smb_util.c revision b1352070d318187b41b088da3533692976f3f225
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/tzfile.h>
#include <sys/atomic.h>
#include <sys/kidmap.h>
#include <sys/time.h>
#include <smbsrv/smb_incl.h>
#include <smbsrv/smb_fsops.h>
#include <smbsrv/string.h>
#include <smbsrv/mbuf.h>
#include <smbsrv/smbinfo.h>
#include <smbsrv/smb_xdr.h>
#include <smbsrv/smb_vops.h>
#include <smbsrv/smb_idmap.h>
#include <sys/sid.h>
#include <sys/priv_names.h>
#define SMB_NAME83_BASELEN 8
#define SMB_NAME83_EXTLEN 3
static void smb_replace_wildcards(char *);
static boolean_t
smb_thread_continue_timedwait_locked(smb_thread_t *thread, int ticks);
time_t tzh_leapcnt = 0;
struct tm
*smb_gmtime_r(time_t *clock, struct tm *result);
time_t
smb_timegm(struct tm *tm);
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
};
static int days_in_month[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int
smb_ascii_or_unicode_strlen(struct smb_request *sr, char *str)
{
if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
return (mts_wcequiv_strlen(str));
return (strlen(str));
}
int
smb_ascii_or_unicode_strlen_null(struct smb_request *sr, char *str)
{
if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
return (mts_wcequiv_strlen(str) + 2);
return (strlen(str) + 1);
}
int
smb_ascii_or_unicode_null_len(struct smb_request *sr)
{
if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
return (2);
return (1);
}
/*
* Substitute wildcards and return the number of wildcards in the post
* conversion pattern.
*/
int
smb_convert_wildcards(char *pattern)
{
char *p = pattern;
int n_wildcard = 0;
smb_replace_wildcards(pattern);
while (*p != '\0') {
if (*p == '*' || *p == '?')
++n_wildcard;
++p;
}
return (n_wildcard);
}
/*
* When replacing wildcards a '.' in a name is treated as a base and
* extension separator even if the name is longer than 8.3.
*
* The '*' character matches an entire part of the name. For example,
* "*.abc" matches any name with an extension of "abc".
*
* The '?' character matches a single character.
* If the base contains all ? (8 or more) then it is treated as *.
* If the extension contains all ? (3 or more) then it is treated as *.
*
* Clients convert ASCII wildcards to Unicode wildcards as follows:
*
* ? is converted to >
* . is converted to " if it is followed by ? or *
* * is converted to < if it is followed by .
*
* Note that clients convert "*." to '< and drop the '.' but "*.txt"
* is sent as "<.TXT", i.e.
*
* dir *. -> dir <
* dir *.txt -> dir <.TXT
*
* Since " and < are illegal in Windows file names, we always convert
* these Unicode wildcards without checking the following character.
*/
static void
smb_replace_wildcards(char *pattern)
{
static char *match_all[] = {
"*.",
"*.*"
};
char *extension;
char *p;
int len;
int i;
/*
* Special case "<" for "dir *.", and fast-track for "*".
*/
if ((*pattern == '<') || (*pattern == '*')) {
if (*(pattern + 1) == '\0') {
*pattern = '*';
return;
}
}
for (p = pattern; *p != '\0'; ++p) {
switch (*p) {
case '<':
*p = '*';
break;
case '>':
*p = '?';
break;
case '\"':
*p = '.';
break;
default:
break;
}
}
/*
* Replace "????????.ext" with "*.ext".
*/
p = pattern;
p += strspn(p, "?");
if (*p == '.') {
*p = '\0';
len = strlen(pattern);
*p = '.';
if (len >= SMB_NAME83_BASELEN) {
*pattern = '*';
(void) strlcpy(pattern + 1, p, MAXPATHLEN - 1);
}
}
/*
* Replace "base.???" with 'base.*'.
*/
if ((extension = strrchr(pattern, '.')) != NULL) {
p = ++extension;
p += strspn(p, "?");
if (*p == '\0') {
len = strlen(extension);
if (len >= SMB_NAME83_EXTLEN) {
*extension = '\0';
(void) strlcat(pattern, "*", MAXPATHLEN);
}
}
}
/*
* Replace anything that matches an entry in match_all with "*".
*/
for (i = 0; i < sizeof (match_all) / sizeof (match_all[0]); ++i) {
if (strcmp(pattern, match_all[i]) == 0) {
(void) strlcpy(pattern, "*", MAXPATHLEN);
break;
}
}
}
/*
* smb_sattr_check
*
* Check file attributes against a search attribute (sattr) mask.
*
* Normal files, which includes READONLY and ARCHIVE, always pass
* this check. If the DIRECTORY, HIDDEN or SYSTEM special attributes
* are set then they must appear in the search mask. The special
* attributes are inclusive, i.e. all special attributes that appear
* in sattr must also appear in the file attributes for the check to
* pass.
*
* The following examples show how this works:
*
* fileA: READONLY
* fileB: 0 (no attributes = normal file)
* fileC: READONLY, ARCHIVE
* fileD: HIDDEN
* fileE: READONLY, HIDDEN, SYSTEM
* dirA: DIRECTORY
*
* search attribute: 0
* Returns: fileA, fileB and fileC.
* search attribute: HIDDEN
* Returns: fileA, fileB, fileC and fileD.
* search attribute: SYSTEM
* Returns: fileA, fileB and fileC.
* search attribute: DIRECTORY
* Returns: fileA, fileB, fileC and dirA.
* search attribute: HIDDEN and SYSTEM
* Returns: fileA, fileB, fileC, fileD and fileE.
*
* Returns true if the file and sattr match; otherwise, returns false.
*/
boolean_t
smb_sattr_check(uint16_t dosattr, uint16_t sattr)
{
if ((dosattr & FILE_ATTRIBUTE_DIRECTORY) &&
!(sattr & FILE_ATTRIBUTE_DIRECTORY))
return (B_FALSE);
if ((dosattr & FILE_ATTRIBUTE_HIDDEN) &&
!(sattr & FILE_ATTRIBUTE_HIDDEN))
return (B_FALSE);
if ((dosattr & FILE_ATTRIBUTE_SYSTEM) &&
!(sattr & FILE_ATTRIBUTE_SYSTEM))
return (B_FALSE);
return (B_TRUE);
}
/*
* smb_stream_parse_name
*
* smb_stream_parse_name should only be called for a path that
* contains a valid named stream. Path validation should have
* been performed before this function is called.
*
* Find the last component of path and split it into filename
* and stream name.
*
* On return the named stream type will be present. The stream
* type defaults to ":$DATA", if it has not been defined
* For exmaple, 'stream' contains :<sname>:$DATA
*/
void
smb_stream_parse_name(char *path, char *filename, char *stream)
{
char *fname, *sname, *stype;
ASSERT(path);
ASSERT(filename);
ASSERT(stream);
fname = strrchr(path, '\\');
fname = (fname == NULL) ? path : fname + 1;
(void) strlcpy(filename, fname, MAXNAMELEN);
sname = strchr(filename, ':');
(void) strlcpy(stream, sname, MAXNAMELEN);
*sname = '\0';
stype = strchr(stream + 1, ':');
if (stype == NULL)
(void) strlcat(stream, ":$DATA", MAXNAMELEN);
else
(void) utf8_strupr(stype);
}
/*
* smb_is_stream_name
*
* Determines if 'path' specifies a named stream.
*
* path is a NULL terminated string which could be a stream path.
* [pathname/]fname[:stream_name[:stream_type]]
*
* - If there is no colon in the path or it's the last char
* then it's not a stream name
*
* - '::' is a non-stream and is commonly used by Windows to designate
* the unamed stream in the form "::$DATA"
*/
boolean_t
smb_is_stream_name(char *path)
{
char *colonp;
if (path == NULL)
return (B_FALSE);
colonp = strchr(path, ':');
if ((colonp == NULL) || (*(colonp+1) == '\0'))
return (B_FALSE);
if (strstr(path, "::"))
return (B_FALSE);
return (B_TRUE);
}
/*
* smb_validate_stream_name
*
* NT_STATUS_OBJECT_NAME_INVALID will be returned if:
* - the path is not a stream name
* - a path is specified but the fname is ommitted.
* - the stream_type is specified but not valid.
*
* Note: the stream type is case-insensitive.
*/
uint32_t
smb_validate_stream_name(smb_pathname_t *pn)
{
static char *strmtype[] = {
"$DATA",
"$INDEX_ALLOCATION"
};
int i;
ASSERT(pn);
ASSERT(pn->pn_sname);
if (!(pn->pn_sname))
return (NT_STATUS_OBJECT_NAME_INVALID);
if ((pn->pn_pname) && !(pn->pn_fname))
return (NT_STATUS_OBJECT_NAME_INVALID);
if (pn->pn_stype != NULL) {
for (i = 0; i < sizeof (strmtype) / sizeof (strmtype[0]); ++i) {
if (strcasecmp(pn->pn_stype, strmtype[i]) == 0)
return (NT_STATUS_SUCCESS);
}
return (NT_STATUS_OBJECT_NAME_INVALID);
}
return (NT_STATUS_SUCCESS);
}
int
microtime(timestruc_t *tvp)
{
tvp->tv_sec = gethrestime_sec();
tvp->tv_nsec = 0;
return (0);
}
int32_t
clock_get_milli_uptime()
{
return (TICK_TO_MSEC(lbolt));
}
int /*ARGSUSED*/
smb_noop(void *p, size_t size, int foo)
{
return (0);
}
/*
* smb_idpool_increment
*
* This function increments the ID pool by doubling the current size. This
* function assumes the caller entered the mutex of the pool.
*/
static int
smb_idpool_increment(
smb_idpool_t *pool)
{
uint8_t *new_pool;
uint32_t new_size;
ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
new_size = pool->id_size * 2;
if (new_size <= SMB_IDPOOL_MAX_SIZE) {
new_pool = kmem_alloc(new_size / 8, KM_NOSLEEP);
if (new_pool) {
bzero(new_pool, new_size / 8);
bcopy(pool->id_pool, new_pool, pool->id_size / 8);
kmem_free(pool->id_pool, pool->id_size / 8);
pool->id_pool = new_pool;
pool->id_free_counter += new_size - pool->id_size;
pool->id_max_free_counter += new_size - pool->id_size;
pool->id_size = new_size;
pool->id_idx_msk = (new_size / 8) - 1;
if (new_size >= SMB_IDPOOL_MAX_SIZE) {
/* id -1 made unavailable */
pool->id_pool[pool->id_idx_msk] = 0x80;
pool->id_free_counter--;
pool->id_max_free_counter--;
}
return (0);
}
}
return (-1);
}
/*
* smb_idpool_constructor
*
* This function initializes the pool structure provided.
*/
int
smb_idpool_constructor(
smb_idpool_t *pool)
{
ASSERT(pool->id_magic != SMB_IDPOOL_MAGIC);
pool->id_size = SMB_IDPOOL_MIN_SIZE;
pool->id_idx_msk = (SMB_IDPOOL_MIN_SIZE / 8) - 1;
pool->id_free_counter = SMB_IDPOOL_MIN_SIZE - 1;
pool->id_max_free_counter = SMB_IDPOOL_MIN_SIZE - 1;
pool->id_bit = 0x02;
pool->id_bit_idx = 1;
pool->id_idx = 0;
pool->id_pool = (uint8_t *)kmem_alloc((SMB_IDPOOL_MIN_SIZE / 8),
KM_SLEEP);
bzero(pool->id_pool, (SMB_IDPOOL_MIN_SIZE / 8));
/* -1 id made unavailable */
pool->id_pool[0] = 0x01; /* id 0 made unavailable */
mutex_init(&pool->id_mutex, NULL, MUTEX_DEFAULT, NULL);
pool->id_magic = SMB_IDPOOL_MAGIC;
return (0);
}
/*
* smb_idpool_destructor
*
* This function tears down and frees the resources associated with the
* pool provided.
*/
void
smb_idpool_destructor(
smb_idpool_t *pool)
{
ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
ASSERT(pool->id_free_counter == pool->id_max_free_counter);
pool->id_magic = (uint32_t)~SMB_IDPOOL_MAGIC;
mutex_destroy(&pool->id_mutex);
kmem_free(pool->id_pool, (size_t)(pool->id_size / 8));
}
/*
* smb_idpool_alloc
*
* This function allocates an ID from the pool provided.
*/
int
smb_idpool_alloc(
smb_idpool_t *pool,
uint16_t *id)
{
uint32_t i;
uint8_t bit;
uint8_t bit_idx;
uint8_t byte;
ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
mutex_enter(&pool->id_mutex);
if ((pool->id_free_counter == 0) && smb_idpool_increment(pool)) {
mutex_exit(&pool->id_mutex);
return (-1);
}
i = pool->id_size;
while (i) {
bit = pool->id_bit;
bit_idx = pool->id_bit_idx;
byte = pool->id_pool[pool->id_idx];
while (bit) {
if (byte & bit) {
bit = bit << 1;
bit_idx++;
continue;
}
pool->id_pool[pool->id_idx] |= bit;
*id = (uint16_t)(pool->id_idx * 8 + (uint32_t)bit_idx);
pool->id_free_counter--;
pool->id_bit = bit;
pool->id_bit_idx = bit_idx;
mutex_exit(&pool->id_mutex);
return (0);
}
pool->id_bit = 1;
pool->id_bit_idx = 0;
pool->id_idx++;
pool->id_idx &= pool->id_idx_msk;
--i;
}
/*
* This section of code shouldn't be reached. If there are IDs
* available and none could be found there's a problem.
*/
ASSERT(0);
mutex_exit(&pool->id_mutex);
return (-1);
}
/*
* smb_idpool_free
*
* This function frees the ID provided.
*/
void
smb_idpool_free(
smb_idpool_t *pool,
uint16_t id)
{
ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
ASSERT(id != 0);
ASSERT(id != 0xFFFF);
mutex_enter(&pool->id_mutex);
if (pool->id_pool[id >> 3] & (1 << (id & 7))) {
pool->id_pool[id >> 3] &= ~(1 << (id & 7));
pool->id_free_counter++;
ASSERT(pool->id_free_counter <= pool->id_max_free_counter);
mutex_exit(&pool->id_mutex);
return;
}
/* Freeing a free ID. */
ASSERT(0);
mutex_exit(&pool->id_mutex);
}
/*
* smb_llist_constructor
*
* This function initializes a locked list.
*/
void
smb_llist_constructor(
smb_llist_t *ll,
size_t size,
size_t offset)
{
rw_init(&ll->ll_lock, NULL, RW_DEFAULT, NULL);
list_create(&ll->ll_list, size, offset);
ll->ll_count = 0;
ll->ll_wrop = 0;
}
/*
* smb_llist_destructor
*
* This function destroys a locked list.
*/
void
smb_llist_destructor(
smb_llist_t *ll)
{
ASSERT(ll->ll_count == 0);
rw_destroy(&ll->ll_lock);
list_destroy(&ll->ll_list);
}
/*
* smb_llist_upgrade
*
* This function tries to upgrade the lock of the locked list. It assumes the
* locked has already been entered in RW_READER mode. It first tries using the
* Solaris function rw_tryupgrade(). If that call fails the lock is released
* and reentered in RW_WRITER mode. In that last case a window is opened during
* which the contents of the list may have changed. The return code indicates
* whether or not the list was modified when the lock was exited.
*/
int smb_llist_upgrade(
smb_llist_t *ll)
{
uint64_t wrop;
if (rw_tryupgrade(&ll->ll_lock) != 0) {
return (0);
}
wrop = ll->ll_wrop;
rw_exit(&ll->ll_lock);
rw_enter(&ll->ll_lock, RW_WRITER);
return (wrop != ll->ll_wrop);
}
/*
* smb_llist_insert_head
*
* This function inserts the object passed a the beginning of the list. This
* function assumes the lock of the list has already been entered.
*/
void
smb_llist_insert_head(
smb_llist_t *ll,
void *obj)
{
list_insert_head(&ll->ll_list, obj);
++ll->ll_wrop;
++ll->ll_count;
}
/*
* smb_llist_insert_tail
*
* This function appends to the object passed to the list. This function assumes
* the lock of the list has already been entered.
*
*/
void
smb_llist_insert_tail(
smb_llist_t *ll,
void *obj)
{
list_insert_tail(&ll->ll_list, obj);
++ll->ll_wrop;
++ll->ll_count;
}
/*
* smb_llist_remove
*
* This function removes the object passed from the list. This function assumes
* the lock of the list has already been entered.
*/
void
smb_llist_remove(
smb_llist_t *ll,
void *obj)
{
list_remove(&ll->ll_list, obj);
++ll->ll_wrop;
--ll->ll_count;
}
/*
* smb_llist_get_count
*
* This function returns the number of elements in the specified list.
*/
uint32_t
smb_llist_get_count(
smb_llist_t *ll)
{
return (ll->ll_count);
}
/*
* smb_slist_constructor
*
* Synchronized list constructor.
*/
void
smb_slist_constructor(
smb_slist_t *sl,
size_t size,
size_t offset)
{
mutex_init(&sl->sl_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&sl->sl_cv, NULL, CV_DEFAULT, NULL);
list_create(&sl->sl_list, size, offset);
sl->sl_count = 0;
sl->sl_waiting = B_FALSE;
}
/*
* smb_slist_destructor
*
* Synchronized list destructor.
*/
void
smb_slist_destructor(
smb_slist_t *sl)
{
ASSERT(sl->sl_count == 0);
mutex_destroy(&sl->sl_mutex);
cv_destroy(&sl->sl_cv);
list_destroy(&sl->sl_list);
}
/*
* smb_slist_insert_head
*
* This function inserts the object passed a the beginning of the list.
*/
void
smb_slist_insert_head(
smb_slist_t *sl,
void *obj)
{
mutex_enter(&sl->sl_mutex);
list_insert_head(&sl->sl_list, obj);
++sl->sl_count;
mutex_exit(&sl->sl_mutex);
}
/*
* smb_slist_insert_tail
*
* This function appends the object passed to the list.
*/
void
smb_slist_insert_tail(
smb_slist_t *sl,
void *obj)
{
mutex_enter(&sl->sl_mutex);
list_insert_tail(&sl->sl_list, obj);
++sl->sl_count;
mutex_exit(&sl->sl_mutex);
}
/*
* smb_llist_remove
*
* This function removes the object passed by the caller from the list.
*/
void
smb_slist_remove(
smb_slist_t *sl,
void *obj)
{
mutex_enter(&sl->sl_mutex);
list_remove(&sl->sl_list, obj);
if ((--sl->sl_count == 0) && (sl->sl_waiting)) {
sl->sl_waiting = B_FALSE;
cv_broadcast(&sl->sl_cv);
}
mutex_exit(&sl->sl_mutex);
}
/*
* smb_slist_move_tail
*
* This function transfers all the contents of the synchronized list to the
* list_t provided. It returns the number of objects transferred.
*/
uint32_t
smb_slist_move_tail(
list_t *lst,
smb_slist_t *sl)
{
uint32_t rv;
mutex_enter(&sl->sl_mutex);
rv = sl->sl_count;
if (sl->sl_count) {
list_move_tail(lst, &sl->sl_list);
sl->sl_count = 0;
if (sl->sl_waiting) {
sl->sl_waiting = B_FALSE;
cv_broadcast(&sl->sl_cv);
}
}
mutex_exit(&sl->sl_mutex);
return (rv);
}
/*
* smb_slist_obj_move
*
* This function moves an object from one list to the end of the other list. It
* assumes the mutex of each list has been entered.
*/
void
smb_slist_obj_move(
smb_slist_t *dst,
smb_slist_t *src,
void *obj)
{
ASSERT(dst->sl_list.list_offset == src->sl_list.list_offset);
ASSERT(dst->sl_list.list_size == src->sl_list.list_size);
list_remove(&src->sl_list, obj);
list_insert_tail(&dst->sl_list, obj);
dst->sl_count++;
src->sl_count--;
if ((src->sl_count == 0) && (src->sl_waiting)) {
src->sl_waiting = B_FALSE;
cv_broadcast(&src->sl_cv);
}
}
/*
* smb_slist_wait_for_empty
*
* This function waits for a list to be emptied.
*/
void
smb_slist_wait_for_empty(
smb_slist_t *sl)
{
mutex_enter(&sl->sl_mutex);
while (sl->sl_count) {
sl->sl_waiting = B_TRUE;
cv_wait(&sl->sl_cv, &sl->sl_mutex);
}
mutex_exit(&sl->sl_mutex);
}
/*
* smb_slist_exit
*
* This function exits the muetx of the list and signal the condition variable
* if the list is empty.
*/
void
smb_slist_exit(smb_slist_t *sl)
{
if ((sl->sl_count == 0) && (sl->sl_waiting)) {
sl->sl_waiting = B_FALSE;
cv_broadcast(&sl->sl_cv);
}
mutex_exit(&sl->sl_mutex);
}
/*
* smb_thread_entry_point
*
* Common entry point for all the threads created through smb_thread_start. The
* state of teh thread is set to "running" at the beginning and moved to
* "exiting" just before calling thread_exit(). The condition variable is
* also signaled.
*/
static void
smb_thread_entry_point(
smb_thread_t *thread)
{
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
ASSERT(thread->sth_state == SMB_THREAD_STATE_STARTING);
thread->sth_th = curthread;
thread->sth_did = thread->sth_th->t_did;
if (!thread->sth_kill) {
thread->sth_state = SMB_THREAD_STATE_RUNNING;
cv_signal(&thread->sth_cv);
mutex_exit(&thread->sth_mtx);
thread->sth_ep(thread, thread->sth_ep_arg);
mutex_enter(&thread->sth_mtx);
}
thread->sth_th = NULL;
thread->sth_state = SMB_THREAD_STATE_EXITING;
cv_broadcast(&thread->sth_cv);
mutex_exit(&thread->sth_mtx);
thread_exit();
}
/*
* smb_thread_init
*/
void
smb_thread_init(
smb_thread_t *thread,
char *name,
smb_thread_ep_t ep,
void *ep_arg,
smb_thread_aw_t aw,
void *aw_arg)
{
ASSERT(thread->sth_magic != SMB_THREAD_MAGIC);
bzero(thread, sizeof (*thread));
(void) strlcpy(thread->sth_name, name, sizeof (thread->sth_name));
thread->sth_ep = ep;
thread->sth_ep_arg = ep_arg;
thread->sth_aw = aw;
thread->sth_aw_arg = aw_arg;
thread->sth_state = SMB_THREAD_STATE_EXITED;
mutex_init(&thread->sth_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&thread->sth_cv, NULL, CV_DEFAULT, NULL);
thread->sth_magic = SMB_THREAD_MAGIC;
}
/*
* smb_thread_destroy
*/
void
smb_thread_destroy(
smb_thread_t *thread)
{
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
ASSERT(thread->sth_state == SMB_THREAD_STATE_EXITED);
thread->sth_magic = 0;
mutex_destroy(&thread->sth_mtx);
cv_destroy(&thread->sth_cv);
}
/*
* smb_thread_start
*
* This function starts a thread with the parameters provided. It waits until
* the state of the thread has been moved to running.
*/
/*ARGSUSED*/
int
smb_thread_start(
smb_thread_t *thread)
{
int rc = 0;
kthread_t *tmpthread;
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
switch (thread->sth_state) {
case SMB_THREAD_STATE_EXITED:
thread->sth_state = SMB_THREAD_STATE_STARTING;
mutex_exit(&thread->sth_mtx);
tmpthread = thread_create(NULL, 0, smb_thread_entry_point,
thread, 0, &p0, TS_RUN, minclsyspri);
ASSERT(tmpthread != NULL);
mutex_enter(&thread->sth_mtx);
while (thread->sth_state == SMB_THREAD_STATE_STARTING)
cv_wait(&thread->sth_cv, &thread->sth_mtx);
if (thread->sth_state != SMB_THREAD_STATE_RUNNING)
rc = -1;
break;
default:
ASSERT(0);
rc = -1;
break;
}
mutex_exit(&thread->sth_mtx);
return (rc);
}
/*
* smb_thread_stop
*
* This function signals a thread to kill itself and waits until the "exiting"
* state has been reached.
*/
void
smb_thread_stop(
smb_thread_t *thread)
{
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
switch (thread->sth_state) {
case SMB_THREAD_STATE_RUNNING:
case SMB_THREAD_STATE_STARTING:
if (!thread->sth_kill) {
thread->sth_kill = B_TRUE;
if (thread->sth_aw)
thread->sth_aw(thread, thread->sth_aw_arg);
cv_broadcast(&thread->sth_cv);
while (thread->sth_state != SMB_THREAD_STATE_EXITING)
cv_wait(&thread->sth_cv, &thread->sth_mtx);
mutex_exit(&thread->sth_mtx);
thread_join(thread->sth_did);
mutex_enter(&thread->sth_mtx);
thread->sth_state = SMB_THREAD_STATE_EXITED;
thread->sth_did = 0;
thread->sth_kill = B_FALSE;
cv_broadcast(&thread->sth_cv);
break;
}
/*FALLTHRU*/
case SMB_THREAD_STATE_EXITING:
if (thread->sth_kill) {
while (thread->sth_state != SMB_THREAD_STATE_EXITED)
cv_wait(&thread->sth_cv, &thread->sth_mtx);
} else {
thread->sth_state = SMB_THREAD_STATE_EXITED;
thread->sth_did = 0;
}
break;
case SMB_THREAD_STATE_EXITED:
break;
default:
ASSERT(0);
break;
}
mutex_exit(&thread->sth_mtx);
}
/*
* smb_thread_signal
*
* This function signals a thread.
*/
void
smb_thread_signal(
smb_thread_t *thread)
{
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
switch (thread->sth_state) {
case SMB_THREAD_STATE_RUNNING:
if (thread->sth_aw)
thread->sth_aw(thread, thread->sth_aw_arg);
cv_signal(&thread->sth_cv);
break;
default:
break;
}
mutex_exit(&thread->sth_mtx);
}
boolean_t
smb_thread_continue(smb_thread_t *thread)
{
boolean_t result;
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
result = smb_thread_continue_timedwait_locked(thread, 0);
mutex_exit(&thread->sth_mtx);
return (result);
}
boolean_t
smb_thread_continue_nowait(smb_thread_t *thread)
{
boolean_t result;
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
/*
* Setting ticks=-1 requests a non-blocking check. We will
* still block if the thread is in "suspend" state.
*/
result = smb_thread_continue_timedwait_locked(thread, -1);
mutex_exit(&thread->sth_mtx);
return (result);
}
boolean_t
smb_thread_continue_timedwait(smb_thread_t *thread, int seconds)
{
boolean_t result;
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
result = smb_thread_continue_timedwait_locked(thread,
SEC_TO_TICK(seconds));
mutex_exit(&thread->sth_mtx);
return (result);
}
/*
* smb_thread_continue_timedwait_locked
*
* Internal only. Ticks==-1 means don't block, Ticks == 0 means wait
* indefinitely
*/
static boolean_t
smb_thread_continue_timedwait_locked(smb_thread_t *thread, int ticks)
{
boolean_t result;
clock_t finish_time = lbolt + ticks;
/* -1 means don't block */
if (ticks != -1 && !thread->sth_kill) {
if (ticks == 0) {
cv_wait(&thread->sth_cv, &thread->sth_mtx);
} else {
(void) cv_timedwait(&thread->sth_cv, &thread->sth_mtx,
finish_time);
}
}
result = (thread->sth_kill == 0);
return (result);
}
void
smb_thread_set_awaken(smb_thread_t *thread, smb_thread_aw_t new_aw_fn,
void *new_aw_arg)
{
ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
mutex_enter(&thread->sth_mtx);
thread->sth_aw = new_aw_fn;
thread->sth_aw_arg = new_aw_arg;
mutex_exit(&thread->sth_mtx);
}
/*
* smb_rwx_init
*/
void
smb_rwx_init(
smb_rwx_t *rwx)
{
bzero(rwx, sizeof (smb_rwx_t));
cv_init(&rwx->rwx_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&rwx->rwx_mutex, NULL, MUTEX_DEFAULT, NULL);
rw_init(&rwx->rwx_lock, NULL, RW_DEFAULT, NULL);
}
/*
* smb_rwx_destroy
*/
void
smb_rwx_destroy(
smb_rwx_t *rwx)
{
mutex_destroy(&rwx->rwx_mutex);
cv_destroy(&rwx->rwx_cv);
rw_destroy(&rwx->rwx_lock);
}
/*
* smb_rwx_rwexit
*/
void
smb_rwx_rwexit(
smb_rwx_t *rwx)
{
if (rw_write_held(&rwx->rwx_lock)) {
ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
mutex_enter(&rwx->rwx_mutex);
if (rwx->rwx_waiting) {
rwx->rwx_waiting = B_FALSE;
cv_broadcast(&rwx->rwx_cv);
}
mutex_exit(&rwx->rwx_mutex);
}
rw_exit(&rwx->rwx_lock);
}
/*
* smb_rwx_rwupgrade
*/
krw_t
smb_rwx_rwupgrade(
smb_rwx_t *rwx)
{
if (rw_write_held(&rwx->rwx_lock)) {
ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
return (RW_WRITER);
}
if (!rw_tryupgrade(&rwx->rwx_lock)) {
rw_exit(&rwx->rwx_lock);
rw_enter(&rwx->rwx_lock, RW_WRITER);
}
return (RW_READER);
}
/*
* smb_rwx_rwrestore
*/
void
smb_rwx_rwdowngrade(
smb_rwx_t *rwx,
krw_t mode)
{
ASSERT(rw_write_held(&rwx->rwx_lock));
ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
if (mode == RW_WRITER) {
return;
}
ASSERT(mode == RW_READER);
mutex_enter(&rwx->rwx_mutex);
if (rwx->rwx_waiting) {
rwx->rwx_waiting = B_FALSE;
cv_broadcast(&rwx->rwx_cv);
}
mutex_exit(&rwx->rwx_mutex);
rw_downgrade(&rwx->rwx_lock);
}
/*
* smb_rwx_wait
*
* This function assumes the smb_rwx lock was enter in RW_READER or RW_WRITER
* mode. It will:
*
* 1) release the lock and save its current mode.
* 2) wait until the condition variable is signaled. This can happen for
* 2 reasons: When a writer releases the lock or when the time out (if
* provided) expires.
* 3) re-acquire the lock in the mode saved in (1).
*/
int
smb_rwx_rwwait(
smb_rwx_t *rwx,
clock_t timeout)
{
int rc;
krw_t mode;
mutex_enter(&rwx->rwx_mutex);
rwx->rwx_waiting = B_TRUE;
mutex_exit(&rwx->rwx_mutex);
if (rw_write_held(&rwx->rwx_lock)) {
ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
mode = RW_WRITER;
} else {
ASSERT(rw_read_held(&rwx->rwx_lock));
mode = RW_READER;
}
rw_exit(&rwx->rwx_lock);
mutex_enter(&rwx->rwx_mutex);
if (rwx->rwx_waiting) {
if (timeout == -1) {
rc = 1;
cv_wait(&rwx->rwx_cv, &rwx->rwx_mutex);
} else {
rc = cv_timedwait(&rwx->rwx_cv, &rwx->rwx_mutex,
lbolt + timeout);
}
}
mutex_exit(&rwx->rwx_mutex);
rw_enter(&rwx->rwx_lock, mode);
return (rc);
}
/*
* SMB ID mapping
*
* Solaris ID mapping service (aka Winchester) works with domain SIDs
* and RIDs where domain SIDs are in string format. CIFS service works
* with binary SIDs understandable by CIFS clients. A layer of SMB ID
* mapping functions are implemeted to hide the SID conversion details
* and also hide the handling of array of batch mapping requests.
*
* IMPORTANT NOTE The Winchester API requires a zone. Because CIFS server
* currently only runs in the global zone the global zone is specified.
* This needs to be fixed when the CIFS server supports zones.
*/
static int smb_idmap_batch_binsid(smb_idmap_batch_t *sib);
/*
* smb_idmap_getid
*
* Maps the given Windows SID to a Solaris ID using the
* simple mapping API.
*/
idmap_stat
smb_idmap_getid(smb_sid_t *sid, uid_t *id, int *idtype)
{
smb_idmap_t sim;
char sidstr[SMB_SID_STRSZ];
smb_sid_tostr(sid, sidstr);
if (smb_sid_splitstr(sidstr, &sim.sim_rid) != 0)
return (IDMAP_ERR_SID);
sim.sim_domsid = sidstr;
sim.sim_id = id;
switch (*idtype) {
case SMB_IDMAP_USER:
sim.sim_stat = kidmap_getuidbysid(global_zone, sim.sim_domsid,
sim.sim_rid, sim.sim_id);
break;
case SMB_IDMAP_GROUP:
sim.sim_stat = kidmap_getgidbysid(global_zone, sim.sim_domsid,
sim.sim_rid, sim.sim_id);
break;
case SMB_IDMAP_UNKNOWN:
sim.sim_stat = kidmap_getpidbysid(global_zone, sim.sim_domsid,
sim.sim_rid, sim.sim_id, &sim.sim_idtype);
break;
default:
ASSERT(0);
return (IDMAP_ERR_ARG);
}
*idtype = sim.sim_idtype;
return (sim.sim_stat);
}
/*
* smb_idmap_getsid
*
* Maps the given Solaris ID to a Windows SID using the
* simple mapping API.
*/
idmap_stat
smb_idmap_getsid(uid_t id, int idtype, smb_sid_t **sid)
{
smb_idmap_t sim;
switch (idtype) {
case SMB_IDMAP_USER:
sim.sim_stat = kidmap_getsidbyuid(global_zone, id,
(const char **)&sim.sim_domsid, &sim.sim_rid);
break;
case SMB_IDMAP_GROUP:
sim.sim_stat = kidmap_getsidbygid(global_zone, id,
(const char **)&sim.sim_domsid, &sim.sim_rid);
break;
case SMB_IDMAP_EVERYONE:
/* Everyone S-1-1-0 */
sim.sim_domsid = "S-1-1";
sim.sim_rid = 0;
sim.sim_stat = IDMAP_SUCCESS;
break;
default:
ASSERT(0);
return (IDMAP_ERR_ARG);
}
if (sim.sim_stat != IDMAP_SUCCESS)
return (sim.sim_stat);
if (sim.sim_domsid == NULL)
return (IDMAP_ERR_NOMAPPING);
sim.sim_sid = smb_sid_fromstr(sim.sim_domsid);
if (sim.sim_sid == NULL)
return (IDMAP_ERR_INTERNAL);
*sid = smb_sid_splice(sim.sim_sid, sim.sim_rid);
smb_sid_free(sim.sim_sid);
if (*sid == NULL)
sim.sim_stat = IDMAP_ERR_INTERNAL;
return (sim.sim_stat);
}
/*
* smb_idmap_batch_create
*
* Creates and initializes the context for batch ID mapping.
*/
idmap_stat
smb_idmap_batch_create(smb_idmap_batch_t *sib, uint16_t nmap, int flags)
{
ASSERT(sib);
bzero(sib, sizeof (smb_idmap_batch_t));
sib->sib_idmaph = kidmap_get_create(global_zone);
sib->sib_flags = flags;
sib->sib_nmap = nmap;
sib->sib_size = nmap * sizeof (smb_idmap_t);
sib->sib_maps = kmem_zalloc(sib->sib_size, KM_SLEEP);
return (IDMAP_SUCCESS);
}
/*
* smb_idmap_batch_destroy
*
* Frees the batch ID mapping context.
* If ID mapping is Solaris -> Windows it frees memories
* allocated for binary SIDs.
*/
void
smb_idmap_batch_destroy(smb_idmap_batch_t *sib)
{
char *domsid;
int i;
ASSERT(sib);
ASSERT(sib->sib_maps);
if (sib->sib_idmaph)
kidmap_get_destroy(sib->sib_idmaph);
if (sib->sib_flags & SMB_IDMAP_ID2SID) {
/*
* SIDs are allocated only when mapping
* UID/GID to SIDs
*/
for (i = 0; i < sib->sib_nmap; i++)
smb_sid_free(sib->sib_maps[i].sim_sid);
} else if (sib->sib_flags & SMB_IDMAP_SID2ID) {
/*
* SID prefixes are allocated only when mapping
* SIDs to UID/GID
*/
for (i = 0; i < sib->sib_nmap; i++) {
domsid = sib->sib_maps[i].sim_domsid;
if (domsid)
kmem_free(domsid, strlen(domsid) + 1);
}
}
if (sib->sib_size && sib->sib_maps)
kmem_free(sib->sib_maps, sib->sib_size);
}
/*
* smb_idmap_batch_getid
*
* Queue a request to map the given SID to a UID or GID.
*
* sim->sim_id should point to variable that's supposed to
* hold the returned UID/GID. This needs to be setup by caller
* of this function.
*
* If requested ID type is known, it's passed as 'idtype',
* if it's unknown it'll be returned in sim->sim_idtype.
*/
idmap_stat
smb_idmap_batch_getid(idmap_get_handle_t *idmaph, smb_idmap_t *sim,
smb_sid_t *sid, int idtype)
{
char strsid[SMB_SID_STRSZ];
idmap_stat idm_stat;
ASSERT(idmaph);
ASSERT(sim);
ASSERT(sid);
smb_sid_tostr(sid, strsid);
if (smb_sid_splitstr(strsid, &sim->sim_rid) != 0)
return (IDMAP_ERR_SID);
sim->sim_domsid = smb_kstrdup(strsid, strlen(strsid) + 1);
switch (idtype) {
case SMB_IDMAP_USER:
idm_stat = kidmap_batch_getuidbysid(idmaph, sim->sim_domsid,
sim->sim_rid, sim->sim_id, &sim->sim_stat);
break;
case SMB_IDMAP_GROUP:
idm_stat = kidmap_batch_getgidbysid(idmaph, sim->sim_domsid,
sim->sim_rid, sim->sim_id, &sim->sim_stat);
break;
case SMB_IDMAP_UNKNOWN:
idm_stat = kidmap_batch_getpidbysid(idmaph, sim->sim_domsid,
sim->sim_rid, sim->sim_id, &sim->sim_idtype,
&sim->sim_stat);
break;
default:
ASSERT(0);
return (IDMAP_ERR_ARG);
}
return (idm_stat);
}
/*
* smb_idmap_batch_getsid
*
* Queue a request to map the given UID/GID to a SID.
*
* sim->sim_domsid and sim->sim_rid will contain the mapping
* result upon successful process of the batched request.
*/
idmap_stat
smb_idmap_batch_getsid(idmap_get_handle_t *idmaph, smb_idmap_t *sim,
uid_t id, int idtype)
{
idmap_stat idm_stat;
switch (idtype) {
case SMB_IDMAP_USER:
idm_stat = kidmap_batch_getsidbyuid(idmaph, id,
(const char **)&sim->sim_domsid, &sim->sim_rid,
&sim->sim_stat);
break;
case SMB_IDMAP_GROUP:
idm_stat = kidmap_batch_getsidbygid(idmaph, id,
(const char **)&sim->sim_domsid, &sim->sim_rid,
&sim->sim_stat);
break;
case SMB_IDMAP_EVERYONE:
/* Everyone S-1-1-0 */
sim->sim_domsid = "S-1-1";
sim->sim_rid = 0;
sim->sim_stat = IDMAP_SUCCESS;
idm_stat = IDMAP_SUCCESS;
break;
default:
ASSERT(0);
return (IDMAP_ERR_ARG);
}
return (idm_stat);
}
/*
* smb_idmap_batch_binsid
*
* Convert sidrids to binary sids
*
* Returns 0 if successful and non-zero upon failure.
*/
static int
smb_idmap_batch_binsid(smb_idmap_batch_t *sib)
{
smb_sid_t *sid;
smb_idmap_t *sim;
int i;
if (sib->sib_flags & SMB_IDMAP_SID2ID)
/* This operation is not required */
return (0);
sim = sib->sib_maps;
for (i = 0; i < sib->sib_nmap; sim++, i++) {
ASSERT(sim->sim_domsid);
if (sim->sim_domsid == NULL)
return (1);
if ((sid = smb_sid_fromstr(sim->sim_domsid)) == NULL)
return (1);
sim->sim_sid = smb_sid_splice(sid, sim->sim_rid);
smb_sid_free(sid);
}
return (0);
}
/*
* smb_idmap_batch_getmappings
*
* trigger ID mapping service to get the mappings for queued
* requests.
*
* Checks the result of all the queued requests.
* If this is a Solaris -> Windows mapping it generates
* binary SIDs from returned (domsid, rid) pairs.
*/
idmap_stat
smb_idmap_batch_getmappings(smb_idmap_batch_t *sib)
{
idmap_stat idm_stat = IDMAP_SUCCESS;
int i;
idm_stat = kidmap_get_mappings(sib->sib_idmaph);
if (idm_stat != IDMAP_SUCCESS)
return (idm_stat);
/*
* Check the status for all the queued requests
*/
for (i = 0; i < sib->sib_nmap; i++) {
if (sib->sib_maps[i].sim_stat != IDMAP_SUCCESS)
return (sib->sib_maps[i].sim_stat);
}
if (smb_idmap_batch_binsid(sib) != 0)
idm_stat = IDMAP_ERR_OTHER;
return (idm_stat);
}
uint64_t
unix_to_nt_time(timestruc_t *unix_time)
{
uint64_t nt_time;
nt_time = unix_time->tv_sec;
nt_time *= 10000000; /* seconds to 100ns */
nt_time += unix_time->tv_nsec / 100;
return (nt_time + NT_TIME_BIAS);
}
uint32_t
nt_to_unix_time(uint64_t nt_time, timestruc_t *unix_time)
{
uint32_t seconds;
nt_time -= NT_TIME_BIAS;
seconds = nt_time / 10000000;
if (unix_time) {
unix_time->tv_sec = seconds;
unix_time->tv_nsec = (nt_time % 10000000) * 100;
}
return (seconds);
}
/*
* smb_dos_to_ux_time
*
* Convert SMB_DATE & SMB_TIME values to a unix timestamp.
*
* A date/time field of 0 means that that server file system
* assigned value need not be changed. The behaviour when the
* date/time field is set to -1 is not documented but is
* generally treated like 0.
* If date or time is 0 or -1 the unix time is returned as 0
* so that the caller can identify and handle this special case.
*/
int32_t
smb_dos_to_ux_time(int16_t date, int16_t time)
{
struct tm atm;
if (((date == 0) || (time == 0)) ||
((date == -1) || (time == -1))) {
return (0);
}
atm.tm_year = ((date >> 9) & 0x3F) + 80;
atm.tm_mon = ((date >> 5) & 0x0F) - 1;
atm.tm_mday = ((date >> 0) & 0x1F);
atm.tm_hour = ((time >> 11) & 0x1F);
atm.tm_min = ((time >> 5) & 0x3F);
atm.tm_sec = ((time >> 0) & 0x1F) << 1;
return (smb_timegm(&atm));
}
int32_t
smb_ux_to_dos_time(int32_t ux_time, int16_t *date_p, int16_t *time_p)
{
struct tm atm;
int i;
time_t tmp_time;
tmp_time = (time_t)ux_time;
(void) smb_gmtime_r(&tmp_time, &atm);
if (date_p) {
i = 0;
i += atm.tm_year - 80;
i <<= 4;
i += atm.tm_mon + 1;
i <<= 5;
i += atm.tm_mday;
*date_p = (short)i;
}
if (time_p) {
i = 0;
i += atm.tm_hour;
i <<= 6;
i += atm.tm_min;
i <<= 5;
i += atm.tm_sec >> 1;
*time_p = (short)i;
}
return (ux_time);
}
/*
* smb_gmtime_r
*
* Thread-safe version of smb_gmtime. Returns a null pointer if either
* input parameter is a null pointer. Otherwise returns a pointer
* to result.
*
* Day of the week calculation: the Epoch was a thursday.
*
* There are no timezone corrections so tm_isdst and tm_gmtoff are
* always zero, and the zone is always WET.
*/
struct tm *
smb_gmtime_r(time_t *clock, struct tm *result)
{
time_t tsec;
int year;
int month;
int sec_per_month;
if (clock == 0 || result == 0)
return (0);
bzero(result, sizeof (struct tm));
tsec = *clock;
tsec -= tzh_leapcnt;
result->tm_wday = tsec / SECSPERDAY;
result->tm_wday = (result->tm_wday + TM_THURSDAY) % DAYSPERWEEK;
year = EPOCH_YEAR;
while (tsec >= (isleap(year) ? (SECSPERDAY * DAYSPERLYEAR) :
(SECSPERDAY * DAYSPERNYEAR))) {
if (isleap(year))
tsec -= SECSPERDAY * DAYSPERLYEAR;
else
tsec -= SECSPERDAY * DAYSPERNYEAR;
++year;
}
result->tm_year = year - TM_YEAR_BASE;
result->tm_yday = tsec / SECSPERDAY;
for (month = TM_JANUARY; month <= TM_DECEMBER; ++month) {
sec_per_month = days_in_month[month] * SECSPERDAY;
if (month == TM_FEBRUARY && isleap(year))
sec_per_month += SECSPERDAY;
if (tsec < sec_per_month)
break;
tsec -= sec_per_month;
}
result->tm_mon = month;
result->tm_mday = (tsec / SECSPERDAY) + 1;
tsec %= SECSPERDAY;
result->tm_sec = tsec % 60;
tsec /= 60;
result->tm_min = tsec % 60;
tsec /= 60;
result->tm_hour = (int)tsec;
return (result);
}
/*
* smb_timegm
*
* Converts the broken-down time in tm to a time value, i.e. the number
* of seconds since the Epoch (00:00:00 UTC, January 1, 1970). This is
* not a POSIX or ANSI function. Per the man page, the input values of
* tm_wday and tm_yday are ignored and, as the input data is assumed to
* represent GMT, we force tm_isdst and tm_gmtoff to 0.
*
* Before returning the clock time, we use smb_gmtime_r to set up tm_wday
* and tm_yday, and bring the other fields within normal range. I don't
* think this is really how it should be done but it's convenient for
* now.
*/
time_t
smb_timegm(struct tm *tm)
{
time_t tsec;
int dd;
int mm;
int yy;
int year;
if (tm == 0)
return (-1);
year = tm->tm_year + TM_YEAR_BASE;
tsec = tzh_leapcnt;
for (yy = EPOCH_YEAR; yy < year; ++yy) {
if (isleap(yy))
tsec += SECSPERDAY * DAYSPERLYEAR;
else
tsec += SECSPERDAY * DAYSPERNYEAR;
}
for (mm = TM_JANUARY; mm < tm->tm_mon; ++mm) {
dd = days_in_month[mm] * SECSPERDAY;
if (mm == TM_FEBRUARY && isleap(year))
dd += SECSPERDAY;
tsec += dd;
}
tsec += (tm->tm_mday - 1) * SECSPERDAY;
tsec += tm->tm_sec;
tsec += tm->tm_min * SECSPERMIN;
tsec += tm->tm_hour * SECSPERHOUR;
tm->tm_isdst = 0;
(void) smb_gmtime_r(&tsec, tm);
return (tsec);
}
/*
* smb_cred_set_sid
*
* Initialize the ksid based on the given smb_id_t.
*/
static void
smb_cred_set_sid(smb_id_t *id, ksid_t *ksid)
{
char sidstr[SMB_SID_STRSZ];
int rc;
ASSERT(id);
ASSERT(id->i_sid);
ksid->ks_id = id->i_id;
smb_sid_tostr(id->i_sid, sidstr);
rc = smb_sid_splitstr(sidstr, &ksid->ks_rid);
ASSERT(rc == 0);
ksid->ks_attr = id->i_attrs;
ksid->ks_domain = ksid_lookupdomain(sidstr);
}
/*
* smb_cred_set_sidlist
*
* Allocate and initialize the ksidlist based on the Windows group list of the
* access token.
*/
static ksidlist_t *
smb_cred_set_sidlist(smb_ids_t *token_grps)
{
int i;
ksidlist_t *lp;
lp = kmem_zalloc(KSIDLIST_MEM(token_grps->i_cnt), KM_SLEEP);
lp->ksl_ref = 1;
lp->ksl_nsid = token_grps->i_cnt;
lp->ksl_neid = 0;
for (i = 0; i < lp->ksl_nsid; i++) {
smb_cred_set_sid(&token_grps->i_ids[i], &lp->ksl_sids[i]);
if (lp->ksl_sids[i].ks_id > IDMAP_WK__MAX_GID)
lp->ksl_neid++;
}
return (lp);
}
/*
* smb_cred_create
*
* The credential of the given SMB user will be allocated and initialized based
* on the given access token.
*/
cred_t *
smb_cred_create(smb_token_t *token, uint32_t *privileges)
{
ksid_t ksid;
ksidlist_t *ksidlist = NULL;
smb_posix_grps_t *posix_grps;
cred_t *cr;
ASSERT(token);
ASSERT(token->tkn_posix_grps);
ASSERT(privileges);
cr = crget();
ASSERT(cr != NULL);
posix_grps = token->tkn_posix_grps;
if (crsetugid(cr, token->tkn_user.i_id,
token->tkn_primary_grp.i_id) != 0) {
crfree(cr);
return (NULL);
}
if (crsetgroups(cr, posix_grps->pg_ngrps, posix_grps->pg_grps) != 0) {
crfree(cr);
return (NULL);
}
smb_cred_set_sid(&token->tkn_user, &ksid);
crsetsid(cr, &ksid, KSID_USER);
smb_cred_set_sid(&token->tkn_primary_grp, &ksid);
crsetsid(cr, &ksid, KSID_GROUP);
smb_cred_set_sid(&token->tkn_owner, &ksid);
crsetsid(cr, &ksid, KSID_OWNER);
ksidlist = smb_cred_set_sidlist(&token->tkn_win_grps);
crsetsidlist(cr, ksidlist);
*privileges = 0;
if (smb_token_query_privilege(token, SE_BACKUP_LUID)) {
*privileges |= SMB_USER_PRIV_BACKUP;
}
if (smb_token_query_privilege(token, SE_RESTORE_LUID)) {
*privileges |= SMB_USER_PRIV_RESTORE;
}
if (smb_token_query_privilege(token, SE_TAKE_OWNERSHIP_LUID)) {
*privileges |= SMB_USER_PRIV_TAKE_OWNERSHIP;
(void) crsetpriv(cr, PRIV_FILE_CHOWN, NULL);
}
if (smb_token_query_privilege(token, SE_SECURITY_LUID)) {
*privileges |= SMB_USER_PRIV_SECURITY;
}
return (cr);
}
/*
* smb_cred_rele
*
* The reference count of the user's credential will get decremented if it
* is non-zero. Otherwise, the credential will be freed.
*/
void
smb_cred_rele(cred_t *cr)
{
ASSERT(cr);
crfree(cr);
}
/*
* smb_cred_is_member
*
* Same as smb_token_is_member. The only difference is that
* we compare the given SID against user SID and the ksidlist
* of the user's cred.
*/
int
smb_cred_is_member(cred_t *cr, smb_sid_t *sid)
{
ksidlist_t *ksidlist;
ksid_t ksid1, *ksid2;
smb_id_t id;
int i, rc = 0;
ASSERT(cr);
bzero(&id, sizeof (smb_id_t));
id.i_sid = sid;
smb_cred_set_sid(&id, &ksid1);
ksidlist = crgetsidlist(cr);
ASSERT(ksidlist);
ASSERT(ksid1.ks_domain);
ASSERT(ksid1.ks_domain->kd_name);
i = 0;
ksid2 = crgetsid(cr, KSID_USER);
do {
ASSERT(ksid2->ks_domain);
ASSERT(ksid2->ks_domain->kd_name);
if (strcmp(ksid1.ks_domain->kd_name,
ksid2->ks_domain->kd_name) == 0 &&
ksid1.ks_rid == ksid2->ks_rid) {
rc = 1;
break;
}
ksid2 = &ksidlist->ksl_sids[i];
} while (i++ < ksidlist->ksl_nsid);
ksid_rele(&ksid1);
return (rc);
}
/*
* smb_kstrdup
*
* Duplicate the given string s.
*/
char *
smb_kstrdup(const char *s, size_t n)
{
char *s2;
ASSERT(s);
ASSERT(n);
s2 = kmem_alloc(n, KM_SLEEP);
(void) strlcpy(s2, s, n);
return (s2);
}
/*
* smb_sync_fsattr
*
* Sync file's attributes with file system.
* The sync takes place based on node->what and node->flags
* values.
*/
int
smb_sync_fsattr(struct smb_request *sr, cred_t *cr, smb_node_t *node)
{
uint32_t what;
int rc = 0;
if (node->flags & NODE_FLAGS_SET_SIZE) {
node->flags &= ~NODE_FLAGS_SET_SIZE;
node->what |= SMB_AT_SIZE;
node->attr.sa_vattr.va_size = node->n_size;
}
if (node->what) {
/*
* This is to prevent another thread from starting
* a setattr should this one go to sleep
*/
what = node->what;
node->what = 0;
node->attr.sa_mask = what;
rc = smb_fsop_setattr(sr, cr, node, &node->attr, &node->attr);
if (rc) {
/* setattr failed, restore the dirty state? */
node->what = what;
} else {
if (what & SMB_AT_ATIME)
node->flags &= ~NODE_FLAGS_SYNCATIME;
}
}
return (rc);
}
/*
* smb_cred_create_privs
*
* Creates a duplicate credential that contains system privileges for
* certain SMB privileges: Backup and Restore.
*
*/
cred_t *
smb_cred_create_privs(cred_t *user_cr, uint32_t privileges)
{
cred_t *cr = NULL;
ASSERT(user_cr != NULL);
if (privileges & (SMB_USER_PRIV_BACKUP | SMB_USER_PRIV_RESTORE))
cr = crdup(user_cr);
if (cr == NULL)
return (NULL);
if (privileges & SMB_USER_PRIV_BACKUP) {
(void) crsetpriv(cr, PRIV_FILE_DAC_READ,
PRIV_FILE_DAC_SEARCH, PRIV_SYS_MOUNT, NULL);
}
if (privileges & SMB_USER_PRIV_RESTORE) {
(void) crsetpriv(cr, PRIV_FILE_DAC_WRITE,
PRIV_FILE_CHOWN, PRIV_FILE_CHOWN_SELF,
PRIV_FILE_DAC_SEARCH, PRIV_FILE_LINK_ANY,
PRIV_FILE_OWNER, PRIV_FILE_SETID, PRIV_SYS_LINKDIR,
PRIV_SYS_MOUNT, NULL);
}
return (cr);
}
/*
* smb_panic
*
* Logs the file name, function name and line number passed in and panics the
* system.
*/
void
smb_panic(char *file, const char *func, int line)
{
cmn_err(CE_PANIC, "%s:%s:%d\n", file, func, line);
}