smbfs_vfsops.c revision 28162916a3f5a19f85a16b70e708bbe9235fb7c0
/*
* Copyright (c) 2000-2001, Boris Popov
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Boris Popov.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: smbfs_vfsops.c,v 1.73.64.1 2005/05/27 02:35:28 lindak Exp $
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/systm.h>
#include <sys/cred.h>
#include <sys/time.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <fs/fs_subr.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/mkdev.h>
#include <sys/mount.h>
#include <sys/statvfs.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/zone.h>
#include <sys/vfs_opreg.h>
#include <sys/mntent.h>
#include <sys/priv.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tndb.h>
#include <inet/ip.h>
#include <netsmb/smb_osdep.h>
#include <netsmb/smb.h>
#include <netsmb/smb_conn.h>
#include <netsmb/smb_subr.h>
#include <netsmb/smb_dev.h>
#include <smbfs/smbfs.h>
#include <smbfs/smbfs_node.h>
#include <smbfs/smbfs_subr.h>
/*
* Local functions definitions.
*/
int smbfsinit(int fstyp, char *name);
void smbfsfini();
static int smbfs_mount_label_policy(vfs_t *, void *, int, cred_t *);
/*
* SMBFS Mount options table for MS_OPTIONSTR
* Note: These are not all the options.
* Some options come in via MS_DATA.
* Others are generic (see vfs.c)
*/
static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
static char *acl_cancel[] = { MNTOPT_NOACL, NULL };
static char *noacl_cancel[] = { MNTOPT_ACL, NULL };
static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
static mntopt_t mntopts[] = {
/*
* option name cancel option default arg flags
* ufs arg flag
*/
{ MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 0 },
{ MNTOPT_NOINTR, nointr_cancel, NULL, 0, 0 },
{ MNTOPT_ACL, acl_cancel, NULL, MO_DEFAULT, 0 },
{ MNTOPT_NOACL, noacl_cancel, NULL, 0, 0 },
{ MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 0 },
{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 0 }
};
static mntopts_t smbfs_mntopts = {
sizeof (mntopts) / sizeof (mntopt_t),
mntopts
};
static const char fs_type_name[FSTYPSZ] = "smbfs";
static vfsdef_t vfw = {
VFSDEF_VERSION,
(char *)fs_type_name,
smbfsinit, /* init routine */
VSW_HASPROTO|VSW_NOTZONESAFE, /* flags */
&smbfs_mntopts /* mount options table prototype */
};
static struct modlfs modlfs = {
&mod_fsops,
"SMBFS filesystem",
&vfw
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlfs, NULL
};
/*
* Mutex to protect the following variables:
* smbfs_major
* smbfs_minor
*/
extern kmutex_t smbfs_minor_lock;
extern int smbfs_major;
extern int smbfs_minor;
/*
* Prevent unloads while we have mounts
*/
uint32_t smbfs_mountcount;
/*
* smbfs vfs operations.
*/
static int smbfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
static int smbfs_unmount(vfs_t *, int, cred_t *);
static int smbfs_root(vfs_t *, vnode_t **);
static int smbfs_statvfs(vfs_t *, statvfs64_t *);
static int smbfs_sync(vfs_t *, short, cred_t *);
static void smbfs_freevfs(vfs_t *);
/*
* Module loading
*/
/*
* This routine is invoked automatically when the kernel module
* containing this routine is loaded. This allows module specific
* initialization to be done when the module is loaded.
*/
int
_init(void)
{
int error;
/*
* Check compiled-in version of "nsmb"
* that we're linked with. (paranoid)
*/
if (nsmb_version != NSMB_VERSION) {
cmn_err(CE_WARN, "_init: nsmb version mismatch");
return (ENOTTY);
}
smbfs_mountcount = 0;
/*
* NFS calls these two in _clntinit
* Easier to follow this way.
*/
if ((error = smbfs_subrinit()) != 0) {
cmn_err(CE_WARN, "_init: smbfs_subrinit failed");
return (error);
}
if ((error = smbfs_vfsinit()) != 0) {
cmn_err(CE_WARN, "_init: smbfs_vfsinit failed");
smbfs_subrfini();
return (error);
}
if ((error = smbfs_clntinit()) != 0) {
cmn_err(CE_WARN, "_init: smbfs_clntinit failed");
smbfs_vfsfini();
smbfs_subrfini();
return (error);
}
error = mod_install((struct modlinkage *)&modlinkage);
return (error);
}
/*
* Free kernel module resources that were allocated in _init
* and remove the linkage information into the kernel
*/
int
_fini(void)
{
int error;
/*
* If a forcedly unmounted instance is still hanging around,
* we cannot allow the module to be unloaded because that would
* cause panics once the VFS framework decides it's time to call
* into VFS_FREEVFS().
*/
if (smbfs_mountcount)
return (EBUSY);
error = mod_remove(&modlinkage);
if (error)
return (error);
/*
* Free the allocated smbnodes, etc.
*/
smbfs_clntfini();
/* NFS calls these two in _clntfini */
smbfs_vfsfini();
smbfs_subrfini();
/*
* Free the ops vectors
*/
smbfsfini();
return (0);
}
/*
* Return information about the module
*/
int
_info(struct modinfo *modinfop)
{
return (mod_info((struct modlinkage *)&modlinkage, modinfop));
}
/*
* Initialize the vfs structure
*/
int smbfsfstyp;
vfsops_t *smbfs_vfsops = NULL;
static const fs_operation_def_t smbfs_vfsops_template[] = {
{ VFSNAME_MOUNT, { .vfs_mount = smbfs_mount } },
{ VFSNAME_UNMOUNT, { .vfs_unmount = smbfs_unmount } },
{ VFSNAME_ROOT, { .vfs_root = smbfs_root } },
{ VFSNAME_STATVFS, { .vfs_statvfs = smbfs_statvfs } },
{ VFSNAME_SYNC, { .vfs_sync = smbfs_sync } },
{ VFSNAME_VGET, { .error = fs_nosys } },
{ VFSNAME_MOUNTROOT, { .error = fs_nosys } },
{ VFSNAME_FREEVFS, { .vfs_freevfs = smbfs_freevfs } },
{ NULL, NULL }
};
int
smbfsinit(int fstyp, char *name)
{
int error;
error = vfs_setfsops(fstyp, smbfs_vfsops_template, &smbfs_vfsops);
if (error != 0) {
zcmn_err(GLOBAL_ZONEID, CE_WARN,
"smbfsinit: bad vfs ops template");
return (error);
}
error = vn_make_ops(name, smbfs_vnodeops_template, &smbfs_vnodeops);
if (error != 0) {
(void) vfs_freevfsops_by_type(fstyp);
zcmn_err(GLOBAL_ZONEID, CE_WARN,
"smbfsinit: bad vnode ops template");
return (error);
}
smbfsfstyp = fstyp;
return (0);
}
void
smbfsfini()
{
if (smbfs_vfsops) {
(void) vfs_freevfsops_by_type(smbfsfstyp);
smbfs_vfsops = NULL;
}
if (smbfs_vnodeops) {
vn_freevnodeops(smbfs_vnodeops);
smbfs_vnodeops = NULL;
}
}
void
smbfs_free_smi(smbmntinfo_t *smi)
{
if (smi == NULL)
return;
if (smi->smi_zone_ref.zref_zone != NULL)
zone_rele_ref(&smi->smi_zone_ref, ZONE_REF_SMBFS);
if (smi->smi_share != NULL)
smb_share_rele(smi->smi_share);
avl_destroy(&smi->smi_hash_avl);
rw_destroy(&smi->smi_hash_lk);
cv_destroy(&smi->smi_statvfs_cv);
mutex_destroy(&smi->smi_lock);
kmem_free(smi, sizeof (smbmntinfo_t));
}
/*
* smbfs mount vfsop
* Set up mount info record and attach it to vfs struct.
*/
static int
smbfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
{
char *data = uap->dataptr;
int error;
smbnode_t *rtnp = NULL; /* root of this fs */
smbmntinfo_t *smi = NULL;
dev_t smbfs_dev;
int version;
int devfd;
zone_t *zone = curproc->p_zone;
zone_t *mntzone = NULL;
smb_share_t *ssp = NULL;
smb_cred_t scred;
int flags, sec;
STRUCT_DECL(smbfs_args, args); /* smbfs mount arguments */
if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
return (error);
if (mvp->v_type != VDIR)
return (ENOTDIR);
/*
* get arguments
*
* uap->datalen might be different from sizeof (args)
* in a compatible situation.
*/
STRUCT_INIT(args, get_udatamodel());
bzero(STRUCT_BUF(args), SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE));
if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen,
SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE))))
return (EFAULT);
/*
* Check mount program version
*/
version = STRUCT_FGET(args, version);
if (version != SMBFS_VERSION) {
cmn_err(CE_WARN, "mount version mismatch:"
" kernel=%d, mount=%d\n",
SMBFS_VERSION, version);
return (EINVAL);
}
/*
* Deal with re-mount requests.
*/
if (uap->flags & MS_REMOUNT) {
cmn_err(CE_WARN, "MS_REMOUNT not implemented");
return (ENOTSUP);
}
/*
* Check for busy
*/
mutex_enter(&mvp->v_lock);
if (!(uap->flags & MS_OVERLAY) &&
(mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
mutex_exit(&mvp->v_lock);
return (EBUSY);
}
mutex_exit(&mvp->v_lock);
/*
* Get the "share" from the netsmb driver (ssp).
* It is returned with a "ref" (hold) for us.
* Release this hold: at errout below, or in
* smbfs_freevfs().
*/
devfd = STRUCT_FGET(args, devfd);
error = smb_dev2share(devfd, &ssp);
if (error) {
cmn_err(CE_WARN, "invalid device handle %d (%d)\n",
devfd, error);
return (error);
}
/*
* Use "goto errout" from here on.
* See: ssp, smi, rtnp, mntzone
*/
/*
* Determine the zone we're being mounted into.
*/
zone_hold(mntzone = zone); /* start with this assumption */
if (getzoneid() == GLOBAL_ZONEID) {
zone_rele(mntzone);
mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
ASSERT(mntzone != NULL);
if (mntzone != zone) {
error = EBUSY;
goto errout;
}
}
/*
* Stop the mount from going any further if the zone is going away.
*/
if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
error = EBUSY;
goto errout;
}
/*
* On a Trusted Extensions client, we may have to force read-only
* for read-down mounts.
*/
if (is_system_labeled()) {
void *addr;
int ipvers = 0;
struct smb_vc *vcp;
vcp = SSTOVC(ssp);
addr = smb_vc_getipaddr(vcp, &ipvers);
error = smbfs_mount_label_policy(vfsp, addr, ipvers, cr);
if (error > 0)
goto errout;
if (error == -1) {
/* change mount to read-only to prevent write-down */
vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
}
}
/* Prevent unload. */
atomic_inc_32(&smbfs_mountcount);
/*
* Create a mount record and link it to the vfs struct.
* No more possiblities for errors from here on.
* Tear-down of this stuff is in smbfs_free_smi()
*
* Compare with NFS: nfsrootvp()
*/
smi = kmem_zalloc(sizeof (*smi), KM_SLEEP);
mutex_init(&smi->smi_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&smi->smi_statvfs_cv, NULL, CV_DEFAULT, NULL);
rw_init(&smi->smi_hash_lk, NULL, RW_DEFAULT, NULL);
smbfs_init_hash_avl(&smi->smi_hash_avl);
smi->smi_share = ssp;
ssp = NULL;
/*
* Convert the anonymous zone hold acquired via zone_hold() above
* into a zone reference.
*/
zone_init_ref(&smi->smi_zone_ref);
zone_hold_ref(mntzone, &smi->smi_zone_ref, ZONE_REF_SMBFS);
zone_rele(mntzone);
mntzone = NULL;
/*
* Initialize option defaults
*/
smi->smi_flags = SMI_LLOCK;
smi->smi_acregmin = SEC2HR(SMBFS_ACREGMIN);
smi->smi_acregmax = SEC2HR(SMBFS_ACREGMAX);
smi->smi_acdirmin = SEC2HR(SMBFS_ACDIRMIN);
smi->smi_acdirmax = SEC2HR(SMBFS_ACDIRMAX);
/*
* All "generic" mount options have already been
* handled in vfs.c:domount() - see mntopts stuff.
* Query generic options using vfs_optionisset().
*/
if (vfs_optionisset(vfsp, MNTOPT_INTR, NULL))
smi->smi_flags |= SMI_INT;
if (vfs_optionisset(vfsp, MNTOPT_ACL, NULL))
smi->smi_flags |= SMI_ACL;
/*
* Get the mount options that come in as smbfs_args,
* starting with args.flags (SMBFS_MF_xxx)
*/
flags = STRUCT_FGET(args, flags);
smi->smi_uid = STRUCT_FGET(args, uid);
smi->smi_gid = STRUCT_FGET(args, gid);
smi->smi_fmode = STRUCT_FGET(args, file_mode) & 0777;
smi->smi_dmode = STRUCT_FGET(args, dir_mode) & 0777;
/*
* Hande the SMBFS_MF_xxx flags.
*/
if (flags & SMBFS_MF_NOAC)
smi->smi_flags |= SMI_NOAC;
if (flags & SMBFS_MF_ACREGMIN) {
sec = STRUCT_FGET(args, acregmin);
if (sec < 0 || sec > SMBFS_ACMINMAX)
sec = SMBFS_ACMINMAX;
smi->smi_acregmin = SEC2HR(sec);
}
if (flags & SMBFS_MF_ACREGMAX) {
sec = STRUCT_FGET(args, acregmax);
if (sec < 0 || sec > SMBFS_ACMAXMAX)
sec = SMBFS_ACMAXMAX;
smi->smi_acregmax = SEC2HR(sec);
}
if (flags & SMBFS_MF_ACDIRMIN) {
sec = STRUCT_FGET(args, acdirmin);
if (sec < 0 || sec > SMBFS_ACMINMAX)
sec = SMBFS_ACMINMAX;
smi->smi_acdirmin = SEC2HR(sec);
}
if (flags & SMBFS_MF_ACDIRMAX) {
sec = STRUCT_FGET(args, acdirmax);
if (sec < 0 || sec > SMBFS_ACMAXMAX)
sec = SMBFS_ACMAXMAX;
smi->smi_acdirmax = SEC2HR(sec);
}
/*
* Get attributes of the remote file system,
* i.e. ACL support, named streams, etc.
*/
smb_credinit(&scred, cr);
error = smbfs_smb_qfsattr(smi->smi_share, &smi->smi_fsa, &scred);
smb_credrele(&scred);
if (error) {
SMBVDEBUG("smbfs_smb_qfsattr error %d\n", error);
}
/*
* We enable XATTR by default (via smbfs_mntopts)
* but if the share does not support named streams,
* force the NOXATTR option (also clears XATTR).
* Caller will set or clear VFS_XATTR after this.
*/
if ((smi->smi_fsattr & FILE_NAMED_STREAMS) == 0)
vfs_setmntopt(vfsp, MNTOPT_NOXATTR, NULL, 0);
/*
* Ditto ACLs (disable if not supported on this share)
*/
if ((smi->smi_fsattr & FILE_PERSISTENT_ACLS) == 0) {
vfs_setmntopt(vfsp, MNTOPT_NOACL, NULL, 0);
smi->smi_flags &= ~SMI_ACL;
}
/*
* Assign a unique device id to the mount
*/
mutex_enter(&smbfs_minor_lock);
do {
smbfs_minor = (smbfs_minor + 1) & MAXMIN32;
smbfs_dev = makedevice(smbfs_major, smbfs_minor);
} while (vfs_devismounted(smbfs_dev));
mutex_exit(&smbfs_minor_lock);
vfsp->vfs_dev = smbfs_dev;
vfs_make_fsid(&vfsp->vfs_fsid, smbfs_dev, smbfsfstyp);
vfsp->vfs_data = (caddr_t)smi;
vfsp->vfs_fstype = smbfsfstyp;
vfsp->vfs_bsize = MAXBSIZE;
vfsp->vfs_bcount = 0;
smi->smi_vfsp = vfsp;
smbfs_zonelist_add(smi); /* undo in smbfs_freevfs */
/* PSARC 2007/227 VFS Feature Registration */
vfs_set_feature(vfsp, VFSFT_XVATTR);
vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
/*
* Create the root vnode, which we need in unmount
* for the call to smbfs_check_table(), etc.
* Release this hold in smbfs_unmount.
*/
rtnp = smbfs_node_findcreate(smi, "\\", 1, NULL, 0, 0,
&smbfs_fattr0);
ASSERT(rtnp != NULL);
rtnp->r_vnode->v_type = VDIR;
rtnp->r_vnode->v_flag |= VROOT;
smi->smi_root = rtnp;
/*
* NFS does other stuff here too:
* async worker threads
* init kstats
*
* End of code from NFS nfsrootvp()
*/
return (0);
errout:
vfsp->vfs_data = NULL;
if (smi != NULL)
smbfs_free_smi(smi);
if (mntzone != NULL)
zone_rele(mntzone);
if (ssp != NULL)
smb_share_rele(ssp);
return (error);
}
/*
* vfs operations
*/
static int
smbfs_unmount(vfs_t *vfsp, int flag, cred_t *cr)
{
smbmntinfo_t *smi;
smbnode_t *rtnp;
smi = VFTOSMI(vfsp);
if (secpolicy_fs_unmount(cr, vfsp) != 0)
return (EPERM);
if ((flag & MS_FORCE) == 0) {
smbfs_rflush(vfsp, cr);
/*
* If there are any active vnodes on this file system,
* (other than the root vnode) then the file system is
* busy and can't be umounted.
*/
if (smbfs_check_table(vfsp, smi->smi_root))
return (EBUSY);
/*
* We normally hold a ref to the root vnode, so
* check for references beyond the one we expect:
* smbmntinfo_t -> smi_root
* Note that NFS does not hold the root vnode.
*/
if (smi->smi_root &&
smi->smi_root->r_vnode->v_count > 1)
return (EBUSY);
}
/*
* common code for both forced and non-forced
*
* Setting VFS_UNMOUNTED prevents new operations.
* Operations already underway may continue,
* but not for long.
*/
vfsp->vfs_flag |= VFS_UNMOUNTED;
/*
* Shutdown any outstanding I/O requests on this share,
* and force a tree disconnect. The share object will
* continue to hang around until smb_share_rele().
* This should also cause most active nodes to be
* released as their operations fail with EIO.
*/
smb_share_kill(smi->smi_share);
/*
* If we hold the root VP (and we normally do)
* then it's safe to release it now.
*/
if (smi->smi_root) {
rtnp = smi->smi_root;
smi->smi_root = NULL;
VN_RELE(rtnp->r_vnode); /* release root vnode */
}
/*
* Remove all nodes from the node hash tables.
* This (indirectly) calls: smbfs_addfree, smbinactive,
* which will try to flush dirty pages, etc. so
* don't destroy the underlying share just yet.
*
* Also, with a forced unmount, some nodes may
* remain active, and those will get cleaned up
* after their last vn_rele.
*/
smbfs_destroy_table(vfsp);
/*
* Delete our kstats...
*
* Doing it here, rather than waiting until
* smbfs_freevfs so these are not visible
* after the unmount.
*/
if (smi->smi_io_kstats) {
kstat_delete(smi->smi_io_kstats);
smi->smi_io_kstats = NULL;
}
if (smi->smi_ro_kstats) {
kstat_delete(smi->smi_ro_kstats);
smi->smi_ro_kstats = NULL;
}
/*
* The rest happens in smbfs_freevfs()
*/
return (0);
}
/*
* find root of smbfs
*/
static int
smbfs_root(vfs_t *vfsp, vnode_t **vpp)
{
smbmntinfo_t *smi;
vnode_t *vp;
smi = VFTOSMI(vfsp);
if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
return (EPERM);
if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO);
/*
* The root vp is created in mount and held
* until unmount, so this is paranoia.
*/
if (smi->smi_root == NULL)
return (EIO);
/* Just take a reference and return it. */
vp = SMBTOV(smi->smi_root);
VN_HOLD(vp);
*vpp = vp;
return (0);
}
/*
* Get file system statistics.
*/
static int
smbfs_statvfs(vfs_t *vfsp, statvfs64_t *sbp)
{
int error;
smbmntinfo_t *smi = VFTOSMI(vfsp);
smb_share_t *ssp = smi->smi_share;
statvfs64_t stvfs;
hrtime_t now;
smb_cred_t scred;
if (curproc->p_zone != smi->smi_zone_ref.zref_zone)
return (EPERM);
if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO);
mutex_enter(&smi->smi_lock);
/*
* Use cached result if still valid.
*/
recheck:
now = gethrtime();
if (now < smi->smi_statfstime) {
error = 0;
goto cache_hit;
}
/*
* FS attributes are stale, so someone
* needs to do an OTW call to get them.
* Serialize here so only one thread
* does the OTW call.
*/
if (smi->smi_status & SM_STATUS_STATFS_BUSY) {
smi->smi_status |= SM_STATUS_STATFS_WANT;
if (!cv_wait_sig(&smi->smi_statvfs_cv, &smi->smi_lock)) {
mutex_exit(&smi->smi_lock);
return (EINTR);
}
/* Hope status is valid now. */
goto recheck;
}
smi->smi_status |= SM_STATUS_STATFS_BUSY;
mutex_exit(&smi->smi_lock);
/*
* Do the OTW call. Note: lock NOT held.
*/
smb_credinit(&scred, NULL);
bzero(&stvfs, sizeof (stvfs));
error = smbfs_smb_statfs(ssp, &stvfs, &scred);
smb_credrele(&scred);
if (error) {
SMBVDEBUG("statfs error=%d\n", error);
} else {
/*
* Set a few things the OTW call didn't get.
*/
stvfs.f_frsize = stvfs.f_bsize;
stvfs.f_favail = stvfs.f_ffree;
stvfs.f_fsid = (unsigned long)vfsp->vfs_fsid.val[0];
bcopy(fs_type_name, stvfs.f_basetype, FSTYPSZ);
stvfs.f_flag = vf_to_stf(vfsp->vfs_flag);
stvfs.f_namemax = smi->smi_fsa.fsa_maxname;
/*
* Save the result, update lifetime
*/
now = gethrtime();
smi->smi_statfstime = now +
(SM_MAX_STATFSTIME * (hrtime_t)NANOSEC);
smi->smi_statvfsbuf = stvfs; /* struct assign! */
}
mutex_enter(&smi->smi_lock);
if (smi->smi_status & SM_STATUS_STATFS_WANT)
cv_broadcast(&smi->smi_statvfs_cv);
smi->smi_status &= ~(SM_STATUS_STATFS_BUSY | SM_STATUS_STATFS_WANT);
/*
* Copy the statvfs data to caller's buf.
* Note: struct assignment
*/
cache_hit:
if (error == 0)
*sbp = smi->smi_statvfsbuf;
mutex_exit(&smi->smi_lock);
return (error);
}
static kmutex_t smbfs_syncbusy;
/*
* Flush dirty smbfs files for file system vfsp.
* If vfsp == NULL, all smbfs files are flushed.
*/
/*ARGSUSED*/
static int
smbfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
{
/*
* Cross-zone calls are OK here, since this translates to a
* VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
*/
if (!(flag & SYNC_ATTR) && mutex_tryenter(&smbfs_syncbusy) != 0) {
smbfs_rflush(vfsp, cr);
mutex_exit(&smbfs_syncbusy);
}
return (0);
}
/*
* Initialization routine for VFS routines. Should only be called once
*/
int
smbfs_vfsinit(void)
{
mutex_init(&smbfs_syncbusy, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/*
* Shutdown routine for VFS routines. Should only be called once
*/
void
smbfs_vfsfini(void)
{
mutex_destroy(&smbfs_syncbusy);
}
void
smbfs_freevfs(vfs_t *vfsp)
{
smbmntinfo_t *smi;
/* free up the resources */
smi = VFTOSMI(vfsp);
/*
* By this time we should have already deleted the
* smi kstats in the unmount code. If they are still around
* something is wrong
*/
ASSERT(smi->smi_io_kstats == NULL);
smbfs_zonelist_remove(smi);
smbfs_free_smi(smi);
/*
* Allow _fini() to succeed now, if so desired.
*/
atomic_dec_32(&smbfs_mountcount);
}
/*
* smbfs_mount_label_policy:
* Determine whether the mount is allowed according to MAC check,
* by comparing (where appropriate) label of the remote server
* against the label of the zone being mounted into.
*
* Returns:
* 0 : access allowed
* -1 : read-only access allowed (i.e., read-down)
* >0 : error code, such as EACCES
*
* NB:
* NFS supports Cipso labels by parsing the vfs_resource
* to see what the Solaris server global zone has shared.
* We can't support that for CIFS since resource names
* contain share names, not paths.
*/
static int
smbfs_mount_label_policy(vfs_t *vfsp, void *ipaddr, int addr_type, cred_t *cr)
{
bslabel_t *server_sl, *mntlabel;
zone_t *mntzone = NULL;
ts_label_t *zlabel;
tsol_tpc_t *tp;
ts_label_t *tsl = NULL;
int retv;
/*
* Get the zone's label. Each zone on a labeled system has a label.
*/
mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
zlabel = mntzone->zone_slabel;
ASSERT(zlabel != NULL);
label_hold(zlabel);
retv = EACCES; /* assume the worst */
/*
* Next, get the assigned label of the remote server.
*/
tp = find_tpc(ipaddr, addr_type, B_FALSE);
if (tp == NULL)
goto out; /* error getting host entry */
if (tp->tpc_tp.tp_doi != zlabel->tsl_doi)
goto rel_tpc; /* invalid domain */
if ((tp->tpc_tp.host_type != UNLABELED))
goto rel_tpc; /* invalid hosttype */
server_sl = &tp->tpc_tp.tp_def_label;
mntlabel = label2bslabel(zlabel);
/*
* Now compare labels to complete the MAC check. If the labels
* are equal or if the requestor is in the global zone and has
* NET_MAC_AWARE, then allow read-write access. (Except for
* mounts into the global zone itself; restrict these to
* read-only.)
*
* If the requestor is in some other zone, but his label
* dominates the server, then allow read-down.
*
* Otherwise, access is denied.
*/
if (blequal(mntlabel, server_sl) ||
(crgetzoneid(cr) == GLOBAL_ZONEID &&
getpflags(NET_MAC_AWARE, cr) != 0)) {
if ((mntzone == global_zone) ||
!blequal(mntlabel, server_sl))
retv = -1; /* read-only */
else
retv = 0; /* access OK */
} else if (bldominates(mntlabel, server_sl)) {
retv = -1; /* read-only */
} else {
retv = EACCES;
}
if (tsl != NULL)
label_rele(tsl);
rel_tpc:
/*LINTED*/
TPC_RELE(tp);
out:
if (mntzone)
zone_rele(mntzone);
label_rele(zlabel);
return (retv);
}