sockfilter.c revision dd49f125507979bb2ab505a8daf2a46d1be27051
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/disp.h>
#include <sys/list.h>
#include <sys/mutex.h>
#include <sys/note.h>
#include <sys/rwlock.h>
#include <sys/stropts.h>
#include <sys/taskq.h>
#include <sys/socketvar.h>
#include <fs/sockfs/sockcommon.h>
#include <fs/sockfs/sockfilter_impl.h>
/*
* Socket Filter Framework
*
* Socket filter entry (sof_entry_t):
*
* There exists one entry for each configured filter (done via soconfig(1M)),
* and they are all in sof_entry_list. In addition to the global list, each
* sockparams entry maintains a list of filters that is interested in that
* particular socket type. So the filter entry may be referenced by multiple
* sockparams. The set of sockparams referencing a filter may change as
* socket types are added and/or removed from the system. Both sof_entry_list
* and the sockparams list is protected by sockconf_lock.
*
* Each filter entry has a ref count which is incremented whenever a filter
* is attached to a socket. An entry is marked SOFEF_CONDEMED when it is
* unconfigured, which will result in the entry being freed when its ref
* count reaches zero.
*
* Socket filter module (sof_module_t):
*
* Modules are created by sof_register() and placed in sof_module_list,
* which is protected by sof_module_lock. Each module has a reference count
* that is incremented when a filter entry is using the module. A module
* can be destroyed by sof_register() only when it's ref count is zero.
*
* Socket filter instance (sof_instance_t):
*
* Whenever a filter is attached to a socket (sonode), a new instance is
* created. The socket is guaranteed to be single threaded when filters are
* being attached/detached. The instance uses the sonode's so_lock for
* protection.
*
* The lifetime of an instance is the same as the socket it's attached to.
*
* How things link together:
*
* sockparams.sp_{auto,prog}_filters -> sp_filter_t -> sp_filter_t
* ^ | |
* | | |
* sonode.so_filter_top -> sof_instance_t | |
* | | |
* v v v
* sof_entry_list -> sof_entry_t -> sof_entry -> ... -> sof_entry_t
* |
* v
* sof_module_list -> sof_module_t -> ... -> sof_module_t
*/
static list_t sof_entry_list; /* list of configured filters */
static list_t sof_module_list; /* list of loaded filter modules */
static kmutex_t sof_module_lock; /* protect the module list */
static sof_kstat_t sof_stat;
static kstat_t *sof_stat_ksp;
#ifdef DEBUG
static int socket_filter_debug = 0;
#endif
/*
* A connection that has been deferred for more than `sof_defer_drop_time'
* ticks can be dropped to make room for new connections. A connection that
* is to be dropped is moved over to `sof_close_deferred_list' where it will
* be closed by sof_close_deferred() (which is running on a taskq). Connections
* will not be moved over to the close list if it grows larger than
* `sof_close_deferred_max_backlog'.
*/
clock_t sof_defer_drop_time = 3000;
uint_t sof_close_deferred_max_backlog = 1000;
taskq_t *sof_close_deferred_taskq;
boolean_t sof_close_deferred_running;
uint_t sof_close_deferred_backlog;
list_t sof_close_deferred_list;
kmutex_t sof_close_deferred_lock;
static void sof_close_deferred(void *);
static void sof_module_rele(sof_module_t *);
static sof_module_t *sof_module_hold_by_name(const char *, const char *);
static int sof_entry_load_module(sof_entry_t *);
static void sof_entry_hold(sof_entry_t *);
static void sof_entry_rele(sof_entry_t *);
static int sof_entry_kstat_create(sof_entry_t *);
static void sof_entry_kstat_destroy(sof_entry_t *);
static sof_instance_t *sof_instance_create(sof_entry_t *, struct sonode *);
static void sof_instance_destroy(sof_instance_t *);
static int
sof_kstat_update(kstat_t *ksp, int rw)
{
_NOTE(ARGUNUSED(ksp));
if (rw == KSTAT_WRITE)
return (EACCES);
sof_stat.sofks_defer_close_backlog.value.ui64 =
sof_close_deferred_backlog;
return (0);
}
void
sof_init(void)
{
list_create(&sof_entry_list, sizeof (sof_entry_t),
offsetof(sof_entry_t, sofe_node));
list_create(&sof_module_list, sizeof (sof_module_t),
offsetof(sof_module_t, sofm_node));
list_create(&sof_close_deferred_list, sizeof (struct sonode),
offsetof(struct sonode, so_acceptq_node));
sof_close_deferred_taskq = taskq_create("sof_close_deferred_taskq",
1, minclsyspri, 1, INT_MAX, TASKQ_PREPOPULATE);
sof_close_deferred_running = B_FALSE;
sof_close_deferred_backlog = 0;
mutex_init(&sof_close_deferred_lock, NULL, MUTEX_DEFAULT, 0);
mutex_init(&sof_module_lock, NULL, MUTEX_DEFAULT, 0);
sof_stat_ksp = kstat_create("sockfs", 0, "sockfilter", "misc",
KSTAT_TYPE_NAMED, sizeof (sof_kstat_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (sof_stat_ksp == NULL)
return;
kstat_named_init(&sof_stat.sofks_defer_closed, "defer_closed",
KSTAT_DATA_UINT64);
kstat_named_init(&sof_stat.sofks_defer_close_backlog,
"defer_close_backlog", KSTAT_DATA_UINT64);
kstat_named_init(&sof_stat.sofks_defer_close_failed_backlog_too_big,
"defer_close_failed_backlog_too_big", KSTAT_DATA_UINT64);
sof_stat_ksp->ks_data = &sof_stat;
sof_stat_ksp->ks_update = sof_kstat_update;
kstat_install(sof_stat_ksp);
}
/*
* Process filter options.
*/
static int
sof_setsockopt_impl(struct sonode *so, int option_name,
const void *optval, socklen_t optlen, struct cred *cr)
{
struct sockparams *sp = so->so_sockparams;
sof_entry_t *ent = NULL;
sp_filter_t *fil;
sof_instance_t *inst;
sof_rval_t rval;
int error;
_NOTE(ARGUNUSED(optlen));
/*
* Is the filter in a state where filters can be attached?
*/
if (!(so->so_state & SS_FILOP_OK))
return (EINVAL);
if (option_name == FIL_ATTACH) {
/*
* Make sure there isn't already another instance of the
* same filter attached to the socket.
*/
for (inst = so->so_filter_top; inst != NULL;
inst = inst->sofi_next) {
if (strncmp(inst->sofi_filter->sofe_name,
(const char *)optval, SOF_MAXNAMELEN) == 0)
return (EEXIST);
}
/* Look up the filter. */
rw_enter(&sockconf_lock, RW_READER);
for (fil = list_head(&sp->sp_prog_filters); fil != NULL;
fil = list_next(&sp->sp_prog_filters, fil)) {
ent = fil->spf_filter;
ASSERT(ent->sofe_flags & SOFEF_PROG);
if (strncmp(ent->sofe_name, (const char *)optval,
SOF_MAXNAMELEN) == 0)
break;
}
/* No such filter */
if (fil == NULL) {
rw_exit(&sockconf_lock);
return (ENOENT);
}
inst = sof_instance_create(ent, so);
rw_exit(&sockconf_lock);
/* Failed to create an instance; must be out of memory */
if (inst == NULL)
return (ENOMEM);
/*
* This might be the first time the filter is being used,
* so try to load the module if it's not already registered.
*/
if (ent->sofe_mod == NULL &&
(error = sof_entry_load_module(ent)) != 0) {
sof_instance_destroy(inst);
return (error);
}
/* Module loaded OK, so there must be an ops vector */
ASSERT(ent->sofe_mod != NULL);
inst->sofi_ops = &ent->sofe_mod->sofm_ops;
SOF_STAT_ADD(inst, tot_active_attach, 1);
if (inst->sofi_ops->sofop_attach_active != NULL) {
rval = inst->sofi_ops->sofop_attach_active(
(sof_handle_t)inst, so->so_family, so->so_type,
so->so_protocol, cr, &inst->sofi_cookie);
if (rval != SOF_RVAL_CONTINUE) {
sof_instance_destroy(inst);
switch (rval) {
case SOF_RVAL_DETACH:
/*
* Filter does not want to to attach.
* An error is returned so the user
* knows the request did not go
* through.
*/
error = EINVAL;
break;
default:
SOF_STAT_ADD(inst, attach_failures, 1);
/* Not a valid rval for active attach */
ASSERT(rval != SOF_RVAL_DEFER);
error = sof_rval2errno(rval);
break;
}
return (error);
}
}
return (0);
} else if (option_name == FIL_DETACH) {
for (inst = so->so_filter_top; inst != NULL;
inst = inst->sofi_next) {
ent = inst->sofi_filter;
if (strncmp(ent->sofe_name, (const char *)optval,
SOF_MAXNAMELEN) == 0)
break;
}
if (inst == NULL)
return (ENXIO);
/* automatic filters cannot be detached */
if (inst->sofi_filter->sofe_flags & SOFEF_AUTO)
return (EINVAL);
if (inst->sofi_ops->sofop_detach != NULL)
inst->sofi_ops->sofop_detach((sof_handle_t)inst,
inst->sofi_cookie, cr);
sof_instance_destroy(inst);
return (0);
} else {
return (EINVAL);
}
}
int
sof_setsockopt(struct sonode *so, int option_name,
const void *optval, socklen_t optlen, struct cred *cr)
{
int error;
/*
* By grabbing the lock as a writer we ensure that no other socket
* operations can start while the filter stack is being manipulated.
*
* We do a tryenter so that in case there is an active thread we
* ask the caller to try again instead of blocking here until the
* other thread is done (which could be indefinitely in case of recv).
*/
if (!rw_tryenter(&so->so_fallback_rwlock, RW_WRITER)) {
return (EAGAIN);
}
/* Bail out if a fallback has taken place */
if (so->so_state & SS_FALLBACK_COMP)
error = EINVAL;
else
error = sof_setsockopt_impl(so, option_name, optval,
optlen, cr);
rw_exit(&so->so_fallback_rwlock);
return (error);
}
/*
* Get filter socket options.
*/
static int
sof_getsockopt_impl(struct sonode *so, int option_name,
void *optval, socklen_t *optlenp, struct cred *cr)
{
sof_instance_t *inst;
struct fil_info *fi;
socklen_t maxsz = *optlenp;
int i;
uint_t cnt;
_NOTE(ARGUNUSED(cr));
if (option_name == FIL_LIST) {
fi = (struct fil_info *)optval;
if (maxsz < sizeof (*fi))
return (EINVAL);
for (inst = so->so_filter_top, cnt = 0; inst != NULL;
inst = inst->sofi_next)
cnt++;
for (inst = so->so_filter_top, i = 0;
inst != NULL && (i+1) * sizeof (*fi) <= maxsz;
inst = inst->sofi_next, i++) {
fi[i].fi_flags =
(inst->sofi_filter->sofe_flags & SOFEF_AUTO) ?
FILF_AUTO : FILF_PROG;
if (inst->sofi_flags & SOFIF_BYPASS)
fi[i].fi_flags |= FILF_BYPASS;
(void) strncpy(fi[i].fi_name,
inst->sofi_filter->sofe_name, FILNAME_MAX);
ASSERT(cnt > 0);
fi[i].fi_pos = --cnt;
}
*optlenp = i * sizeof (*fi);
return (0);
} else {
return (EINVAL);
}
}
int
sof_getsockopt(struct sonode *so, int option_name,
void *optval, socklen_t *optlenp, struct cred *cr)
{
int error;
/*
* The fallback lock is used here to serialize set and get
* filter operations.
*/
rw_enter(&so->so_fallback_rwlock, RW_READER);
if (so->so_state & SS_FALLBACK_COMP)
error = EINVAL;
else
error = sof_getsockopt_impl(so, option_name, optval, optlenp,
cr);
rw_exit(&so->so_fallback_rwlock);
return (error);
}
/*
* The socket `so' wants to inherit the filter stack from `pso'.
* Returns 0 if all went well or an errno otherwise.
*/
int
sof_sonode_inherit_filters(struct sonode *so, struct sonode *pso)
{
sof_instance_t *inst, *pinst;
sof_rval_t rval;
int error;
struct sockaddr_in6 laddrbuf, faddrbuf;
struct sockaddr_in6 *laddr, *faddr;
socklen_t laddrlen, faddrlen;
/*
* Make sure there is enough room to retrieve the addresses
*/
if (so->so_proto_props.sopp_maxaddrlen > sizeof (laddrbuf)) {
laddr = kmem_zalloc(so->so_proto_props.sopp_maxaddrlen,
KM_NOSLEEP);
if (laddr == NULL)
return (ENOMEM);
faddr = kmem_zalloc(so->so_proto_props.sopp_maxaddrlen,
KM_NOSLEEP);
if (faddr == NULL) {
kmem_free(laddr, so->so_proto_props.sopp_maxaddrlen);
return (ENOMEM);
}
laddrlen = faddrlen = so->so_proto_props.sopp_maxaddrlen;
} else {
laddrlen = faddrlen = sizeof (laddrbuf);
laddr = &laddrbuf;
faddr = &faddrbuf;
}
error = (*so->so_downcalls->sd_getpeername)
(so->so_proto_handle, (struct sockaddr *)faddr, &faddrlen, kcred);
if (error != 0)
goto out;
error = (*so->so_downcalls->sd_getsockname)
(so->so_proto_handle, (struct sockaddr *)laddr, &laddrlen, kcred);
if (error != 0)
goto out;
/*
* The stack is built bottom up. Filters are allowed to modify the
* the foreign and local addresses during attach.
*/
for (pinst = pso->so_filter_bottom;
pinst != NULL && !(pinst->sofi_flags & SOFIF_BYPASS);
pinst = pinst->sofi_prev) {
inst = sof_instance_create(pinst->sofi_filter, so);
if (inst == NULL) {
error = ENOMEM;
goto out;
}
/*
* The filter module must be loaded since it's already
* attached to the listener.
*/
ASSERT(pinst->sofi_ops != NULL);
inst->sofi_ops = pinst->sofi_ops;
SOF_STAT_ADD(inst, tot_passive_attach, 1);
if (inst->sofi_ops->sofop_attach_passive != NULL) {
rval = inst->sofi_ops->sofop_attach_passive(
(sof_handle_t)inst,
(sof_handle_t)pinst, pinst->sofi_cookie,
(struct sockaddr *)laddr, laddrlen,
(struct sockaddr *)faddr, faddrlen,
&inst->sofi_cookie);
if (rval != SOF_RVAL_CONTINUE) {
if (rval == SOF_RVAL_DEFER) {
mutex_enter(&so->so_lock);
inst->sofi_flags |= SOFIF_DEFER;
so->so_state |= SS_FIL_DEFER;
mutex_exit(&so->so_lock);
so->so_filter_defertime =
ddi_get_lbolt();
SOF_STAT_ADD(inst, ndeferred, 1);
} else if (rval == SOF_RVAL_DETACH) {
sof_instance_destroy(inst);
} else {
SOF_STAT_ADD(inst, attach_failures, 1);
error = sof_rval2errno(rval);
/*
* Filters that called attached will be
* destroyed when the socket goes away,
* after detach is called.
*/
goto out;
}
}
}
}
out:
if (laddr != &laddrbuf) {
kmem_free(laddr, so->so_proto_props.sopp_maxaddrlen);
kmem_free(faddr, so->so_proto_props.sopp_maxaddrlen);
}
return (error);
}
/*
* Attach any automatic filters to sonode `so'. Returns 0 if all went well
* and an errno otherwise.
*/
int
sof_sonode_autoattach_filters(struct sonode *so, cred_t *cr)
{
struct sockparams *sp = so->so_sockparams;
sp_filter_t *fil;
sof_instance_t *inst;
sof_rval_t rval;
int error;
/*
* A created instance is added to the top of the sonode's filter
* stack, so traverse the config list in reverse order.
*/
rw_enter(&sockconf_lock, RW_READER);
for (fil = list_tail(&sp->sp_auto_filters);
fil != NULL; fil = list_prev(&sp->sp_auto_filters, fil)) {
ASSERT(fil->spf_filter->sofe_flags & SOFEF_AUTO);
if (!sof_instance_create(fil->spf_filter, so)) {
rw_exit(&sockconf_lock);
error = ENOMEM; /* must have run out of memory */
goto free_all;
}
}
rw_exit(&sockconf_lock);
/*
* Notify each filter that it's being attached.
*/
inst = so->so_filter_top;
while (inst != NULL) {
sof_entry_t *ent = inst->sofi_filter;
sof_instance_t *ninst = inst->sofi_next;
/*
* This might be the first time the filter is being used,
* so try to load the module if it's not already registered.
*/
if (ent->sofe_mod == NULL &&
(error = sof_entry_load_module(ent)) != 0)
goto free_detached;
/* Module loaded OK, so there must be an ops vector */
ASSERT(ent->sofe_mod != NULL);
inst->sofi_ops = &ent->sofe_mod->sofm_ops;
SOF_STAT_ADD(inst, tot_active_attach, 1);
if (inst->sofi_ops->sofop_attach_active != NULL) {
rval = inst->sofi_ops->sofop_attach_active(
(sof_handle_t)inst, so->so_family, so->so_type,
so->so_protocol, cr, &inst->sofi_cookie);
if (rval != SOF_RVAL_CONTINUE) {
switch (rval) {
case SOF_RVAL_DETACH:
/* filter does not want to attach */
sof_instance_destroy(inst);
break;
default:
SOF_STAT_ADD(inst, attach_failures, 1);
/* Not a valid rval for active attach */
ASSERT(rval != SOF_RVAL_DEFER);
error = sof_rval2errno(rval);
goto free_detached;
}
}
}
inst = ninst;
}
return (0);
free_all:
inst = so->so_filter_top;
free_detached:
ASSERT(inst != NULL);
/*
* Destroy all filters for which attach was not called. The other
* filters will be destroyed (and detach called) when the socket
* is freed.
*/
do {
sof_instance_t *t = inst->sofi_next;
sof_instance_destroy(inst);
inst = t;
} while (inst != NULL);
return (error);
}
/*
* Detaches and frees all filters attached to sonode `so'.
*/
void
sof_sonode_cleanup(struct sonode *so)
{
sof_instance_t *inst;
while ((inst = so->so_filter_top) != NULL) {
(inst->sofi_ops->sofop_detach)((sof_handle_t)inst,
inst->sofi_cookie, kcred);
sof_instance_destroy(inst);
}
}
/*
* Notifies all active filters attached to `so' about the `event' and
* where `arg' is an event specific argument.
*/
void
sof_sonode_notify_filters(struct sonode *so, sof_event_t event, uintptr_t arg)
{
sof_instance_t *inst;
for (inst = so->so_filter_bottom; inst != NULL;
inst = inst->sofi_prev) {
if (SOF_INTERESTED(inst, notify))
(inst->sofi_ops->sofop_notify)((sof_handle_t)inst,
inst->sofi_cookie, event, arg);
}
}
/*
* The socket `so' is closing. Notify filters and make sure that there
* are no pending tx operations.
*/
void
sof_sonode_closing(struct sonode *so)
{
/*
* Notify filters that the socket is being closed. It's OK for
* filters to inject data.
*/
sof_sonode_notify_filters(so, SOF_EV_CLOSING, (uintptr_t)B_TRUE);
/* wait for filters that are sending out data */
mutex_enter(&so->so_lock);
while (so->so_filter_tx > 0)
cv_wait(&so->so_closing_cv, &so->so_lock);
mutex_exit(&so->so_lock);
}
/*
* Called when socket `so' wants to get rid of a deferred connection.
* Returns TRUE if a connection was dropped.
*/
boolean_t
sof_sonode_drop_deferred(struct sonode *so)
{
struct sonode *def;
clock_t now = ddi_get_lbolt();
if (sof_close_deferred_backlog > sof_close_deferred_max_backlog) {
SOF_GLOBAL_STAT_BUMP(defer_close_failed_backlog_too_big);
return (B_FALSE);
}
mutex_enter(&so->so_acceptq_lock);
if ((def = list_head(&so->so_acceptq_defer)) != NULL &&
(now - def->so_filter_defertime) > sof_defer_drop_time) {
list_remove(&so->so_acceptq_defer, def);
so->so_acceptq_len--;
mutex_exit(&so->so_acceptq_lock);
def->so_listener = NULL;
} else {
mutex_exit(&so->so_acceptq_lock);
return (B_FALSE);
}
mutex_enter(&sof_close_deferred_lock);
list_insert_tail(&sof_close_deferred_list, def);
sof_close_deferred_backlog++;
if (!sof_close_deferred_running) {
mutex_exit(&sof_close_deferred_lock);
(void) taskq_dispatch(sof_close_deferred_taskq,
sof_close_deferred, NULL, TQ_NOSLEEP);
} else {
mutex_exit(&sof_close_deferred_lock);
}
return (B_TRUE);
}
/*
* Called from a taskq to close connections that have been deferred for
* too long.
*/
void
sof_close_deferred(void *unused)
{
struct sonode *drop;
_NOTE(ARGUNUSED(unused));
mutex_enter(&sof_close_deferred_lock);
if (!sof_close_deferred_running) {
sof_close_deferred_running = B_TRUE;
while ((drop =
list_remove_head(&sof_close_deferred_list)) != NULL) {
sof_close_deferred_backlog--;
mutex_exit(&sof_close_deferred_lock);
SOF_GLOBAL_STAT_BUMP(defer_closed);
(void) socket_close(drop, 0, kcred);
socket_destroy(drop);
mutex_enter(&sof_close_deferred_lock);
}
sof_close_deferred_running = B_FALSE;
ASSERT(sof_close_deferred_backlog == 0);
}
mutex_exit(&sof_close_deferred_lock);
}
/*
* Creates a new filter instance from the entry `ent' and attaches
* it to the sonode `so'. On success, return a pointer to the created
* instance.
*
* The new instance will be placed on the top of the filter stack.
*
* The caller is responsible for assigning the instance's ops vector and
* calling the filter's attach callback.
*
* No locks are held while manipulating the sonode fields because we are
* guaranteed that this operation is serialized.
*
* We can be sure that the entry `ent' will not disappear, because the
* caller is either holding sockconf_lock (in case of an active open), or is
* already holding a reference (in case of a passive open, the listener has
* one).
*/
static sof_instance_t *
sof_instance_create(sof_entry_t *ent, struct sonode *so)
{
sof_instance_t *inst;
inst = kmem_zalloc(sizeof (sof_instance_t), KM_NOSLEEP);
if (inst == NULL)
return (NULL);
sof_entry_hold(ent);
inst->sofi_filter = ent;
inst->sofi_sonode = so;
inst->sofi_next = so->so_filter_top;
if (so->so_filter_top != NULL)
so->so_filter_top->sofi_prev = inst;
else
so->so_filter_bottom = inst;
so->so_filter_top = inst;
so->so_filter_active++;
return (inst);
}
/*
* Destroys the filter instance `inst' and unlinks it from the sonode.
*
* Any filter private state must be destroyed (via the detach callback)
* before the instance is destroyed.
*/
static void
sof_instance_destroy(sof_instance_t *inst)
{
struct sonode *so = inst->sofi_sonode;
ASSERT(inst->sofi_sonode != NULL);
ASSERT(inst->sofi_filter != NULL);
ASSERT(inst->sofi_prev != NULL || so->so_filter_top == inst);
ASSERT(inst->sofi_next != NULL || so->so_filter_bottom == inst);
if (inst->sofi_prev != NULL)
inst->sofi_prev->sofi_next = inst->sofi_next;
else
so->so_filter_top = inst->sofi_next;
if (inst->sofi_next != NULL)
inst->sofi_next->sofi_prev = inst->sofi_prev;
else
so->so_filter_bottom = inst->sofi_prev;
if (!(inst->sofi_flags & SOFIF_BYPASS)) {
ASSERT(so->so_filter_active > 0);
so->so_filter_active--;
}
if (inst->sofi_flags & SOFIF_DEFER)
SOF_STAT_ADD(inst, ndeferred, -1);
sof_entry_rele(inst->sofi_filter);
kmem_free(inst, sizeof (sof_instance_t));
}
static sof_entry_t *
sof_entry_find(const char *name)
{
sof_entry_t *ent;
for (ent = list_head(&sof_entry_list); ent != NULL;
ent = list_next(&sof_entry_list, ent)) {
if (strncmp(ent->sofe_name, name, SOF_MAXNAMELEN) == 0)
return (ent);
}
return (NULL);
}
void
sof_entry_free(sof_entry_t *ent)
{
ASSERT(ent->sofe_refcnt == 0);
ASSERT(!list_link_active(&ent->sofe_node));
if (ent->sofe_hintarg != NULL) {
ASSERT(ent->sofe_hint == SOF_HINT_BEFORE ||
ent->sofe_hint == SOF_HINT_AFTER);
kmem_free(ent->sofe_hintarg, strlen(ent->sofe_hintarg) + 1);
ent->sofe_hintarg = NULL;
}
if (ent->sofe_socktuple_cnt > 0) {
ASSERT(ent->sofe_socktuple != NULL);
kmem_free(ent->sofe_socktuple,
sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt);
ent->sofe_socktuple = NULL;
ent->sofe_socktuple_cnt = 0;
}
sof_entry_kstat_destroy(ent);
mutex_destroy(&ent->sofe_lock);
kmem_free(ent, sizeof (sof_entry_t));
}
static int
sof_entry_kstat_update(kstat_t *ksp, int rw)
{
sof_entry_t *ent = ksp->ks_private;
if (rw == KSTAT_WRITE)
return (EACCES);
ent->sofe_kstat.sofek_nactive.value.ui64 = ent->sofe_refcnt;
return (0);
}
/*
* Create the kstat for filter entry `ent'.
*/
static int
sof_entry_kstat_create(sof_entry_t *ent)
{
char name[SOF_MAXNAMELEN + 7];
(void) snprintf(name, sizeof (name), "filter_%s", ent->sofe_name);
ent->sofe_ksp = kstat_create("sockfs", 0, name, "misc",
KSTAT_TYPE_NAMED,
sizeof (sof_entry_kstat_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (ent->sofe_ksp == NULL)
return (ENOMEM);
kstat_named_init(&ent->sofe_kstat.sofek_nactive, "nactive",
KSTAT_DATA_UINT64);
kstat_named_init(&ent->sofe_kstat.sofek_tot_active_attach,
"tot_active_attach", KSTAT_DATA_UINT64);
kstat_named_init(&ent->sofe_kstat.sofek_tot_passive_attach,
"tot_passive_attach", KSTAT_DATA_UINT64);
kstat_named_init(&ent->sofe_kstat.sofek_ndeferred, "ndeferred",
KSTAT_DATA_UINT64);
kstat_named_init(&ent->sofe_kstat.sofek_attach_failures,
"attach_failures", KSTAT_DATA_UINT64);
ent->sofe_ksp->ks_data = &ent->sofe_kstat;
ent->sofe_ksp->ks_update = sof_entry_kstat_update;
ent->sofe_ksp->ks_private = ent;
kstat_install(ent->sofe_ksp);
return (0);
}
/*
* Destroys the kstat for filter entry `ent'.
*/
static void
sof_entry_kstat_destroy(sof_entry_t *ent)
{
if (ent->sofe_ksp != NULL) {
kstat_delete(ent->sofe_ksp);
ent->sofe_ksp = NULL;
}
}
static void
sof_entry_hold(sof_entry_t *ent)
{
mutex_enter(&ent->sofe_lock);
ent->sofe_refcnt++;
mutex_exit(&ent->sofe_lock);
}
/*
* Decrement the reference count for `ent'. The entry will
* drop its' reference on the filter module whenever its'
* ref count reaches zero.
*/
static void
sof_entry_rele(sof_entry_t *ent)
{
mutex_enter(&ent->sofe_lock);
if (--ent->sofe_refcnt == 0) {
sof_module_t *mod = ent->sofe_mod;
ent->sofe_mod = NULL;
if (ent->sofe_flags & SOFEF_CONDEMED) {
mutex_exit(&ent->sofe_lock);
sof_entry_free(ent);
} else {
mutex_exit(&ent->sofe_lock);
}
if (mod != NULL)
sof_module_rele(mod);
} else {
mutex_exit(&ent->sofe_lock);
}
}
/*
* Loads the module used by `ent'
*/
static int
sof_entry_load_module(sof_entry_t *ent)
{
sof_module_t *mod = sof_module_hold_by_name(ent->sofe_name,
ent->sofe_modname);
if (mod == NULL)
return (EINVAL);
mutex_enter(&ent->sofe_lock);
/* Another thread might have already loaded the module */
ASSERT(ent->sofe_mod == mod || ent->sofe_mod == NULL);
if (ent->sofe_mod != NULL) {
mutex_exit(&ent->sofe_lock);
sof_module_rele(mod);
} else {
ent->sofe_mod = mod;
mutex_exit(&ent->sofe_lock);
}
return (0);
}
/*
* Add filter entry `ent' to the global list and attach it to all sockparam
* entries which the filter is interested in. Upon successful return the filter
* will be available for applications to use.
*/
int
sof_entry_add(sof_entry_t *ent)
{
int error;
/*
* We hold sockconf_lock as a WRITER for the whole operation,
* so all operations must be non-blocking.
*/
rw_enter(&sockconf_lock, RW_WRITER);
if (sof_entry_find(ent->sofe_name) != NULL) {
rw_exit(&sockconf_lock);
return (EEXIST);
}
/* The entry is unique; create the kstats */
if (sof_entry_kstat_create(ent) != 0) {
rw_exit(&sockconf_lock);
return (ENOMEM);
}
/*
* Attach the filter to sockparams of interest.
*/
if ((error = sockparams_new_filter(ent)) != 0) {
sof_entry_kstat_destroy(ent);
rw_exit(&sockconf_lock);
return (error);
}
/*
* Everything is OK; insert in global list.
*/
list_insert_tail(&sof_entry_list, ent);
rw_exit(&sockconf_lock);
return (0);
}
/*
* Removes the filter entry `ent' from global list and all sockparams.
*/
sof_entry_t *
sof_entry_remove_by_name(const char *name)
{
sof_entry_t *ent;
rw_enter(&sockconf_lock, RW_WRITER);
if ((ent = sof_entry_find(name)) == NULL) {
rw_exit(&sockconf_lock);
return (NULL);
}
list_remove(&sof_entry_list, ent);
sockparams_filter_cleanup(ent);
sof_entry_kstat_destroy(ent);
rw_exit(&sockconf_lock);
return (ent);
}
/*
* Filter entry `ent' will process sockparams entry `sp' to determine whether
* it should be attached to the sockparams. It should be called whenever a new
* filter or sockparams is being added. Returns zero either if the filter is
* not interested in the sockparams or if it successfully attached to the
* sockparams. On failure an errno is returned.
*/
int
sof_entry_proc_sockparams(sof_entry_t *ent, struct sockparams *sp)
{
uint_t i;
sof_socktuple_t *t = ent->sofe_socktuple;
sp_filter_t *new, *fil;
/* Only interested in non-TPI sockets */
if (strcmp(sp->sp_smod_name, SOTPI_SMOD_NAME) == 0)
return (0);
for (i = 0; i < ent->sofe_socktuple_cnt; i++) {
if (t[i].sofst_family == sp->sp_family &&
t[i].sofst_type == sp->sp_type &&
t[i].sofst_protocol == sp->sp_protocol)
break;
}
/* This filter is not interested in the sockparams entry */
if (i == ent->sofe_socktuple_cnt)
return (0);
new = kmem_zalloc(sizeof (sp_filter_t), KM_NOSLEEP);
if (new == NULL)
return (ENOMEM);
new->spf_filter = ent;
if (ent->sofe_flags & SOFEF_PROG) {
/* placement is irrelevant for programmatic filters */
list_insert_head(&sp->sp_prog_filters, new);
return (0);
} else {
ASSERT(ent->sofe_flags & SOFEF_AUTO);
/*
* If the filter specifies a placement hint, then make sure
* it can be satisfied.
*/
switch (ent->sofe_hint) {
case SOF_HINT_TOP:
if ((fil = list_head(&sp->sp_auto_filters)) != NULL &&
fil->spf_filter->sofe_hint == SOF_HINT_TOP)
break;
list_insert_head(&sp->sp_auto_filters, new);
return (0);
case SOF_HINT_BOTTOM:
if ((fil = list_tail(&sp->sp_auto_filters)) != NULL &&
fil->spf_filter->sofe_hint == SOF_HINT_BOTTOM)
break;
list_insert_tail(&sp->sp_auto_filters, new);
return (0);
case SOF_HINT_BEFORE:
case SOF_HINT_AFTER:
for (fil = list_head(&sp->sp_auto_filters);
fil != NULL;
fil = list_next(&sp->sp_auto_filters, fil)) {
if (strncmp(ent->sofe_hintarg,
fil->spf_filter->sofe_name,
SOF_MAXNAMELEN) == 0)
break;
}
if (fil != NULL) {
if (ent->sofe_hint == SOF_HINT_BEFORE) {
if (fil->spf_filter->sofe_hint ==
SOF_HINT_TOP)
break;
list_insert_before(&sp->sp_auto_filters,
fil, new);
} else {
if (fil->spf_filter->sofe_hint ==
SOF_HINT_BOTTOM)
break;
list_insert_after(&sp->sp_auto_filters,
fil, new);
}
return (0);
}
/*FALLTHRU*/
case SOF_HINT_NONE:
/*
* Insert the new filter at the beginning as long as it
* does not violate a TOP hint, otherwise insert in the
* next suitable location.
*/
if ((fil = list_head(&sp->sp_auto_filters)) != NULL &&
fil->spf_filter->sofe_hint == SOF_HINT_TOP) {
list_insert_after(&sp->sp_auto_filters, fil,
new);
} else {
list_insert_head(&sp->sp_auto_filters, new);
}
return (0);
}
/* Failed to insert the filter */
kmem_free(new, sizeof (sp_filter_t));
return (ENOSPC);
}
}
/*
* Remove all filter entries attached to the sockparams entry `sp'.
*/
void
sof_sockparams_fini(struct sockparams *sp)
{
sp_filter_t *fil;
ASSERT(!list_link_active(&sp->sp_node));
while ((fil = list_remove_head(&sp->sp_auto_filters)) != NULL)
kmem_free(fil, sizeof (sp_filter_t));
while ((fil = list_remove_head(&sp->sp_prog_filters)) != NULL)
kmem_free(fil, sizeof (sp_filter_t));
}
/*
* A new sockparams is being added. Walk all filters and attach those that
* are interested in the entry.
*
* It should be called when the sockparams entry is about to be made available
* for use and while holding the sockconf_lock.
*/
int
sof_sockparams_init(struct sockparams *sp)
{
sof_entry_t *ent;
ASSERT(RW_WRITE_HELD(&sockconf_lock));
for (ent = list_head(&sof_entry_list); ent != NULL;
ent = list_next(&sof_entry_list, ent)) {
if (sof_entry_proc_sockparams(ent, sp) != 0) {
sof_sockparams_fini(sp);
return (ENOMEM);
}
}
return (0);
}
static sof_module_t *
sof_module_find(const char *name)
{
sof_module_t *ent;
ASSERT(MUTEX_HELD(&sof_module_lock));
for (ent = list_head(&sof_module_list); ent != NULL;
ent = list_next(&sof_module_list, ent))
if (strcmp(ent->sofm_name, name) == 0)
return (ent);
return (NULL);
}
/*
* Returns a pointer to a module identified by `name' with its ref count
* bumped. An attempt to load the module is done if it's not found in the
* global list.
*/
sof_module_t *
sof_module_hold_by_name(const char *name, const char *modname)
{
ddi_modhandle_t handle = NULL;
sof_module_t *mod = NULL;
char *modpath;
int error;
/*
* We'll go through the loop at most two times, which will only
* happen if the module needs to be loaded.
*/
for (;;) {
mutex_enter(&sof_module_lock);
mod = sof_module_find(name);
if (mod != NULL || handle != NULL)
break;
mutex_exit(&sof_module_lock);
modpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) snprintf(modpath, MAXPATHLEN, "%s/%s", SOF_MODPATH,
modname);
handle = ddi_modopen(modpath, KRTLD_MODE_FIRST, &error);
kmem_free(modpath, MAXPATHLEN);
/* Failed to load, then bail */
if (handle == NULL) {
cmn_err(CE_WARN,
"Failed to load socket filter module: %s (err %d)",
modname, error);
return (NULL);
}
}
if (mod != NULL)
mod->sofm_refcnt++;
mutex_exit(&sof_module_lock);
if (handle != NULL) {
(void) ddi_modclose(handle);
/*
* The module was loaded, but the filter module could not be
* found. It's likely a misconfigured filter.
*/
if (mod == NULL) {
cmn_err(CE_WARN,
"Socket filter module %s was loaded, but did not" \
"register. Filter %s is likely misconfigured.",
modname, name);
}
}
return (mod);
}
void
sof_module_rele(sof_module_t *mod)
{
mutex_enter(&sof_module_lock);
mod->sofm_refcnt--;
mutex_exit(&sof_module_lock);
}
int
sof_rval2errno(sof_rval_t rval)
{
if (rval > SOF_RVAL_CONTINUE) {
return ((int)rval);
} else {
#ifdef DEBUG
if (socket_filter_debug)
printf("sof_rval2errno: invalid rval '%d'\n", rval);
#endif
return (EINVAL);
}
}
/*
* Walk through all the filters attached to `so' and allow each filter
* to process the data using its data_out callback. `mp' is a b_cont chain.
*
* Returns the processed mblk, or NULL if mblk was consumed. The mblk might
* have been consumed as a result of an error, in which case `errp' is set to
* the appropriate errno.
*/
mblk_t *
sof_filter_data_out_from(struct sonode *so, sof_instance_t *start,
mblk_t *mp, struct nmsghdr *msg, cred_t *cr, int *errp)
{
sof_instance_t *inst;
sof_rval_t rval;
_NOTE(ARGUNUSED(so));
for (inst = start; inst != NULL; inst = inst->sofi_next) {
if (!SOF_INTERESTED(inst, data_out))
continue;
mp = (inst->sofi_ops->sofop_data_out)((sof_handle_t)inst,
inst->sofi_cookie, mp, msg, cr, &rval);
DTRACE_PROBE2(filter__data, (sof_instance_t), inst,
(mblk_t *), mp);
if (mp == NULL) {
*errp = sof_rval2errno(rval);
break;
}
}
return (mp);
}
/*
* Walk through all the filters attached to `so' and allow each filter
* to process the data using its data_in_proc callback. `mp' is the start of
* a possible b_next chain, and `lastmp' points to the last mblk in the chain.
*
* Returns the processed mblk, or NULL if all mblks in the chain were
* consumed. `lastmp' is updated to point to the last mblk in the processed
* chain.
*/
mblk_t *
sof_filter_data_in_proc(struct sonode *so, mblk_t *mp, mblk_t **lastmp)
{
sof_instance_t *inst;
size_t len = 0, orig = 0;
ssize_t diff = 0;
mblk_t *retmp = NULL, *tailmp, *nextmp;
*lastmp = NULL;
do {
nextmp = mp->b_next;
mp->b_next = mp->b_prev = NULL;
len = orig = msgdsize(mp);
for (inst = so->so_filter_bottom; inst != NULL;
inst = inst->sofi_prev) {
if (!SOF_INTERESTED(inst, data_in_proc))
continue;
mp = (inst->sofi_ops->sofop_data_in_proc)(
(sof_handle_t)inst, inst->sofi_cookie, mp,
kcred, &len);
if (mp == NULL)
break;
}
DTRACE_PROBE2(filter__data, (sof_instance_t), inst,
(mblk_t *), mp);
diff += len - orig;
if (mp == NULL)
continue;
for (tailmp = mp; tailmp->b_cont != NULL;
tailmp = tailmp->b_cont)
;
mp->b_prev = tailmp;
if (*lastmp == NULL)
retmp = mp;
else
(*lastmp)->b_next = mp;
*lastmp = mp;
} while ((mp = nextmp) != NULL);
/*
* The size of the chain has changed; make sure the rcv queue
* stays consistent and check if the flow control state should
* change.
*/
if (diff != 0) {
DTRACE_PROBE2(filter__data__adjust__qlen,
(struct sonode *), so, (size_t), diff);
mutex_enter(&so->so_lock);
so->so_rcv_queued += diff;
/* so_check_flow_control drops so_lock */
so_check_flow_control(so);
}
return (retmp);
}
int
sof_filter_bind(struct sonode *so, struct sockaddr *addr,
socklen_t *addrlen, cred_t *cr)
{
__SOF_FILTER_OP(so, bind, cr, addr, addrlen)
}
int
sof_filter_listen(struct sonode *so, int *backlogp, cred_t *cr)
{
__SOF_FILTER_OP(so, listen, cr, backlogp)
}
int
sof_filter_connect(struct sonode *so, struct sockaddr *addr,
socklen_t *addrlen, cred_t *cr)
{
__SOF_FILTER_OP(so, connect, cr, addr, addrlen)
}
int
sof_filter_accept(struct sonode *so, cred_t *cr)
{
sof_instance_t *inst;
sof_rval_t rval;
for (inst = so->so_filter_top; inst != NULL; inst = inst->sofi_next) {
if (!SOF_INTERESTED(inst, accept))
continue;
rval = (inst->sofi_ops->sofop_accept)((sof_handle_t)inst,
inst->sofi_cookie, cr);
DTRACE_PROBE2(filter__action, (sof_instance_t), inst,
(sof_rval_t), rval);
if (rval != SOF_RVAL_CONTINUE) {
ASSERT(rval != SOF_RVAL_RETURN);
return (sof_rval2errno(rval));
}
}
return (-1);
}
int
sof_filter_shutdown(struct sonode *so, int *howp, cred_t *cr)
{
__SOF_FILTER_OP(so, shutdown, cr, howp)
}
int
sof_filter_getsockname(struct sonode *so, struct sockaddr *addr,
socklen_t *addrlenp, cred_t *cr)
{
__SOF_FILTER_OP(so, getsockname, cr, addr, addrlenp)
}
int
sof_filter_getpeername(struct sonode *so, struct sockaddr *addr,
socklen_t *addrlenp, cred_t *cr)
{
__SOF_FILTER_OP(so, getpeername, cr, addr, addrlenp)
}
int
sof_filter_setsockopt(struct sonode *so, int level, int option_name,
void *optval, socklen_t *optlenp, cred_t *cr)
{
__SOF_FILTER_OP(so, setsockopt, cr, level, option_name,
optval, optlenp)
}
int
sof_filter_getsockopt(struct sonode *so, int level, int option_name,
void *optval, socklen_t *optlenp, cred_t *cr)
{
__SOF_FILTER_OP(so, getsockopt, cr, level, option_name,
optval, optlenp)
}
int
sof_filter_ioctl(struct sonode *so, int cmd, intptr_t arg, int mode,
int32_t *rvalp, cred_t *cr)
{
__SOF_FILTER_OP(so, ioctl, cr, cmd, arg, mode, rvalp)
}
/*
* sof_register(version, name, ops, flags)
*
* Register a socket filter identified by name `name' and which should use
* the ops vector `ops' for event notification. `flags' should be set to 0.
* On success 0 is returned, otherwise an errno is returned.
*/
int
sof_register(int version, const char *name, const sof_ops_t *ops, int flags)
{
sof_module_t *mod;
_NOTE(ARGUNUSED(flags));
if (version != SOF_VERSION)
return (EINVAL);
mod = kmem_zalloc(sizeof (sof_module_t), KM_SLEEP);
mod->sofm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
(void) strcpy(mod->sofm_name, name);
mod->sofm_ops = *ops;
mutex_enter(&sof_module_lock);
if (sof_module_find(name) != NULL) {
mutex_exit(&sof_module_lock);
kmem_free(mod->sofm_name, strlen(mod->sofm_name) + 1);
kmem_free(mod, sizeof (sof_module_t));
return (EEXIST);
}
list_insert_tail(&sof_module_list, mod);
mutex_exit(&sof_module_lock);
return (0);
}
/*
* sof_unregister(name)
*
* Try to unregister the socket filter identified by `name'. If the filter
* is successfully unregistered, then 0 is returned, otherwise an errno is
* returned.
*/
int
sof_unregister(const char *name)
{
sof_module_t *mod;
mutex_enter(&sof_module_lock);
mod = sof_module_find(name);
if (mod != NULL) {
if (mod->sofm_refcnt == 0) {
list_remove(&sof_module_list, mod);
mutex_exit(&sof_module_lock);
kmem_free(mod->sofm_name, strlen(mod->sofm_name) + 1);
kmem_free(mod, sizeof (sof_module_t));
return (0);
} else {
mutex_exit(&sof_module_lock);
return (EBUSY);
}
}
mutex_exit(&sof_module_lock);
return (ENXIO);
}
/*
* sof_newconn_ready(handle)
*
* The filter `handle` no longer wants to defer the socket it is attached
* to. A newconn notification will be generated if there is no other filter
* that wants the socket deferred.
*/
void
sof_newconn_ready(sof_handle_t handle)
{
sof_instance_t *inst = (sof_instance_t *)handle;
struct sonode *so = inst->sofi_sonode;
struct sonode *pso = so->so_listener;
mutex_enter(&so->so_lock);
if (!(inst->sofi_flags & SOFIF_DEFER)) {
mutex_exit(&so->so_lock);
return;
}
ASSERT(so->so_state & SS_FIL_DEFER);
inst->sofi_flags &= ~SOFIF_DEFER;
SOF_STAT_ADD(inst, ndeferred, -1);
/*
* Check if any other filter has deferred the socket. The last
* filter to remove its DEFER flag will be the one generating the
* wakeup.
*/
for (inst = so->so_filter_top; inst != NULL; inst = inst->sofi_next) {
/* Still deferred; nothing to do */
if (inst->sofi_flags & SOFIF_DEFER) {
mutex_exit(&so->so_lock);
return;
}
}
so->so_state &= ~SS_FIL_DEFER;
mutex_exit(&so->so_lock);
/*
* The socket is no longer deferred; move it over to the regular
* accept list and notify the user. However, it is possible that
* the socket is being dropped by sof_sonode_drop_deferred(), so
* first make sure the socket is on the deferred list.
*/
mutex_enter(&pso->so_acceptq_lock);
if (!list_link_active(&so->so_acceptq_node)) {
mutex_exit(&pso->so_acceptq_lock);
return;
}
list_remove(&pso->so_acceptq_defer, so);
list_insert_tail(&pso->so_acceptq_list, so);
cv_signal(&pso->so_acceptq_cv);
mutex_exit(&pso->so_acceptq_lock);
mutex_enter(&pso->so_lock);
so_notify_newconn(pso); /* so_notify_newconn drops the lock */
}
/*
* sof_bypass(handle)
*
* Stop generating callbacks for `handle'.
*/
void
sof_bypass(sof_handle_t handle)
{
sof_instance_t *inst = (sof_instance_t *)handle;
struct sonode *so = inst->sofi_sonode;
mutex_enter(&so->so_lock);
if (!(inst->sofi_flags & SOFIF_BYPASS)) {
inst->sofi_flags |= SOFIF_BYPASS;
ASSERT(so->so_filter_active > 0);
so->so_filter_active--;
}
mutex_exit(&so->so_lock);
}
/*
* sof_rcv_flowctrl(handle, enable)
*
* If `enable' is TRUE, then recv side flow control will be asserted for
* the socket associated with `handle'. When `enable' is FALSE the filter
* indicates that it no longer wants to assert flow control, however, the
* condition will not be removed until there are no other filters asserting
* flow control and there is space available in the receive buffer.
*/
void
sof_rcv_flowctrl(sof_handle_t handle, boolean_t enable)
{
sof_instance_t *inst = (sof_instance_t *)handle;
struct sonode *so = inst->sofi_sonode;
mutex_enter(&so->so_lock);
if (enable) {
inst->sofi_flags |= SOFIF_RCV_FLOWCTRL;
so->so_flowctrld = B_TRUE;
so->so_state |= SS_FIL_RCV_FLOWCTRL;
mutex_exit(&so->so_lock);
} else {
inst->sofi_flags &= ~SOFIF_RCV_FLOWCTRL;
for (inst = so->so_filter_top; inst != NULL;
inst = inst->sofi_next) {
/* another filter is asserting flow control */
if (inst->sofi_flags & SOFIF_RCV_FLOWCTRL) {
mutex_exit(&so->so_lock);
return;
}
}
so->so_state &= ~SS_FIL_RCV_FLOWCTRL;
/* so_check_flow_control drops so_lock */
so_check_flow_control(so);
}
ASSERT(MUTEX_NOT_HELD(&so->so_lock));
}
/*
* sof_snd_flowctrl(handle, enable)
*
* If `enable' is TRUE, then send side flow control will be asserted for
* the socket associated with `handle'. When `enable' is FALSE the filter
* indicates that is no longer wants to assert flow control, however, the
* condition will not be removed until there are no other filters asserting
* flow control and there are tx buffers available.
*/
void
sof_snd_flowctrl(sof_handle_t handle, boolean_t enable)
{
sof_instance_t *inst = (sof_instance_t *)handle;
struct sonode *so = inst->sofi_sonode;
mutex_enter(&so->so_lock);
if (enable) {
inst->sofi_flags |= SOFIF_SND_FLOWCTRL;
so->so_state |= SS_FIL_SND_FLOWCTRL;
} else {
inst->sofi_flags &= ~SOFIF_SND_FLOWCTRL;
for (inst = so->so_filter_top; inst != NULL;
inst = inst->sofi_next) {
if (inst->sofi_flags & SOFIF_SND_FLOWCTRL) {
mutex_exit(&so->so_lock);
return;
}
}
so->so_state &= ~SS_FIL_SND_FLOWCTRL;
/*
* Wake up writer if the socket is no longer flow controlled.
*/
if (!SO_SND_FLOWCTRLD(so)) {
/* so_notify_writable drops so_lock */
so_notify_writable(so);
return;
}
}
mutex_exit(&so->so_lock);
}
/*
* sof_get_cookie(handle)
*
* Returns the cookie used by `handle'.
*/
void *
sof_get_cookie(sof_handle_t handle)
{
return (((sof_instance_t *)handle)->sofi_cookie);
}
/*
* sof_cas_cookie(handle, old, new)
*
* Compare-and-swap the cookie used by `handle'.
*/
void *
sof_cas_cookie(sof_handle_t handle, void *old, void *new)
{
sof_instance_t *inst = (sof_instance_t *)handle;
return (atomic_cas_ptr(&inst->sofi_cookie, old, new));
}
/*
* sof_inject_data_out(handle, mp, msg, flowctrld)
*
* Submit `mp' for transmission. `msg' cannot by NULL, and may contain
* ancillary data and destination address. Returns 0 when successful
* in which case `flowctrld' is updated. If flow controlled, no new data
* should be injected until a SOF_EV_INJECT_DATA_OUT_OK event is observed.
* In case of failure, an errno is returned.
*
* Filters that are lower in the stack than `handle' will see the data
* before it is transmitted and may end up modifying or freeing the data.
*/
int
sof_inject_data_out(sof_handle_t handle, mblk_t *mp, struct nmsghdr *msg,
boolean_t *flowctrld)
{
sof_instance_t *inst = (sof_instance_t *)handle;
struct sonode *so = inst->sofi_sonode;
int error;
/*
* Data cannot be sent down to the protocol once the socket has
* started the process of closing.
*/
mutex_enter(&so->so_lock);
if (so->so_state & SS_CLOSING) {
mutex_exit(&so->so_lock);
freemsg(mp);
return (EPIPE);
}
so->so_filter_tx++;
mutex_exit(&so->so_lock);
error = so_sendmblk_impl(inst->sofi_sonode, msg, FNONBLOCK,
kcred, &mp, inst->sofi_next, B_TRUE);
mutex_enter(&so->so_lock);
ASSERT(so->so_filter_tx > 0);
so->so_filter_tx--;
if (so->so_state & SS_CLOSING)
cv_signal(&so->so_closing_cv);
mutex_exit(&so->so_lock);
if (mp != NULL)
freemsg(mp);
if (error == ENOSPC) {
*flowctrld = B_TRUE;
error = 0;
} else {
*flowctrld = B_FALSE;
}
return (error);
}
/*
* sof_inject_data_in(handle, mp, len, flag, flowctrld)
*
* Enqueue `mp' which contains `len' bytes of M_DATA onto the socket
* associated with `handle'. `flags' should be set to 0. Returns 0 when
* successful in which case `flowctrld' is updated. If flow controlled,
* no new data should be injected until a SOF_EV_INJECT_DATA_IN_OK event
* is observed. In case of failure, an errno is returned.
*
* Filters that are higher in the stack than `handle' will see the data
* before it is enqueued on the receive queue and may end up modifying or
* freeing the data.
*/
int
sof_inject_data_in(sof_handle_t handle, mblk_t *mp, size_t len, int flags,
boolean_t *flowctrld)
{
sof_instance_t *inst = (sof_instance_t *)handle;
ssize_t avail;
int error = 0;
ASSERT(flags == 0);
avail = so_queue_msg_impl(inst->sofi_sonode, mp, len, flags, &error,
NULL, inst->sofi_prev);
/* fallback should never happen when there is an active filter */
ASSERT(error != EOPNOTSUPP);
*flowctrld = (avail > 0) ? B_FALSE : B_TRUE;
return (error);
}
/*
* sof_newconn_move(handle, newparent)
*
* Private interface only to be used by KSSL.
*
* Moves the socket associated with `handle' from its current listening
* socket to the listener associated with `newparent'. The socket being
* moved must be in a deferred state and it is up to the consumer of the
* interface to ensure that the `newparent' does not go away while this
* operation is pending.
*/
boolean_t
sof_newconn_move(sof_handle_t handle, sof_handle_t newparent)
{
sof_instance_t *inst = (sof_instance_t *)handle;
sof_instance_t *newpinst = (sof_instance_t *)newparent;
struct sonode *so, *old, *new;
so = inst->sofi_sonode;
ASSERT(so->so_state & SS_FIL_DEFER);
if (inst->sofi_next != NULL || inst->sofi_prev != NULL ||
!(so->so_state & SS_FIL_DEFER))
return (B_FALSE);
old = so->so_listener;
mutex_enter(&old->so_acceptq_lock);
list_remove(&old->so_acceptq_defer, so);
old->so_acceptq_len--;
mutex_exit(&old->so_acceptq_lock);
new = newpinst->sofi_sonode;
mutex_enter(&new->so_acceptq_lock);
list_insert_tail(&new->so_acceptq_defer, so);
new->so_acceptq_len++;
mutex_exit(&new->so_acceptq_lock);
so->so_listener = new;
return (B_TRUE);
}