock_test_timelimit;
#endif /* SOCK_TEST */
/*
* Some X/Open added checks might have to be backed out to keep SunOS 4.X
* applications working. Turn on this flag to disable these checks.
*/
int xnet_skip_checks = 0;
int xnet_check_print = 0;
int xnet_truncate_print = 0;
extern void sigintr(k_sigset_t *, int);
extern void sigunintr(k_sigset_t *);
extern void *nl7c_lookup_addr(void *, t_uscalar_t);
extern void *nl7c_add_addr(void *, t_uscalar_t);
extern void nl7c_listener_addr(void *, queue_t *);
static int sotpi_unbind(struct sonode *, int);
/* TPI sockfs sonode operations */
static int sotpi_accept(struct sonode *, int, struct sonode **);
static int sotpi_bind(struct sonode *, struct sockaddr *, socklen_t,
int);
static int sotpi_connect(struct sonode *, const struct sockaddr *,
socklen_t, int, int);
static int sotpi_listen(struct sonode *, int);
static int sotpi_sendmsg(struct sonode *, struct nmsghdr *,
struct uio *);
static int sotpi_shutdown(struct sonode *, int);
static int sotpi_getsockname(struct sonode *);
sonodeops_t sotpi_sonodeops = {
sotpi_accept, /* sop_accept */
sotpi_bind, /* sop_bind */
sotpi_listen, /* sop_listen */
sotpi_connect, /* sop_connect */
sotpi_recvmsg, /* sop_recvmsg */
sotpi_sendmsg, /* sop_sendmsg */
sotpi_getpeername, /* sop_getpeername */
sotpi_getsockname, /* sop_getsockname */
sotpi_shutdown, /* sop_shutdown */
sotpi_getsockopt, /* sop_getsockopt */
sotpi_setsockopt /* sop_setsockopt */
};
/*
* Common create code for socket and accept. If tso is set the values
* from that node is used instead of issuing a T_INFO_REQ.
*
* Assumes that the caller has a VN_HOLD on accessvp.
* The VN_RELE will occur either when sotpi_create() fails or when
* the returned sonode is freed.
*/
struct sonode *
sotpi_create(vnode_t *accessvp, int domain, int type, int protocol, int version,
struct sonode *tso, int *errorp)
{
struct sonode *so;
vnode_t *vp;
int flags, error;
ASSERT(accessvp != NULL);
vp = makesockvp(accessvp, domain, type, protocol);
ASSERT(vp != NULL);
so = VTOSO(vp);
flags = FREAD|FWRITE;
if (tso != NULL) {
if ((tso->so_state & (SS_TCP_FAST_ACCEPT)) != 0) {
flags |= SO_ACCEPTOR|SO_SOCKSTR;
so->so_state |= SS_TCP_FAST_ACCEPT;
}
} else {
if ((so->so_type == SOCK_STREAM) &&
(so->so_family == AF_INET || so->so_family == AF_INET6)) {
flags |= SO_SOCKSTR;
so->so_state |= SS_TCP_FAST_ACCEPT;
}
}
/*
* Tell local transport that it is talking to sockets.
*/
if (so->so_family == AF_UNIX) {
flags |= SO_SOCKSTR;
}
if (error = socktpi_open(&vp, flags, CRED())) {
VN_RELE(vp);
*errorp = error;
return (NULL);
}
if (error = so_strinit(so, tso)) {
(void) VOP_CLOSE(vp, 0, 1, 0, CRED());
VN_RELE(vp);
*errorp = error;
return (NULL);
}
if (version == SOV_DEFAULT)
version = so_default_version;
so->so_version = (short)version;
return (so);
}
/*
* Bind the socket to an unspecified address in sockfs only.
* Used for TCP/UDP transports where we know that the O_T_BIND_REQ isn't
* required in all cases.
*/
static void
so_automatic_bind(struct sonode *so)
{
ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6);
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(!(so->so_state & SS_ISBOUND));
ASSERT(so->so_unbind_mp);
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bzero(so->so_laddr_sa, so->so_laddr_len);
so->so_laddr_sa->sa_family = so->so_family;
so->so_state |= SS_ISBOUND;
}
/*
* bind the socket.
*
* If the socket is already bound and none of _SOBIND_SOCKBSD or _SOBIND_XPG4_2
* are passed in we allow rebinding. Note that for backwards compatibility
* even "svr4" sockets pass in _SOBIND_SOCKBSD/SOV_SOCKBSD to sobind/bind.
* Thus the rebinding code is currently not executed.
*
* The constraints for rebinding are:
* - it is a SOCK_DGRAM, or
* - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected
* and no listen() has been done.
* This rebinding code was added based on some language in the XNET book
* about not returning EINVAL it the protocol allows rebinding. However,
* this language is not present in the Posix socket draft. Thus maybe the
* rebinding logic should be deleted from the source.
*
* A null "name" can be used to unbind the socket if:
* - it is a SOCK_DGRAM, or
* - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected
* and no listen() has been done.
*/
static int
sotpi_bindlisten(struct sonode *so, struct sockaddr *name,
socklen_t namelen, int backlog, int flags)
{
struct T_bind_req bind_req;
struct T_bind_ack *bind_ack;
int error = 0;
mblk_t *mp;
void *addr;
t_uscalar_t addrlen;
int unbind_on_err = 1;
boolean_t clear_acceptconn_on_err = B_FALSE;
boolean_t restore_backlog_on_err = B_FALSE;
int save_so_backlog;
t_scalar_t PRIM_type = O_T_BIND_REQ;
boolean_t tcp_udp_xport;
void *nl7c = NULL;
dprintso(so, 1, ("sotpi_bindlisten(%p, %p, %d, %d, 0x%x) %s\n",
so, name, namelen, backlog, flags,
pr_state(so->so_state, so->so_mode)));
tcp_udp_xport = so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM;
if (!(flags & _SOBIND_LOCK_HELD)) {
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
} else {
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
}
/*
* Make sure that there is a preallocated unbind_req message
* before binding. This message allocated when the socket is
* created but it might be have been consumed.
*/
if (so->so_unbind_mp == NULL) {
dprintso(so, 1, ("sobind: allocating unbind_req\n"));
/* NOTE: holding so_lock while sleeping */
so->so_unbind_mp =
soallocproto(sizeof (struct T_unbind_req), _ALLOC_SLEEP);
}
if (flags & _SOBIND_REBIND) {
/*
* Called from solisten after doing an sotpi_unbind() or
* potentially without the unbind (latter for AF_INET{,6}).
*/
ASSERT(name == NULL && namelen == 0);
if (so->so_family == AF_UNIX) {
ASSERT(so->so_ux_bound_vp);
addr = &so->so_ux_laddr;
addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr);
dprintso(so, 1,
("sobind rebind UNIX: addrlen %d, addr 0x%p, vp %p\n",
addrlen,
((struct so_ux_addr *)addr)->soua_vp,
so->so_ux_bound_vp));
} else {
addr = so->so_laddr_sa;
addrlen = (t_uscalar_t)so->so_laddr_len;
}
} else if (flags & _SOBIND_UNSPEC) {
ASSERT(name == NULL && namelen == 0);
/*
* The caller checked SS_ISBOUND but not necessarily
* under so_lock
*/
if (so->so_state & SS_ISBOUND) {
/* No error */
goto done;
}
/* Set an initial local address */
switch (so->so_family) {
case AF_UNIX:
/*
* Use an address with same size as struct sockaddr
* just like BSD.
*/
so->so_laddr_len =
(socklen_t)sizeof (struct sockaddr);
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bzero(so->so_laddr_sa, so->so_laddr_len);
so->so_laddr_sa->sa_family = so->so_family;
/*
* Pass down an address with the implicit bind
* magic number and the rest all zeros.
* The transport will return a unique address.
*/
so->so_ux_laddr.soua_vp = NULL;
so->so_ux_laddr.soua_magic = SOU_MAGIC_IMPLICIT;
addr = &so->so_ux_laddr;
addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr);
break;
case AF_INET:
case AF_INET6:
/*
* An unspecified bind in TPI has a NULL address.
* Set the address in sockfs to have the sa_family.
*/
so->so_laddr_len = (so->so_family == AF_INET) ?
(socklen_t)sizeof (sin_t) :
(socklen_t)sizeof (sin6_t);
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bzero(so->so_laddr_sa, so->so_laddr_len);
so->so_laddr_sa->sa_family = so->so_family;
addr = NULL;
addrlen = 0;
break;
default:
/*
* An unspecified bind in TPI has a NULL address.
* Set the address in sockfs to be zero length.
*
* Can not assume there is a sa_family for all
* protocol families. For example, AF_X25 does not
* have a family field.
*/
so->so_laddr_len = 0; /* XXX correct? */
bzero(so->so_laddr_sa, so->so_laddr_len);
addr = NULL;
addrlen = 0;
break;
}
} else {
if (so->so_state & SS_ISBOUND) {
/*
* If it is ok to rebind the socket, first unbind
* with the transport. A rebind to the NULL address
* is interpreted as an unbind.
* Note that a bind to NULL in BSD does unbind the
* socket but it fails with EINVAL.
* Note that regular sockets set SOV_SOCKBSD i.e.
* _SOBIND_SOCKBSD gets set here hence no type of
* socket does currently allow rebinding.
*
* If the name is NULL just do an unbind.
*/
if (flags & (_SOBIND_SOCKBSD|_SOBIND_XPG4_2) &&
name != NULL) {
error = EINVAL;
unbind_on_err = 0;
eprintsoline(so, error);
goto done;
}
if ((so->so_mode & SM_CONNREQUIRED) &&
(so->so_state & SS_CANTREBIND)) {
error = EINVAL;
unbind_on_err = 0;
eprintsoline(so, error);
goto done;
}
error = sotpi_unbind(so, 0);
if (error) {
eprintsoline(so, error);
goto done;
}
ASSERT(!(so->so_state & SS_ISBOUND));
if (name == NULL) {
so->so_state &=
~(SS_ISCONNECTED|SS_ISCONNECTING);
goto done;
}
}
/* X/Open requires this check */
if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
if (xnet_check_print) {
printf("sockfs: X/Open bind state check "
"caused EINVAL\n");
}
error = EINVAL;
goto done;
}
switch (so->so_family) {
case AF_UNIX:
/*
* All AF_UNIX addresses are nul terminated
* when copied (copyin_name) in so the minimum
* length is 3 bytes.
*/
if (name == NULL ||
(ssize_t)namelen <= sizeof (short) + 1) {
error = EISDIR;
eprintsoline(so, error);
goto done;
}
/*
* Verify so_family matches the bound family.
* BSD does not check this for AF_UNIX resulting
* in funny mknods.
*/
if (name->sa_family != so->so_family) {
error = EAFNOSUPPORT;
goto done;
}
break;
case AF_INET:
if (name == NULL) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
if ((size_t)namelen != sizeof (sin_t)) {
error = name->sa_family != so->so_family ?
EAFNOSUPPORT : EINVAL;
eprintsoline(so, error);
goto done;
}
if ((flags & _SOBIND_XPG4_2) &&
(name->sa_family != so->so_family)) {
/*
* This check has to be made for X/Open
* sockets however application failures have
* been observed when it is applied to
* all sockets.
*/
error = EAFNOSUPPORT;
eprintsoline(so, error);
goto done;
}
/*
* Force a zero sa_family to match so_family.
*
* Some programs like inetd(1M) don't set the
* family field. Other programs leave
* sin_family set to garbage - SunOS 4.X does
* not check the family field on a bind.
* We use the family field that
* was passed in to the socket() call.
*/
name->sa_family = so->so_family;
break;
case AF_INET6: {
#ifdef DEBUG
sin6_t *sin6 = (sin6_t *)name;
#endif /* DEBUG */
if (name == NULL) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
if ((size_t)namelen != sizeof (sin6_t)) {
error = name->sa_family != so->so_family ?
EAFNOSUPPORT : EINVAL;
eprintsoline(so, error);
goto done;
}
if (name->sa_family != so->so_family) {
/*
* With IPv6 we require the family to match
* unlike in IPv4.
*/
error = EAFNOSUPPORT;
eprintsoline(so, error);
goto done;
}
#ifdef DEBUG
/*
* Verify that apps don't forget to clear
* sin6_scope_id etc
*/
if (sin6->sin6_scope_id != 0 &&
!IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
cmn_err(CE_WARN,
"bind with uninitialized sin6_scope_id "
"(%d) on socket. Pid = %d\n",
(int)sin6->sin6_scope_id,
(int)curproc->p_pid);
}
if (sin6->__sin6_src_id != 0) {
cmn_err(CE_WARN,
"bind with uninitialized __sin6_src_id "
"(%d) on socket. Pid = %d\n",
(int)sin6->__sin6_src_id,
(int)curproc->p_pid);
}
#endif /* DEBUG */
break;
}
default:
/*
* Don't do any length or sa_family check to allow
* non-sockaddr style addresses.
*/
if (name == NULL) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
break;
}
if (namelen > (t_uscalar_t)so->so_laddr_maxlen) {
error = ENAMETOOLONG;
eprintsoline(so, error);
goto done;
}
/*
* Save local address.
*/
so->so_laddr_len = (socklen_t)namelen;
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bcopy(name, so->so_laddr_sa, namelen);
addr = so->so_laddr_sa;
addrlen = (t_uscalar_t)so->so_laddr_len;
switch (so->so_family) {
case AF_INET6:
case AF_INET:
break;
case AF_UNIX: {
struct sockaddr_un *soun =
(struct sockaddr_un *)so->so_laddr_sa;
struct vnode *vp;
struct vattr vattr;
ASSERT(so->so_ux_bound_vp == NULL);
/*
* Create vnode for the specified path name.
* Keep vnode held with a reference in so_ux_bound_vp.
* Use the vnode pointer as the address used in the
* bind with the transport.
*
* Use the same mode as in BSD. In particular this does
* not observe the umask.
*/
/* MAXPATHLEN + soun_family + nul termination */
if (so->so_laddr_len >
(socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
error = ENAMETOOLONG;
eprintsoline(so, error);
goto done;
}
vattr.va_type = VSOCK;
vattr.va_mode = 0777 & ~u.u_cmask;
vattr.va_mask = AT_TYPE|AT_MODE;
/* NOTE: holding so_lock */
error = vn_create(soun->sun_path, UIO_SYSSPACE, &vattr,
EXCL, 0, &vp, CRMKNOD, 0, 0);
if (error) {
if (error == EEXIST)
error = EADDRINUSE;
eprintsoline(so, error);
goto done;
}
/*
* Establish pointer from the underlying filesystem
* vnode to the socket node.
* so_ux_bound_vp and v_stream->sd_vnode form the
* cross-linkage between the underlying filesystem
* node and the socket node.
*/
ASSERT(SOTOV(so)->v_stream);
mutex_enter(&vp->v_lock);
vp->v_stream = SOTOV(so)->v_stream;
so->so_ux_bound_vp = vp;
mutex_exit(&vp->v_lock);
/*
* Use the vnode pointer value as a unique address
* (together with the magic number to avoid conflicts
* with implicit binds) in the transport provider.
*/
so->so_ux_laddr.soua_vp = (void *)so->so_ux_bound_vp;
so->so_ux_laddr.soua_magic = SOU_MAGIC_EXPLICIT;
addr = &so->so_ux_laddr;
addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr);
dprintso(so, 1, ("sobind UNIX: addrlen %d, addr %p\n",
addrlen,
((struct so_ux_addr *)addr)->soua_vp));
break;
}
} /* end switch (so->so_family) */
}
/*
* set SS_ACCEPTCONN before sending down O_T_BIND_REQ since
* the transport can start passing up T_CONN_IND messages
* as soon as it receives the bind req and strsock_proto()
* insists that SS_ACCEPTCONN is set when processing T_CONN_INDs.
*/
if (flags & _SOBIND_LISTEN) {
if ((so->so_state & SS_ACCEPTCONN) == 0)
clear_acceptconn_on_err = B_TRUE;
save_so_backlog = so->so_backlog;
restore_backlog_on_err = B_TRUE;
so->so_state |= SS_ACCEPTCONN;
so->so_backlog = backlog;
}
/*
* If NL7C addr(s) have been configured check for addr/port match,
* or if an implicit NL7C socket via AF_NCA mark socket as NL7C.
*
* NL7C supports the TCP transport only so check AF_INET and AF_INET6
* family sockets only. If match mark as such.
*/
if ((nl7c_enabled && addr != NULL &&
(so->so_family == AF_INET || so->so_family == AF_INET6) &&
(nl7c = nl7c_lookup_addr(addr, addrlen))) ||
so->so_nl7c_flags == NL7C_AF_NCA) {
/*
* NL7C is not supported in non-global zones,
* we enforce this restriction here.
*/
if (so->so_zoneid == GLOBAL_ZONEID) {
/* An NL7C socket, mark it */
so->so_nl7c_flags |= NL7C_ENABLED;
} else
nl7c = NULL;
}
/*
* We send a T_BIND_REQ for TCP/UDP since we know it supports it,
* for other transports we will send in a O_T_BIND_REQ.
*/
if (tcp_udp_xport &&
(so->so_family == AF_INET || so->so_family == AF_INET6))
PRIM_type = T_BIND_REQ;
bind_req.PRIM_type = PRIM_type;
bind_req.ADDR_length = addrlen;
bind_req.ADDR_offset = (t_scalar_t)sizeof (bind_req);
bind_req.CONIND_number = backlog;
/* NOTE: holding so_lock while sleeping */
mp = soallocproto2(&bind_req, sizeof (bind_req),
addr, addrlen, 0, _ALLOC_SLEEP);
so->so_state &= ~SS_LADDR_VALID;
/* Done using so_laddr_sa - can drop the lock */
mutex_exit(&so->so_lock);
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
if (error) {
eprintsoline(so, error);
mutex_enter(&so->so_lock);
goto done;
}
mutex_enter(&so->so_lock);
error = sowaitprim(so, PRIM_type, T_BIND_ACK,
(t_uscalar_t)sizeof (*bind_ack), &mp, 0);
if (error) {
eprintsoline(so, error);
goto done;
}
ASSERT(mp);
/*
* Even if some TPI message (e.g. T_DISCON_IND) was received in
* strsock_proto while the lock was dropped above, the bind
* is allowed to complete.
*/
/* Mark as bound. This will be undone if we detect errors below. */
if (flags & _SOBIND_NOXLATE) {
ASSERT(so->so_family == AF_UNIX);
so->so_state |= SS_FADDR_NOXLATE;
}
ASSERT(!(so->so_state & SS_ISBOUND) || (flags & _SOBIND_REBIND));
so->so_state |= SS_ISBOUND;
ASSERT(so->so_unbind_mp);
/* note that we've already set SS_ACCEPTCONN above */
/*
* Recompute addrlen - an unspecied bind sent down an
* address of length zero but we expect the appropriate length
* in return.
*/
addrlen = (t_uscalar_t)(so->so_family == AF_UNIX ?
sizeof (so->so_ux_laddr) : so->so_laddr_len);
bind_ack = (struct T_bind_ack *)mp->b_rptr;
/*
* The alignment restriction is really too strict but
* we want enough alignment to inspect the fields of
* a sockaddr_in.
*/
addr = sogetoff(mp, bind_ack->ADDR_offset,
bind_ack->ADDR_length,
__TPI_ALIGN_SIZE);
if (addr == NULL) {
freemsg(mp);
error = EPROTO;
eprintsoline(so, error);
goto done;
}
if (!(flags & _SOBIND_UNSPEC)) {
/*
* Verify that the transport didn't return something we
* did not want e.g. an address other than what we asked for.
*
* NOTE: These checks would go away if/when we switch to
* using the new TPI (in which the transport would fail
* the request instead of assigning a different address).
*
* NOTE2: For protocols that we don't know (i.e. any
* other than AF_INET6, AF_INET and AF_UNIX), we
* cannot know if the transport should be expected to
* return the same address as that requested.
*
* NOTE3: For AF_INET and AF_INET6, TCP/UDP, we send
* down a T_BIND_REQ. We use O_T_BIND_REQ for others.
*
* For example, in the case of netatalk it may be
* inappropriate for the transport to return the
* requested address (as it may have allocated a local
* port number in behaviour similar to that of an
* AF_INET bind request with a port number of zero).
*
* Given the definition of O_T_BIND_REQ, where the
* transport may bind to an address other than the
* requested address, it's not possible to determine
* whether a returned address that differs from the
* requested address is a reason to fail (because the
* requested address was not available) or succeed
* (because the transport allocated an appropriate
* address and/or port).
*
* sockfs currently requires that the transport return
* the requested address in the T_BIND_ACK, unless
* there is code here to allow for any discrepancy.
* Such code exists for AF_INET and AF_INET6.
*
* Netatalk chooses to return the requested address
* rather than the (correct) allocated address. This
* means that netatalk violates the TPI specification
* (and would not function correctly if used from a
* TLI application), but it does mean that it works
* with sockfs.
*
* As noted above, using the newer XTI bind primitive
* (T_BIND_REQ) in preference to O_T_BIND_REQ would
* allow sockfs to be more sure about whether or not
* the bind request had succeeded (as transports are
* not permitted to bind to a different address than
* that requested - they must return failure).
* Unfortunately, support for T_BIND_REQ may not be
* present in all transport implementations (netatalk,
* for example, doesn't have it), making the
* transition difficult.
*/
if (bind_ack->ADDR_length != addrlen) {
/* Assumes that the requested address was in use */
freemsg(mp);
error = EADDRINUSE;
eprintsoline(so, error);
goto done;
}
switch (so->so_family) {
case AF_INET6:
case AF_INET: {
sin_t *rname, *aname;
rname = (sin_t *)addr;
aname = (sin_t *)so->so_laddr_sa;
/*
* Take advantage of the alignment
* of sin_port and sin6_port which fall
* in the same place in their data structures.
* Just use sin_port for either address family.
*
* This may become a problem if (heaven forbid)
* there's a separate ipv6port_reserved... :-P
*
* Binding to port 0 has the semantics of letting
* the transport bind to any port.
*
* If the transport is TCP or UDP since we had sent
* a T_BIND_REQ we would not get a port other than
* what we asked for.
*/
if (tcp_udp_xport) {
/*
* Pick up the new port number if we bound to
* port 0.
*/
if (aname->sin_port == 0)
aname->sin_port = rname->sin_port;
so->so_state |= SS_LADDR_VALID;
break;
}
if (aname->sin_port != 0 &&
aname->sin_port != rname->sin_port) {
freemsg(mp);
error = EADDRINUSE;
eprintsoline(so, error);
goto done;
}
/*
* Pick up the new port number if we bound to port 0.
*/
aname->sin_port = rname->sin_port;
/*
* Unfortunately, addresses aren't _quite_ the same.
*/
if (so->so_family == AF_INET) {
if (aname->sin_addr.s_addr !=
rname->sin_addr.s_addr) {
freemsg(mp);
error = EADDRNOTAVAIL;
eprintsoline(so, error);
goto done;
}
} else {
sin6_t *rname6 = (sin6_t *)rname;
sin6_t *aname6 = (sin6_t *)aname;
if (!IN6_ARE_ADDR_EQUAL(&aname6->sin6_addr,
&rname6->sin6_addr)) {
freemsg(mp);
error = EADDRNOTAVAIL;
eprintsoline(so, error);
goto done;
}
}
break;
}
case AF_UNIX:
if (bcmp(addr, &so->so_ux_laddr, addrlen) != 0) {
freemsg(mp);
error = EADDRINUSE;
eprintsoline(so, error);
eprintso(so,
("addrlen %d, addr 0x%x, vp %p\n",
addrlen, *((int *)addr),
so->so_ux_bound_vp));
goto done;
}
so->so_state |= SS_LADDR_VALID;
break;
default:
/*
* NOTE: This assumes that addresses can be
* byte-compared for equivalence.
*/
if (bcmp(addr, so->so_laddr_sa, addrlen) != 0) {
freemsg(mp);
error = EADDRINUSE;
eprintsoline(so, error);
goto done;
}
/*
* Don't mark SS_LADDR_VALID, as we cannot be
* sure that the returned address is the real
* bound address when talking to an unknown
* transport.
*/
break;
}
} else {
/*
* Save for returned address for getsockname.
* Needed for unspecific bind unless transport supports
* the TI_GETMYNAME ioctl.
* Do this for AF_INET{,6} even though they do, as
* caching info here is much better performance than
* a TPI/STREAMS trip to the transport for getsockname.
* Any which can't for some reason _must_ _not_ set
* LADDR_VALID here for the caching version of getsockname
* to not break;
*/
switch (so->so_family) {
case AF_UNIX:
/*
* Record the address bound with the transport
* for use by socketpair.
*/
bcopy(addr, &so->so_ux_laddr, addrlen);
so->so_state |= SS_LADDR_VALID;
break;
case AF_INET:
case AF_INET6:
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bcopy(addr, so->so_laddr_sa, so->so_laddr_len);
so->so_state |= SS_LADDR_VALID;
break;
default:
/*
* Don't mark SS_LADDR_VALID, as we cannot be
* sure that the returned address is the real
* bound address when talking to an unknown
* transport.
*/
break;
}
}
if (nl7c == NULL && (so->so_nl7c_flags & NL7C_AF_NCA) &&
(so->so_nl7c_flags & NL7C_ENABLED)) {
/*
* Was an AF_NCA bind() so add it to the addr list for
* reporting purposes.
*/
nl7c = nl7c_add_addr(addr, addrlen);
}
if (nl7c != NULL) {
nl7c_listener_addr(nl7c, strvp2wq(SOTOV(so)));
}
freemsg(mp);
done:
if (error) {
/* reset state & backlog to values held on entry */
if (clear_acceptconn_on_err == B_TRUE)
so->so_state &= ~SS_ACCEPTCONN;
if (restore_backlog_on_err == B_TRUE)
so->so_backlog = save_so_backlog;
if (unbind_on_err && so->so_state & SS_ISBOUND) {
int err;
err = sotpi_unbind(so, 0);
/* LINTED - statement has no consequent: if */
if (err) {
eprintsoline(so, error);
} else {
ASSERT(!(so->so_state & SS_ISBOUND));
}
}
}
if (!(flags & _SOBIND_LOCK_HELD)) {
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
} else {
/* If the caller held the lock don't release it here */
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
}
return (error);
}
/* bind the socket */
int
sotpi_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
int flags)
{
if ((flags & _SOBIND_SOCKETPAIR) == 0)
return (sotpi_bindlisten(so, name, namelen, 0, flags));
flags &= ~_SOBIND_SOCKETPAIR;
return (sotpi_bindlisten(so, name, namelen, 1, flags));
}
/*
* Unbind a socket - used when bind() fails, when bind() specifies a NULL
* address, or when listen needs to unbind and bind.
* If the _SOUNBIND_REBIND flag is specified the addresses are retained
* so that a sobind can pick them up.
*/
static int
sotpi_unbind(struct sonode *so, int flags)
{
struct T_unbind_req unbind_req;
int error = 0;
mblk_t *mp;
dprintso(so, 1, ("sotpi_unbind(%p, 0x%x) %s\n",
so, flags, pr_state(so->so_state, so->so_mode)));
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
if (!(so->so_state & SS_ISBOUND)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
mutex_exit(&so->so_lock);
/*
* Flush the read and write side (except stream head read queue)
* and send down T_UNBIND_REQ.
*/
(void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHRW);
unbind_req.PRIM_type = T_UNBIND_REQ;
mp = soallocproto1(&unbind_req, sizeof (unbind_req),
0, _ALLOC_SLEEP);
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto done;
}
error = sowaitokack(so, T_UNBIND_REQ);
if (error) {
eprintsoline(so, error);
goto done;
}
/*
* Even if some TPI message (e.g. T_DISCON_IND) was received in
* strsock_proto while the lock was dropped above, the unbind
* is allowed to complete.
*/
if (!(flags & _SOUNBIND_REBIND)) {
/*
* Clear out bound address.
*/
vnode_t *vp;
if ((vp = so->so_ux_bound_vp) != NULL) {
ASSERT(vp->v_stream);
so->so_ux_bound_vp = NULL;
vn_rele_stream(vp);
}
/* Clear out address */
so->so_laddr_len = 0;
}
so->so_state &= ~(SS_ISBOUND|SS_ACCEPTCONN|SS_LADDR_VALID);
done:
/* If the caller held the lock don't release it here */
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
return (error);
}
/*
* listen on the socket.
* For TPI conforming transports this has to first unbind with the transport
* and then bind again using the new backlog.
*/
int
sotpi_listen(struct sonode *so, int backlog)
{
int error = 0;
dprintso(so, 1, ("sotpi_listen(%p, %d) %s\n",
so, backlog, pr_state(so->so_state, so->so_mode)));
if (so->so_serv_type == T_CLTS)
return (EOPNOTSUPP);
/*
* If the socket is ready to accept connections already, then
* return without doing anything. This avoids a problem where
* a second listen() call fails if a connection is pending and
* leaves the socket unbound. Only when we are not unbinding
* with the transport can we safely increase the backlog.
*/
if (so->so_state & SS_ACCEPTCONN &&
!((so->so_family == AF_INET || so->so_family == AF_INET6) &&
/*CONSTCOND*/
!solisten_tpi_tcp))
return (0);
if (so->so_state & SS_ISCONNECTED)
return (EINVAL);
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
if (backlog < 0)
backlog = 0;
/*
* Use the same qlimit as in BSD. BSD checks the qlimit
* before queuing the next connection implying that a
* listen(sock, 0) allows one connection to be queued.
* BSD also uses 1.5 times the requested backlog.
*
* XNS Issue 4 required a strict interpretation of the backlog.
* This has been waived subsequently for Issue 4 and the change
* incorporated in XNS Issue 5. So we aren't required to do
* anything special for XPG apps.
*/
if (backlog >= (INT_MAX - 1) / 3)
backlog = INT_MAX;
else
backlog = backlog * 3 / 2 + 1;
/*
* If the listen doesn't change the backlog we do nothing.
* This avoids an EPROTO error from the transport.
*/
if ((so->so_state & SS_ACCEPTCONN) &&
so->so_backlog == backlog)
goto done;
if (!(so->so_state & SS_ISBOUND)) {
/*
* Must have been explicitly bound in the UNIX domain.
*/
if (so->so_family == AF_UNIX) {
error = EINVAL;
goto done;
}
error = sotpi_bindlisten(so, NULL, 0, backlog,
_SOBIND_UNSPEC|_SOBIND_LOCK_HELD|_SOBIND_LISTEN);
} else if (backlog > 0) {
/*
* AF_INET{,6} hack to avoid losing the port.
* Assumes that all AF_INET{,6} transports can handle a
* O_T_BIND_REQ with a non-zero CONIND_number when the TPI
* has already bound thus it is possible to avoid the unbind.
*/
if (!((so->so_family == AF_INET || so->so_family == AF_INET6) &&
/*CONSTCOND*/
!solisten_tpi_tcp)) {
error = sotpi_unbind(so, _SOUNBIND_REBIND);
if (error)
goto done;
}
error = sotpi_bindlisten(so, NULL, 0, backlog,
_SOBIND_REBIND|_SOBIND_LOCK_HELD|_SOBIND_LISTEN);
} else {
so->so_state |= SS_ACCEPTCONN;
so->so_backlog = backlog;
}
if (error)
goto done;
ASSERT(so->so_state & SS_ACCEPTCONN);
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Disconnect either a specified seqno or all (-1).
* The former is used on listening sockets only.
*
* When seqno == -1 sodisconnect could call sotpi_unbind. However,
* the current use of sodisconnect(seqno == -1) is only for shutdown
* so there is no point (and potentially incorrect) to unbind.
*/
int
sodisconnect(struct sonode *so, t_scalar_t seqno, int flags)
{
struct T_discon_req discon_req;
int error = 0;
mblk_t *mp;
dprintso(so, 1, ("sodisconnect(%p, %d, 0x%x) %s\n",
so, seqno, flags, pr_state(so->so_state, so->so_mode)));
if (!(flags & _SODISCONNECT_LOCK_HELD)) {
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
} else {
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
}
if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ACCEPTCONN))) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
mutex_exit(&so->so_lock);
/*
* Flush the write side (unless this is a listener)
* and then send down a T_DISCON_REQ.
* (Don't flush on listener since it could flush {O_}T_CONN_RES
* and other messages.)
*/
if (!(so->so_state & SS_ACCEPTCONN))
(void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHW);
discon_req.PRIM_type = T_DISCON_REQ;
discon_req.SEQ_number = seqno;
mp = soallocproto1(&discon_req, sizeof (discon_req),
0, _ALLOC_SLEEP);
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto done;
}
error = sowaitokack(so, T_DISCON_REQ);
if (error) {
eprintsoline(so, error);
goto done;
}
/*
* Even if some TPI message (e.g. T_DISCON_IND) was received in
* strsock_proto while the lock was dropped above, the disconnect
* is allowed to complete. However, it is not possible to
* assert that SS_ISCONNECTED|SS_ISCONNECTING are set.
*/
so->so_state &=
~(SS_ISCONNECTED|SS_ISCONNECTING|SS_LADDR_VALID|SS_FADDR_VALID);
done:
if (!(flags & _SODISCONNECT_LOCK_HELD)) {
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
} else {
/* If the caller held the lock don't release it here */
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
}
return (error);
}
int
sotpi_accept(struct sonode *so, int fflag, struct sonode **nsop)
{
struct T_conn_ind *conn_ind;
struct T_conn_res *conn_res;
int error = 0;
mblk_t *mp;
struct sonode *nso;
vnode_t *nvp;
void *src;
t_uscalar_t srclen;
void *opt;
t_uscalar_t optlen;
t_scalar_t PRIM_type;
t_scalar_t SEQ_number;
dprintso(so, 1, ("sotpi_accept(%p, 0x%x, %p) %s\n",
so, fflag, nsop, pr_state(so->so_state, so->so_mode)));
/*
* Defer single-threading the accepting socket until
* the T_CONN_IND has been received and parsed and the
* new sonode has been opened.
*/
/* Check that we are not already connected */
if ((so->so_state & SS_ACCEPTCONN) == 0)
goto conn_bad;
again:
if ((error = sowaitconnind(so, fflag, &mp)) != 0)
goto e_bad;
ASSERT(mp);
conn_ind = (struct T_conn_ind *)mp->b_rptr;
/*
* Save SEQ_number for error paths.
*/
SEQ_number = conn_ind->SEQ_number;
srclen = conn_ind->SRC_length;
src = sogetoff(mp, conn_ind->SRC_offset, srclen, 1);
if (src == NULL) {
error = EPROTO;
freemsg(mp);
eprintsoline(so, error);
goto disconnect_unlocked;
}
optlen = conn_ind->OPT_length;
switch (so->so_family) {
case AF_INET:
case AF_INET6:
if ((optlen == sizeof (intptr_t)) &&
((so->so_state & SS_TCP_FAST_ACCEPT) != 0)) {
bcopy(mp->b_rptr + conn_ind->OPT_offset,
&opt, conn_ind->OPT_length);
} else {
/*
* The transport (in this case TCP) hasn't sent up
* a pointer to an instance for the accept fast-path.
* Disable fast-path completely because the call to
* sotpi_create() below would otherwise create an
* incomplete TCP instance, which would lead to
* problems when sockfs sends a normal T_CONN_RES
* message down the new stream.
*/
so->so_state &= ~SS_TCP_FAST_ACCEPT;
opt = NULL;
optlen = 0;
}
break;
case AF_UNIX:
default:
if (optlen != 0) {
opt = sogetoff(mp, conn_ind->OPT_offset, optlen,
__TPI_ALIGN_SIZE);
if (opt == NULL) {
error = EPROTO;
freemsg(mp);
eprintsoline(so, error);
goto disconnect_unlocked;
}
}
if (so->so_family == AF_UNIX) {
if (!(so->so_state & SS_FADDR_NOXLATE)) {
src = NULL;
srclen = 0;
}
/* Extract src address from options */
if (optlen != 0)
so_getopt_srcaddr(opt, optlen, &src, &srclen);
}
break;
}
/*
* Create the new socket.
*/
VN_HOLD(so->so_accessvp);
nso = sotpi_create(so->so_accessvp, so->so_family, so->so_type,
so->so_protocol, so->so_version, so, &error);
if (nso == NULL) {
ASSERT(error != 0);
/*
* Accept can not fail with ENOBUFS. sotpi_create
* sleeps waiting for memory until a signal is caught
* so return EINTR.
*/
freemsg(mp);
if (error == ENOBUFS)
error = EINTR;
goto e_disc_unl;
}
nvp = SOTOV(nso);
#ifdef DEBUG
/*
* SO_DEBUG is used to trigger the dprint* and eprint* macros thus
* it's inherited early to allow debugging of the accept code itself.
*/
nso->so_options |= so->so_options & SO_DEBUG;
#endif /* DEBUG */
/*
* Save the SRC address from the T_CONN_IND
* for getpeername to work on AF_UNIX and on transports that do not
* support TI_GETPEERNAME.
*
* NOTE: AF_UNIX NUL termination is ensured by the sender's
* copyin_name().
*/
if (srclen > (t_uscalar_t)nso->so_faddr_maxlen) {
error = EINVAL;
freemsg(mp);
eprintsoline(so, error);
goto disconnect_vp_unlocked;
}
nso->so_faddr_len = (socklen_t)srclen;
ASSERT(so->so_faddr_len <= so->so_faddr_maxlen);
bcopy(src, nso->so_faddr_sa, srclen);
nso->so_state |= SS_FADDR_VALID;
if ((DB_REF(mp) > 1) || MBLKSIZE(mp) <
(sizeof (struct T_conn_res) + sizeof (intptr_t))) {
cred_t *cr;
if ((cr = DB_CRED(mp)) != NULL) {
crhold(cr);
nso->so_peercred = cr;
nso->so_cpid = DB_CPID(mp);
}
freemsg(mp);
mp = soallocproto1(NULL, sizeof (struct T_conn_res) +
sizeof (intptr_t), 0, _ALLOC_INTR);
if (mp == NULL) {
/*
* Accept can not fail with ENOBUFS.
* A signal was caught so return EINTR.
*/
error = EINTR;
eprintsoline(so, error);
goto disconnect_vp_unlocked;
}
conn_res = (struct T_conn_res *)mp->b_rptr;
} else {
nso->so_peercred = DB_CRED(mp);
nso->so_cpid = DB_CPID(mp);
DB_CRED(mp) = NULL;
mp->b_rptr = DB_BASE(mp);
conn_res = (struct T_conn_res *)mp->b_rptr;
mp->b_wptr = mp->b_rptr + sizeof (struct T_conn_res);
}
/*
* New socket must be bound at least in sockfs and, except for AF_INET,
* (or AF_INET6) it also has to be bound in the transport provider.
* After accepting the connection on nso so_laddr_sa will be set to
* contain the same address as the listener's local address
* so the address we bind to isn't important.
*/
if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) &&
/*CONSTCOND*/
nso->so_type == SOCK_STREAM && !soaccept_tpi_tcp) {
/*
* Optimization for AF_INET{,6} transports
* that can handle a T_CONN_RES without being bound.
*/
mutex_enter(&nso->so_lock);
so_automatic_bind(nso);
mutex_exit(&nso->so_lock);
} else {
/* Perform NULL bind with the transport provider. */
if ((error = sotpi_bind(nso, NULL, 0, _SOBIND_UNSPEC)) != 0) {
ASSERT(error != ENOBUFS);
freemsg(mp);
eprintsoline(nso, error);
goto disconnect_vp_unlocked;
}
}
/*
* Inherit SIOCSPGRP, SS_ASYNC before we send the {O_}T_CONN_RES
* so that any data arriving on the new socket will cause the
* appropriate signals to be delivered for the new socket.
*
* No other thread (except strsock_proto and strsock_misc)
* can access the new socket thus we relax the locking.
*/
nso->so_pgrp = so->so_pgrp;
nso->so_state |= so->so_state & (SS_ASYNC|SS_FADDR_NOXLATE);
if (nso->so_pgrp != 0) {
if ((error = so_set_events(nso, nvp, CRED())) != 0) {
eprintsoline(nso, error);
error = 0;
nso->so_pgrp = 0;
}
}
/*
* Make note of the socket level options. TCP and IP level options
* are already inherited. We could do all this after accept is
* successful but doing it here simplifies code and no harm done
* for error case.
*/
nso->so_options = so->so_options & (SO_DEBUG|SO_REUSEADDR|SO_KEEPALIVE|
SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
nso->so_sndbuf = so->so_sndbuf;
nso->so_rcvbuf = so->so_rcvbuf;
if (nso->so_options & SO_LINGER)
nso->so_linger = so->so_linger;
if ((so->so_state & SS_TCP_FAST_ACCEPT) != 0) {
mblk_t *ack_mp;
ASSERT(opt != NULL);
conn_res->OPT_length = optlen;
conn_res->OPT_offset = MBLKL(mp);
bcopy(&opt, mp->b_wptr, optlen);
mp->b_wptr += optlen;
conn_res->PRIM_type = T_CONN_RES;
conn_res->ACCEPTOR_id = 0;
PRIM_type = T_CONN_RES;
/* Send down the T_CONN_RES on acceptor STREAM */
error = kstrputmsg(SOTOV(nso), mp, NULL,
0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
if (error) {
mutex_enter(&so->so_lock);
so_lock_single(so);
eprintsoline(so, error);
goto disconnect_vp;
}
mutex_enter(&nso->so_lock);
error = sowaitprim(nso, T_CONN_RES, T_OK_ACK,
(t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0);
if (error) {
mutex_exit(&nso->so_lock);
mutex_enter(&so->so_lock);
so_lock_single(so);
eprintsoline(so, error);
goto disconnect_vp;
}
if (nso->so_family == AF_INET) {
sin_t *sin;
sin = (sin_t *)(ack_mp->b_rptr +
sizeof (struct T_ok_ack));
bcopy(sin, nso->so_laddr_sa, sizeof (sin_t));
nso->so_laddr_len = sizeof (sin_t);
} else {
sin6_t *sin6;
sin6 = (sin6_t *)(ack_mp->b_rptr +
sizeof (struct T_ok_ack));
bcopy(sin6, nso->so_laddr_sa, sizeof (sin6_t));
nso->so_laddr_len = sizeof (sin6_t);
}
freemsg(ack_mp);
nso->so_state |= SS_ISCONNECTED | SS_LADDR_VALID;
nso->so_priv = opt;
if (so->so_nl7c_flags & NL7C_ENABLED) {
/*
* An NL7C marked listen()er so the new socket
* inherits the listen()er's NL7C state.
*
* When calling NL7C to process the new socket
* pass the nonblocking i/o state of the listen
* socket as this is the context we are in.
*/
nso->so_nl7c_flags = so->so_nl7c_flags;
if (nl7c_process(nso,
(nso->so_state & (SS_NONBLOCK|SS_NDELAY)),
(int)((tcp_t *)nso->so_priv)->tcp_mss)) {
/*
* NL7C has completed processing on the
* socket, close the socket and back to
* the top to await the next T_CONN_IND.
*/
mutex_exit(&nso->so_lock);
(void) VOP_CLOSE(nvp, 0, 1, (offset_t)0,
CRED());
VN_RELE(nvp);
goto again;
}
/* Pass the new socket out */
}
mutex_exit(&nso->so_lock);
/*
* Pass out new socket.
*/
if (nsop != NULL)
*nsop = nso;
return (0);
}
/*
* Copy local address from listener.
*/
nso->so_laddr_len = so->so_laddr_len;
ASSERT(nso->so_laddr_len <= nso->so_laddr_maxlen);
bcopy(so->so_laddr_sa, nso->so_laddr_sa, nso->so_laddr_len);
nso->so_state |= SS_LADDR_VALID;
/*
* This is the non-performance case for sockets (e.g. AF_UNIX sockets)
* which don't support the FireEngine accept fast-path. It is also
* used when the virtual "sockmod" has been I_POP'd and I_PUSH'd
* again. Neither sockfs nor TCP attempt to find out if some other
* random module has been inserted in between (in which case we
* should follow TLI accept behaviour). We blindly assume the worst
* case and revert back to old behaviour i.e. TCP will not send us
* any option (eager) and the accept should happen on the listener
* queue. Any queued T_conn_ind have already got their options removed
* by so_sock2_stream() when "sockmod" was I_POP'd.
*/
/*
* Fill in the {O_}T_CONN_RES before getting SOLOCKED.
*/
if ((nso->so_mode & SM_ACCEPTOR_ID) == 0) {
#ifdef _ILP32
queue_t *q;
/*
* Find read queue in driver
* Can safely do this since we "own" nso/nvp.
*/
q = strvp2wq(nvp)->q_next;
while (SAMESTR(q))
q = q->q_next;
q = RD(q);
conn_res->ACCEPTOR_id = (t_uscalar_t)q;
#else
conn_res->ACCEPTOR_id = (t_uscalar_t)getminor(nvp->v_rdev);
#endif /* _ILP32 */
conn_res->PRIM_type = O_T_CONN_RES;
PRIM_type = O_T_CONN_RES;
} else {
conn_res->ACCEPTOR_id = nso->so_acceptor_id;
conn_res->PRIM_type = T_CONN_RES;
PRIM_type = T_CONN_RES;
}
conn_res->SEQ_number = SEQ_number;
conn_res->OPT_length = 0;
conn_res->OPT_offset = 0;
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
mutex_exit(&so->so_lock);
error = kstrputmsg(SOTOV(so), mp, NULL,
0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto disconnect_vp;
}
error = sowaitokack(so, PRIM_type);
if (error) {
eprintsoline(so, error);
goto disconnect_vp;
}
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
nso->so_state |= SS_ISCONNECTED;
/*
* Pass out new socket.
*/
if (nsop != NULL)
*nsop = nso;
return (0);
eproto_disc_unl:
error = EPROTO;
e_disc_unl:
eprintsoline(so, error);
goto disconnect_unlocked;
pr_disc_vp_unl:
eprintsoline(so, error);
disconnect_vp_unlocked:
(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
VN_RELE(nvp);
disconnect_unlocked:
(void) sodisconnect(so, SEQ_number, 0);
return (error);
pr_disc_vp:
eprintsoline(so, error);
disconnect_vp:
(void) sodisconnect(so, SEQ_number, _SODISCONNECT_LOCK_HELD);
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
VN_RELE(nvp);
return (error);
conn_bad: /* Note: SunOS 4/BSD unconditionally returns EINVAL here */
error = (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW)
? EOPNOTSUPP : EINVAL;
e_bad:
eprintsoline(so, error);
return (error);
}
/*
* connect a socket.
*
* Allow SOCK_DGRAM sockets to reconnect (by specifying a new address) and to
* unconnect (by specifying a null address).
*/
int
sotpi_connect(struct sonode *so,
const struct sockaddr *name,
socklen_t namelen,
int fflag,
int flags)
{
struct T_conn_req conn_req;
int error = 0;
mblk_t *mp;
void *src;
socklen_t srclen;
void *addr;
socklen_t addrlen;
boolean_t need_unlock;
dprintso(so, 1, ("sotpi_connect(%p, %p, %d, 0x%x, 0x%x) %s\n",
so, name, namelen, fflag, flags,
pr_state(so->so_state, so->so_mode)));
/*
* Preallocate the T_CONN_REQ mblk before grabbing SOLOCKED to
* avoid sleeping for memory with SOLOCKED held.
* We know that the T_CONN_REQ can't be larger than 2 * so_faddr_maxlen
* + sizeof (struct T_opthdr).
* (the AF_UNIX so_ux_addr_xlate() does not make the address
* exceed so_faddr_maxlen).
*/
mp = soallocproto(sizeof (struct T_conn_req) +
2 * so->so_faddr_maxlen + sizeof (struct T_opthdr), _ALLOC_INTR);
if (mp == NULL) {
/*
* Connect can not fail with ENOBUFS. A signal was
* caught so return EINTR.
*/
error = EINTR;
eprintsoline(so, error);
return (error);
}
mutex_enter(&so->so_lock);
/*
* Make sure that there is a preallocated unbind_req
* message before any binding. This message allocated when
* the socket is created but it might be have been
* consumed.
*/
if (so->so_unbind_mp == NULL) {
dprintso(so, 1, ("sotpi_connect: allocating unbind_req\n"));
/* NOTE: holding so_lock while sleeping */
so->so_unbind_mp =
soallocproto(sizeof (struct T_unbind_req), _ALLOC_INTR);
if (so->so_unbind_mp == NULL) {
error = EINTR;
need_unlock = B_FALSE;
goto done;
}
}
so_lock_single(so); /* Set SOLOCKED */
need_unlock = B_TRUE;
/*
* Can't have done a listen before connecting.
*/
if (so->so_state & SS_ACCEPTCONN) {
error = EOPNOTSUPP;
goto done;
}
/*
* Must be bound with the transport
*/
if (!(so->so_state & SS_ISBOUND)) {
if ((so->so_family == AF_INET || so->so_family == AF_INET6) &&
/*CONSTCOND*/
so->so_type == SOCK_STREAM && !soconnect_tpi_tcp) {
/*
* Optimization for AF_INET{,6} transports
* that can handle a T_CONN_REQ without being bound.
*/
so_automatic_bind(so);
} else {
error = sotpi_bind(so, NULL, 0,
_SOBIND_UNSPEC|_SOBIND_LOCK_HELD);
if (error)
goto done;
}
ASSERT(so->so_state & SS_ISBOUND);
flags |= _SOCONNECT_DID_BIND;
}
/*
* Handle a connect to a name parameter of type AF_UNSPEC like a
* connect to a null address. This is the portable method to
* unconnect a socket.
*/
if ((namelen >= sizeof (sa_family_t)) &&
(name->sa_family == AF_UNSPEC)) {
name = NULL;
namelen = 0;
}
/*
* Check that we are not already connected.
* A connection-oriented socket cannot be reconnected.
* A connected connection-less socket can be
* - connected to a different address by a subsequent connect
* - "unconnected" by a connect to the NULL address
*/
if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) {
ASSERT(!(flags & _SOCONNECT_DID_BIND));
if (so->so_mode & SM_CONNREQUIRED) {
/* Connection-oriented socket */
error = so->so_state & SS_ISCONNECTED ?
EISCONN : EALREADY;
goto done;
}
/* Connection-less socket */
if (name == NULL) {
/*
* Remove the connected state and clear SO_DGRAM_ERRIND
* since it was set when the socket was connected.
* If this is UDP also send down a T_DISCON_REQ.
*/
int val;
if ((so->so_family == AF_INET ||
so->so_family == AF_INET6) &&
(so->so_type == SOCK_DGRAM ||
so->so_type == SOCK_RAW) &&
/*CONSTCOND*/
!soconnect_tpi_udp) {
/* XXX What about implicitly unbinding here? */
error = sodisconnect(so, -1,
_SODISCONNECT_LOCK_HELD);
} else {
so->so_state &=
~(SS_ISCONNECTED | SS_ISCONNECTING |
SS_FADDR_VALID);
so->so_faddr_len = 0;
}
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
val = 0;
(void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND,
&val, (t_uscalar_t)sizeof (val));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
goto done;
}
}
ASSERT(so->so_state & SS_ISBOUND);
if (name == NULL || namelen == 0) {
error = EINVAL;
goto done;
}
/*
* Mark the socket if so_faddr_sa represents the transport level
* address.
*/
if (flags & _SOCONNECT_NOXLATE) {
struct sockaddr_ux *soaddr_ux;
ASSERT(so->so_family == AF_UNIX);
if (namelen != sizeof (struct sockaddr_ux)) {
error = EINVAL;
goto done;
}
soaddr_ux = (struct sockaddr_ux *)name;
name = (struct sockaddr *)&soaddr_ux->sou_addr;
namelen = sizeof (soaddr_ux->sou_addr);
so->so_state |= SS_FADDR_NOXLATE;
}
/*
* Length and family checks.
*/
error = so_addr_verify(so, name, namelen);
if (error)
goto bad;
/*
* Save foreign address. Needed for AF_UNIX as well as
* transport providers that do not support TI_GETPEERNAME.
* Also used for cached foreign address for TCP and UDP.
*/
if (namelen > (t_uscalar_t)so->so_faddr_maxlen) {
error = EINVAL;
goto done;
}
so->so_faddr_len = (socklen_t)namelen;
ASSERT(so->so_faddr_len <= so->so_faddr_maxlen);
bcopy(name, so->so_faddr_sa, namelen);
so->so_state |= SS_FADDR_VALID;
if (so->so_family == AF_UNIX) {
if (so->so_state & SS_FADDR_NOXLATE) {
/*
* Already have a transport internal address. Do not
* pass any (transport internal) source address.
*/
addr = so->so_faddr_sa;
addrlen = (t_uscalar_t)so->so_faddr_len;
src = NULL;
srclen = 0;
} else {
/*
* Pass the sockaddr_un source address as an option
* and translate the remote address.
* Holding so_lock thus so_laddr_sa can not change.
*/
src = so->so_laddr_sa;
srclen = (t_uscalar_t)so->so_laddr_len;
dprintso(so, 1,
("sotpi_connect UNIX: srclen %d, src %p\n",
srclen, src));
error = so_ux_addr_xlate(so,
so->so_faddr_sa, (socklen_t)so->so_faddr_len,
(flags & _SOCONNECT_XPG4_2),
&addr, &addrlen);
if (error)
goto bad;
}
} else {
addr = so->so_faddr_sa;
addrlen = (t_uscalar_t)so->so_faddr_len;
src = NULL;
srclen = 0;
}
/*
* When connecting a datagram socket we issue the SO_DGRAM_ERRIND
* option which asks the transport provider to send T_UDERR_IND
* messages. These T_UDERR_IND messages are used to return connected
* style errors (e.g. ECONNRESET) for connected datagram sockets.
*
* In addition, for UDP (and SOCK_RAW AF_INET{,6} sockets)
* we send down a T_CONN_REQ. This is needed to let the
* transport assign a local address that is consistent with
* the remote address. Applications depend on a getsockname()
* after a connect() to retrieve the "source" IP address for
* the connected socket. Invalidate the cached local address
* to force getsockname() to enquire of the transport.
*/
if (!(so->so_mode & SM_CONNREQUIRED)) {
/*
* Datagram socket.
*/
int32_t val;
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
val = 1;
(void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND,
&val, (t_uscalar_t)sizeof (val));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
if ((so->so_family != AF_INET && so->so_family != AF_INET6) ||
(so->so_type != SOCK_DGRAM && so->so_type != SOCK_RAW) ||
soconnect_tpi_udp) {
soisconnected(so);
goto done;
}
/*
* Send down T_CONN_REQ etc.
* Clear fflag to avoid returning EWOULDBLOCK.
*/
fflag = 0;
ASSERT(so->so_family != AF_UNIX);
so->so_state &= ~SS_LADDR_VALID;
} else if (so->so_laddr_len != 0) {
/*
* If the local address or port was "any" then it may be
* changed by the transport as a result of the
* connect. Invalidate the cached version if we have one.
*/
switch (so->so_family) {
case AF_INET:
ASSERT(so->so_laddr_len == (socklen_t)sizeof (sin_t));
if (((sin_t *)so->so_laddr_sa)->sin_addr.s_addr ==
INADDR_ANY ||
((sin_t *)so->so_laddr_sa)->sin_port == 0)
so->so_state &= ~SS_LADDR_VALID;
break;
case AF_INET6:
ASSERT(so->so_laddr_len == (socklen_t)sizeof (sin6_t));
if (IN6_IS_ADDR_UNSPECIFIED(
&((sin6_t *)so->so_laddr_sa) ->sin6_addr) ||
IN6_IS_ADDR_V4MAPPED_ANY(
&((sin6_t *)so->so_laddr_sa)->sin6_addr) ||
((sin6_t *)so->so_laddr_sa)->sin6_port == 0)
so->so_state &= ~SS_LADDR_VALID;
break;
default:
break;
}
}
/*
* Check for failure of an earlier call
*/
if (so->so_error != 0)
goto so_bad;
/*
* Send down T_CONN_REQ. Message was allocated above.
*/
conn_req.PRIM_type = T_CONN_REQ;
conn_req.DEST_length = addrlen;
conn_req.DEST_offset = (t_scalar_t)sizeof (conn_req);
if (srclen == 0) {
conn_req.OPT_length = 0;
conn_req.OPT_offset = 0;
soappendmsg(mp, &conn_req, sizeof (conn_req));
soappendmsg(mp, addr, addrlen);
} else {
/*
* There is a AF_UNIX sockaddr_un to include as a source
* address option.
*/
struct T_opthdr toh;
toh.level = SOL_SOCKET;
toh.name = SO_SRCADDR;
toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
toh.status = 0;
conn_req.OPT_length =
(t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen));
conn_req.OPT_offset = (t_scalar_t)(sizeof (conn_req) +
_TPI_ALIGN_TOPT(addrlen));
soappendmsg(mp, &conn_req, sizeof (conn_req));
soappendmsg(mp, addr, addrlen);
mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, src, srclen);
mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
}
/*
* Set SS_ISCONNECTING before sending down the T_CONN_REQ
* in order to have the right state when the T_CONN_CON shows up.
*/
soisconnecting(so);
mutex_exit(&so->so_lock);
#ifdef C2_AUDIT
if (audit_active)
audit_sock(T_CONN_REQ, strvp2wq(SOTOV(so)), mp, 0);
#endif /* C2_AUDIT */
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
mp = NULL;
mutex_enter(&so->so_lock);
if (error != 0)
goto bad;
if ((error = sowaitokack(so, T_CONN_REQ)) != 0)
goto bad;
/* Allow other threads to access the socket */
so_unlock_single(so, SOLOCKED);
need_unlock = B_FALSE;
/*
* Wait until we get a T_CONN_CON or an error
*/
if ((error = sowaitconnected(so, fflag, 0)) != 0) {
so_lock_single(so); /* Set SOLOCKED */
need_unlock = B_TRUE;
}
done:
freemsg(mp);
switch (error) {
case EINPROGRESS:
case EALREADY:
case EISCONN:
case EINTR:
/* Non-fatal errors */
so->so_state &= ~SS_LADDR_VALID;
/* FALLTHRU */
case 0:
break;
case EHOSTUNREACH:
if (flags & _SOCONNECT_XPG4_2) {
/*
* X/Open specification contains a requirement that
* ENETUNREACH be returned but does not require
* EHOSTUNREACH. In order to keep the test suite
* happy we mess with the errno here.
*/
error = ENETUNREACH;
}
/* FALLTHRU */
default:
ASSERT(need_unlock);
/*
* Fatal errors: clear SS_ISCONNECTING in case it was set,
* and invalidate local-address cache
*/
so->so_state &= ~(SS_ISCONNECTING | SS_LADDR_VALID);
/* A discon_ind might have already unbound us */
if ((flags & _SOCONNECT_DID_BIND) &&
(so->so_state & SS_ISBOUND)) {
int err;
err = sotpi_unbind(so, 0);
/* LINTED - statement has no conseq */
if (err) {
eprintsoline(so, err);
}
}
break;
}
if (need_unlock)
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
so_bad: error = sogeterr(so);
bad: eprintsoline(so, error);
goto done;
}
int
sotpi_shutdown(struct sonode *so, int how)
{
struct T_ordrel_req ordrel_req;
mblk_t *mp;
uint_t old_state, state_change;
int error = 0;
dprintso(so, 1, ("sotpi_shutdown(%p, %d) %s\n",
so, how, pr_state(so->so_state, so->so_mode)));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
/*
* SunOS 4.X has no check for datagram sockets.
* 5.X checks that it is connected (ENOTCONN)
* X/Open requires that we check the connected state.
*/
if (!(so->so_state & SS_ISCONNECTED)) {
if (!xnet_skip_checks) {
error = ENOTCONN;
if (xnet_check_print) {
printf("sockfs: X/Open shutdown check "
"caused ENOTCONN\n");
}
}
goto done;
}
/*
* Record the current state and then perform any state changes.
* Then use the difference between the old and new states to
* determine which messages need to be sent.
* This prevents e.g. duplicate T_ORDREL_REQ when there are
* duplicate calls to shutdown().
*/
old_state = so->so_state;
switch (how) {
case 0:
socantrcvmore(so);
break;
case 1:
socantsendmore(so);
break;
case 2:
socantsendmore(so);
socantrcvmore(so);
break;
default:
error = EINVAL;
goto done;
}
/*
* Assumes that the SS_CANT* flags are never cleared in the above code.
*/
state_change = (so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) -
(old_state & (SS_CANTRCVMORE|SS_CANTSENDMORE));
ASSERT((state_change & ~(SS_CANTRCVMORE|SS_CANTSENDMORE)) == 0);
switch (state_change) {
case 0:
dprintso(so, 1,
("sotpi_shutdown: nothing to send in state 0x%x\n",
so->so_state));
goto done;
case SS_CANTRCVMORE:
mutex_exit(&so->so_lock);
strseteof(SOTOV(so), 1);
/*
* strseteof takes care of read side wakeups,
* pollwakeups, and signals.
*/
/*
* Get the read lock before flushing data to avoid problems
* with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg.
*/
mutex_enter(&so->so_lock);
(void) so_lock_read(so, 0); /* Set SOREADLOCKED */
mutex_exit(&so->so_lock);
/* Flush read side queue */
strflushrq(SOTOV(so), FLUSHALL);
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
break;
case SS_CANTSENDMORE:
mutex_exit(&so->so_lock);
strsetwerror(SOTOV(so), 0, 0, sogetwrerr);
mutex_enter(&so->so_lock);
break;
case SS_CANTSENDMORE|SS_CANTRCVMORE:
mutex_exit(&so->so_lock);
strsetwerror(SOTOV(so), 0, 0, sogetwrerr);
strseteof(SOTOV(so), 1);
/*
* strseteof takes care of read side wakeups,
* pollwakeups, and signals.
*/
/*
* Get the read lock before flushing data to avoid problems
* with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg.
*/
mutex_enter(&so->so_lock);
(void) so_lock_read(so, 0); /* Set SOREADLOCKED */
mutex_exit(&so->so_lock);
/* Flush read side queue */
strflushrq(SOTOV(so), FLUSHALL);
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
break;
}
ASSERT(MUTEX_HELD(&so->so_lock));
/*
* If either SS_CANTSENDMORE or SS_CANTRCVMORE or both of them
* was set due to this call and the new state has both of them set:
* Send the AF_UNIX close indication
* For T_COTS send a discon_ind
*
* If cantsend was set due to this call:
* For T_COTSORD send an ordrel_ind
*
* Note that for T_CLTS there is no message sent here.
*/
if ((so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) ==
(SS_CANTRCVMORE|SS_CANTSENDMORE)) {
/*
* For SunOS 4.X compatibility we tell the other end
* that we are unable to receive at this point.
*/
if (so->so_family == AF_UNIX && so->so_serv_type != T_CLTS)
so_unix_close(so);
if (so->so_serv_type == T_COTS)
error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD);
}
if ((state_change & SS_CANTSENDMORE) &&
(so->so_serv_type == T_COTS_ORD)) {
/* Send an orderly release */
ordrel_req.PRIM_type = T_ORDREL_REQ;
mutex_exit(&so->so_lock);
mp = soallocproto1(&ordrel_req, sizeof (ordrel_req),
0, _ALLOC_SLEEP);
/*
* Send down the T_ORDREL_REQ even if there is flow control.
* This prevents shutdown from blocking.
* Note that there is no T_OK_ACK for ordrel_req.
*/
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto done;
}
}
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* For any connected SOCK_STREAM/SOCK_SEQPACKET AF_UNIX socket we send
* a zero-length T_OPTDATA_REQ with the SO_UNIX_CLOSE option to inform the peer
* that we have closed.
* Also, for connected AF_UNIX SOCK_DGRAM sockets we send a zero-length
* T_UNITDATA_REQ containing the same option.
*
* For SOCK_DGRAM half-connections (somebody connected to this end
* but this end is not connect) we don't know where to send any
* SO_UNIX_CLOSE.
*
* We have to ignore stream head errors just in case there has been
* a shutdown(output).
* Ignore any flow control to try to get the message more quickly to the peer.
* While locally ignoring flow control solves the problem when there
* is only the loopback transport on the stream it would not provide
* the correct AF_UNIX socket semantics when one or more modules have
* been pushed.
*/
void
so_unix_close(struct sonode *so)
{
int error;
struct T_opthdr toh;
mblk_t *mp;
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_family == AF_UNIX);
if ((so->so_state & (SS_ISCONNECTED|SS_ISBOUND)) !=
(SS_ISCONNECTED|SS_ISBOUND))
return;
dprintso(so, 1, ("so_unix_close(%p) %s\n",
so, pr_state(so->so_state, so->so_mode)));
toh.level = SOL_SOCKET;
toh.name = SO_UNIX_CLOSE;
/* zero length + header */
toh.len = (t_uscalar_t)sizeof (struct T_opthdr);
toh.status = 0;
if (so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) {
struct T_optdata_req tdr;
tdr.PRIM_type = T_OPTDATA_REQ;
tdr.DATA_flag = 0;
tdr.OPT_length = (t_scalar_t)sizeof (toh);
tdr.OPT_offset = (t_scalar_t)sizeof (tdr);
/* NOTE: holding so_lock while sleeping */
mp = soallocproto2(&tdr, sizeof (tdr),
&toh, sizeof (toh), 0, _ALLOC_SLEEP);
} else {
struct T_unitdata_req tudr;
void *addr;
socklen_t addrlen;
void *src;
socklen_t srclen;
struct T_opthdr toh2;
t_scalar_t size;
/* Connecteded DGRAM socket */
/*
* For AF_UNIX the destination address is translated to
* an internal name and the source address is passed as
* an option.
*/
/*
* Length and family checks.
*/
error = so_addr_verify(so, so->so_faddr_sa,
(t_uscalar_t)so->so_faddr_len);
if (error) {
eprintsoline(so, error);
return;
}
if (so->so_state & SS_FADDR_NOXLATE) {
/*
* Already have a transport internal address. Do not
* pass any (transport internal) source address.
*/
addr = so->so_faddr_sa;
addrlen = (t_uscalar_t)so->so_faddr_len;
src = NULL;
srclen = 0;
} else {
/*
* Pass the sockaddr_un source address as an option
* and translate the remote address.
* Holding so_lock thus so_laddr_sa can not change.
*/
src = so->so_laddr_sa;
srclen = (socklen_t)so->so_laddr_len;
dprintso(so, 1,
("so_ux_close: srclen %d, src %p\n",
srclen, src));
error = so_ux_addr_xlate(so,
so->so_faddr_sa,
(socklen_t)so->so_faddr_len, 0,
&addr, &addrlen);
if (error) {
eprintsoline(so, error);
return;
}
}
tudr.PRIM_type = T_UNITDATA_REQ;
tudr.DEST_length = addrlen;
tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
if (srclen == 0) {
tudr.OPT_length = (t_scalar_t)sizeof (toh);
tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
_TPI_ALIGN_TOPT(addrlen));
size = tudr.OPT_offset + tudr.OPT_length;
/* NOTE: holding so_lock while sleeping */
mp = soallocproto2(&tudr, sizeof (tudr),
addr, addrlen, size, _ALLOC_SLEEP);
mp->b_wptr += (_TPI_ALIGN_TOPT(addrlen) - addrlen);
soappendmsg(mp, &toh, sizeof (toh));
} else {
/*
* There is a AF_UNIX sockaddr_un to include as a
* source address option.
*/
tudr.OPT_length = (t_scalar_t)(2 * sizeof (toh) +
_TPI_ALIGN_TOPT(srclen));
tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
_TPI_ALIGN_TOPT(addrlen));
toh2.level = SOL_SOCKET;
toh2.name = SO_SRCADDR;
toh2.len = (t_uscalar_t)(srclen +
sizeof (struct T_opthdr));
toh2.status = 0;
size = tudr.OPT_offset + tudr.OPT_length;
/* NOTE: holding so_lock while sleeping */
mp = soallocproto2(&tudr, sizeof (tudr),
addr, addrlen, size, _ALLOC_SLEEP);
mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, &toh2, sizeof (toh2));
soappendmsg(mp, src, srclen);
mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
}
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
}
mutex_exit(&so->so_lock);
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
mutex_enter(&so->so_lock);
}
/*
* Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
*/
int
sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags)
{
mblk_t *mp, *nmp;
int error;
dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", so, msg, flags));
/*
* There is never any oob data with addresses or control since
* the T_EXDATA_IND does not carry any options.
*/
msg->msg_controllen = 0;
msg->msg_namelen = 0;
mutex_enter(&so->so_lock);
ASSERT(so_verify_oobstate(so));
if ((so->so_options & SO_OOBINLINE) ||
(so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
mutex_exit(&so->so_lock);
return (EINVAL);
}
if (!(so->so_state & SS_HAVEOOBDATA)) {
dprintso(so, 1, ("sorecvoob: no data yet\n"));
mutex_exit(&so->so_lock);
return (EWOULDBLOCK);
}
ASSERT(so->so_oobmsg != NULL);
mp = so->so_oobmsg;
if (flags & MSG_PEEK) {
/*
* Since recv* can not return ENOBUFS we can not use dupmsg.
* Instead we revert to the consolidation private
* allocb_wait plus bcopy.
*/
mblk_t *mp1;
mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
ASSERT(mp1);
while (mp != NULL) {
ssize_t size;
size = MBLKL(mp);
bcopy(mp->b_rptr, mp1->b_wptr, size);
mp1->b_wptr += size;
ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
mp = mp->b_cont;
}
mp = mp1;
} else {
/*
* Update the state indicating that the data has been consumed.
* Keep SS_OOBPEND set until data is consumed past the mark.
*/
so->so_oobmsg = NULL;
so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
}
dprintso(so, 1,
("after recvoob(%p): counts %d/%d state %s\n",
so, so->so_oobsigcnt,
so->so_oobcnt, pr_state(so->so_state, so->so_mode)));
ASSERT(so_verify_oobstate(so));
mutex_exit(&so->so_lock);
error = 0;
nmp = mp;
while (nmp != NULL && uiop->uio_resid > 0) {
ssize_t n = MBLKL(nmp);
n = MIN(n, uiop->uio_resid);
if (n > 0)
error = uiomove(nmp->b_rptr, n,
UIO_READ, uiop);
if (error)
break;
nmp = nmp->b_cont;
}
freemsg(mp);
return (error);
}
/*
* Called by sotpi_recvmsg when reading a non-zero amount of data.
* In addition, the caller typically verifies that there is some
* potential state to clear by checking
* if (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK))
* before calling this routine.
* Note that such a check can be made without holding so_lock since
* sotpi_recvmsg is single-threaded (using SOREADLOCKED) and only sotpi_recvmsg
* decrements so_oobsigcnt.
*
* When data is read *after* the point that all pending
* oob data has been consumed the oob indication is cleared.
*
* This logic keeps select/poll returning POLLRDBAND and
* SIOCATMARK returning true until we have read past
* the mark.
*/
static void
sorecv_update_oobstate(struct sonode *so)
{
mutex_enter(&so->so_lock);
ASSERT(so_verify_oobstate(so));
dprintso(so, 1,
("sorecv_update_oobstate: counts %d/%d state %s\n",
so->so_oobsigcnt,
so->so_oobcnt, pr_state(so->so_state, so->so_mode)));
if (so->so_oobsigcnt == 0) {
/* No more pending oob indications */
so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
freemsg(so->so_oobmsg);
so->so_oobmsg = NULL;
}
ASSERT(so_verify_oobstate(so));
mutex_exit(&so->so_lock);
}
/*
* Handle recv* calls for an so which has NL7C saved recv mblk_t(s).
*/
static int
nl7c_sorecv(struct sonode *so, mblk_t **rmp, uio_t *uiop, rval_t *rp)
{
int error = 0;
mblk_t *tmp = NULL;
mblk_t *pmp = NULL;
mblk_t *nmp = so->so_nl7c_rcv_mp;
ASSERT(nmp != NULL);
while (nmp != NULL && uiop->uio_resid > 0) {
ssize_t n;
if (DB_TYPE(nmp) == M_DATA) {
/*
* We have some data, uiomove up to resid bytes.
*/
n = MIN(MBLKL(nmp), uiop->uio_resid);
if (n > 0)
error = uiomove(nmp->b_rptr, n, UIO_READ, uiop);
if (error)
break;
nmp->b_rptr += n;
if (nmp->b_rptr == nmp->b_wptr) {
pmp = nmp;
nmp = nmp->b_cont;
}
} else {
/*
* We only handle data, save for caller to handle.
*/
if (pmp != NULL) {
pmp->b_cont = nmp->b_cont;
}
nmp->b_cont = NULL;
if (*rmp == NULL) {
*rmp = nmp;
} else {
tmp->b_next = nmp;
}
nmp = nmp->b_cont;
tmp = nmp;
}
}
if (pmp != NULL) {
/* Free any mblk_t(s) which we have consumed */
pmp->b_cont = NULL;
freemsg(so->so_nl7c_rcv_mp);
}
if ((so->so_nl7c_rcv_mp = nmp) == NULL) {
/* Last mblk_t so return the saved rval from kstrgetmsg() */
rp->r_vals = so->so_nl7c_rcv_rval;
so->so_nl7c_rcv_rval = 0;
} else {
/* More mblk_t(s) to process so no rval to return */
rp->r_vals = 0;
}
return (error);
}
/*
* Receive the next message on the queue.
* If msg_controllen is non-zero when called the caller is interested in
* any received control info (options).
* If msg_namelen is non-zero when called the caller is interested in
* any received source address.
* The routine returns with msg_control and msg_name pointing to
* kmem_alloc'ed memory which the caller has to free.
*/
int
sotpi_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
{
union T_primitives *tpr;
mblk_t *mp;
uchar_t pri;
int pflag, opflag;
void *control;
t_uscalar_t controllen;
t_uscalar_t namelen;
int so_state = so->so_state; /* Snapshot */
ssize_t saved_resid;
int error;
rval_t rval;
int flags;
clock_t timout;
int first;
flags = msg->msg_flags;
msg->msg_flags = 0;
dprintso(so, 1, ("sotpi_recvmsg(%p, %p, 0x%x) state %s err %d\n",
so, msg, flags,
pr_state(so->so_state, so->so_mode), so->so_error));
/*
* If we are not connected because we have never been connected
* we return ENOTCONN. If we have been connected (but are no longer
* connected) then SS_CANTRCVMORE is set and we let kstrgetmsg return
* the EOF.
*
* An alternative would be to post an ENOTCONN error in stream head
* (read+write) and clear it when we're connected. However, that error
* would cause incorrect poll/select behavior!
*/
if ((so_state & (SS_ISCONNECTED|SS_CANTRCVMORE)) == 0 &&
(so->so_mode & SM_CONNREQUIRED)) {
return (ENOTCONN);
}
/*
* Note: SunOS 4.X checks uio_resid == 0 before going to sleep (but
* after checking that the read queue is empty) and returns zero.
* This implementation will sleep (in kstrgetmsg) even if uio_resid
* is zero.
*/
if (flags & MSG_OOB) {
/* Check that the transport supports OOB */
if (!(so->so_mode & SM_EXDATA))
return (EOPNOTSUPP);
return (sorecvoob(so, msg, uiop, flags));
}
/*
* Set msg_controllen and msg_namelen to zero here to make it
* simpler in the cases that no control or name is returned.
*/
controllen = msg->msg_controllen;
namelen = msg->msg_namelen;
msg->msg_controllen = 0;
msg->msg_namelen = 0;
dprintso(so, 1, ("sotpi_recvmsg: namelen %d controllen %d\n",
namelen, controllen));
/*
* If an NL7C enabled socket and not waiting for write data.
*/
mutex_enter(&so->so_lock);
if ((so->so_nl7c_flags & (NL7C_ENABLED|NL7C_WAITWRITE)) ==
NL7C_ENABLED) {
if (so->so_nl7c_uri) {
/*
* Close uri processing for a previous request.
*/
nl7c_close(so);
}
if (nl7c_process(so,
(so->so_state & (SS_NONBLOCK|SS_NDELAY)),
(int)((tcp_t *)so->so_priv)->tcp_mss)) {
/*
* NL7C has completed processing on the socket,
* clear the enabled bit as no further NL7C
* processing will be needed.
*/
so->so_nl7c_flags = 0;
}
}
/*
* Only one reader is allowed at any given time. This is needed
* for T_EXDATA handling and, in the future, MSG_WAITALL.
*
* This is slightly different that BSD behavior in that it fails with
* EWOULDBLOCK when using nonblocking io. In BSD the read queue access
* is single-threaded using sblock(), which is dropped while waiting
* for data to appear. The difference shows up e.g. if one
* file descriptor does not have O_NONBLOCK but a dup'ed file descriptor
* does use nonblocking io and different threads are reading each
* file descriptor. In BSD there would never be an EWOULDBLOCK error
* in this case as long as the read queue doesn't get empty.
* In this implementation the thread using nonblocking io can
* get an EWOULDBLOCK error due to the blocking thread executing
* e.g. in the uiomove in kstrgetmsg.
* This difference is not believed to be significant.
*/
error = so_lock_read_intr(so, uiop->uio_fmode); /* Set SOREADLOCKED */
mutex_exit(&so->so_lock);
if (error)
return (error);
/*
* Tell kstrgetmsg to not inspect the stream head errors until all
* queued data has been consumed.
* Use a timeout=-1 to wait forever unless MSG_DONTWAIT is set.
* Also, If uio_fmode indicates nonblocking kstrgetmsg will not block.
*
* MSG_WAITALL only applies to M_DATA and T_DATA_IND messages and
* to T_OPTDATA_IND that do not contain any user-visible control msg.
* Note that MSG_WAITALL set with MSG_PEEK is a noop.
*/
pflag = MSG_ANY | MSG_DELAYERROR;
if (flags & MSG_PEEK) {
pflag |= MSG_IPEEK;
flags &= ~MSG_WAITALL;
}
if (so->so_mode & SM_ATOMIC)
pflag |= MSG_DISCARDTAIL;
if (flags & MSG_DONTWAIT)
timout = 0;
else
timout = -1;
opflag = pflag;
first = 1;
/*
* If so saved NL7C rcv mblk_t(s) uiomove them first
* else get'm from the streamhead.
*/
retry:
saved_resid = uiop->uio_resid;
pri = 0;
mp = NULL;
if (so->so_nl7c_rcv_mp != NULL) {
error = nl7c_sorecv(so, &mp, uiop, &rval);
} else {
error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag,
timout, &rval);
}
if (error) {
switch (error) {
case EINTR:
case EWOULDBLOCK:
if (!first)
error = 0;
break;
case ETIME:
/* Returned from kstrgetmsg when timeout expires */
if (!first)
error = 0;
else
error = EWOULDBLOCK;
break;
default:
eprintsoline(so, error);
break;
}
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (error);
}
/*
* For datagrams the MOREDATA flag is used to set MSG_TRUNC.
* For non-datagrams MOREDATA is used to set MSG_EOR.
*/
ASSERT(!(rval.r_val1 & MORECTL));
if ((rval.r_val1 & MOREDATA) && (so->so_mode & SM_ATOMIC))
msg->msg_flags |= MSG_TRUNC;
if (mp == NULL) {
dprintso(so, 1, ("sotpi_recvmsg: got M_DATA\n"));
/*
* 4.3BSD and 4.4BSD clears the mark when peeking across it.
* The draft Posix socket spec states that the mark should
* not be cleared when peeking. We follow the latter.
*/
if ((so->so_state &
(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
(uiop->uio_resid != saved_resid) &&
!(flags & MSG_PEEK)) {
sorecv_update_oobstate(so);
}
mutex_enter(&so->so_lock);
/* Set MSG_EOR based on MOREDATA */
if (!(rval.r_val1 & MOREDATA)) {
if (so->so_state & SS_SAVEDEOR) {
msg->msg_flags |= MSG_EOR;
so->so_state &= ~SS_SAVEDEOR;
}
}
/*
* If some data was received (i.e. not EOF) and the
* read/recv* has not been satisfied wait for some more.
*/
if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
mutex_exit(&so->so_lock);
first = 0;
pflag = opflag | MSG_NOMARK;
goto retry;
}
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (0);
}
/* strsock_proto has already verified length and alignment */
tpr = (union T_primitives *)mp->b_rptr;
dprintso(so, 1, ("sotpi_recvmsg: type %d\n", tpr->type));
switch (tpr->type) {
case T_DATA_IND: {
if ((so->so_state &
(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
(uiop->uio_resid != saved_resid) &&
!(flags & MSG_PEEK)) {
sorecv_update_oobstate(so);
}
/*
* Set msg_flags to MSG_EOR based on
* MORE_flag and MOREDATA.
*/
mutex_enter(&so->so_lock);
so->so_state &= ~SS_SAVEDEOR;
if (!(tpr->data_ind.MORE_flag & 1)) {
if (!(rval.r_val1 & MOREDATA))
msg->msg_flags |= MSG_EOR;
else
so->so_state |= SS_SAVEDEOR;
}
freemsg(mp);
/*
* If some data was received (i.e. not EOF) and the
* read/recv* has not been satisfied wait for some more.
*/
if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
mutex_exit(&so->so_lock);
first = 0;
pflag = opflag | MSG_NOMARK;
goto retry;
}
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (0);
}
case T_UNITDATA_IND: {
void *addr;
t_uscalar_t addrlen;
void *abuf;
t_uscalar_t optlen;
void *opt;
if ((so->so_state &
(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
(uiop->uio_resid != saved_resid) &&
!(flags & MSG_PEEK)) {
sorecv_update_oobstate(so);
}
if (namelen != 0) {
/* Caller wants source address */
addrlen = tpr->unitdata_ind.SRC_length;
addr = sogetoff(mp,
tpr->unitdata_ind.SRC_offset,
addrlen, 1);
if (addr == NULL) {
freemsg(mp);
error = EPROTO;
eprintsoline(so, error);
goto err;
}
if (so->so_family == AF_UNIX) {
/*
* Can not use the transport level address.
* If there is a SO_SRCADDR option carrying
* the socket level address it will be
* extracted below.
*/
addr = NULL;
addrlen = 0;
}
}
optlen = tpr->unitdata_ind.OPT_length;
if (optlen != 0) {
t_uscalar_t ncontrollen;
/*
* Extract any source address option.
* Determine how large cmsg buffer is needed.
*/
opt = sogetoff(mp,
tpr->unitdata_ind.OPT_offset,
optlen, __TPI_ALIGN_SIZE);
if (opt == NULL) {
freemsg(mp);
error = EPROTO;
eprintsoline(so, error);
goto err;
}
if (so->so_family == AF_UNIX)
so_getopt_srcaddr(opt, optlen, &addr, &addrlen);
ncontrollen = so_cmsglen(mp, opt, optlen,
!(flags & MSG_XPG4_2));
if (controllen != 0)
controllen = ncontrollen;
else if (ncontrollen != 0)
msg->msg_flags |= MSG_CTRUNC;
} else {
controllen = 0;
}
if (namelen != 0) {
/*
* Return address to caller.
* Caller handles truncation if length
* exceeds msg_namelen.
* NOTE: AF_UNIX NUL termination is ensured by
* the sender's copyin_name().
*/
abuf = kmem_alloc(addrlen, KM_SLEEP);
bcopy(addr, abuf, addrlen);
msg->msg_name = abuf;
msg->msg_namelen = addrlen;
}
if (controllen != 0) {
/*
* Return control msg to caller.
* Caller handles truncation if length
* exceeds msg_controllen.
*/
control = kmem_alloc(controllen, KM_SLEEP);
error = so_opt2cmsg(mp, opt, optlen,
!(flags & MSG_XPG4_2),
control, controllen);
if (error) {
freemsg(mp);
if (msg->msg_namelen != 0)
kmem_free(msg->msg_name,
msg->msg_namelen);
kmem_free(control, controllen);
eprintsoline(so, error);
goto err;
}
msg->msg_control = control;
msg->msg_controllen = controllen;
}
freemsg(mp);
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (0);
}
case T_OPTDATA_IND: {
struct T_optdata_req *tdr;
void *opt;
t_uscalar_t optlen;
if ((so->so_state &
(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
(uiop->uio_resid != saved_resid) &&
!(flags & MSG_PEEK)) {
sorecv_update_oobstate(so);
}
tdr = (struct T_optdata_req *)mp->b_rptr;
optlen = tdr->OPT_length;
if (optlen != 0) {
t_uscalar_t ncontrollen;
/*
* Determine how large cmsg buffer is needed.
*/
opt = sogetoff(mp,
tpr->optdata_ind.OPT_offset,
optlen, __TPI_ALIGN_SIZE);
if (opt == NULL) {
freemsg(mp);
error = EPROTO;
eprintsoline(so, error);
goto err;
}
ncontrollen = so_cmsglen(mp, opt, optlen,
!(flags & MSG_XPG4_2));
if (controllen != 0)
controllen = ncontrollen;
else if (ncontrollen != 0)
msg->msg_flags |= MSG_CTRUNC;
} else {
controllen = 0;
}
if (controllen != 0) {
/*
* Return control msg to caller.
* Caller handles truncation if length
* exceeds msg_controllen.
*/
control = kmem_alloc(controllen, KM_SLEEP);
error = so_opt2cmsg(mp, opt, optlen,
!(flags & MSG_XPG4_2),
control, controllen);
if (error) {
freemsg(mp);
kmem_free(control, controllen);
eprintsoline(so, error);
goto err;
}
msg->msg_control = control;
msg->msg_controllen = controllen;
}
/*
* Set msg_flags to MSG_EOR based on
* DATA_flag and MOREDATA.
*/
mutex_enter(&so->so_lock);
so->so_state &= ~SS_SAVEDEOR;
if (!(tpr->data_ind.MORE_flag & 1)) {
if (!(rval.r_val1 & MOREDATA))
msg->msg_flags |= MSG_EOR;
else
so->so_state |= SS_SAVEDEOR;
}
freemsg(mp);
/*
* If some data was received (i.e. not EOF) and the
* read/recv* has not been satisfied wait for some more.
* Not possible to wait if control info was received.
*/
if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
controllen == 0 &&
uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
mutex_exit(&so->so_lock);
first = 0;
pflag = opflag | MSG_NOMARK;
goto retry;
}
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (0);
}
case T_EXDATA_IND: {
dprintso(so, 1,
("sotpi_recvmsg: EXDATA_IND counts %d/%d consumed %ld "
"state %s\n",
so->so_oobsigcnt, so->so_oobcnt,
saved_resid - uiop->uio_resid,
pr_state(so->so_state, so->so_mode)));
/*
* kstrgetmsg handles MSGMARK so there is nothing to
* inspect in the T_EXDATA_IND.
* strsock_proto makes the stream head queue the T_EXDATA_IND
* as a separate message with no M_DATA component. Furthermore,
* the stream head does not consolidate M_DATA messages onto
* an MSGMARK'ed message ensuring that the T_EXDATA_IND
* remains a message by itself. This is needed since MSGMARK
* marks both the whole message as well as the last byte
* of the message.
*/
freemsg(mp);
ASSERT(uiop->uio_resid == saved_resid); /* No data */
if (flags & MSG_PEEK) {
/*
* Even though we are peeking we consume the
* T_EXDATA_IND thereby moving the mark information
* to SS_RCVATMARK. Then the oob code below will
* retry the peeking kstrgetmsg.
* Note that the stream head read queue is
* never flushed without holding SOREADLOCKED
* thus the T_EXDATA_IND can not disappear
* underneath us.
*/
dprintso(so, 1,
("sotpi_recvmsg: consume EXDATA_IND "
"counts %d/%d state %s\n",
so->so_oobsigcnt,
so->so_oobcnt,
pr_state(so->so_state, so->so_mode)));
pflag = MSG_ANY | MSG_DELAYERROR;
if (so->so_mode & SM_ATOMIC)
pflag |= MSG_DISCARDTAIL;
pri = 0;
mp = NULL;
error = kstrgetmsg(SOTOV(so), &mp, uiop,
&pri, &pflag, (clock_t)-1, &rval);
ASSERT(uiop->uio_resid == saved_resid);
if (error) {
#ifdef SOCK_DEBUG
if (error != EWOULDBLOCK && error != EINTR) {
eprintsoline(so, error);
}
#endif /* SOCK_DEBUG */
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (error);
}
ASSERT(mp);
tpr = (union T_primitives *)mp->b_rptr;
ASSERT(tpr->type == T_EXDATA_IND);
freemsg(mp);
} /* end "if (flags & MSG_PEEK)" */
/*
* Decrement the number of queued and pending oob.
*
* SS_RCVATMARK is cleared when we read past a mark.
* SS_HAVEOOBDATA is cleared when we've read past the
* last mark.
* SS_OOBPEND is cleared if we've read past the last
* mark and no (new) SIGURG has been posted.
*/
mutex_enter(&so->so_lock);
ASSERT(so_verify_oobstate(so));
ASSERT(so->so_oobsigcnt >= so->so_oobcnt);
ASSERT(so->so_oobsigcnt > 0);
so->so_oobsigcnt--;
ASSERT(so->so_oobcnt > 0);
so->so_oobcnt--;
/*
* Since the T_EXDATA_IND has been removed from the stream
* head, but we have not read data past the mark,
* sockfs needs to track that the socket is still at the mark.
*
* Since no data was received call kstrgetmsg again to wait
* for data.
*/
so->so_state |= SS_RCVATMARK;
mutex_exit(&so->so_lock);
dprintso(so, 1,
("sotpi_recvmsg: retry EXDATA_IND counts %d/%d state %s\n",
so->so_oobsigcnt, so->so_oobcnt,
pr_state(so->so_state, so->so_mode)));
pflag = opflag;
goto retry;
}
default:
ASSERT(0);
freemsg(mp);
error = EPROTO;
eprintsoline(so, error);
goto err;
}
/* NOTREACHED */
err:
mutex_enter(&so->so_lock);
so_unlock_read(so); /* Clear SOREADLOCKED */
mutex_exit(&so->so_lock);
return (error);
}
/*
* Sending data with options on a datagram socket.
* Assumes caller has verified that SS_ISBOUND etc. are set.
*/
static int
sosend_dgramcmsg(struct sonode *so,
struct sockaddr *name,
t_uscalar_t namelen,
struct uio *uiop,
void *control,
t_uscalar_t controllen,
int flags)
{
struct T_unitdata_req tudr;
mblk_t *mp;
int error;
void *addr;
socklen_t addrlen;
void *src;
socklen_t srclen;
ssize_t len;
int size;
struct T_opthdr toh;
struct fdbuf *fdbuf;
t_uscalar_t optlen;
void *fds;
int fdlen;
ASSERT(name && namelen);
ASSERT(control && controllen);
len = uiop->uio_resid;
if (len > (ssize_t)so->so_tidu_size) {
return (EMSGSIZE);
}
/*
* For AF_UNIX the destination address is translated to an internal
* name and the source address is passed as an option.
* Also, file descriptors are passed as file pointers in an
* option.
*/
/*
* Length and family checks.
*/
error = so_addr_verify(so, name, namelen);
if (error) {
eprintsoline(so, error);
return (error);
}
if (so->so_family == AF_UNIX) {
if (so->so_state & SS_FADDR_NOXLATE) {
/*
* Already have a transport internal address. Do not
* pass any (transport internal) source address.
*/
addr = name;
addrlen = namelen;
src = NULL;
srclen = 0;
} else {
/*
* Pass the sockaddr_un source address as an option
* and translate the remote address.
*
* Note that this code does not prevent so_laddr_sa
* from changing while it is being used. Thus
* if an unbind+bind occurs concurrently with this
* send the peer might see a partially new and a
* partially old "from" address.
*/
src = so->so_laddr_sa;
srclen = (t_uscalar_t)so->so_laddr_len;
dprintso(so, 1,
("sosend_dgramcmsg UNIX: srclen %d, src %p\n",
srclen, src));
error = so_ux_addr_xlate(so, name, namelen,
(flags & MSG_XPG4_2),
&addr, &addrlen);
if (error) {
eprintsoline(so, error);
return (error);
}
}
} else {
addr = name;
addrlen = namelen;
src = NULL;
srclen = 0;
}
optlen = so_optlen(control, controllen,
!(flags & MSG_XPG4_2));
tudr.PRIM_type = T_UNITDATA_REQ;
tudr.DEST_length = addrlen;
tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
if (srclen != 0)
tudr.OPT_length = (t_scalar_t)(optlen + sizeof (toh) +
_TPI_ALIGN_TOPT(srclen));
else
tudr.OPT_length = optlen;
tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
_TPI_ALIGN_TOPT(addrlen));
size = tudr.OPT_offset + tudr.OPT_length;
/*
* File descriptors only when SM_FDPASSING set.
*/
error = so_getfdopt(control, controllen,
!(flags & MSG_XPG4_2), &fds, &fdlen);
if (error)
return (error);
if (fdlen != -1) {
if (!(so->so_mode & SM_FDPASSING))
return (EOPNOTSUPP);
error = fdbuf_create(fds, fdlen, &fdbuf);
if (error)
return (error);
mp = fdbuf_allocmsg(size, fdbuf);
if (mp == NULL)
fdbuf_free(fdbuf);
} else {
mp = soallocproto(size, _ALLOC_INTR);
}
if (mp == NULL) {
/*
* Caught a signal waiting for memory.
* Let send* return EINTR.
*/
return (EINTR);
}
soappendmsg(mp, &tudr, sizeof (tudr));
soappendmsg(mp, addr, addrlen);
mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
if (fdlen != -1) {
ASSERT(fdbuf != NULL);
toh.level = SOL_SOCKET;
toh.name = SO_FILEP;
toh.len = fdbuf->fd_size +
(t_uscalar_t)sizeof (struct T_opthdr);
toh.status = 0;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, fdbuf, fdbuf->fd_size);
ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
}
if (srclen != 0) {
/*
* There is a AF_UNIX sockaddr_un to include as a source
* address option.
*/
toh.level = SOL_SOCKET;
toh.name = SO_SRCADDR;
toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
toh.status = 0;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, src, srclen);
mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
}
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp);
/* At most 3 bytes left in the message */
ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE));
ASSERT(MBLKL(mp) <= (ssize_t)size);
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
#ifdef C2_AUDIT
if (audit_active)
audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
#endif /* C2_AUDIT */
error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0);
#ifdef SOCK_DEBUG
if (error) {
eprintsoline(so, error);
}
#endif /* SOCK_DEBUG */
return (error);
}
/*
* Sending data with options on a connected stream socket.
* Assumes caller has verified that SS_ISCONNECTED is set.
*/
static int
sosend_svccmsg(struct sonode *so,
struct uio *uiop,
int more,
void *control,
t_uscalar_t controllen,
int flags)
{
struct T_optdata_req tdr;
mblk_t *mp;
int error;
ssize_t iosize;
int first = 1;
int size;
struct fdbuf *fdbuf;
t_uscalar_t optlen;
void *fds;
int fdlen;
struct T_opthdr toh;
dprintso(so, 1,
("sosend_svccmsg: resid %ld bytes\n", uiop->uio_resid));
/*
* Has to be bound and connected. However, since no locks are
* held the state could have changed after sotpi_sendmsg checked it
* thus it is not possible to ASSERT on the state.
*/
/* Options on connection-oriented only when SM_OPTDATA set. */
if (!(so->so_mode & SM_OPTDATA))
return (EOPNOTSUPP);
do {
/*
* Set the MORE flag if uio_resid does not fit in this
* message or if the caller passed in "more".
* Error for transports with zero tidu_size.
*/
tdr.PRIM_type = T_OPTDATA_REQ;
iosize = so->so_tidu_size;
if (iosize <= 0)
return (EMSGSIZE);
if (uiop->uio_resid > iosize) {
tdr.DATA_flag = 1;
} else {
if (more)
tdr.DATA_flag = 1;
else
tdr.DATA_flag = 0;
iosize = uiop->uio_resid;
}
dprintso(so, 1, ("sosend_svccmsg: sending %d, %ld bytes\n",
tdr.DATA_flag, iosize));
optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2));
tdr.OPT_length = optlen;
tdr.OPT_offset = (t_scalar_t)sizeof (tdr);
size = (int)sizeof (tdr) + optlen;
/*
* File descriptors only when SM_FDPASSING set.
*/
error = so_getfdopt(control, controllen,
!(flags & MSG_XPG4_2), &fds, &fdlen);
if (error)
return (error);
if (fdlen != -1) {
if (!(so->so_mode & SM_FDPASSING))
return (EOPNOTSUPP);
error = fdbuf_create(fds, fdlen, &fdbuf);
if (error)
return (error);
mp = fdbuf_allocmsg(size, fdbuf);
if (mp == NULL)
fdbuf_free(fdbuf);
} else {
mp = soallocproto(size, _ALLOC_INTR);
}
if (mp == NULL) {
/*
* Caught a signal waiting for memory.
* Let send* return EINTR.
*/
if (first)
return (EINTR);
else
return (0);
}
soappendmsg(mp, &tdr, sizeof (tdr));
if (fdlen != -1) {
ASSERT(fdbuf != NULL);
toh.level = SOL_SOCKET;
toh.name = SO_FILEP;
toh.len = fdbuf->fd_size +
(t_uscalar_t)sizeof (struct T_opthdr);
toh.status = 0;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, fdbuf, fdbuf->fd_size);
ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
}
so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp);
/* At most 3 bytes left in the message */
ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE));
ASSERT(MBLKL(mp) <= (ssize_t)size);
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
error = kstrputmsg(SOTOV(so), mp, uiop, iosize,
0, MSG_BAND, 0);
if (error) {
if (!first && error == EWOULDBLOCK)
return (0);
eprintsoline(so, error);
return (error);
}
control = NULL;
first = 0;
if (uiop->uio_resid > 0) {
/*
* Recheck for fatal errors. Fail write even though
* some data have been written. This is consistent
* with strwrite semantics and BSD sockets semantics.
*/
if (so->so_state & SS_CANTSENDMORE) {
tsignal(curthread, SIGPIPE);
eprintsoline(so, error);
return (EPIPE);
}
if (so->so_error != 0) {
mutex_enter(&so->so_lock);
error = sogeterr(so);
mutex_exit(&so->so_lock);
if (error != 0) {
eprintsoline(so, error);
return (error);
}
}
}
} while (uiop->uio_resid > 0);
return (0);
}
/*
* Sending data on a datagram socket.
* Assumes caller has verified that SS_ISBOUND etc. are set.
*
* For AF_UNIX the destination address is translated to an internal
* name and the source address is passed as an option.
*/
int
sosend_dgram(struct sonode *so,
struct sockaddr *name,
socklen_t namelen,
struct uio *uiop,
int flags)
{
struct T_unitdata_req tudr;
mblk_t *mp;
int error;
void *addr;
socklen_t addrlen;
void *src;
socklen_t srclen;
ssize_t len;
ASSERT(name && namelen);
len = uiop->uio_resid;
if (len > so->so_tidu_size) {
error = EMSGSIZE;
goto done;
}
/*
* Length and family checks.
*/
error = so_addr_verify(so, name, namelen);
if (error) {
eprintsoline(so, error);
goto done;
}
if (so->so_family == AF_UNIX) {
if (so->so_state & SS_FADDR_NOXLATE) {
/*
* Already have a transport internal address. Do not
* pass any (transport internal) source address.
*/
addr = name;
addrlen = namelen;
src = NULL;
srclen = 0;
} else {
/*
* Pass the sockaddr_un source address as an option
* and translate the remote address.
*
* Note that this code does not prevent so_laddr_sa
* from changing while it is being used. Thus
* if an unbind+bind occurs concurrently with this
* send the peer might see a partially new and a
* partially old "from" address.
*/
src = so->so_laddr_sa;
srclen = (socklen_t)so->so_laddr_len;
dprintso(so, 1,
("sosend_dgram UNIX: srclen %d, src %p\n",
srclen, src));
error = so_ux_addr_xlate(so, name, namelen,
(flags & MSG_XPG4_2),
&addr, &addrlen);
if (error) {
eprintsoline(so, error);
goto done;
}
}
} else {
addr = name;
addrlen = namelen;
src = NULL;
srclen = 0;
}
tudr.PRIM_type = T_UNITDATA_REQ;
tudr.DEST_length = addrlen;
tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
if (srclen == 0) {
tudr.OPT_length = 0;
tudr.OPT_offset = 0;
mp = soallocproto2(&tudr, sizeof (tudr),
addr, addrlen, 0, _ALLOC_INTR);
if (mp == NULL) {
/*
* Caught a signal waiting for memory.
* Let send* return EINTR.
*/
error = EINTR;
goto done;
}
} else {
/*
* There is a AF_UNIX sockaddr_un to include as a source
* address option.
*/
struct T_opthdr toh;
ssize_t size;
tudr.OPT_length = (t_scalar_t)(sizeof (toh) +
_TPI_ALIGN_TOPT(srclen));
tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
_TPI_ALIGN_TOPT(addrlen));
toh.level = SOL_SOCKET;
toh.name = SO_SRCADDR;
toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
toh.status = 0;
size = tudr.OPT_offset + tudr.OPT_length;
mp = soallocproto2(&tudr, sizeof (tudr),
addr, addrlen, size, _ALLOC_INTR);
if (mp == NULL) {
/*
* Caught a signal waiting for memory.
* Let send* return EINTR.
*/
error = EINTR;
goto done;
}
mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
soappendmsg(mp, &toh, sizeof (toh));
soappendmsg(mp, src, srclen);
mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
}
#ifdef C2_AUDIT
if (audit_active)
audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
#endif /* C2_AUDIT */
error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0);
done:
#ifdef SOCK_DEBUG
if (error) {
eprintsoline(so, error);
}
#endif /* SOCK_DEBUG */
return (error);
}
/*
* Sending data on a connected stream socket.
* Assumes caller has verified that SS_ISCONNECTED is set.
*/
int
sosend_svc(struct sonode *so,
struct uio *uiop,
t_scalar_t prim,
int more,
int sflag)
{
struct T_data_req tdr;
mblk_t *mp;
int error;
ssize_t iosize;
int first = 1;
dprintso(so, 1,
("sosend_svc: %p, resid %ld bytes, prim %d, sflag 0x%x\n",
so, uiop->uio_resid, prim, sflag));
/*
* Has to be bound and connected. However, since no locks are
* held the state could have changed after sotpi_sendmsg checked it
* thus it is not possible to ASSERT on the state.
*/
do {
/*
* Set the MORE flag if uio_resid does not fit in this
* message or if the caller passed in "more".
* Error for transports with zero tidu_size.
*/
tdr.PRIM_type = prim;
iosize = so->so_tidu_size;
if (iosize <= 0)
return (EMSGSIZE);
if (uiop->uio_resid > iosize) {
tdr.MORE_flag = 1;
} else {
if (more)
tdr.MORE_flag = 1;
else
tdr.MORE_flag = 0;
iosize = uiop->uio_resid;
}
dprintso(so, 1, ("sosend_svc: sending 0x%x %d, %ld bytes\n",
prim, tdr.MORE_flag, iosize));
mp = soallocproto1(&tdr, sizeof (tdr), 0, _ALLOC_INTR);
if (mp == NULL) {
/*
* Caught a signal waiting for memory.
* Let send* return EINTR.
*/
if (first)
return (EINTR);
else
return (0);
}
error = kstrputmsg(SOTOV(so), mp, uiop, iosize,
0, sflag | MSG_BAND, 0);
if (error) {
if (!first && error == EWOULDBLOCK)
return (0);
eprintsoline(so, error);
return (error);
}
first = 0;
if (uiop->uio_resid > 0) {
/*
* Recheck for fatal errors. Fail write even though
* some data have been written. This is consistent
* with strwrite semantics and BSD sockets semantics.
*/
if (so->so_state & SS_CANTSENDMORE) {
tsignal(curthread, SIGPIPE);
eprintsoline(so, error);
return (EPIPE);
}
if (so->so_error != 0) {
mutex_enter(&so->so_lock);
error = sogeterr(so);
mutex_exit(&so->so_lock);
if (error != 0) {
eprintsoline(so, error);
return (error);
}
}
}
} while (uiop->uio_resid > 0);
return (0);
}
/*
* Check the state for errors and call the appropriate send function.
*
* If MSG_DONTROUTE is set (and SO_DONTROUTE isn't already set)
* this function issues a setsockopt to toggle SO_DONTROUTE before and
* after sending the message.
*/
static int
sotpi_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
{
int so_state;
int so_mode;
int error;
struct sockaddr *name;
t_uscalar_t namelen;
int dontroute;
int flags;
dprintso(so, 1, ("sotpi_sendmsg(%p, %p, 0x%x) state %s, error %d\n",
so, msg, msg->msg_flags,
pr_state(so->so_state, so->so_mode), so->so_error));
mutex_enter(&so->so_lock);
so_state = so->so_state;
if (so_state & SS_CANTSENDMORE) {
mutex_exit(&so->so_lock);
tsignal(curthread, SIGPIPE);
return (EPIPE);
}
if (so->so_error != 0) {
error = sogeterr(so);
if (error != 0) {
mutex_exit(&so->so_lock);
return (error);
}
}
name = (struct sockaddr *)msg->msg_name;
namelen = msg->msg_namelen;
so_mode = so->so_mode;
if (name == NULL) {
if (!(so_state & SS_ISCONNECTED)) {
mutex_exit(&so->so_lock);
if (so_mode & SM_CONNREQUIRED)
return (ENOTCONN);
else
return (EDESTADDRREQ);
}
if (so_mode & SM_CONNREQUIRED) {
name = NULL;
namelen = 0;
} else {
/*
* Note that this code does not prevent so_faddr_sa
* from changing while it is being used. Thus
* if an "unconnect"+connect occurs concurrently with
* this send the datagram might be delivered to a
* garbaled address.
*/
ASSERT(so->so_faddr_sa);
name = so->so_faddr_sa;
namelen = (t_uscalar_t)so->so_faddr_len;
}
} else {
if (!(so_state & SS_ISCONNECTED) &&
(so_mode & SM_CONNREQUIRED)) {
/* Required but not connected */
mutex_exit(&so->so_lock);
return (ENOTCONN);
}
/*
* Ignore the address on connection-oriented sockets.
* Just like BSD this code does not generate an error for
* TCP (a CONNREQUIRED socket) when sending to an address
* passed in with sendto/sendmsg. Instead the data is
* delivered on the connection as if no address had been
* supplied.
*/
if ((so_state & SS_ISCONNECTED) &&
!(so_mode & SM_CONNREQUIRED)) {
mutex_exit(&so->so_lock);
return (EISCONN);
}
if (!(so_state & SS_ISBOUND)) {
so_lock_single(so); /* Set SOLOCKED */
error = sotpi_bind(so, NULL, 0,
_SOBIND_UNSPEC|_SOBIND_LOCK_HELD);
so_unlock_single(so, SOLOCKED);
if (error) {
mutex_exit(&so->so_lock);
eprintsoline(so, error);
return (error);
}
}
/*
* Handle delayed datagram errors. These are only queued
* when the application sets SO_DGRAM_ERRIND.
* Return the error if we are sending to the address
* that was returned in the last T_UDERROR_IND.
* If sending to some other address discard the delayed
* error indication.
*/
if (so->so_delayed_error) {
struct T_uderror_ind *tudi;
void *addr;
t_uscalar_t addrlen;
boolean_t match = B_FALSE;
ASSERT(so->so_eaddr_mp);
error = so->so_delayed_error;
so->so_delayed_error = 0;
tudi = (struct T_uderror_ind *)so->so_eaddr_mp->b_rptr;
addrlen = tudi->DEST_length;
addr = sogetoff(so->so_eaddr_mp,
tudi->DEST_offset,
addrlen, 1);
ASSERT(addr); /* Checked by strsock_proto */
switch (so->so_family) {
case AF_INET: {
/* Compare just IP address and port */
sin_t *sin1 = (sin_t *)name;
sin_t *sin2 = (sin_t *)addr;
if (addrlen == sizeof (sin_t) &&
namelen == addrlen &&
sin1->sin_port == sin2->sin_port &&
sin1->sin_addr.s_addr ==
sin2->sin_addr.s_addr)
match = B_TRUE;
break;
}
case AF_INET6: {
/* Compare just IP address and port. Not flow */
sin6_t *sin1 = (sin6_t *)name;
sin6_t *sin2 = (sin6_t *)addr;
if (addrlen == sizeof (sin6_t) &&
namelen == addrlen &&
sin1->sin6_port == sin2->sin6_port &&
IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr,
&sin2->sin6_addr))
match = B_TRUE;
break;
}
case AF_UNIX:
default:
if (namelen == addrlen &&
bcmp(name, addr, namelen) == 0)
match = B_TRUE;
}
if (match) {
freemsg(so->so_eaddr_mp);
so->so_eaddr_mp = NULL;
mutex_exit(&so->so_lock);
#ifdef DEBUG
dprintso(so, 0,
("sockfs delayed error %d for %s\n",
error,
pr_addr(so->so_family, name, namelen)));
#endif /* DEBUG */
return (error);
}
freemsg(so->so_eaddr_mp);
so->so_eaddr_mp = NULL;
}
}
mutex_exit(&so->so_lock);
flags = msg->msg_flags;
dontroute = 0;
if ((flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE)) {
uint32_t val;
val = 1;
error = sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE,
&val, (t_uscalar_t)sizeof (val));
if (error)
return (error);
dontroute = 1;
}
if ((flags & MSG_OOB) && !(so_mode & SM_EXDATA)) {
error = EOPNOTSUPP;
goto done;
}
if (msg->msg_controllen != 0) {
if (!(so_mode & SM_CONNREQUIRED)) {
error = sosend_dgramcmsg(so, name, namelen, uiop,
msg->msg_control, msg->msg_controllen,
flags);
} else {
if (flags & MSG_OOB) {
/* Can't generate T_EXDATA_REQ with options */
error = EOPNOTSUPP;
goto done;
}
error = sosend_svccmsg(so, uiop,
!(flags & MSG_EOR),
msg->msg_control, msg->msg_controllen,
flags);
}
goto done;
}
if (!(so_mode & SM_CONNREQUIRED)) {
/*
* If there is no SO_DONTROUTE to turn off return immediately
* from sosend_dgram. This can allow tail-call optimizations.
*/
if (!dontroute) {
return (sosend_dgram(so, name, namelen, uiop, flags));
}
error = sosend_dgram(so, name, namelen, uiop, flags);
} else {
t_scalar_t prim;
int sflag;
/* Ignore msg_name in the connected state */
if (flags & MSG_OOB) {
prim = T_EXDATA_REQ;
/*
* Send down T_EXDATA_REQ even if there is flow
* control for data.
*/
sflag = MSG_IGNFLOW;
} else {
if (so_mode & SM_BYTESTREAM) {
/* Byte stream transport - use write */
dprintso(so, 1, ("sotpi_sendmsg: write\n"));
/*
* If there is no SO_DONTROUTE to turn off
* return immediately from strwrite. This can
* allow tail-call optimizations.
*/
if (!dontroute)
return (strwrite(SOTOV(so), uiop,
CRED()));
error = strwrite(SOTOV(so), uiop, CRED());
goto done;
}
prim = T_DATA_REQ;
sflag = 0;
}
/*
* If there is no SO_DONTROUTE to turn off return immediately
* from sosend_svc. This can allow tail-call optimizations.
*/
if (!dontroute)
return (sosend_svc(so, uiop, prim,
!(flags & MSG_EOR), sflag));
error = sosend_svc(so, uiop, prim,
!(flags & MSG_EOR), sflag);
}
ASSERT(dontroute);
done:
if (dontroute) {
uint32_t val;
val = 0;
(void) sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE,
&val, (t_uscalar_t)sizeof (val));
}
return (error);
}
/*
* Update so_faddr by asking the transport (unless AF_UNIX).
*/
int
sotpi_getpeername(struct sonode *so)
{
struct strbuf strbuf;
int error = 0, res;
void *addr;
t_uscalar_t addrlen;
k_sigset_t smask;
dprintso(so, 1, ("sotpi_getpeername(%p) %s\n",
so, pr_state(so->so_state, so->so_mode)));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
if (!(so->so_state & SS_ISCONNECTED)) {
error = ENOTCONN;
goto done;
}
/* Added this check for X/Open */
if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
error = EINVAL;
if (xnet_check_print) {
printf("sockfs: X/Open getpeername check => EINVAL\n");
}
goto done;
}
#ifdef DEBUG
dprintso(so, 1, ("sotpi_getpeername (local): %s\n",
pr_addr(so->so_family, so->so_faddr_sa,
(t_uscalar_t)so->so_faddr_len)));
#endif /* DEBUG */
if (so->so_family == AF_UNIX || so->so_family == AF_NCA) {
/* Transport has different name space - return local info */
error = 0;
goto done;
}
ASSERT(so->so_faddr_sa);
/* Allocate local buffer to use with ioctl */
addrlen = (t_uscalar_t)so->so_faddr_maxlen;
mutex_exit(&so->so_lock);
addr = kmem_alloc(addrlen, KM_SLEEP);
/*
* Issue TI_GETPEERNAME with signals masked.
* Put the result in so_faddr_sa so that getpeername works after
* a shutdown(output).
* If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted
* back to the socket.
*/
strbuf.buf = addr;
strbuf.maxlen = addrlen;
strbuf.len = 0;
sigintr(&smask, 0);
res = 0;
ASSERT(CRED());
error = strioctl(SOTOV(so), TI_GETPEERNAME, (intptr_t)&strbuf,
0, K_TO_K, CRED(), &res);
sigunintr(&smask);
mutex_enter(&so->so_lock);
/*
* If there is an error record the error in so_error put don't fail
* the getpeername. Instead fallback on the recorded
* so->so_faddr_sa.
*/
if (error) {
/*
* Various stream head errors can be returned to the ioctl.
* However, it is impossible to determine which ones of
* these are really socket level errors that were incorrectly
* consumed by the ioctl. Thus this code silently ignores the
* error - to code explicitly does not reinstate the error
* using soseterror().
* Experiments have shows that at least this set of
* errors are reported and should not be reinstated on the
* socket:
* EINVAL E.g. if an I_LINK was in effect when
* getpeername was called.
* EPIPE The ioctl error semantics prefer the write
* side error over the read side error.
* ENOTCONN The transport just got disconnected but
* sockfs had not yet seen the T_DISCON_IND
* when issuing the ioctl.
*/
error = 0;
} else if (res == 0 && strbuf.len > 0 &&
(so->so_state & SS_ISCONNECTED)) {
ASSERT(strbuf.len <= (int)so->so_faddr_maxlen);
so->so_faddr_len = (socklen_t)strbuf.len;
bcopy(addr, so->so_faddr_sa, so->so_faddr_len);
so->so_state |= SS_FADDR_VALID;
}
kmem_free(addr, addrlen);
#ifdef DEBUG
dprintso(so, 1, ("sotpi_getpeername (tp): %s\n",
pr_addr(so->so_family, so->so_faddr_sa,
(t_uscalar_t)so->so_faddr_len)));
#endif /* DEBUG */
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Update so_laddr by asking the transport (unless AF_UNIX).
*/
int
sotpi_getsockname(struct sonode *so)
{
struct strbuf strbuf;
int error = 0, res;
void *addr;
t_uscalar_t addrlen;
k_sigset_t smask;
dprintso(so, 1, ("sotpi_getsockname(%p) %s\n",
so, pr_state(so->so_state, so->so_mode)));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
if (!(so->so_state & SS_ISBOUND) && so->so_family != AF_UNIX) {
/* Return an all zero address except for the family */
if (so->so_family == AF_INET)
so->so_laddr_len = (socklen_t)sizeof (sin_t);
else if (so->so_family == AF_INET6)
so->so_laddr_len = (socklen_t)sizeof (sin6_t);
ASSERT(so->so_laddr_len <= so->so_laddr_maxlen);
bzero(so->so_laddr_sa, so->so_laddr_len);
/*
* Can not assume there is a sa_family for all
* protocol families.
*/
if (so->so_family == AF_INET || so->so_family == AF_INET6)
so->so_laddr_sa->sa_family = so->so_family;
}
#ifdef DEBUG
dprintso(so, 1, ("sotpi_getsockname (local): %s\n",
pr_addr(so->so_family, so->so_laddr_sa,
(t_uscalar_t)so->so_laddr_len)));
#endif /* DEBUG */
if (so->so_family == AF_UNIX) {
/* Transport has different name space - return local info */
error = 0;
goto done;
}
/* Allocate local buffer to use with ioctl */
addrlen = (t_uscalar_t)so->so_laddr_maxlen;
mutex_exit(&so->so_lock);
addr = kmem_alloc(addrlen, KM_SLEEP);
/*
* Issue TI_GETMYNAME with signals masked.
* Put the result in so_laddr_sa so that getsockname works after
* a shutdown(output).
* If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted
* back to the socket.
*/
strbuf.buf = addr;
strbuf.maxlen = addrlen;
strbuf.len = 0;
sigintr(&smask, 0);
res = 0;
ASSERT(CRED());
error = strioctl(SOTOV(so), TI_GETMYNAME, (intptr_t)&strbuf,
0, K_TO_K, CRED(), &res);
sigunintr(&smask);
mutex_enter(&so->so_lock);
/*
* If there is an error record the error in so_error put don't fail
* the getsockname. Instead fallback on the recorded
* so->so_laddr_sa.
*/
if (error) {
/*
* Various stream head errors can be returned to the ioctl.
* However, it is impossible to determine which ones of
* these are really socket level errors that were incorrectly
* consumed by the ioctl. Thus this code silently ignores the
* error - to code explicitly does not reinstate the error
* using soseterror().
* Experiments have shows that at least this set of
* errors are reported and should not be reinstated on the
* socket:
* EINVAL E.g. if an I_LINK was in effect when
* getsockname was called.
* EPIPE The ioctl error semantics prefer the write
* side error over the read side error.
*/
error = 0;
} else if (res == 0 && strbuf.len > 0 &&
(so->so_state & SS_ISBOUND)) {
ASSERT(strbuf.len <= (int)so->so_laddr_maxlen);
so->so_laddr_len = (socklen_t)strbuf.len;
bcopy(addr, so->so_laddr_sa, so->so_laddr_len);
so->so_state |= SS_LADDR_VALID;
}
kmem_free(addr, addrlen);
#ifdef DEBUG
dprintso(so, 1, ("sotpi_getsockname (tp): %s\n",
pr_addr(so->so_family, so->so_laddr_sa,
(t_uscalar_t)so->so_laddr_len)));
#endif /* DEBUG */
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Get socket options. For SOL_SOCKET options some options are handled
* by the sockfs while others use the value recorded in the sonode as a
* fallback should the T_SVR4_OPTMGMT_REQ fail.
*
* On the return most *optlenp bytes are copied to optval.
*/
int
sotpi_getsockopt(struct sonode *so, int level, int option_name,
void *optval, socklen_t *optlenp, int flags)
{
struct T_optmgmt_req optmgmt_req;
struct T_optmgmt_ack *optmgmt_ack;
struct opthdr oh;
struct opthdr *opt_res;
mblk_t *mp = NULL;
int error = 0;
void *option = NULL; /* Set if fallback value */
t_uscalar_t maxlen = *optlenp;
t_uscalar_t len;
uint32_t value;
dprintso(so, 1, ("sotpi_getsockopt(%p, 0x%x, 0x%x, %p, %p) %s\n",
so, level, option_name, optval, optlenp,
pr_state(so->so_state, so->so_mode)));
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
/*
* Check for SOL_SOCKET options.
* Certain SOL_SOCKET options are returned directly whereas
* others only provide a default (fallback) value should
* the T_SVR4_OPTMGMT_REQ fail.
*/
if (level == SOL_SOCKET) {
/* Check parameters */
switch (option_name) {
case SO_TYPE:
case SO_ERROR:
case SO_DEBUG:
case SO_ACCEPTCONN:
case SO_REUSEADDR:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_USELOOPBACK:
case SO_OOBINLINE:
case SO_SNDBUF:
case SO_RCVBUF:
#ifdef notyet
case SO_SNDLOWAT:
case SO_RCVLOWAT:
case SO_SNDTIMEO:
case SO_RCVTIMEO:
#endif /* notyet */
case SO_DGRAM_ERRIND:
if (maxlen < (t_uscalar_t)sizeof (int32_t)) {
error = EINVAL;
eprintsoline(so, error);
goto done2;
}
break;
case SO_LINGER:
if (maxlen < (t_uscalar_t)sizeof (struct linger)) {
error = EINVAL;
eprintsoline(so, error);
goto done2;
}
break;
}
len = (t_uscalar_t)sizeof (uint32_t); /* Default */
switch (option_name) {
case SO_TYPE:
value = so->so_type;
option = &value;
goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
case SO_ERROR:
value = sogeterr(so);
option = &value;
goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
case SO_ACCEPTCONN:
if (so->so_state & SS_ACCEPTCONN)
value = SO_ACCEPTCONN;
else
value = 0;
#ifdef DEBUG
if (value) {
dprintso(so, 1,
("sotpi_getsockopt: 0x%x is set\n",
option_name));
} else {
dprintso(so, 1,
("sotpi_getsockopt: 0x%x not set\n",
option_name));
}
#endif /* DEBUG */
option = &value;
goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
case SO_DEBUG:
case SO_REUSEADDR:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_USELOOPBACK:
case SO_OOBINLINE:
case SO_DGRAM_ERRIND:
value = (so->so_options & option_name);
#ifdef DEBUG
if (value) {
dprintso(so, 1,
("sotpi_getsockopt: 0x%x is set\n",
option_name));
} else {
dprintso(so, 1,
("sotpi_getsockopt: 0x%x not set\n",
option_name));
}
#endif /* DEBUG */
option = &value;
goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
/*
* The following options are only returned by sockfs when the
* T_SVR4_OPTMGMT_REQ fails.
*/
case SO_LINGER:
option = &so->so_linger;
len = (t_uscalar_t)sizeof (struct linger);
break;
case SO_SNDBUF: {
ssize_t lvalue;
/*
* If the option has not been set then get a default
* value from the read queue. This value is
* returned if the transport fails
* the T_SVR4_OPTMGMT_REQ.
*/
lvalue = so->so_sndbuf;
if (lvalue == 0) {
mutex_exit(&so->so_lock);
(void) strqget(strvp2wq(SOTOV(so))->q_next,
QHIWAT, 0, &lvalue);
mutex_enter(&so->so_lock);
dprintso(so, 1,
("got SO_SNDBUF %ld from q\n", lvalue));
}
value = (int)lvalue;
option = &value;
len = (t_uscalar_t)sizeof (so->so_sndbuf);
break;
}
case SO_RCVBUF: {
ssize_t lvalue;
/*
* If the option has not been set then get a default
* value from the read queue. This value is
* returned if the transport fails
* the T_SVR4_OPTMGMT_REQ.
*
* XXX If SO_RCVBUF has been set and this is an
* XPG 4.2 application then do not ask the transport
* since the transport might adjust the value and not
* return exactly what was set by the application.
* For non-XPG 4.2 application we return the value
* that the transport is actually using.
*/
lvalue = so->so_rcvbuf;
if (lvalue == 0) {
mutex_exit(&so->so_lock);
(void) strqget(RD(strvp2wq(SOTOV(so))),
QHIWAT, 0, &lvalue);
mutex_enter(&so->so_lock);
dprintso(so, 1,
("got SO_RCVBUF %ld from q\n", lvalue));
} else if (flags & _SOGETSOCKOPT_XPG4_2) {
value = (int)lvalue;
option = &value;
goto copyout; /* skip asking transport */
}
value = (int)lvalue;
option = &value;
len = (t_uscalar_t)sizeof (so->so_rcvbuf);
break;
}
#ifdef notyet
/*
* We do not implement the semantics of these options
* thus we shouldn't implement the options either.
*/
case SO_SNDLOWAT:
value = so->so_sndlowat;
option = &value;
break;
case SO_RCVLOWAT:
value = so->so_rcvlowat;
option = &value;
break;
case SO_SNDTIMEO:
value = so->so_sndtimeo;
option = &value;
break;
case SO_RCVTIMEO:
value = so->so_rcvtimeo;
option = &value;
break;
#endif /* notyet */
}
}
if (so->so_family == AF_NCA) {
goto done2;
}
mutex_exit(&so->so_lock);
/* Send request */
optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ;
optmgmt_req.MGMT_flags = T_CHECK;
optmgmt_req.OPT_length = (t_scalar_t)(sizeof (oh) + maxlen);
optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req);
oh.level = level;
oh.name = option_name;
oh.len = maxlen;
mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req),
&oh, sizeof (oh), NULL, maxlen, 0, _ALLOC_SLEEP);
/* Let option management work in the presence of data flow control */
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
mp = NULL;
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto done2;
}
error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK,
(t_uscalar_t)(sizeof (*optmgmt_ack) + sizeof (*opt_res)), &mp, 0);
if (error) {
if (option != NULL) {
/* We have a fallback value */
error = 0;
goto copyout;
}
eprintsoline(so, error);
goto done2;
}
ASSERT(mp);
optmgmt_ack = (struct T_optmgmt_ack *)mp->b_rptr;
opt_res = (struct opthdr *)sogetoff(mp, optmgmt_ack->OPT_offset,
optmgmt_ack->OPT_length, __TPI_ALIGN_SIZE);
if (opt_res == NULL) {
if (option != NULL) {
/* We have a fallback value */
error = 0;
goto copyout;
}
error = EPROTO;
eprintsoline(so, error);
goto done;
}
option = &opt_res[1];
/* check to ensure that the option is within bounds */
if (((uintptr_t)option + opt_res->len < (uintptr_t)option) ||
(uintptr_t)option + opt_res->len > (uintptr_t)mp->b_wptr) {
if (option != NULL) {
/* We have a fallback value */
error = 0;
goto copyout;
}
error = EPROTO;
eprintsoline(so, error);
goto done;
}
len = opt_res->len;
copyout: {
t_uscalar_t size = MIN(len, maxlen);
bcopy(option, optval, size);
bcopy(&size, optlenp, sizeof (size));
}
done:
freemsg(mp);
done2:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Set socket options. All options are passed down in a T_SVR4_OPTMGMT_REQ.
* SOL_SOCKET options are also recorded in the sonode. A setsockopt for
* SOL_SOCKET options will not fail just because the T_SVR4_OPTMGMT_REQ fails -
* setsockopt has to work even if the transport does not support the option.
*/
int
sotpi_setsockopt(struct sonode *so, int level, int option_name,
const void *optval, t_uscalar_t optlen)
{
struct T_optmgmt_req optmgmt_req;
struct opthdr oh;
mblk_t *mp;
int error = 0;
boolean_t handled = B_FALSE;
dprintso(so, 1, ("sotpi_setsockopt(%p, 0x%x, 0x%x, %p, %d) %s\n",
so, level, option_name, optval, optlen,
pr_state(so->so_state, so->so_mode)));
/* X/Open requires this check */
if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
if (xnet_check_print)
printf("sockfs: X/Open setsockopt check => EINVAL\n");
return (EINVAL);
}
/* Caller allocates aligned optval, or passes null */
ASSERT(((uintptr_t)optval & (sizeof (t_scalar_t) - 1)) == 0);
/* If optval is null optlen is 0, and vice-versa */
ASSERT(optval != NULL || optlen == 0);
ASSERT(optlen != 0 || optval == NULL);
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
mutex_exit(&so->so_lock);
if (so->so_family == AF_NCA) {
/* Ignore any flow control problems with the transport. */
mutex_enter(&so->so_lock);
goto done;
}
/*
* For SOCKET or TCP level options, try to set it here itself
* provided socket has not been popped and we know the tcp
* structure (stored in so_priv).
*/
if ((level == SOL_SOCKET || level == IPPROTO_TCP) &&
(so->so_family == AF_INET || so->so_family == AF_INET6) &&
(so->so_version == SOV_SOCKSTREAM) && (so->so_priv != NULL)) {
tcp_t *tcp = so->so_priv;
boolean_t onoff;
#define intvalue (*(int32_t *)optval)
switch (level) {
case SOL_SOCKET:
switch (option_name) { /* Check length param */
case SO_DEBUG:
case SO_REUSEADDR:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_USELOOPBACK:
case SO_OOBINLINE:
case SO_DGRAM_ERRIND:
if (optlen != (t_uscalar_t)sizeof (int32_t)) {
error = EINVAL;
eprintsoline(so, error);
mutex_enter(&so->so_lock);
goto done2;
}
ASSERT(optval);
onoff = intvalue != 0;
handled = B_TRUE;
break;
case SO_LINGER:
if (optlen !=
(t_uscalar_t)sizeof (struct linger)) {
error = EINVAL;
eprintsoline(so, error);
mutex_enter(&so->so_lock);
goto done2;
}
ASSERT(optval);
handled = B_TRUE;
break;
}
switch (option_name) { /* Do actions */
case SO_LINGER: {
struct linger *lgr = (struct linger *)optval;
if (lgr->l_onoff) {
tcp->tcp_linger = 1;
tcp->tcp_lingertime = lgr->l_linger;
so->so_linger.l_onoff = SO_LINGER;
so->so_options |= SO_LINGER;
} else {
tcp->tcp_linger = 0;
tcp->tcp_lingertime = 0;
so->so_linger.l_onoff = 0;
so->so_options &= ~SO_LINGER;
}
so->so_linger.l_linger = lgr->l_linger;
handled = B_TRUE;
break;
}
case SO_DEBUG:
tcp->tcp_debug = onoff;
#ifdef SOCK_TEST
if (intvalue & 2)
sock_test_timelimit = 10 * hz;
else
sock_test_timelimit = 0;
if (intvalue & 4)
do_useracc = 0;
else
do_useracc = 1;
#endif /* SOCK_TEST */
break;
case SO_DONTROUTE:
/*
* SO_DONTROUTE, SO_USELOOPBACK and
* SO_BROADCAST are only of interest to IP.
* We track them here only so
* that we can report their current value.
*/
tcp->tcp_dontroute = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
case SO_USELOOPBACK:
tcp->tcp_useloopback = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
case SO_BROADCAST:
tcp->tcp_broadcast = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
case SO_REUSEADDR:
tcp->tcp_reuseaddr = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
case SO_OOBINLINE:
tcp->tcp_oobinline = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
case SO_DGRAM_ERRIND:
tcp->tcp_dgram_errind = onoff;
if (onoff)
so->so_options |= option_name;
else
so->so_options &= ~option_name;
break;
}
break;
case IPPROTO_TCP:
switch (option_name) {
case TCP_NODELAY:
if (optlen != (t_uscalar_t)sizeof (int32_t)) {
error = EINVAL;
eprintsoline(so, error);
mutex_enter(&so->so_lock);
goto done2;
}
ASSERT(optval);
tcp->tcp_naglim = intvalue ? 1 : tcp->tcp_mss;
handled = B_TRUE;
break;
}
break;
default:
handled = B_FALSE;
break;
}
}
if (handled) {
mutex_enter(&so->so_lock);
goto done2;
}
optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ;
optmgmt_req.MGMT_flags = T_NEGOTIATE;
optmgmt_req.OPT_length = (t_scalar_t)sizeof (oh) + optlen;
optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req);
oh.level = level;
oh.name = option_name;
oh.len = optlen;
mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req),
&oh, sizeof (oh), optval, optlen, 0, _ALLOC_SLEEP);
/* Let option management work in the presence of data flow control */
error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
mp = NULL;
mutex_enter(&so->so_lock);
if (error) {
eprintsoline(so, error);
goto done;
}
error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK,
(t_uscalar_t)sizeof (struct T_optmgmt_ack), &mp, 0);
if (error) {
eprintsoline(so, error);
goto done;
}
ASSERT(mp);
/* No need to verify T_optmgmt_ack */
freemsg(mp);
done:
/*
* Check for SOL_SOCKET options and record their values.
* If we know about a SOL_SOCKET parameter and the transport
* failed it with TBADOPT or TOUTSTATE (i.e. ENOPROTOOPT or
* EPROTO) we let the setsockopt succeed.
*/
if (level == SOL_SOCKET) {
/* Check parameters */
switch (option_name) {
case SO_DEBUG:
case SO_REUSEADDR:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_USELOOPBACK:
case SO_OOBINLINE:
case SO_SNDBUF:
case SO_RCVBUF:
#ifdef notyet
case SO_SNDLOWAT:
case SO_RCVLOWAT:
case SO_SNDTIMEO:
case SO_RCVTIMEO:
#endif /* notyet */
case SO_DGRAM_ERRIND:
if (optlen != (t_uscalar_t)sizeof (int32_t)) {
error = EINVAL;
eprintsoline(so, error);
goto done2;
}
ASSERT(optval);
handled = B_TRUE;
break;
case SO_LINGER:
if (optlen != (t_uscalar_t)sizeof (struct linger)) {
error = EINVAL;
eprintsoline(so, error);
goto done2;
}
ASSERT(optval);
handled = B_TRUE;
break;
}
#define intvalue (*(int32_t *)optval)
switch (option_name) {
case SO_TYPE:
case SO_ERROR:
case SO_ACCEPTCONN:
/* Can't be set */
error = ENOPROTOOPT;
goto done2;
case SO_LINGER: {
struct linger *l = (struct linger *)optval;
so->so_linger.l_linger = l->l_linger;
if (l->l_onoff) {
so->so_linger.l_onoff = SO_LINGER;
so->so_options |= SO_LINGER;
} else {
so->so_linger.l_onoff = 0;
so->so_options &= ~SO_LINGER;
}
break;
}
case SO_DEBUG:
#ifdef SOCK_TEST
if (intvalue & 2)
sock_test_timelimit = 10 * hz;
else
sock_test_timelimit = 0;
if (intvalue & 4)
do_useracc = 0;
else
do_useracc = 1;
#endif /* SOCK_TEST */
/* FALLTHRU */
case SO_REUSEADDR:
case SO_KEEPALIVE:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_USELOOPBACK:
case SO_OOBINLINE:
case SO_DGRAM_ERRIND:
if (intvalue != 0) {
dprintso(so, 1,
("sotpi_setsockopt: setting 0x%x\n",
option_name));
so->so_options |= option_name;
} else {
dprintso(so, 1,
("sotpi_setsockopt: clearing 0x%x\n",
option_name));
so->so_options &= ~option_name;
}
break;
/*
* The following options are only returned by us when the
* T_SVR4_OPTMGMT_REQ fails.
* XXX XPG 4.2 applications retrieve SO_RCVBUF from sockfs
* since the transport might adjust the value and not
* return exactly what was set by the application.
*/
case SO_SNDBUF:
so->so_sndbuf = intvalue;
break;
case SO_RCVBUF:
so->so_rcvbuf = intvalue;
break;
#ifdef notyet
/*
* We do not implement the semantics of these options
* thus we shouldn't implement the options either.
*/
case SO_SNDLOWAT:
so->so_sndlowat = intvalue;
break;
case SO_RCVLOWAT:
so->so_rcvlowat = intvalue;
break;
case SO_SNDTIMEO:
so->so_sndtimeo = intvalue;
break;
case SO_RCVTIMEO:
so->so_rcvtimeo = intvalue;
break;
#endif /* notyet */
}
#undef intvalue
if (error) {
if ((error == ENOPROTOOPT || error == EPROTO ||
error == EINVAL) && handled) {
dprintso(so, 1,
("setsockopt: ignoring error %d for 0x%x\n",
error, option_name));
error = 0;
}
}
}
done2:
ret:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}