nfs4_rnode.c revision 2937862b1ec2370b30761b9dd687c49b4d43e60f
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
* All Rights Reserved
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/time.h>
#include <sys/buf.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <sys/tiuser.h>
#include <sys/swap.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/kstat.h>
#include <sys/cmn_err.h>
#include <sys/vtrace.h>
#include <sys/session.h>
#include <sys/dnlc.h>
#include <sys/bitmap.h>
#include <sys/acl.h>
#include <sys/ddi.h>
#include <sys/pathname.h>
#include <sys/flock.h>
#include <sys/dirent.h>
#include <sys/flock.h>
#include <sys/callb.h>
#include <sys/sdt.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/auth.h>
#include <rpc/rpcsec_gss.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
#include <nfs/nfs_acl.h>
#include <nfs/nfs4.h>
#include <nfs/rnode4.h>
#include <nfs/nfs4_clnt.h>
/*
* The hash queues for the access to active and cached rnodes
* are organized as doubly linked lists. A reader/writer lock
* for each hash bucket is used to control access and to synchronize
* lookups, additions, and deletions from the hash queue.
*
* The rnode freelist is organized as a doubly linked list with
* a head pointer. Additions and deletions are synchronized via
* a single mutex.
*
* In order to add an rnode to the free list, it must be hashed into
* a hash queue and the exclusive lock to the hash queue be held.
* If an rnode is not hashed into a hash queue, then it is destroyed
* because it represents no valuable information that can be reused
* about the file. The exclusive lock to the hash queue must be
* held in order to prevent a lookup in the hash queue from finding
* the rnode and using it and assuming that the rnode is not on the
* freelist. The lookup in the hash queue will have the hash queue
* locked, either exclusive or shared.
*
* The vnode reference count for each rnode is not allowed to drop
* below 1. This prevents external entities, such as the VM
* subsystem, from acquiring references to vnodes already on the
* freelist and then trying to place them back on the freelist
* when their reference is released. This means that the when an
* rnode is looked up in the hash queues, then either the rnode
* is removed from the freelist and that reference is transferred to
* the new reference or the vnode reference count must be incremented
* accordingly. The mutex for the freelist must be held in order to
* accurately test to see if the rnode is on the freelist or not.
* The hash queue lock might be held shared and it is possible that
* two different threads may race to remove the rnode from the
* freelist. This race can be resolved by holding the mutex for the
* freelist. Please note that the mutex for the freelist does not
* need to be held if the rnode is not on the freelist. It can not be
* placed on the freelist due to the requirement that the thread
* putting the rnode on the freelist must hold the exclusive lock
* to the hash queue and the thread doing the lookup in the hash
* queue is holding either a shared or exclusive lock to the hash
* queue.
*
* The lock ordering is:
*
* hash bucket lock -> vnode lock
* hash bucket lock -> freelist lock -> r_statelock
*/
r4hashq_t *rtable4;
static kmutex_t rp4freelist_lock;
static rnode4_t *rp4freelist = NULL;
static long rnode4_new = 0;
int rtable4size;
static int rtable4mask;
static struct kmem_cache *rnode4_cache;
static int rnode4_hashlen = 4;
static void r4inactive(rnode4_t *, cred_t *);
static vnode_t *make_rnode4(nfs4_sharedfh_t *, r4hashq_t *, struct vfs *,
struct vnodeops *,
int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int,
cred_t *),
int *, cred_t *);
static void rp4_rmfree(rnode4_t *);
int nfs4_free_data_reclaim(rnode4_t *);
static int nfs4_active_data_reclaim(rnode4_t *);
static int nfs4_free_reclaim(void);
static int nfs4_active_reclaim(void);
static int nfs4_rnode_reclaim(void);
static void nfs4_reclaim(void *);
static int isrootfh(nfs4_sharedfh_t *, rnode4_t *);
static void uninit_rnode4(rnode4_t *);
static void destroy_rnode4(rnode4_t *);
static void r4_stub_set(rnode4_t *, nfs4_stub_type_t);
#ifdef DEBUG
static int r4_check_for_dups = 0; /* Flag to enable dup rnode detection. */
static int nfs4_rnode_debug = 0;
/* if nonzero, kmem_cache_free() rnodes rather than place on freelist */
static int nfs4_rnode_nofreelist = 0;
/* give messages on colliding shared filehandles */
static void r4_dup_check(rnode4_t *, vfs_t *);
#endif
/*
* If the vnode has pages, run the list and check for any that are
* still dangling. We call this routine before putting an rnode on
* the free list.
*/
static int
nfs4_dross_pages(vnode_t *vp)
{
page_t *pp;
kmutex_t *vphm;
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
if ((pp = vp->v_pages) != NULL) {
do {
if (pp->p_fsdata != C_NOCOMMIT) {
mutex_exit(vphm);
return (1);
}
} while ((pp = pp->p_vpnext) != vp->v_pages);
}
mutex_exit(vphm);
return (0);
}
/*
* Flush any pages left on this rnode.
*/
static void
r4flushpages(rnode4_t *rp, cred_t *cr)
{
vnode_t *vp;
int error;
/*
* Before freeing anything, wait until all asynchronous
* activity is done on this rnode. This will allow all
* asynchronous read ahead and write behind i/o's to
* finish.
*/
mutex_enter(&rp->r_statelock);
while (rp->r_count > 0)
cv_wait(&rp->r_cv, &rp->r_statelock);
mutex_exit(&rp->r_statelock);
/*
* Flush and invalidate all pages associated with the vnode.
*/
vp = RTOV4(rp);
if (nfs4_has_pages(vp)) {
ASSERT(vp->v_type != VCHR);
if ((rp->r_flags & R4DIRTY) && !rp->r_error) {
error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr, NULL);
if (error && (error == ENOSPC || error == EDQUOT)) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
}
}
/*
* Free the resources associated with an rnode.
*/
static void
r4inactive(rnode4_t *rp, cred_t *cr)
{
vnode_t *vp;
char *contents;
int size;
vsecattr_t *vsp;
vnode_t *xattr;
r4flushpages(rp, cr);
vp = RTOV4(rp);
/*
* Free any held caches which may be
* associated with this rnode.
*/
mutex_enter(&rp->r_statelock);
contents = rp->r_symlink.contents;
size = rp->r_symlink.size;
rp->r_symlink.contents = NULL;
vsp = rp->r_secattr;
rp->r_secattr = NULL;
xattr = rp->r_xattr_dir;
rp->r_xattr_dir = NULL;
mutex_exit(&rp->r_statelock);
/*
* Free the access cache entries.
*/
(void) nfs4_access_purge_rp(rp);
/*
* Free the readdir cache entries.
*/
nfs4_purge_rddir_cache(vp);
/*
* Free the symbolic link cache.
*/
if (contents != NULL) {
kmem_free((void *)contents, size);
}
/*
* Free any cached ACL.
*/
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
/*
* Release the cached xattr_dir
*/
if (xattr != NULL)
VN_RELE(xattr);
}
/*
* We have seen a case that the fh passed in is for "." which
* should be a VROOT node, however, the fh is different from the
* root fh stored in the mntinfo4_t. The invalid fh might be
* from a misbehaved server and will panic the client system at
* a later time. To avoid the panic, we drop the bad fh, use
* the root fh from mntinfo4_t, and print an error message
* for attention.
*/
nfs4_sharedfh_t *
badrootfh_check(nfs4_sharedfh_t *fh, nfs4_fname_t *nm, mntinfo4_t *mi,
int *wasbad)
{
char *s;
*wasbad = 0;
s = fn_name(nm);
ASSERT(strcmp(s, "..") != 0);
if ((s[0] == '.' && s[1] == '\0') && fh &&
!SFH4_SAME(mi->mi_rootfh, fh)) {
#ifdef DEBUG
nfs4_fhandle_t fhandle;
zcmn_err(mi->mi_zone->zone_id, CE_WARN,
"Server %s returns a different "
"root filehandle for the path %s:",
mi->mi_curr_serv->sv_hostname,
mi->mi_curr_serv->sv_path);
/* print the bad fh */
fhandle.fh_len = fh->sfh_fh.nfs_fh4_len;
bcopy(fh->sfh_fh.nfs_fh4_val, fhandle.fh_buf,
fhandle.fh_len);
nfs4_printfhandle(&fhandle);
/* print mi_rootfh */
fhandle.fh_len = mi->mi_rootfh->sfh_fh.nfs_fh4_len;
bcopy(mi->mi_rootfh->sfh_fh.nfs_fh4_val, fhandle.fh_buf,
fhandle.fh_len);
nfs4_printfhandle(&fhandle);
#endif
/* use mi_rootfh instead; fh will be rele by the caller */
fh = mi->mi_rootfh;
*wasbad = 1;
}
kmem_free(s, MAXNAMELEN);
return (fh);
}
void
r4_do_attrcache(vnode_t *vp, nfs4_ga_res_t *garp, int newnode,
hrtime_t t, cred_t *cr, int index)
{
int is_stub;
vattr_t *attr;
/*
* Don't add to attrcache if time overflow, but
* no need to check because either attr is null or the time
* values in it were processed by nfs4_time_ntov(), which checks
* for time overflows.
*/
attr = garp ? &garp->n4g_va : NULL;
if (attr) {
if (!newnode) {
rw_exit(&rtable4[index].r_lock);
#ifdef DEBUG
if (vp->v_type != attr->va_type &&
vp->v_type != VNON && attr->va_type != VNON) {
zcmn_err(VTOMI4(vp)->mi_zone->zone_id, CE_WARN,
"makenfs4node: type (%d) doesn't "
"match type of found node at %p (%d)",
attr->va_type, (void *)vp, vp->v_type);
}
#endif
nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
} else {
rnode4_t *rp = VTOR4(vp);
vp->v_type = attr->va_type;
vp->v_rdev = attr->va_rdev;
/*
* Turn this object into a "stub" object if we
* crossed an underlying server fs boundary.
* To make this check, during mount we save the
* fsid of the server object being mounted.
* Here we compare this object's server fsid
* with the fsid we saved at mount. If they
* are different, we crossed server fs boundary.
*
* The stub type is set (or not) at rnode
* creation time and it never changes for life
* of the rnode.
*
* The stub type is also set during RO failover,
* nfs4_remap_file().
*
* This stub will be for a mirror-mount.
*
* We don't bother with taking r_state_lock to
* set the stub type because this is a new rnode
* and we're holding the hash bucket r_lock RW_WRITER.
* No other thread could have obtained access
* to this rnode.
*/
is_stub = 0;
if (garp->n4g_fsid_valid) {
fattr4_fsid ga_fsid = garp->n4g_fsid;
servinfo4_t *svp = rp->r_server;
rp->r_srv_fsid = ga_fsid;
(void) nfs_rw_enter_sig(&svp->sv_lock,
RW_READER, 0);
if (!FATTR4_FSID_EQ(&ga_fsid, &svp->sv_fsid))
is_stub = 1;
nfs_rw_exit(&svp->sv_lock);
}
if (is_stub)
r4_stub_mirrormount(rp);
else
r4_stub_none(rp);
/* Can not cache partial attr */
if (attr->va_mask == AT_ALL)
nfs4_attrcache_noinval(vp, garp, t);
else
PURGE_ATTRCACHE4(vp);
rw_exit(&rtable4[index].r_lock);
}
} else {
if (newnode) {
PURGE_ATTRCACHE4(vp);
}
rw_exit(&rtable4[index].r_lock);
}
}
/*
* Find or create an rnode based primarily on filehandle. To be
* used when dvp (vnode for parent directory) is not available;
* otherwise, makenfs4node() should be used.
*
* The nfs4_fname_t argument *npp is consumed and nulled out.
*/
vnode_t *
makenfs4node_by_fh(nfs4_sharedfh_t *sfh, nfs4_sharedfh_t *psfh,
nfs4_fname_t **npp, nfs4_ga_res_t *garp,
mntinfo4_t *mi, cred_t *cr, hrtime_t t)
{
vfs_t *vfsp = mi->mi_vfsp;
int newnode = 0;
vnode_t *vp;
rnode4_t *rp;
svnode_t *svp;
nfs4_fname_t *name, *svpname;
int index;
ASSERT(npp && *npp);
name = *npp;
*npp = NULL;
index = rtable4hash(sfh);
rw_enter(&rtable4[index].r_lock, RW_READER);
vp = make_rnode4(sfh, &rtable4[index], vfsp,
nfs4_vnodeops, nfs4_putapage, &newnode, cr);
svp = VTOSV(vp);
rp = VTOR4(vp);
if (newnode) {
svp->sv_forw = svp->sv_back = svp;
svp->sv_name = name;
if (psfh != NULL)
sfh4_hold(psfh);
svp->sv_dfh = psfh;
} else {
/*
* It is possible that due to a server
* side rename fnames have changed.
* update the fname here.
*/
mutex_enter(&rp->r_svlock);
svpname = svp->sv_name;
if (svp->sv_name != name) {
svp->sv_name = name;
mutex_exit(&rp->r_svlock);
fn_rele(&svpname);
} else {
mutex_exit(&rp->r_svlock);
fn_rele(&name);
}
}
ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock));
r4_do_attrcache(vp, garp, newnode, t, cr, index);
ASSERT(rw_owner(&rtable4[index].r_lock) != curthread);
return (vp);
}
/*
* Find or create a vnode for the given filehandle, filesystem, parent, and
* name. The reference to nm is consumed, so the caller must first do an
* fn_hold() if it wants to continue using nm after this call.
*/
vnode_t *
makenfs4node(nfs4_sharedfh_t *fh, nfs4_ga_res_t *garp, struct vfs *vfsp,
hrtime_t t, cred_t *cr, vnode_t *dvp, nfs4_fname_t *nm)
{
vnode_t *vp;
int newnode;
int index;
mntinfo4_t *mi = VFTOMI4(vfsp);
int had_badfh = 0;
rnode4_t *rp;
ASSERT(dvp != NULL);
fh = badrootfh_check(fh, nm, mi, &had_badfh);
index = rtable4hash(fh);
rw_enter(&rtable4[index].r_lock, RW_READER);
/*
* Note: make_rnode4() may upgrade the hash bucket lock to exclusive.
*/
vp = make_rnode4(fh, &rtable4[index], vfsp, nfs4_vnodeops,
nfs4_putapage, &newnode, cr);
rp = VTOR4(vp);
sv_activate(&vp, dvp, &nm, newnode);
if (dvp->v_flag & V_XATTRDIR) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4ISXATTR;
mutex_exit(&rp->r_statelock);
}
/* if getting a bad file handle, do not cache the attributes. */
if (had_badfh) {
rw_exit(&rtable4[index].r_lock);
return (vp);
}
ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock));
r4_do_attrcache(vp, garp, newnode, t, cr, index);
ASSERT(rw_owner(&rtable4[index].r_lock) != curthread);
return (vp);
}
/*
* Hash on address of filehandle object.
* XXX totally untuned.
*/
int
rtable4hash(nfs4_sharedfh_t *fh)
{
return (((uintptr_t)fh / sizeof (*fh)) & rtable4mask);
}
/*
* Find or create the vnode for the given filehandle and filesystem.
* *newnode is set to zero if the vnode already existed; non-zero if it had
* to be created.
*
* Note: make_rnode4() may upgrade the hash bucket lock to exclusive.
*/
static vnode_t *
make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp,
struct vnodeops *vops,
int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *),
int *newnode, cred_t *cr)
{
rnode4_t *rp;
rnode4_t *trp;
vnode_t *vp;
mntinfo4_t *mi;
ASSERT(RW_READ_HELD(&rhtp->r_lock));
mi = VFTOMI4(vfsp);
start:
if ((rp = r4find(rhtp, fh, vfsp)) != NULL) {
vp = RTOV4(rp);
*newnode = 0;
return (vp);
}
rw_exit(&rhtp->r_lock);
mutex_enter(&rp4freelist_lock);
if (rp4freelist != NULL && rnode4_new >= nrnode) {
rp = rp4freelist;
rp4_rmfree(rp);
mutex_exit(&rp4freelist_lock);
vp = RTOV4(rp);
if (rp->r_flags & R4HASHED) {
rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
rw_exit(&rp->r_hashq->r_lock);
rw_enter(&rhtp->r_lock, RW_READER);
goto start;
}
mutex_exit(&vp->v_lock);
rp4_rmhash_locked(rp);
rw_exit(&rp->r_hashq->r_lock);
}
r4inactive(rp, cr);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
rw_enter(&rhtp->r_lock, RW_READER);
goto start;
}
mutex_exit(&vp->v_lock);
vn_invalid(vp);
/*
* destroy old locks before bzero'ing and
* recreating the locks below.
*/
uninit_rnode4(rp);
/*
* Make sure that if rnode is recycled then
* VFS count is decremented properly before
* reuse.
*/
VFS_RELE(vp->v_vfsp);
vn_reinit(vp);
} else {
vnode_t *new_vp;
mutex_exit(&rp4freelist_lock);
rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP);
new_vp = vn_alloc(KM_SLEEP);
atomic_add_long((ulong_t *)&rnode4_new, 1);
#ifdef DEBUG
clstat4_debug.nrnode.value.ui64++;
#endif
vp = new_vp;
}
bzero(rp, sizeof (*rp));
rp->r_vnode = vp;
nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL);
nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL);
mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL);
rp->created_v4 = 0;
list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t),
offsetof(nfs4_open_stream_t, os_node));
rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head;
rp->r_lo_head.lo_next_rnode = &rp->r_lo_head;
cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL);
cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL);
rp->r_flags = R4READDIRWATTR;
rp->r_fh = fh;
rp->r_hashq = rhtp;
sfh4_hold(rp->r_fh);
rp->r_server = mi->mi_curr_serv;
rp->r_deleg_type = OPEN_DELEGATE_NONE;
rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE;
nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL);
rddir4_cache_create(rp);
rp->r_putapage = putapage;
vn_setops(vp, vops);
vp->v_data = (caddr_t)rp;
vp->v_vfsp = vfsp;
VFS_HOLD(vfsp);
vp->v_type = VNON;
if (isrootfh(fh, rp))
vp->v_flag = VROOT;
vn_exists(vp);
/*
* There is a race condition if someone else
* alloc's the rnode while no locks are held, so we
* check again and recover if found.
*/
rw_enter(&rhtp->r_lock, RW_WRITER);
if ((trp = r4find(rhtp, fh, vfsp)) != NULL) {
vp = RTOV4(trp);
*newnode = 0;
rw_exit(&rhtp->r_lock);
rp4_addfree(rp, cr);
rw_enter(&rhtp->r_lock, RW_READER);
return (vp);
}
rp4_addhash(rp);
*newnode = 1;
return (vp);
}
static void
uninit_rnode4(rnode4_t *rp)
{
vnode_t *vp = RTOV4(rp);
ASSERT(rp != NULL);
ASSERT(vp != NULL);
ASSERT(vp->v_count == 1);
ASSERT(rp->r_count == 0);
ASSERT(rp->r_mapcnt == 0);
if (rp->r_flags & R4LODANGLERS) {
nfs4_flush_lock_owners(rp);
}
ASSERT(rp->r_lo_head.lo_next_rnode == &rp->r_lo_head);
ASSERT(rp->r_lo_head.lo_prev_rnode == &rp->r_lo_head);
ASSERT(!(rp->r_flags & R4HASHED));
ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL);
nfs4_clear_open_streams(rp);
list_destroy(&rp->r_open_streams);
/*
* Destroy the rddir cache first since we need to grab the r_statelock.
*/
mutex_enter(&rp->r_statelock);
rddir4_cache_destroy(rp);
mutex_exit(&rp->r_statelock);
sv_uninit(&rp->r_svnode);
sfh4_rele(&rp->r_fh);
nfs_rw_destroy(&rp->r_rwlock);
nfs_rw_destroy(&rp->r_lkserlock);
mutex_destroy(&rp->r_statelock);
mutex_destroy(&rp->r_statev4_lock);
mutex_destroy(&rp->r_os_lock);
cv_destroy(&rp->r_cv);
cv_destroy(&rp->r_commit.c_cv);
nfs_rw_destroy(&rp->r_deleg_recall_lock);
if (rp->r_flags & R4DELMAPLIST)
list_destroy(&rp->r_indelmap);
}
/*
* Put an rnode on the free list.
*
* Rnodes which were allocated above and beyond the normal limit
* are immediately freed.
*/
void
rp4_addfree(rnode4_t *rp, cred_t *cr)
{
vnode_t *vp;
vnode_t *xattr;
struct vfs *vfsp;
vp = RTOV4(rp);
ASSERT(vp->v_count >= 1);
ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL);
/*
* If we have too many rnodes allocated and there are no
* references to this rnode, or if the rnode is no longer
* accessible by it does not reside in the hash queues,
* or if an i/o error occurred while writing to the file,
* then just free it instead of putting it on the rnode
* freelist.
*/
vfsp = vp->v_vfsp;
if (((rnode4_new > nrnode || !(rp->r_flags & R4HASHED) ||
#ifdef DEBUG
(nfs4_rnode_nofreelist != 0) ||
#endif
rp->r_error || (rp->r_flags & R4RECOVERR) ||
(vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) {
if (rp->r_flags & R4HASHED) {
rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
rw_exit(&rp->r_hashq->r_lock);
return;
}
mutex_exit(&vp->v_lock);
rp4_rmhash_locked(rp);
rw_exit(&rp->r_hashq->r_lock);
}
/*
* Make sure we don't have a delegation on this rnode
* before destroying it.
*/
if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
(void) nfs4delegreturn(rp,
NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN);
}
r4inactive(rp, cr);
/*
* Recheck the vnode reference count. We need to
* make sure that another reference has not been
* acquired while we were not holding v_lock. The
* rnode is not in the rnode hash queues; one
* way for a reference to have been acquired
* is for a VOP_PUTPAGE because the rnode was marked
* with R4DIRTY or for a modified page. This
* reference may have been acquired before our call
* to r4inactive. The i/o may have been completed,
* thus allowing r4inactive to complete, but the
* reference to the vnode may not have been released
* yet. In any case, the rnode can not be destroyed
* until the other references to this vnode have been
* released. The other references will take care of
* either destroying the rnode or placing it on the
* rnode freelist. If there are no other references,
* then the rnode may be safely destroyed.
*/
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
return;
}
mutex_exit(&vp->v_lock);
destroy_rnode4(rp);
return;
}
/*
* Lock the hash queue and then recheck the reference count
* to ensure that no other threads have acquired a reference
* to indicate that the rnode should not be placed on the
* freelist. If another reference has been acquired, then
* just release this one and let the other thread complete
* the processing of adding this rnode to the freelist.
*/
again:
rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
rw_exit(&rp->r_hashq->r_lock);
return;
}
mutex_exit(&vp->v_lock);
/*
* Make sure we don't put an rnode with a delegation
* on the free list.
*/
if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
rw_exit(&rp->r_hashq->r_lock);
(void) nfs4delegreturn(rp,
NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN);
goto again;
}
/*
* Now that we have the hash queue lock, and we know there
* are not anymore references on the vnode, check to make
* sure there aren't any open streams still on the rnode.
* If so, drop the hash queue lock, remove the open streams,
* and recheck the v_count.
*/
mutex_enter(&rp->r_os_lock);
if (list_head(&rp->r_open_streams) != NULL) {
mutex_exit(&rp->r_os_lock);
rw_exit(&rp->r_hashq->r_lock);
if (nfs_zone() != VTOMI4(vp)->mi_zone)
nfs4_clear_open_streams(rp);
else
(void) nfs4close_all(vp, cr);
goto again;
}
mutex_exit(&rp->r_os_lock);
/*
* Before we put it on the freelist, make sure there are no pages.
* If there are, flush and commit of all of the dirty and
* uncommitted pages, assuming the file system isn't read only.
*/
if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) {
rw_exit(&rp->r_hashq->r_lock);
r4flushpages(rp, cr);
goto again;
}
/*
* Before we put it on the freelist, make sure there is no
* active xattr directory cached, the freelist will not
* have its entries r4inactive'd if there is still an active
* rnode, thus nothing in the freelist can hold another
* rnode active.
*/
xattr = rp->r_xattr_dir;
rp->r_xattr_dir = NULL;
/*
* If there is no cached data or metadata for this file, then
* put the rnode on the front of the freelist so that it will
* be reused before other rnodes which may have cached data or
* metadata associated with them.
*/
mutex_enter(&rp4freelist_lock);
if (rp4freelist == NULL) {
rp->r_freef = rp;
rp->r_freeb = rp;
rp4freelist = rp;
} else {
rp->r_freef = rp4freelist;
rp->r_freeb = rp4freelist->r_freeb;
rp4freelist->r_freeb->r_freef = rp;
rp4freelist->r_freeb = rp;
if (!nfs4_has_pages(vp) && rp->r_dir == NULL &&
rp->r_symlink.contents == NULL && rp->r_secattr == NULL)
rp4freelist = rp;
}
mutex_exit(&rp4freelist_lock);
rw_exit(&rp->r_hashq->r_lock);
if (xattr)
VN_RELE(xattr);
}
/*
* Remove an rnode from the free list.
*
* The caller must be holding rp4freelist_lock and the rnode
* must be on the freelist.
*/
static void
rp4_rmfree(rnode4_t *rp)
{
ASSERT(MUTEX_HELD(&rp4freelist_lock));
ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL);
if (rp == rp4freelist) {
rp4freelist = rp->r_freef;
if (rp == rp4freelist)
rp4freelist = NULL;
}
rp->r_freeb->r_freef = rp->r_freef;
rp->r_freef->r_freeb = rp->r_freeb;
rp->r_freef = rp->r_freeb = NULL;
}
/*
* Put a rnode in the hash table.
*
* The caller must be holding the exclusive hash queue lock
*/
void
rp4_addhash(rnode4_t *rp)
{
ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock));
ASSERT(!(rp->r_flags & R4HASHED));
#ifdef DEBUG
r4_dup_check(rp, RTOV4(rp)->v_vfsp);
#endif
rp->r_hashf = rp->r_hashq->r_hashf;
rp->r_hashq->r_hashf = rp;
rp->r_hashb = (rnode4_t *)rp->r_hashq;
rp->r_hashf->r_hashb = rp;
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4HASHED;
mutex_exit(&rp->r_statelock);
}
/*
* Remove a rnode from the hash table.
*
* The caller must be holding the hash queue lock.
*/
void
rp4_rmhash_locked(rnode4_t *rp)
{
ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock));
ASSERT(rp->r_flags & R4HASHED);
rp->r_hashb->r_hashf = rp->r_hashf;
rp->r_hashf->r_hashb = rp->r_hashb;
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4HASHED;
mutex_exit(&rp->r_statelock);
}
/*
* Remove a rnode from the hash table.
*
* The caller must not be holding the hash queue lock.
*/
void
rp4_rmhash(rnode4_t *rp)
{
rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
rp4_rmhash_locked(rp);
rw_exit(&rp->r_hashq->r_lock);
}
/*
* Lookup a rnode by fhandle. Ignores rnodes that had failed recovery.
* Returns NULL if no match. If an rnode is returned, the reference count
* on the master vnode is incremented.
*
* The caller must be holding the hash queue lock, either shared or exclusive.
*/
rnode4_t *
r4find(r4hashq_t *rhtp, nfs4_sharedfh_t *fh, struct vfs *vfsp)
{
rnode4_t *rp;
vnode_t *vp;
ASSERT(RW_LOCK_HELD(&rhtp->r_lock));
for (rp = rhtp->r_hashf; rp != (rnode4_t *)rhtp; rp = rp->r_hashf) {
vp = RTOV4(rp);
if (vp->v_vfsp == vfsp && SFH4_SAME(rp->r_fh, fh)) {
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
mutex_exit(&rp->r_statelock);
continue;
}
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
r4_dup_check(rp, vfsp);
#endif
if (rp->r_freef != NULL) {
mutex_enter(&rp4freelist_lock);
/*
* If the rnode is on the freelist,
* then remove it and use that reference
* as the new reference. Otherwise,
* need to increment the reference count.
*/
if (rp->r_freef != NULL) {
rp4_rmfree(rp);
mutex_exit(&rp4freelist_lock);
} else {
mutex_exit(&rp4freelist_lock);
VN_HOLD(vp);
}
} else
VN_HOLD(vp);
/*
* if root vnode, set v_flag to indicate that
*/
if (isrootfh(fh, rp)) {
if (!(vp->v_flag & VROOT)) {
mutex_enter(&vp->v_lock);
vp->v_flag |= VROOT;
mutex_exit(&vp->v_lock);
}
}
return (rp);
}
}
return (NULL);
}
/*
* Lookup an rnode by fhandle. Just a wrapper for r4find()
* that assumes the caller hasn't already got the lock
* on the hash bucket.
*/
rnode4_t *
r4find_unlocked(nfs4_sharedfh_t *fh, struct vfs *vfsp)
{
rnode4_t *rp;
int index;
index = rtable4hash(fh);
rw_enter(&rtable4[index].r_lock, RW_READER);
rp = r4find(&rtable4[index], fh, vfsp);
rw_exit(&rtable4[index].r_lock);
return (rp);
}
/*
* Return >0 if there is a active vnode belonging to this vfs in the
* rtable4 cache.
*
* Several of these checks are done without holding the usual
* locks. This is safe because destroy_rtable(), rp_addfree(),
* etc. will redo the necessary checks before actually destroying
* any rnodes.
*/
int
check_rtable4(struct vfs *vfsp)
{
rnode4_t *rp;
vnode_t *vp;
int busy = NFSV4_RTABLE4_OK;
int index;
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
vp = RTOV4(rp);
if (vp->v_vfsp == vfsp) {
if (rp->r_freef == NULL) {
busy = NFSV4_RTABLE4_NOT_FREE_LIST;
} else if (nfs4_has_pages(vp) &&
(rp->r_flags & R4DIRTY)) {
busy = NFSV4_RTABLE4_DIRTY_PAGES;
} else if (rp->r_count > 0) {
busy = NFSV4_RTABLE4_POS_R_COUNT;
}
if (busy != NFSV4_RTABLE4_OK) {
#ifdef DEBUG
char *path;
path = fn_path(rp->r_svnode.sv_name);
DTRACE_NFSV4_3(rnode__e__debug,
int, busy, char *, path,
rnode4_t *, rp);
kmem_free(path, strlen(path)+1);
#endif
rw_exit(&rtable4[index].r_lock);
return (busy);
}
}
}
rw_exit(&rtable4[index].r_lock);
}
return (busy);
}
/*
* Destroy inactive vnodes from the hash queues which
* belong to this vfs. All of the vnodes should be inactive.
* It is essential that we destroy all rnodes in case of
* forced unmount as well as in normal unmount case.
*/
void
destroy_rtable4(struct vfs *vfsp, cred_t *cr)
{
int index;
vnode_t *vp;
rnode4_t *rp, *r_hashf, *rlist;
rlist = NULL;
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_WRITER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = r_hashf) {
/* save the hash pointer before destroying */
r_hashf = rp->r_hashf;
vp = RTOV4(rp);
if (vp->v_vfsp == vfsp) {
mutex_enter(&rp4freelist_lock);
if (rp->r_freef != NULL) {
rp4_rmfree(rp);
mutex_exit(&rp4freelist_lock);
rp4_rmhash_locked(rp);
rp->r_hashf = rlist;
rlist = rp;
} else
mutex_exit(&rp4freelist_lock);
}
}
rw_exit(&rtable4[index].r_lock);
}
for (rp = rlist; rp != NULL; rp = r_hashf) {
r_hashf = rp->r_hashf;
/*
* This call to rp4_addfree will end up destroying the
* rnode, but in a safe way with the appropriate set
* of checks done.
*/
rp4_addfree(rp, cr);
}
}
/*
* This routine destroys all the resources of an rnode
* and finally the rnode itself.
*/
static void
destroy_rnode4(rnode4_t *rp)
{
vnode_t *vp;
vfs_t *vfsp;
ASSERT(rp->r_deleg_type == OPEN_DELEGATE_NONE);
vp = RTOV4(rp);
vfsp = vp->v_vfsp;
uninit_rnode4(rp);
atomic_add_long((ulong_t *)&rnode4_new, -1);
#ifdef DEBUG
clstat4_debug.nrnode.value.ui64--;
#endif
kmem_cache_free(rnode4_cache, rp);
vn_invalid(vp);
vn_free(vp);
VFS_RELE(vfsp);
}
/*
* Invalidate the attributes on all rnodes forcing the next getattr
* to go over the wire. Used to flush stale uid and gid mappings.
* Maybe done on a per vfsp, or all rnodes (vfsp == NULL)
*/
void
nfs4_rnode_invalidate(struct vfs *vfsp)
{
int index;
rnode4_t *rp;
vnode_t *vp;
/*
* Walk the hash queues looking for rnodes.
*/
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
vp = RTOV4(rp);
if (vfsp != NULL && vp->v_vfsp != vfsp)
continue;
if (!mutex_tryenter(&rp->r_statelock))
continue;
/*
* Expire the attributes by resetting the change
* and attr timeout.
*/
rp->r_change = 0;
PURGE_ATTRCACHE4_LOCKED(rp);
mutex_exit(&rp->r_statelock);
}
rw_exit(&rtable4[index].r_lock);
}
}
/*
* Flush all vnodes in this (or every) vfs.
* Used by nfs_sync and by nfs_unmount.
*/
void
r4flush(struct vfs *vfsp, cred_t *cr)
{
int index;
rnode4_t *rp;
vnode_t *vp, **vplist;
long num, cnt;
/*
* Check to see whether there is anything to do.
*/
num = rnode4_new;
if (num == 0)
return;
/*
* Allocate a slot for all currently active rnodes on the
* supposition that they all may need flushing.
*/
vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP);
cnt = 0;
/*
* Walk the hash queues looking for rnodes with page
* lists associated with them. Make a list of these
* files.
*/
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
vp = RTOV4(rp);
/*
* Don't bother sync'ing a vp if it
* is part of virtual swap device or
* if VFS is read-only
*/
if (IS_SWAPVP(vp) || vn_is_readonly(vp))
continue;
/*
* If flushing all mounted file systems or
* the vnode belongs to this vfs, has pages
* and is marked as either dirty or mmap'd,
* hold and add this vnode to the list of
* vnodes to flush.
*/
if ((vfsp == NULL || vp->v_vfsp == vfsp) &&
nfs4_has_pages(vp) &&
((rp->r_flags & R4DIRTY) || rp->r_mapcnt > 0)) {
VN_HOLD(vp);
vplist[cnt++] = vp;
if (cnt == num) {
rw_exit(&rtable4[index].r_lock);
goto toomany;
}
}
}
rw_exit(&rtable4[index].r_lock);
}
toomany:
/*
* Flush and release all of the files on the list.
*/
while (cnt-- > 0) {
vp = vplist[cnt];
(void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr, NULL);
VN_RELE(vp);
}
/*
* Free the space allocated to hold the list.
*/
kmem_free(vplist, num * sizeof (*vplist));
}
int
nfs4_free_data_reclaim(rnode4_t *rp)
{
char *contents;
vnode_t *xattr;
int size;
vsecattr_t *vsp;
int freed;
bool_t rdc = FALSE;
/*
* Free any held caches which may
* be associated with this rnode.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_dir != NULL)
rdc = TRUE;
contents = rp->r_symlink.contents;
size = rp->r_symlink.size;
rp->r_symlink.contents = NULL;
vsp = rp->r_secattr;
rp->r_secattr = NULL;
xattr = rp->r_xattr_dir;
rp->r_xattr_dir = NULL;
mutex_exit(&rp->r_statelock);
/*
* Free the access cache entries.
*/
freed = nfs4_access_purge_rp(rp);
if (rdc == FALSE && contents == NULL && vsp == NULL && xattr == NULL)
return (freed);
/*
* Free the readdir cache entries, incompletely if we can't block.
*/
nfs4_purge_rddir_cache(RTOV4(rp));
/*
* Free the symbolic link cache.
*/
if (contents != NULL) {
kmem_free((void *)contents, size);
}
/*
* Free any cached ACL.
*/
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
/*
* Release the xattr directory vnode
*/
if (xattr != NULL)
VN_RELE(xattr);
return (1);
}
static int
nfs4_active_data_reclaim(rnode4_t *rp)
{
char *contents;
vnode_t *xattr = NULL;
int size;
vsecattr_t *vsp;
int freed;
bool_t rdc = FALSE;
/*
* Free any held credentials and caches which
* may be associated with this rnode.
*/
if (!mutex_tryenter(&rp->r_statelock))
return (0);
contents = rp->r_symlink.contents;
size = rp->r_symlink.size;
rp->r_symlink.contents = NULL;
vsp = rp->r_secattr;
rp->r_secattr = NULL;
if (rp->r_dir != NULL)
rdc = TRUE;
/*
* To avoid a deadlock, do not free r_xattr_dir cache if it is hashed
* on the same r_hashq queue. We are not mandated to free all caches.
* VN_RELE(rp->r_xattr_dir) will be done sometime later - e.g. when the
* rnode 'rp' is freed or put on the free list.
*/
if (rp->r_xattr_dir && VTOR4(rp->r_xattr_dir)->r_hashq != rp->r_hashq) {
xattr = rp->r_xattr_dir;
rp->r_xattr_dir = NULL;
}
mutex_exit(&rp->r_statelock);
/*
* Free the access cache entries.
*/
freed = nfs4_access_purge_rp(rp);
if (contents == NULL && vsp == NULL && rdc == FALSE && xattr == NULL)
return (freed);
/*
* Free the symbolic link cache.
*/
if (contents != NULL) {
kmem_free((void *)contents, size);
}
/*
* Free any cached ACL.
*/
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
nfs4_purge_rddir_cache(RTOV4(rp));
/*
* Release the xattr directory vnode
*/
if (xattr != NULL)
VN_RELE(xattr);
return (1);
}
static int
nfs4_free_reclaim(void)
{
int freed;
rnode4_t *rp;
#ifdef DEBUG
clstat4_debug.f_reclaim.value.ui64++;
#endif
freed = 0;
mutex_enter(&rp4freelist_lock);
rp = rp4freelist;
if (rp != NULL) {
do {
if (nfs4_free_data_reclaim(rp))
freed = 1;
} while ((rp = rp->r_freef) != rp4freelist);
}
mutex_exit(&rp4freelist_lock);
return (freed);
}
static int
nfs4_active_reclaim(void)
{
int freed;
int index;
rnode4_t *rp;
#ifdef DEBUG
clstat4_debug.a_reclaim.value.ui64++;
#endif
freed = 0;
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
if (nfs4_active_data_reclaim(rp))
freed = 1;
}
rw_exit(&rtable4[index].r_lock);
}
return (freed);
}
static int
nfs4_rnode_reclaim(void)
{
int freed;
rnode4_t *rp;
vnode_t *vp;
#ifdef DEBUG
clstat4_debug.r_reclaim.value.ui64++;
#endif
freed = 0;
mutex_enter(&rp4freelist_lock);
while ((rp = rp4freelist) != NULL) {
rp4_rmfree(rp);
mutex_exit(&rp4freelist_lock);
if (rp->r_flags & R4HASHED) {
vp = RTOV4(rp);
rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
vp->v_count--;
mutex_exit(&vp->v_lock);
rw_exit(&rp->r_hashq->r_lock);
mutex_enter(&rp4freelist_lock);
continue;
}
mutex_exit(&vp->v_lock);
rp4_rmhash_locked(rp);
rw_exit(&rp->r_hashq->r_lock);
}
/*
* This call to rp_addfree will end up destroying the
* rnode, but in a safe way with the appropriate set
* of checks done.
*/
rp4_addfree(rp, CRED());
mutex_enter(&rp4freelist_lock);
}
mutex_exit(&rp4freelist_lock);
return (freed);
}
/*ARGSUSED*/
static void
nfs4_reclaim(void *cdrarg)
{
#ifdef DEBUG
clstat4_debug.reclaim.value.ui64++;
#endif
if (nfs4_free_reclaim())
return;
if (nfs4_active_reclaim())
return;
(void) nfs4_rnode_reclaim();
}
/*
* Returns the clientid4 to use for the given mntinfo4. Note that the
* clientid can change if the caller drops mi_recovlock.
*/
clientid4
mi2clientid(mntinfo4_t *mi)
{
nfs4_server_t *sp;
clientid4 clientid = 0;
/* this locks down sp if it is found */
sp = find_nfs4_server(mi);
if (sp != NULL) {
clientid = sp->clientid;
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
}
return (clientid);
}
/*
* Return the current lease time for the server associated with the given
* file. Note that the lease time could change immediately after this
* call.
*/
time_t
r2lease_time(rnode4_t *rp)
{
nfs4_server_t *sp;
time_t lease_time;
mntinfo4_t *mi = VTOMI4(RTOV4(rp));
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
/* this locks down sp if it is found */
sp = find_nfs4_server(VTOMI4(RTOV4(rp)));
if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
if (sp != NULL) {
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
}
nfs_rw_exit(&mi->mi_recovlock);
return (1); /* 1 second */
}
ASSERT(sp != NULL);
lease_time = sp->s_lease_time;
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
nfs_rw_exit(&mi->mi_recovlock);
return (lease_time);
}
/*
* Return a list with information about all the known open instances for
* a filesystem. The caller must call r4releopenlist() when done with the
* list.
*
* We are safe at looking at os_valid and os_pending_close across dropping
* the 'os_sync_lock' to count up the number of open streams and then
* allocate memory for the osp list due to:
* -Looking at os_pending_close is safe since this routine is
* only called via recovery, and os_pending_close can only be set via
* a non-recovery operation (which are all blocked when recovery
* is active).
*
* -Examining os_valid is safe since non-recovery operations, which
* could potentially switch os_valid to 0, are blocked (via
* nfs4_start_fop) and recovery is single-threaded per mntinfo4_t
* (which means we are the only recovery thread potentially acting
* on this open stream).
*/
nfs4_opinst_t *
r4mkopenlist(mntinfo4_t *mi)
{
nfs4_opinst_t *reopenlist, *rep;
rnode4_t *rp;
vnode_t *vp;
vfs_t *vfsp = mi->mi_vfsp;
int numosp;
nfs4_open_stream_t *osp;
int index;
open_delegation_type4 dtype;
int hold_vnode;
reopenlist = NULL;
for (index = 0; index < rtable4size; index++) {
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
vp = RTOV4(rp);
if (vp->v_vfsp != vfsp)
continue;
hold_vnode = 0;
mutex_enter(&rp->r_os_lock);
/* Count the number of valid open_streams of the file */
numosp = 0;
for (osp = list_head(&rp->r_open_streams); osp != NULL;
osp = list_next(&rp->r_open_streams, osp)) {
mutex_enter(&osp->os_sync_lock);
if (osp->os_valid && !osp->os_pending_close)
numosp++;
mutex_exit(&osp->os_sync_lock);
}
/* Fill in the valid open streams per vp */
if (numosp > 0) {
int j;
hold_vnode = 1;
/*
* Add a new open instance to the list
*/
rep = kmem_zalloc(sizeof (*reopenlist),
KM_SLEEP);
rep->re_next = reopenlist;
reopenlist = rep;
rep->re_vp = vp;
rep->re_osp = kmem_zalloc(
numosp * sizeof (*(rep->re_osp)),
KM_SLEEP);
rep->re_numosp = numosp;
j = 0;
for (osp = list_head(&rp->r_open_streams);
osp != NULL;
osp = list_next(&rp->r_open_streams, osp)) {
mutex_enter(&osp->os_sync_lock);
if (osp->os_valid &&
!osp->os_pending_close) {
osp->os_ref_count++;
rep->re_osp[j] = osp;
j++;
}
mutex_exit(&osp->os_sync_lock);
}
/*
* Assuming valid osp(s) stays valid between
* the time obtaining j and numosp.
*/
ASSERT(j == numosp);
}
mutex_exit(&rp->r_os_lock);
/* do this here to keep v_lock > r_os_lock */
if (hold_vnode)
VN_HOLD(vp);
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
/*
* If this rnode holds a delegation,
* but if there are no valid open streams,
* then just discard the delegation
* without doing delegreturn.
*/
if (numosp > 0)
rp->r_deleg_needs_recovery =
rp->r_deleg_type;
}
/* Save the delegation type for use outside the lock */
dtype = rp->r_deleg_type;
mutex_exit(&rp->r_statev4_lock);
/*
* If we have a delegation then get rid of it.
* We've set rp->r_deleg_needs_recovery so we have
* enough information to recover.
*/
if (dtype != OPEN_DELEGATE_NONE) {
(void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
}
}
rw_exit(&rtable4[index].r_lock);
}
return (reopenlist);
}
/*
* Release the list of open instance references.
*/
void
r4releopenlist(nfs4_opinst_t *reopenp)
{
nfs4_opinst_t *rep, *next;
int i;
for (rep = reopenp; rep; rep = next) {
next = rep->re_next;
for (i = 0; i < rep->re_numosp; i++)
open_stream_rele(rep->re_osp[i], VTOR4(rep->re_vp));
VN_RELE(rep->re_vp);
kmem_free(rep->re_osp,
rep->re_numosp * sizeof (*(rep->re_osp)));
kmem_free(rep, sizeof (*rep));
}
}
int
nfs4_rnode_init(void)
{
ulong_t nrnode4_max;
int i;
/*
* Compute the size of the rnode4 hash table
*/
if (nrnode <= 0)
nrnode = ncsize;
nrnode4_max =
(ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode4));
if (nrnode > nrnode4_max || (nrnode == 0 && ncsize == 0)) {
zcmn_err(GLOBAL_ZONEID, CE_NOTE,
"setting nrnode to max value of %ld", nrnode4_max);
nrnode = nrnode4_max;
}
rtable4size = 1 << highbit(nrnode / rnode4_hashlen);
rtable4mask = rtable4size - 1;
/*
* Allocate and initialize the hash buckets
*/
rtable4 = kmem_alloc(rtable4size * sizeof (*rtable4), KM_SLEEP);
for (i = 0; i < rtable4size; i++) {
rtable4[i].r_hashf = (rnode4_t *)(&rtable4[i]);
rtable4[i].r_hashb = (rnode4_t *)(&rtable4[i]);
rw_init(&rtable4[i].r_lock, NULL, RW_DEFAULT, NULL);
}
rnode4_cache = kmem_cache_create("rnode4_cache", sizeof (rnode4_t),
0, NULL, NULL, nfs4_reclaim, NULL, NULL, 0);
return (0);
}
int
nfs4_rnode_fini(void)
{
int i;
/*
* Deallocate the rnode hash queues
*/
kmem_cache_destroy(rnode4_cache);
for (i = 0; i < rtable4size; i++)
rw_destroy(&rtable4[i].r_lock);
kmem_free(rtable4, rtable4size * sizeof (*rtable4));
return (0);
}
/*
* Return non-zero if the given filehandle refers to the root filehandle
* for the given rnode.
*/
static int
isrootfh(nfs4_sharedfh_t *fh, rnode4_t *rp)
{
int isroot;
isroot = 0;
if (SFH4_SAME(VTOMI4(RTOV4(rp))->mi_rootfh, fh))
isroot = 1;
return (isroot);
}
/*
* The r4_stub_* routines assume that the rnode is newly activated, and
* that the caller either holds the hash bucket r_lock for this rnode as
* RW_WRITER, or holds r_statelock.
*/
static void
r4_stub_set(rnode4_t *rp, nfs4_stub_type_t type)
{
vnode_t *vp = RTOV4(rp);
krwlock_t *hash_lock = &rp->r_hashq->r_lock;
ASSERT(RW_WRITE_HELD(hash_lock) || MUTEX_HELD(&rp->r_statelock));
rp->r_stub_type = type;
/*
* Safely switch this vnode to the trigger vnodeops.
*
* Currently, we don't ever switch a trigger vnode back to using
* "regular" v4 vnodeops. NFS4_STUB_NONE is only used to note that
* a new v4 object is not a trigger, and it will already have the
* correct v4 vnodeops by default. So, no "else" case required here.
*/
if (type != NFS4_STUB_NONE)
vn_setops(vp, nfs4_trigger_vnodeops);
}
void
r4_stub_mirrormount(rnode4_t *rp)
{
r4_stub_set(rp, NFS4_STUB_MIRRORMOUNT);
}
void
r4_stub_none(rnode4_t *rp)
{
r4_stub_set(rp, NFS4_STUB_NONE);
}
#ifdef DEBUG
/*
* Look in the rnode table for other rnodes that have the same filehandle.
* Assume the lock is held for the hash chain of checkrp
*/
static void
r4_dup_check(rnode4_t *checkrp, vfs_t *vfsp)
{
rnode4_t *rp;
vnode_t *tvp;
nfs4_fhandle_t fh, fh2;
int index;
if (!r4_check_for_dups)
return;
ASSERT(RW_LOCK_HELD(&checkrp->r_hashq->r_lock));
sfh4_copyval(checkrp->r_fh, &fh);
for (index = 0; index < rtable4size; index++) {
if (&rtable4[index] != checkrp->r_hashq)
rw_enter(&rtable4[index].r_lock, RW_READER);
for (rp = rtable4[index].r_hashf;
rp != (rnode4_t *)(&rtable4[index]);
rp = rp->r_hashf) {
if (rp == checkrp)
continue;
tvp = RTOV4(rp);
if (tvp->v_vfsp != vfsp)
continue;
sfh4_copyval(rp->r_fh, &fh2);
if (nfs4cmpfhandle(&fh, &fh2) == 0) {
cmn_err(CE_PANIC, "rnodes with same fs, fh "
"(%p, %p)", (void *)checkrp, (void *)rp);
}
}
if (&rtable4[index] != checkrp->r_hashq)
rw_exit(&rtable4[index].r_lock);
}
}
#endif /* DEBUG */