nfs3_vnops.c revision da6c28aaf62fa55f0fdb8004aa40f88f23bf53f0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
* All rights reserved.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/cred.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/file.h>
#include <sys/filio.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/mman.h>
#include <sys/pathname.h>
#include <sys/dirent.h>
#include <sys/debug.h>
#include <sys/vmsystm.h>
#include <sys/fcntl.h>
#include <sys/flock.h>
#include <sys/swap.h>
#include <sys/errno.h>
#include <sys/strsubr.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/pathconf.h>
#include <sys/utsname.h>
#include <sys/dnlc.h>
#include <sys/acl.h>
#include <sys/systeminfo.h>
#include <sys/atomic.h>
#include <sys/policy.h>
#include <sys/sdt.h>
#include <rpc/types.h>
#include <rpc/auth.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
#include <nfs/rnode.h>
#include <nfs/nfs_acl.h>
#include <nfs/lm.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/seg.h>
#include <vm/seg_map.h>
#include <vm/seg_kpm.h>
#include <vm/seg_vn.h>
#include <fs/fs_subr.h>
#include <sys/ddi.h>
static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
cred_t *);
static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
stable_how *);
static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
static int nfs3_accessx(void *, int, cred_t *);
static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *, int);
static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *);
static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
caller_context_t *);
static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
static int nfs3_bio(struct buf *, stable_how *, cred_t *);
static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
page_t *[], size_t, struct seg *, caddr_t,
enum seg_rw, cred_t *);
static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
cred_t *);
static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
int, cred_t *);
static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
int, cred_t *);
static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
static void nfs3_set_mod(vnode_t *);
static void nfs3_get_commit(vnode_t *);
static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
#if 0 /* unused */
#ifdef DEBUG
static int nfs3_no_uncommitted_pages(vnode_t *);
#endif
#endif /* unused */
static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *);
static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
cred_t *);
static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
cred_t *);
static void nfs3_delmap_callback(struct as *, void *, uint_t);
/*
* Error flags used to pass information about certain special errors
* which need to be handled specially.
*/
#define NFS_EOF -98
#define NFS_VERF_MISMATCH -97
/* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
#define ALIGN64(x, ptr, sz) \
x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
if (x) { \
x = sizeof (uint64_t) - (x); \
sz -= (x); \
ptr += (x); \
}
/*
* These are the vnode ops routines which implement the vnode interface to
* the networked file system. These routines just take their parameters,
* make them look networkish by putting the right info into interface structs,
* and then calling the appropriate remote routine(s) to do the work.
*
* Note on directory name lookup cacheing: If we detect a stale fhandle,
* we purge the directory cache relative to that vnode. This way, the
* user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
* more details on rnode locking.
*/
static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
caller_context_t *);
static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
caller_context_t *);
static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
caller_context_t *);
static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
caller_context_t *);
static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
caller_context_t *);
static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
caller_context_t *);
static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
static int nfs3_readlink(vnode_t *, struct uio *, cred_t *,
caller_context_t *);
static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
static int nfs3_lookup(vnode_t *, char *, vnode_t **,
struct pathname *, int, vnode_t *, cred_t *,
caller_context_t *, int *, pathname_t *);
static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *, int, caller_context_t *,
vsecattr_t *);
static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
int);
static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
caller_context_t *, int);
static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
caller_context_t *, int);
static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
cred_t *, caller_context_t *, int, vsecattr_t *);
static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
caller_context_t *, int);
static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
cred_t *, caller_context_t *, int);
static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
caller_context_t *, int);
static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
page_t *[], size_t, struct seg *, caddr_t,
enum seg_rw, cred_t *, caller_context_t *);
static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
caller_context_t *);
static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
struct flk_callback *, cred_t *, caller_context_t *);
static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
cred_t *, caller_context_t *);
static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
caller_context_t *);
static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
cred_t *, caller_context_t *);
static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
caller_context_t *);
static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
caller_context_t *);
static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
caller_context_t *);
static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
caller_context_t *);
struct vnodeops *nfs3_vnodeops;
const fs_operation_def_t nfs3_vnodeops_template[] = {
VOPNAME_OPEN, { .vop_open = nfs3_open },
VOPNAME_CLOSE, { .vop_close = nfs3_close },
VOPNAME_READ, { .vop_read = nfs3_read },
VOPNAME_WRITE, { .vop_write = nfs3_write },
VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl },
VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr },
VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr },
VOPNAME_ACCESS, { .vop_access = nfs3_access },
VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup },
VOPNAME_CREATE, { .vop_create = nfs3_create },
VOPNAME_REMOVE, { .vop_remove = nfs3_remove },
VOPNAME_LINK, { .vop_link = nfs3_link },
VOPNAME_RENAME, { .vop_rename = nfs3_rename },
VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir },
VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir },
VOPNAME_READDIR, { .vop_readdir = nfs3_readdir },
VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink },
VOPNAME_READLINK, { .vop_readlink = nfs3_readlink },
VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync },
VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive },
VOPNAME_FID, { .vop_fid = nfs3_fid },
VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock },
VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock },
VOPNAME_SEEK, { .vop_seek = nfs3_seek },
VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock },
VOPNAME_SPACE, { .vop_space = nfs3_space },
VOPNAME_REALVP, { .vop_realvp = nfs3_realvp },
VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage },
VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage },
VOPNAME_MAP, { .vop_map = nfs3_map },
VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap },
VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap },
/* no separate nfs3_dump */
VOPNAME_DUMP, { .vop_dump = nfs_dump },
VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf },
VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio },
VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose },
VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr },
VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr },
VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock },
VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
NULL, NULL
};
/*
* XXX: This is referenced in modstubs.s
*/
struct vnodeops *
nfs3_getvnodeops(void)
{
return (nfs3_vnodeops);
}
/* ARGSUSED */
static int
nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
{
int error;
struct vattr va;
rnode_t *rp;
vnode_t *vp;
vp = *vpp;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
mutex_enter(&rp->r_statelock);
if (rp->r_cred == NULL) {
crhold(cr);
rp->r_cred = cr;
}
mutex_exit(&rp->r_statelock);
/*
* If there is no cached data or if close-to-open
* consistency checking is turned off, we can avoid
* the over the wire getattr. Otherwise, if the
* file system is mounted readonly, then just verify
* the caches are up to date using the normal mechanism.
* Else, if the file is not mmap'd, then just mark
* the attributes as timed out. They will be refreshed
* and the caches validated prior to being used.
* Else, the file system is mounted writeable so
* force an over the wire GETATTR in order to ensure
* that all cached data is valid.
*/
if (vp->v_count > 1 ||
((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
!(VTOMI(vp)->mi_flags & MI_NOCTO))) {
if (vn_is_readonly(vp))
error = nfs3_validate_caches(vp, cr);
else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
PURGE_ATTRCACHE(vp);
error = 0;
} else {
va.va_mask = AT_ALL;
error = nfs3_getattr_otw(vp, &va, cr);
}
} else
error = 0;
return (error);
}
/* ARGSUSED */
static int
nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
caller_context_t *ct)
{
rnode_t *rp;
int error;
struct vattr va;
/*
* zone_enter(2) prevents processes from changing zones with NFS files
* open; if we happen to get here from the wrong zone we can't do
* anything over the wire.
*/
if (VTOMI(vp)->mi_zone != nfs_zone()) {
/*
* We could attempt to clean up locks, except we're sure
* that the current process didn't acquire any locks on
* the file: any attempt to lock a file belong to another zone
* will fail, and one can't lock an NFS file and then change
* zones, as that fails too.
*
* Returning an error here is the sane thing to do. A
* subsequent call to VN_RELE() which translates to a
* nfs3_inactive() will clean up state: if the zone of the
* vnode's origin is still alive and kicking, an async worker
* thread will handle the request (from the correct zone), and
* everything (minus the commit and final nfs3_getattr_otw()
* call) should be OK. If the zone is going away
* nfs_async_inactive() will throw away cached pages inline.
*/
return (EIO);
}
/*
* If we are using local locking for this filesystem, then
* release all of the SYSV style record locks. Otherwise,
* we are doing network locking and we need to release all
* of the network locks. All of the locks held by this
* process on this file are released no matter what the
* incoming reference count is.
*/
if (VTOMI(vp)->mi_flags & MI_LLOCK) {
cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
cleanshares(vp, ttoproc(curthread)->p_pid);
} else
nfs_lockrelease(vp, flag, offset, cr);
if (count > 1)
return (0);
/*
* If the file has been `unlinked', then purge the
* DNLC so that this vnode will get reycled quicker
* and the .nfs* file on the server will get removed.
*/
rp = VTOR(vp);
if (rp->r_unldvp != NULL)
dnlc_purge_vp(vp);
/*
* If the file was open for write and there are pages,
* then if the file system was mounted using the "no-close-
* to-open" semantics, then start an asynchronous flush
* of the all of the pages in the file.
* else the file system was not mounted using the "no-close-
* to-open" semantics, then do a synchronous flush and
* commit of all of the dirty and uncommitted pages.
*
* The asynchronous flush of the pages in the "nocto" path
* mostly just associates a cred pointer with the rnode so
* writes which happen later will have a better chance of
* working. It also starts the data being written to the
* server, but without unnecessarily delaying the application.
*/
if ((flag & FWRITE) && vn_has_cached_data(vp)) {
if (VTOMI(vp)->mi_flags & MI_NOCTO) {
error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
cr, ct);
if (error == EAGAIN)
error = 0;
} else
error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
if (!error) {
mutex_enter(&rp->r_statelock);
error = rp->r_error;
rp->r_error = 0;
mutex_exit(&rp->r_statelock);
}
} else {
mutex_enter(&rp->r_statelock);
error = rp->r_error;
rp->r_error = 0;
mutex_exit(&rp->r_statelock);
}
/*
* If RWRITEATTR is set, then issue an over the wire GETATTR to
* refresh the attribute cache with a set of attributes which
* weren't returned from a WRITE. This will enable the close-
* to-open processing to work.
*/
if (rp->r_flags & RWRITEATTR)
(void) nfs3_getattr_otw(vp, &va, cr);
return (error);
}
/* ARGSUSED */
static int
nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
{
mntinfo_t *mi;
READ3args args;
READ3uiores res;
int tsize;
offset_t offset;
ssize_t count;
int error;
int douprintf;
failinfo_t fi;
char *sv_hostname;
mi = VTOMI(vp);
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
sv_hostname = VTOR(vp)->r_server->sv_hostname;
douprintf = 1;
args.file = *VTOFH3(vp);
fi.vp = vp;
fi.fhp = (caddr_t)&args.file;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
res.uiop = uiop;
offset = uiop->uio_loffset;
count = uiop->uio_resid;
do {
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
do {
tsize = MIN(mi->mi_tsize, count);
args.offset = (offset3)offset;
args.count = (count3)tsize;
res.size = (uint_t)tsize;
error = rfs3call(mi, NFSPROC3_READ,
xdr_READ3args, (caddr_t)&args,
xdr_READ3uiores, (caddr_t)&res, cr,
&douprintf, &res.status, 0, &fi);
} while (error == ENFS_TRYAGAIN);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (error)
return (error);
error = geterrno3(res.status);
if (error)
return (error);
if (res.count != res.size) {
zcmn_err(getzoneid(), CE_WARN,
"nfs3_directio_read: server %s returned incorrect amount",
sv_hostname);
return (EIO);
}
count -= res.count;
offset += res.count;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
mutex_exit(&mi->mi_lock);
}
lwp_stat_update(LWP_STAT_INBLK, 1);
} while (count && !res.eof);
return (0);
}
/* ARGSUSED */
static int
nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)
{
rnode_t *rp;
u_offset_t off;
offset_t diff;
int on;
size_t n;
caddr_t base;
uint_t flags;
int error = 0;
mntinfo_t *mi;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (vp->v_type != VREG)
return (EISDIR);
if (uiop->uio_resid == 0)
return (0);
if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
return (EINVAL);
/*
* Bypass VM if caching has been disabled (e.g., locking) or if
* using client-side direct I/O and the file is not mmap'd and
* there are no cached pages.
*/
if ((vp->v_flag & VNOCACHE) ||
(((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) {
return (nfs3_directio_read(vp, uiop, cr));
}
do {
off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
n = MIN(MAXBSIZE - on, uiop->uio_resid);
error = nfs3_validate_caches(vp, cr);
if (error)
break;
mutex_enter(&rp->r_statelock);
diff = rp->r_size - uiop->uio_loffset;
mutex_exit(&rp->r_statelock);
if (diff <= 0)
break;
if (diff < n)
n = (size_t)diff;
if (vpm_enable) {
/*
* Copy data.
*/
error = vpm_data_copy(vp, off + on, n, uiop,
1, NULL, 0, S_READ);
} else {
base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
S_READ);
error = uiomove(base + on, n, UIO_READ, uiop);
}
if (!error) {
/*
* If read a whole block or read to eof,
* won't need this buffer again soon.
*/
mutex_enter(&rp->r_statelock);
if (n + on == MAXBSIZE ||
uiop->uio_loffset == rp->r_size)
flags = SM_DONTNEED;
else
flags = 0;
mutex_exit(&rp->r_statelock);
if (vpm_enable) {
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
} else {
if (vpm_enable) {
(void) vpm_sync_pages(vp, off, n, 0);
} else {
(void) segmap_release(segkmap, base, 0);
}
}
} while (!error && uiop->uio_resid > 0);
return (error);
}
/* ARGSUSED */
static int
nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)
{
rlim64_t limit = uiop->uio_llimit;
rnode_t *rp;
u_offset_t off;
caddr_t base;
uint_t flags;
int remainder;
size_t n;
int on;
int error;
int resid;
offset_t offset;
mntinfo_t *mi;
uint_t bsize;
rp = VTOR(vp);
if (vp->v_type != VREG)
return (EISDIR);
mi = VTOMI(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (uiop->uio_resid == 0)
return (0);
if (ioflag & FAPPEND) {
struct vattr va;
/*
* Must serialize if appending.
*/
if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
nfs_rw_exit(&rp->r_rwlock);
if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
INTR(vp)))
return (EINTR);
}
va.va_mask = AT_SIZE;
error = nfs3getattr(vp, &va, cr);
if (error)
return (error);
uiop->uio_loffset = va.va_size;
}
offset = uiop->uio_loffset + uiop->uio_resid;
if (uiop->uio_loffset < 0 || offset < 0)
return (EINVAL);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
/*
* Check to make sure that the process will not exceed
* its limit on file size. It is okay to write up to
* the limit, but not beyond. Thus, the write which
* reaches the limit will be short and the next write
* will return an error.
*/
remainder = 0;
if (offset > limit) {
remainder = offset - limit;
uiop->uio_resid = limit - uiop->uio_loffset;
if (uiop->uio_resid <= 0) {
proc_t *p = ttoproc(curthread);
uiop->uio_resid += remainder;
mutex_enter(&p->p_lock);
(void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
p->p_rctls, p, RCA_UNSAFE_SIGINFO);
mutex_exit(&p->p_lock);
return (EFBIG);
}
}
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
return (EINTR);
/*
* Bypass VM if caching has been disabled (e.g., locking) or if
* using client-side direct I/O and the file is not mmap'd and
* there are no cached pages.
*/
if ((vp->v_flag & VNOCACHE) ||
(((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) {
size_t bufsize;
int count;
u_offset_t org_offset;
stable_how stab_comm;
nfs3_fwrite:
if (rp->r_flags & RSTALE) {
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
error = rp->r_error;
goto bottom;
}
bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
base = kmem_alloc(bufsize, KM_SLEEP);
do {
if (ioflag & FDSYNC)
stab_comm = DATA_SYNC;
else
stab_comm = FILE_SYNC;
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
count = MIN(uiop->uio_resid, bufsize);
org_offset = uiop->uio_loffset;
error = uiomove(base, count, UIO_WRITE, uiop);
if (!error) {
error = nfs3write(vp, base, org_offset,
count, cr, &stab_comm);
}
} while (!error && uiop->uio_resid > 0);
kmem_free(base, bufsize);
goto bottom;
}
bsize = vp->v_vfsp->vfs_bsize;
do {
off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
n = MIN(MAXBSIZE - on, uiop->uio_resid);
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
if (rp->r_flags & RSTALE) {
error = rp->r_error;
break;
}
/*
* Don't create dirty pages faster than they
* can be cleaned so that the system doesn't
* get imbalanced. If the async queue is
* maxed out, then wait for it to drain before
* creating more dirty pages. Also, wait for
* any threads doing pagewalks in the vop_getattr
* entry points so that they don't block for
* long periods.
*/
mutex_enter(&rp->r_statelock);
while ((mi->mi_max_threads != 0 &&
rp->r_awcount > 2 * mi->mi_max_threads) ||
rp->r_gcount > 0)
cv_wait(&rp->r_cv, &rp->r_statelock);
mutex_exit(&rp->r_statelock);
if (vpm_enable) {
/*
* It will use kpm mappings, so no need to
* pass an address.
*/
error = writerp(rp, NULL, n, uiop, 0);
} else {
if (segmap_kpm) {
int pon = uiop->uio_loffset & PAGEOFFSET;
size_t pn = MIN(PAGESIZE - pon,
uiop->uio_resid);
int pagecreate;
mutex_enter(&rp->r_statelock);
pagecreate = (pon == 0) && (pn == PAGESIZE ||
uiop->uio_loffset + pn >= rp->r_size);
mutex_exit(&rp->r_statelock);
base = segmap_getmapflt(segkmap, vp, off + on,
pn, !pagecreate, S_WRITE);
error = writerp(rp, base + pon, n, uiop,
pagecreate);
} else {
base = segmap_getmapflt(segkmap, vp, off + on,
n, 0, S_READ);
error = writerp(rp, base + on, n, uiop, 0);
}
}
if (!error) {
if (mi->mi_flags & MI_NOAC)
flags = SM_WRITE;
else if ((uiop->uio_loffset % bsize) == 0 ||
IS_SWAPVP(vp)) {
/*
* Have written a whole block.
* Start an asynchronous write
* and mark the buffer to
* indicate that it won't be
* needed again soon.
*/
flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
} else
flags = 0;
if ((ioflag & (FSYNC|FDSYNC)) ||
(rp->r_flags & ROUTOFSPACE)) {
flags &= ~SM_ASYNC;
flags |= SM_WRITE;
}
if (vpm_enable) {
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
} else {
if (vpm_enable) {
(void) vpm_sync_pages(vp, off, n, 0);
} else {
(void) segmap_release(segkmap, base, 0);
}
/*
* In the event that we got an access error while
* faulting in a page for a write-only file just
* force a write.
*/
if (error == EACCES)
goto nfs3_fwrite;
}
} while (!error && uiop->uio_resid > 0);
bottom:
if (error) {
uiop->uio_resid = resid + remainder;
uiop->uio_loffset = offset;
} else
uiop->uio_resid += remainder;
nfs_rw_exit(&rp->r_lkserlock);
return (error);
}
/*
* Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
*/
static int
nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
int flags, cred_t *cr)
{
struct buf *bp;
int error;
page_t *savepp;
uchar_t fsdata;
stable_how stab_comm;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
bp = pageio_setup(pp, len, vp, flags);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This
* is correct since we want to do I/O on a page
* boundary. bp_mapin will use this addr to calculate
* an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(off);
bp->b_file = vp;
bp->b_offset = (offset_t)off;
bp_mapin(bp);
/*
* Calculate the desired level of stability to write data
* on the server and then mark all of the pages to reflect
* this.
*/
if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
freemem > desfree) {
stab_comm = UNSTABLE;
fsdata = C_DELAYCOMMIT;
} else {
stab_comm = FILE_SYNC;
fsdata = C_NOCOMMIT;
}
savepp = pp;
do {
pp->p_fsdata = fsdata;
} while ((pp = pp->p_next) != savepp);
error = nfs3_bio(bp, &stab_comm, cr);
bp_mapout(bp);
pageio_done(bp);
/*
* If the server wrote pages in a more stable fashion than
* was requested, then clear all of the marks in the pages
* indicating that COMMIT operations were required.
*/
if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
do {
pp->p_fsdata = C_NOCOMMIT;
} while ((pp = pp->p_next) != savepp);
}
return (error);
}
/*
* Write to file. Writes to remote server in largest size
* chunks that the server can handle. Write is synchronous.
*/
static int
nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
stable_how *stab_comm)
{
mntinfo_t *mi;
WRITE3args args;
WRITE3res res;
int error;
int tsize;
rnode_t *rp;
int douprintf;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_zone() == mi->mi_zone);
args.file = *VTOFH3(vp);
args.stable = *stab_comm;
*stab_comm = FILE_SYNC;
douprintf = 1;
do {
if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & RDIRECTIO) ||
(mi->mi_flags & MI_DIRECTIO))
tsize = MIN(mi->mi_stsize, count);
else
tsize = MIN(mi->mi_curwrite, count);
args.offset = (offset3)offset;
args.count = (count3)tsize;
args.data.data_len = (uint_t)tsize;
args.data.data_val = base;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
args.mblk = NULL;
do {
error = rfs3call(mi, NFSPROC3_WRITE,
xdr_WRITE3args, (caddr_t)&args,
xdr_WRITE3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
} while (error == ENFS_TRYAGAIN);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (error)
return (error);
error = geterrno3(res.status);
if (!error) {
if (res.resok.count > args.count) {
zcmn_err(getzoneid(), CE_WARN,
"nfs3write: server %s wrote %u, "
"requested was %u",
rp->r_server->sv_hostname,
res.resok.count, args.count);
return (EIO);
}
if (res.resok.committed == UNSTABLE) {
*stab_comm = UNSTABLE;
if (args.stable == DATA_SYNC ||
args.stable == FILE_SYNC) {
zcmn_err(getzoneid(), CE_WARN,
"nfs3write: server %s did not commit to stable storage",
rp->r_server->sv_hostname);
return (EIO);
}
}
tsize = (int)res.resok.count;
count -= tsize;
base += tsize;
offset += tsize;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
tsize;
mutex_exit(&mi->mi_lock);
}
lwp_stat_update(LWP_STAT_OUBLK, 1);
mutex_enter(&rp->r_statelock);
if (rp->r_flags & RHAVEVERF) {
if (rp->r_verf != res.resok.verf) {
nfs3_set_mod(vp);
rp->r_verf = res.resok.verf;
/*
* If the data was written UNSTABLE,
* then might as well stop because
* the whole block will have to get
* rewritten anyway.
*/
if (*stab_comm == UNSTABLE) {
mutex_exit(&rp->r_statelock);
break;
}
}
} else {
rp->r_verf = res.resok.verf;
rp->r_flags |= RHAVEVERF;
}
/*
* Mark the attribute cache as timed out and
* set RWRITEATTR to indicate that the file
* was modified with a WRITE operation and
* that the attributes can not be trusted.
*/
PURGE_ATTRCACHE_LOCKED(rp);
rp->r_flags |= RWRITEATTR;
mutex_exit(&rp->r_statelock);
}
} while (!error && count);
return (error);
}
/*
* Read from a file. Reads data in largest chunks our interface can handle.
*/
static int
nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
size_t *residp, cred_t *cr)
{
mntinfo_t *mi;
READ3args args;
READ3vres res;
int tsize;
int error;
int douprintf;
failinfo_t fi;
rnode_t *rp;
struct vattr va;
hrtime_t t;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_zone() == mi->mi_zone);
douprintf = 1;
args.file = *VTOFH3(vp);
fi.vp = vp;
fi.fhp = (caddr_t)&args.file;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
res.pov.fres.vp = vp;
res.pov.fres.vap = &va;
*residp = count;
do {
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
do {
if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & RDIRECTIO) ||
(mi->mi_flags & MI_DIRECTIO))
tsize = MIN(mi->mi_tsize, count);
else
tsize = MIN(mi->mi_curread, count);
res.data.data_val = base;
res.data.data_len = tsize;
args.offset = (offset3)offset;
args.count = (count3)tsize;
t = gethrtime();
error = rfs3call(mi, NFSPROC3_READ,
xdr_READ3args, (caddr_t)&args,
xdr_READ3vres, (caddr_t)&res, cr,
&douprintf, &res.status, 0, &fi);
} while (error == ENFS_TRYAGAIN);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (error)
return (error);
error = geterrno3(res.status);
if (error)
return (error);
if (res.count != res.data.data_len) {
zcmn_err(getzoneid(), CE_WARN,
"nfs3read: server %s returned incorrect amount",
rp->r_server->sv_hostname);
return (EIO);
}
count -= res.count;
*residp = count;
base += res.count;
offset += res.count;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
mutex_exit(&mi->mi_lock);
}
lwp_stat_update(LWP_STAT_INBLK, 1);
} while (count && !res.eof);
if (res.pov.attributes) {
mutex_enter(&rp->r_statelock);
if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
mutex_exit(&rp->r_statelock);
PURGE_ATTRCACHE(vp);
} else {
if (rp->r_mtime <= t)
nfs_attrcache_va(vp, &va);
mutex_exit(&rp->r_statelock);
}
}
return (0);
}
/* ARGSUSED */
static int
nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
caller_context_t *ct)
{
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
switch (cmd) {
case _FIODIRECTIO:
return (nfs_directio(vp, (int)arg, cr));
default:
return (ENOTTY);
}
}
/* ARGSUSED */
static int
nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode_t *rp;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/*
* If it has been specified that the return value will
* just be used as a hint, and we are only being asked
* for size, fsid or rdevid, then return the client's
* notion of these values without checking to make sure
* that the attribute cache is up to date.
* The whole point is to avoid an over the wire GETATTR
* call.
*/
rp = VTOR(vp);
if (flags & ATTR_HINT) {
if (vap->va_mask ==
(vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
mutex_enter(&rp->r_statelock);
if (vap->va_mask | AT_SIZE)
vap->va_size = rp->r_size;
if (vap->va_mask | AT_FSID)
vap->va_fsid = rp->r_attr.va_fsid;
if (vap->va_mask | AT_RDEV)
vap->va_rdev = rp->r_attr.va_rdev;
mutex_exit(&rp->r_statelock);
return (0);
}
}
/*
* Only need to flush pages if asking for the mtime
* and if there any dirty pages or any outstanding
* asynchronous (write) requests for this file.
*/
if (vap->va_mask & AT_MTIME) {
if (vn_has_cached_data(vp) &&
((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
mutex_enter(&rp->r_statelock);
rp->r_gcount++;
mutex_exit(&rp->r_statelock);
error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
mutex_enter(&rp->r_statelock);
if (error && (error == ENOSPC || error == EDQUOT)) {
if (!rp->r_error)
rp->r_error = error;
}
if (--rp->r_gcount == 0)
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
}
}
return (nfs3getattr(vp, vap, cr));
}
/*ARGSUSED4*/
static int
nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
struct vattr va;
if (vap->va_mask & AT_NOSET)
return (EINVAL);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
va.va_mask = AT_UID | AT_MODE;
error = nfs3getattr(vp, &va, cr);
if (error)
return (error);
error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
vp);
if (error)
return (error);
return (nfs3setattr(vp, vap, flags, cr));
}
static int
nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
{
int error;
uint_t mask;
SETATTR3args args;
SETATTR3res res;
int douprintf;
rnode_t *rp;
struct vattr va;
mode_t omode;
vsecattr_t *vsp;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
mask = vap->va_mask;
rp = VTOR(vp);
/*
* Only need to flush pages if there are any pages and
* if the file is marked as dirty in some fashion. The
* file must be flushed so that we can accurately
* determine the size of the file and the cached data
* after the SETATTR returns. A file is considered to
* be dirty if it is either marked with RDIRTY, has
* outstanding i/o's active, or is mmap'd. In this
* last case, we can't tell whether there are dirty
* pages, so we flush just to be sure.
*/
if (vn_has_cached_data(vp) &&
((rp->r_flags & RDIRTY) ||
rp->r_count > 0 ||
rp->r_mapcnt > 0)) {
ASSERT(vp->v_type != VCHR);
error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
if (error && (error == ENOSPC || error == EDQUOT)) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
args.object = *RTOFH3(rp);
/*
* If the intent is for the server to set the times,
* there is no point in have the mask indicating set mtime or
* atime, because the vap values may be junk, and so result
* in an overflow error. Remove these flags from the vap mask
* before calling in this case, and restore them afterwards.
*/
if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
/* Use server times, so don't set the args time fields */
vap->va_mask &= ~(AT_ATIME | AT_MTIME);
error = vattr_to_sattr3(vap, &args.new_attributes);
vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
if (mask & AT_ATIME) {
args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
}
if (mask & AT_MTIME) {
args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
}
} else {
/* Either do not set times or use the client specified times */
error = vattr_to_sattr3(vap, &args.new_attributes);
}
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
va.va_mask = AT_MODE | AT_CTIME;
error = nfs3getattr(vp, &va, cr);
if (error)
return (error);
omode = va.va_mode;
tryagain:
if (mask & AT_SIZE) {
args.guard.check = TRUE;
args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
} else
args.guard.check = FALSE;
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
xdr_SETATTR3args, (caddr_t)&args,
xdr_SETATTR3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
/*
* Purge the access cache and ACL cache if changing either the
* owner of the file, the group owner, or the mode. These may
* change the access permissions of the file, so purge old
* information and start over again.
*/
if (mask & (AT_UID | AT_GID | AT_MODE)) {
(void) nfs_access_purge_rp(rp);
if (rp->r_secattr != NULL) {
mutex_enter(&rp->r_statelock);
vsp = rp->r_secattr;
rp->r_secattr = NULL;
mutex_exit(&rp->r_statelock);
if (vsp != NULL)
nfs_acl_free(vsp);
}
}
if (error) {
PURGE_ATTRCACHE(vp);
return (error);
}
error = geterrno3(res.status);
if (!error) {
/*
* If changing the size of the file, invalidate
* any local cached data which is no longer part
* of the file. We also possibly invalidate the
* last page in the file. We could use
* pvn_vpzero(), but this would mark the page as
* modified and require it to be written back to
* the server for no particularly good reason.
* This way, if we access it, then we bring it
* back in. A read should be cheaper than a
* write.
*/
if (mask & AT_SIZE) {
nfs_invalidate_pages(vp,
(vap->va_size & PAGEMASK), cr);
}
nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
/*
* Some servers will change the mode to clear the setuid
* and setgid bits when changing the uid or gid. The
* client needs to compensate appropriately.
*/
if (mask & (AT_UID | AT_GID)) {
int terror;
va.va_mask = AT_MODE;
terror = nfs3getattr(vp, &va, cr);
if (!terror &&
(((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
(!(mask & AT_MODE) && va.va_mode != omode))) {
va.va_mask = AT_MODE;
if (mask & AT_MODE)
va.va_mode = vap->va_mode;
else
va.va_mode = omode;
(void) nfs3setattr(vp, &va, 0, cr);
}
}
} else {
nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
/*
* If we got back a "not synchronized" error, then
* we need to retry with a new guard value. The
* guard value used is the change time. If the
* server returned post_op_attr, then we can just
* retry because we have the latest attributes.
* Otherwise, we issue a GETATTR to get the latest
* attributes and then retry. If we couldn't get
* the attributes this way either, then we give
* up because we can't complete the operation as
* required.
*/
if (res.status == NFS3ERR_NOT_SYNC) {
va.va_mask = AT_CTIME;
if (nfs3getattr(vp, &va, cr) == 0)
goto tryagain;
}
PURGE_STALE_FH(error, vp, cr);
}
return (error);
}
static int
nfs3_accessx(void *vp, int mode, cred_t *cr)
{
ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
return (nfs3_access(vp, mode, 0, cr, NULL));
}
/* ARGSUSED */
static int
nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
{
int error;
ACCESS3args args;
ACCESS3res res;
int douprintf;
uint32 acc;
rnode_t *rp;
cred_t *cred, *ncr, *ncrfree = NULL;
failinfo_t fi;
nfs_access_type_t cacc;
hrtime_t t;
acc = 0;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
if (mode & VREAD)
acc |= ACCESS3_READ;
if (mode & VWRITE) {
if (vn_is_readonly(vp) && !IS_DEVVP(vp))
return (EROFS);
if (vp->v_type == VDIR)
acc |= ACCESS3_DELETE;
acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
}
if (mode & VEXEC) {
if (vp->v_type == VDIR)
acc |= ACCESS3_LOOKUP;
else
acc |= ACCESS3_EXECUTE;
}
rp = VTOR(vp);
args.object = *VTOFH3(vp);
if (vp->v_type == VDIR) {
args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
ACCESS3_EXTEND | ACCESS3_LOOKUP;
} else {
args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
ACCESS3_EXECUTE;
}
fi.vp = vp;
fi.fhp = (caddr_t)&args.object;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
cred = cr;
/*
* ncr and ncrfree both initially
* point to the memory area returned
* by crnetadjust();
* ncrfree not NULL when exiting means
* that we need to release it
*/
ncr = crnetadjust(cred);
ncrfree = ncr;
tryagain:
if (rp->r_acache != NULL) {
cacc = nfs_access_check(rp, acc, cred);
if (cacc == NFS_ACCESS_ALLOWED) {
if (ncrfree != NULL)
crfree(ncrfree);
return (0);
}
if (cacc == NFS_ACCESS_DENIED) {
/*
* If the cred can be adjusted, try again
* with the new cred.
*/
if (ncr != NULL) {
cred = ncr;
ncr = NULL;
goto tryagain;
}
if (ncrfree != NULL)
crfree(ncrfree);
return (EACCES);
}
}
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
xdr_ACCESS3args, (caddr_t)&args,
xdr_ACCESS3res, (caddr_t)&res, cred,
&douprintf, &res.status, 0, &fi);
if (error) {
if (ncrfree != NULL)
crfree(ncrfree);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
nfs_access_cache(rp, args.access, res.resok.access, cred);
/*
* we just cached results with cred; if cred is the
* adjusted credentials from crnetadjust, we do not want
* to release them before exiting: hence setting ncrfree
* to NULL
*/
if (cred != cr)
ncrfree = NULL;
if ((acc & res.resok.access) != acc) {
/*
* If the cred can be adjusted, try again
* with the new cred.
*/
if (ncr != NULL) {
cred = ncr;
ncr = NULL;
goto tryagain;
}
error = EACCES;
}
} else {
nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
PURGE_STALE_FH(error, vp, cr);
}
if (ncrfree != NULL)
crfree(ncrfree);
return (error);
}
static int nfs3_do_symlink_cache = 1;
/* ARGSUSED */
static int
nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
{
int error;
READLINK3args args;
READLINK3res res;
nfspath3 resdata_backup;
rnode_t *rp;
int douprintf;
int len;
failinfo_t fi;
hrtime_t t;
/*
* Can't readlink anything other than a symbolic link.
*/
if (vp->v_type != VLNK)
return (EINVAL);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
error = nfs3_validate_caches(vp, cr);
if (error)
return (error);
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents != NULL) {
error = uiomove(rp->r_symlink.contents,
rp->r_symlink.len, UIO_READ, uiop);
mutex_exit(&rp->r_statelock);
return (error);
}
mutex_exit(&rp->r_statelock);
}
args.symlink = *VTOFH3(vp);
fi.vp = vp;
fi.fhp = (caddr_t)&args.symlink;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
resdata_backup = res.resok.data;
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
xdr_nfs_fh3, (caddr_t)&args,
xdr_READLINK3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, &fi);
if (res.resok.data == nfs3nametoolong)
error = EINVAL;
if (error) {
kmem_free(resdata_backup, MAXPATHLEN);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
cr);
len = strlen(res.resok.data);
error = uiomove(res.resok.data, len, UIO_READ, uiop);
if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents == NULL) {
rp->r_symlink.contents = res.resok.data;
rp->r_symlink.len = len;
rp->r_symlink.size = MAXPATHLEN;
mutex_exit(&rp->r_statelock);
} else {
mutex_exit(&rp->r_statelock);
kmem_free((void *)res.resok.data, MAXPATHLEN);
}
} else {
kmem_free((void *)res.resok.data, MAXPATHLEN);
}
} else {
nfs3_cache_post_op_attr(vp,
&res.resfail.symlink_attributes, t, cr);
PURGE_STALE_FH(error, vp, cr);
kmem_free((void *)res.resok.data, MAXPATHLEN);
}
/*
* The over the wire error for attempting to readlink something
* other than a symbolic link is ENXIO. However, we need to
* return EINVAL instead of ENXIO, so we map it here.
*/
return (error == ENXIO ? EINVAL : error);
}
/*
* Flush local dirty pages to stable storage on the server.
*
* If FNODSYNC is specified, then there is nothing to do because
* metadata changes are not cached on the client before being
* sent to the server.
*/
/* ARGSUSED */
static int
nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
{
int error;
if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
return (0);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
if (!error)
error = VTOR(vp)->r_error;
return (error);
}
/*
* Weirdness: if the file was removed or the target of a rename
* operation while it was open, it got renamed instead. Here we
* remove the renamed file.
*/
/* ARGSUSED */
static void
nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
{
rnode_t *rp;
ASSERT(vp != DNLC_NO_VNODE);
/*
* If this is coming from the wrong zone, we let someone in the right
* zone take care of it asynchronously. We can get here due to
* VN_RELE() being called from pageout() or fsflush(). This call may
* potentially turn into an expensive no-op if, for instance, v_count
* gets incremented in the meantime, but it's still correct.
*/
if (nfs_zone() != VTOMI(vp)->mi_zone) {
nfs_async_inactive(vp, cr, nfs3_inactive);
return;
}
rp = VTOR(vp);
redo:
if (rp->r_unldvp != NULL) {
/*
* Save the vnode pointer for the directory where the
* unlinked-open file got renamed, then set it to NULL
* to prevent another thread from getting here before
* we're done with the remove. While we have the
* statelock, make local copies of the pertinent rnode
* fields. If we weren't to do this in an atomic way, the
* the unl* fields could become inconsistent with respect
* to each other due to a race condition between this
* code and nfs_remove(). See bug report 1034328.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp != NULL) {
vnode_t *unldvp;
char *unlname;
cred_t *unlcred;
REMOVE3args args;
REMOVE3res res;
int douprintf;
int error;
hrtime_t t;
unldvp = rp->r_unldvp;
rp->r_unldvp = NULL;
unlname = rp->r_unlname;
rp->r_unlname = NULL;
unlcred = rp->r_unlcred;
rp->r_unlcred = NULL;
mutex_exit(&rp->r_statelock);
/*
* If there are any dirty pages left, then flush
* them. This is unfortunate because they just
* may get thrown away during the remove operation,
* but we have to do this for correctness.
*/
if (vn_has_cached_data(vp) &&
((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
ASSERT(vp->v_type != VCHR);
error = nfs3_putpage(vp, (offset_t)0, 0, 0,
cr, ct);
if (error) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
/*
* Do the remove operation on the renamed file
*/
setdiropargs3(&args.object, unlname, unldvp);
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
xdr_diropargs3, (caddr_t)&args,
xdr_REMOVE3res, (caddr_t)&res, unlcred,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(unldvp);
} else {
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(unldvp,
&res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
nfs_purge_rddir_cache(unldvp);
} else {
nfs3_cache_wcc_data(unldvp,
&res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, unldvp, cr);
}
}
/*
* Release stuff held for the remove
*/
VN_RELE(unldvp);
kmem_free(unlname, MAXNAMELEN);
crfree(unlcred);
goto redo;
}
mutex_exit(&rp->r_statelock);
}
rp_addfree(rp, cr);
}
/*
* Remote file system operations having to do with directory manipulation.
*/
/* ARGSUSED */
static int
nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
int *direntflags, pathname_t *realpnp)
{
int error;
vnode_t *vp;
vnode_t *avp = NULL;
rnode_t *drp;
if (nfs_zone() != VTOMI(dvp)->mi_zone)
return (EPERM);
drp = VTOR(dvp);
/*
* Are we looking up extended attributes? If so, "dvp" is
* the file or directory for which we want attributes, and
* we need a lookup of the hidden attribute directory
* before we lookup the rest of the path.
*/
if (flags & LOOKUP_XATTR) {
bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
mntinfo_t *mi;
mi = VTOMI(dvp);
if (!(mi->mi_flags & MI_EXTATTR))
return (EINVAL);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
return (EINTR);
(void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
if (avp == NULL)
error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
else
error = 0;
nfs_rw_exit(&drp->r_rwlock);
if (error) {
if (mi->mi_flags & MI_EXTATTR)
return (error);
return (EINVAL);
}
dvp = avp;
drp = VTOR(dvp);
}
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
error = EINTR;
goto out;
}
error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
nfs_rw_exit(&drp->r_rwlock);
/*
* If vnode is a device, create special vnode.
*/
if (!error && IS_DEVVP(*vpp)) {
vp = *vpp;
*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(vp);
}
out:
if (avp != NULL)
VN_RELE(avp);
return (error);
}
static int nfs3_lookup_neg_cache = 1;
#ifdef DEBUG
static int nfs3_lookup_dnlc_hits = 0;
static int nfs3_lookup_dnlc_misses = 0;
static int nfs3_lookup_dnlc_neg_hits = 0;
static int nfs3_lookup_dnlc_disappears = 0;
static int nfs3_lookup_dnlc_lookups = 0;
#endif
/* ARGSUSED */
int
nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
{
int error;
rnode_t *drp;
ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
/*
* If lookup is for "", just return dvp. Don't need
* to send it over the wire, look it up in the dnlc,
* or perform any access checks.
*/
if (*nm == '\0') {
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
/*
* Can't do lookups in non-directories.
*/
if (dvp->v_type != VDIR)
return (ENOTDIR);
/*
* If we're called with RFSCALL_SOFT, it's important that
* the only rfscall is one we make directly; if we permit
* an access call because we're looking up "." or validating
* a dnlc hit, we'll deadlock because that rfscall will not
* have the RFSCALL_SOFT set.
*/
if (rfscall_flags & RFSCALL_SOFT)
goto callit;
/*
* If lookup is for ".", just return dvp. Don't need
* to send it over the wire or look it up in the dnlc,
* just need to check access.
*/
if (strcmp(nm, ".") == 0) {
error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
if (error)
return (error);
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
drp = VTOR(dvp);
if (!(drp->r_flags & RLOOKUP)) {
mutex_enter(&drp->r_statelock);
drp->r_flags |= RLOOKUP;
mutex_exit(&drp->r_statelock);
}
/*
* Lookup this name in the DNLC. If there was a valid entry,
* then return the results of the lookup.
*/
error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
if (error || *vpp != NULL)
return (error);
callit:
error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
return (error);
}
static int
nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
{
int error;
vnode_t *vp;
ASSERT(*nm != '\0');
ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
/*
* Lookup this name in the DNLC. If successful, then validate
* the caches and then recheck the DNLC. The DNLC is rechecked
* just in case this entry got invalidated during the call
* to nfs3_validate_caches.
*
* An assumption is being made that it is safe to say that a
* file exists which may not on the server. Any operations to
* the server will fail with ESTALE.
*/
#ifdef DEBUG
nfs3_lookup_dnlc_lookups++;
#endif
vp = dnlc_lookup(dvp, nm);
if (vp != NULL) {
VN_RELE(vp);
if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
PURGE_ATTRCACHE(dvp);
}
error = nfs3_validate_caches(dvp, cr);
if (error)
return (error);
vp = dnlc_lookup(dvp, nm);
if (vp != NULL) {
error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
if (error) {
VN_RELE(vp);
return (error);
}
if (vp == DNLC_NO_VNODE) {
VN_RELE(vp);
#ifdef DEBUG
nfs3_lookup_dnlc_neg_hits++;
#endif
return (ENOENT);
}
*vpp = vp;
#ifdef DEBUG
nfs3_lookup_dnlc_hits++;
#endif
return (0);
}
#ifdef DEBUG
nfs3_lookup_dnlc_disappears++;
#endif
}
#ifdef DEBUG
else
nfs3_lookup_dnlc_misses++;
#endif
*vpp = NULL;
return (0);
}
static int
nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
int rfscall_flags)
{
int error;
LOOKUP3args args;
LOOKUP3vres res;
int douprintf;
struct vattr vattr;
struct vattr dvattr;
vnode_t *vp;
failinfo_t fi;
hrtime_t t;
ASSERT(*nm != '\0');
ASSERT(dvp->v_type == VDIR);
ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
setdiropargs3(&args.what, nm, dvp);
fi.vp = dvp;
fi.fhp = (caddr_t)&args.what.dir;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
res.obj_attributes.fres.vp = dvp;
res.obj_attributes.fres.vap = &vattr;
res.dir_attributes.fres.vp = dvp;
res.dir_attributes.fres.vap = &dvattr;
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
xdr_diropargs3, (caddr_t)&args,
xdr_LOOKUP3vres, (caddr_t)&res, cr,
&douprintf, &res.status, rfscall_flags, &fi);
if (error)
return (error);
nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
error = geterrno3(res.status);
if (error) {
PURGE_STALE_FH(error, dvp, cr);
if (error == ENOENT && nfs3_lookup_neg_cache)
dnlc_enter(dvp, nm, DNLC_NO_VNODE);
return (error);
}
if (res.obj_attributes.attributes) {
vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
} else {
vp = makenfs3node_va(&res.object, NULL,
dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
if (vp->v_type == VNON) {
vattr.va_mask = AT_TYPE;
error = nfs3getattr(vp, &vattr, cr);
if (error) {
VN_RELE(vp);
return (error);
}
vp->v_type = vattr.va_type;
}
}
if (!(rfscall_flags & RFSCALL_SOFT))
dnlc_update(dvp, nm, vp);
*vpp = vp;
return (error);
}
#ifdef DEBUG
static int nfs3_create_misses = 0;
#endif
/* ARGSUSED */
static int
nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
vsecattr_t *vsecp)
{
int error;
vnode_t *vp;
rnode_t *rp;
struct vattr vattr;
rnode_t *drp;
vnode_t *tempvp;
drp = VTOR(dvp);
if (nfs_zone() != VTOMI(dvp)->mi_zone)
return (EPERM);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
return (EINTR);
top:
/*
* We make a copy of the attributes because the caller does not
* expect us to change what va points to.
*/
vattr = *va;
/*
* If the pathname is "", just use dvp. Don't need
* to send it over the wire, look it up in the dnlc,
* or perform any access checks.
*/
if (*nm == '\0') {
error = 0;
VN_HOLD(dvp);
vp = dvp;
/*
* If the pathname is ".", just use dvp. Don't need
* to send it over the wire or look it up in the dnlc,
* just need to check access.
*/
} else if (strcmp(nm, ".") == 0) {
error = nfs3_access(dvp, VEXEC, 0, cr, ct);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
VN_HOLD(dvp);
vp = dvp;
/*
* We need to go over the wire, just to be sure whether the
* file exists or not. Using the DNLC can be dangerous in
* this case when making a decision regarding existence.
*/
} else {
error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
}
if (!error) {
if (exclusive == EXCL)
error = EEXIST;
else if (vp->v_type == VDIR && (mode & VWRITE))
error = EISDIR;
else {
/*
* If vnode is a device, create special vnode.
*/
if (IS_DEVVP(vp)) {
tempvp = vp;
vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(tempvp);
}
if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
if ((vattr.va_mask & AT_SIZE) &&
vp->v_type == VREG) {
rp = VTOR(vp);
/*
* Check here for large file handled
* by LF-unaware process (as
* ufs_create() does)
*/
if (!(lfaware & FOFFMAX)) {
mutex_enter(&rp->r_statelock);
if (rp->r_size > MAXOFF32_T)
error = EOVERFLOW;
mutex_exit(&rp->r_statelock);
}
if (!error) {
vattr.va_mask = AT_SIZE;
error = nfs3setattr(vp,
&vattr, 0, cr);
}
}
}
}
nfs_rw_exit(&drp->r_rwlock);
if (error) {
VN_RELE(vp);
} else {
/*
* existing file got truncated, notify.
*/
vnevent_create(vp, ct);
*vpp = vp;
}
return (error);
}
dnlc_remove(dvp, nm);
/*
* Decide what the group-id of the created file should be.
* Set it in attribute list as advisory...
*/
error = setdirgid(dvp, &vattr.va_gid, cr);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
vattr.va_mask |= AT_GID;
ASSERT(vattr.va_mask & AT_TYPE);
if (vattr.va_type == VREG) {
ASSERT(vattr.va_mask & AT_MODE);
if (MANDMODE(vattr.va_mode)) {
nfs_rw_exit(&drp->r_rwlock);
return (EACCES);
}
error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
lfaware);
/*
* If this is not an exclusive create, then the CREATE
* request will be made with the GUARDED mode set. This
* means that the server will return EEXIST if the file
* exists. The file could exist because of a retransmitted
* request. In this case, we recover by starting over and
* checking to see whether the file exists. This second
* time through it should and a CREATE request will not be
* sent.
*
* This handles the problem of a dangling CREATE request
* which contains attributes which indicate that the file
* should be truncated. This retransmitted request could
* possibly truncate valid data in the file if not caught
* by the duplicate request mechanism on the server or if
* not caught by other means. The scenario is:
*
* Client transmits CREATE request with size = 0
* Client times out, retransmits request.
* Response to the first request arrives from the server
* and the client proceeds on.
* Client writes data to the file.
* The server now processes retransmitted CREATE request
* and truncates file.
*
* The use of the GUARDED CREATE request prevents this from
* happening because the retransmitted CREATE would fail
* with EEXIST and would not truncate the file.
*/
if (error == EEXIST && exclusive == NONEXCL) {
#ifdef DEBUG
nfs3_create_misses++;
#endif
goto top;
}
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/* ARGSUSED */
static int
nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
int mode, vnode_t **vpp, cred_t *cr, int lfaware)
{
int error;
CREATE3args args;
CREATE3res res;
int douprintf;
vnode_t *vp;
struct vattr vattr;
nfstime3 *verfp;
rnode_t *rp;
timestruc_t now;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
setdiropargs3(&args.where, nm, dvp);
if (exclusive == EXCL) {
args.how.mode = EXCLUSIVE;
/*
* Construct the create verifier. This verifier needs
* to be unique between different clients. It also needs
* to vary for each exclusive create request generated
* from the client to the server.
*
* The first attempt is made to use the hostid and a
* unique number on the client. If the hostid has not
* been set, the high resolution time that the exclusive
* create request is being made is used. This will work
* unless two different clients, both with the hostid
* not set, attempt an exclusive create request on the
* same file, at exactly the same clock time. The
* chances of this happening seem small enough to be
* reasonable.
*/
verfp = (nfstime3 *)&args.how.createhow3_u.verf;
verfp->seconds = nfs_atoi(hw_serial);
if (verfp->seconds != 0)
verfp->nseconds = newnum();
else {
gethrestime(&now);
verfp->seconds = now.tv_sec;
verfp->nseconds = now.tv_nsec;
}
/*
* Since the server will use this value for the mtime,
* make sure that it can't overflow. Zero out the MSB.
* The actual value does not matter here, only its uniqeness.
*/
verfp->seconds %= INT32_MAX;
} else {
/*
* Issue the non-exclusive create in guarded mode. This
* may result in some false EEXIST responses for
* retransmitted requests, but these will be handled at
* a higher level. By using GUARDED, duplicate requests
* to do file truncation and possible access problems
* can be avoided.
*/
args.how.mode = GUARDED;
error = vattr_to_sattr3(va,
&args.how.createhow3_u.obj_attributes);
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
}
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
xdr_CREATE3args, (caddr_t)&args,
xdr_CREATE3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(dvp);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(VTOR(dvp)))
nfs_purge_rddir_cache(dvp);
/*
* On exclusive create the times need to be explicitly
* set to clear any potential verifier that may be stored
* in one of these fields (see comment below). This
* is done here to cover the case where no post op attrs
* were returned or a 'invalid' time was returned in
* the attributes.
*/
if (exclusive == EXCL)
va->va_mask |= (AT_MTIME | AT_ATIME);
if (!res.resok.obj.handle_follows) {
error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
if (error)
return (error);
} else {
if (res.resok.obj_attributes.attributes) {
vp = makenfs3node(&res.resok.obj.handle,
&res.resok.obj_attributes.attr,
dvp->v_vfsp, t, cr, NULL, NULL);
} else {
vp = makenfs3node(&res.resok.obj.handle, NULL,
dvp->v_vfsp, t, cr, NULL, NULL);
/*
* On an exclusive create, it is possible
* that attributes were returned but those
* postop attributes failed to decode
* properly. If this is the case,
* then most likely the atime or mtime
* were invalid for our client; this
* is caused by the server storing the
* create verifier in one of the time
* fields(most likely mtime).
* So... we are going to setattr just the
* atime/mtime to clear things up.
*/
if (exclusive == EXCL) {
if (error =
nfs3excl_create_settimes(vp,
va, cr)) {
/*
* Setting the times failed.
* Remove the file and return
* the error.
*/
VN_RELE(vp);
(void) nfs3_remove(dvp,
nm, cr, NULL, 0);
return (error);
}
}
/*
* This handles the non-exclusive case
* and the exclusive case where no post op
* attrs were returned.
*/
if (vp->v_type == VNON) {
vattr.va_mask = AT_TYPE;
error = nfs3getattr(vp, &vattr, cr);
if (error) {
VN_RELE(vp);
return (error);
}
vp->v_type = vattr.va_type;
}
}
dnlc_update(dvp, nm, vp);
}
rp = VTOR(vp);
/*
* Check here for large file handled by
* LF-unaware process (as ufs_create() does)
*/
if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
!(lfaware & FOFFMAX)) {
mutex_enter(&rp->r_statelock);
if (rp->r_size > MAXOFF32_T) {
mutex_exit(&rp->r_statelock);
VN_RELE(vp);
return (EOVERFLOW);
}
mutex_exit(&rp->r_statelock);
}
if (exclusive == EXCL &&
(va->va_mask & ~(AT_GID | AT_SIZE))) {
/*
* If doing an exclusive create, then generate
* a SETATTR to set the initial attributes.
* Try to set the mtime and the atime to the
* server's current time. It is somewhat
* expected that these fields will be used to
* store the exclusive create cookie. If not,
* server implementors will need to know that
* a SETATTR will follow an exclusive create
* and the cookie should be destroyed if
* appropriate. This work may have been done
* earlier in this function if post op attrs
* were not available.
*
* The AT_GID and AT_SIZE bits are turned off
* so that the SETATTR request will not attempt
* to process these. The gid will be set
* separately if appropriate. The size is turned
* off because it is assumed that a new file will
* be created empty and if the file wasn't empty,
* then the exclusive create will have failed
* because the file must have existed already.
* Therefore, no truncate operation is needed.
*/
va->va_mask &= ~(AT_GID | AT_SIZE);
error = nfs3setattr(vp, va, 0, cr);
if (error) {
/*
* Couldn't correct the attributes of
* the newly created file and the
* attributes are wrong. Remove the
* file and return an error to the
* application.
*/
VN_RELE(vp);
(void) nfs3_remove(dvp, nm, cr, NULL, 0);
return (error);
}
}
if (va->va_gid != rp->r_attr.va_gid) {
/*
* If the gid on the file isn't right, then
* generate a SETATTR to attempt to change
* it. This may or may not work, depending
* upon the server's semantics for allowing
* file ownership changes.
*/
va->va_mask = AT_GID;
(void) nfs3setattr(vp, va, 0, cr);
}
/*
* If vnode is a device create special vnode
*/
if (IS_DEVVP(vp)) {
*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(vp);
} else
*vpp = vp;
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, dvp, cr);
}
return (error);
}
/*
* Special setattr function to take care of rest of atime/mtime
* after successful exclusive create. This function exists to avoid
* handling attributes from the server; exclusive the atime/mtime fields
* may be 'invalid' in client's view and therefore can not be trusted.
*/
static int
nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
{
int error;
uint_t mask;
SETATTR3args args;
SETATTR3res res;
int douprintf;
rnode_t *rp;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
/* save the caller's mask so that it can be reset later */
mask = vap->va_mask;
rp = VTOR(vp);
args.object = *RTOFH3(rp);
args.guard.check = FALSE;
/* Use the mask to initialize the arguments */
vap->va_mask = 0;
error = vattr_to_sattr3(vap, &args.new_attributes);
/* We want to set just atime/mtime on this request */
args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
xdr_SETATTR3args, (caddr_t)&args,
xdr_SETATTR3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
vap->va_mask = mask;
return (error);
}
error = geterrno3(res.status);
if (!error) {
/*
* It is important to pick up the attributes.
* Since this is the exclusive create path, the
* attributes on the initial create were ignored
* and we need these to have the correct info.
*/
nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
/*
* No need to do the atime/mtime work again so clear
* the bits.
*/
mask &= ~(AT_ATIME | AT_MTIME);
} else {
nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
}
vap->va_mask = mask;
return (error);
}
/* ARGSUSED */
static int
nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
int mode, vnode_t **vpp, cred_t *cr)
{
int error;
MKNOD3args args;
MKNOD3res res;
int douprintf;
vnode_t *vp;
struct vattr vattr;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
switch (va->va_type) {
case VCHR:
case VBLK:
setdiropargs3(&args.where, nm, dvp);
args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
error = vattr_to_sattr3(va,
&args.what.mknoddata3_u.device.dev_attributes);
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
args.what.mknoddata3_u.device.spec.specdata1 =
getmajor(va->va_rdev);
args.what.mknoddata3_u.device.spec.specdata2 =
getminor(va->va_rdev);
break;
case VFIFO:
case VSOCK:
setdiropargs3(&args.where, nm, dvp);
args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
error = vattr_to_sattr3(va,
&args.what.mknoddata3_u.pipe_attributes);
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
break;
default:
return (EINVAL);
}
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
xdr_MKNOD3args, (caddr_t)&args,
xdr_MKNOD3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(dvp);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(VTOR(dvp)))
nfs_purge_rddir_cache(dvp);
if (!res.resok.obj.handle_follows) {
error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
if (error)
return (error);
} else {
if (res.resok.obj_attributes.attributes) {
vp = makenfs3node(&res.resok.obj.handle,
&res.resok.obj_attributes.attr,
dvp->v_vfsp, t, cr, NULL, NULL);
} else {
vp = makenfs3node(&res.resok.obj.handle, NULL,
dvp->v_vfsp, t, cr, NULL, NULL);
if (vp->v_type == VNON) {
vattr.va_mask = AT_TYPE;
error = nfs3getattr(vp, &vattr, cr);
if (error) {
VN_RELE(vp);
return (error);
}
vp->v_type = vattr.va_type;
}
}
dnlc_update(dvp, nm, vp);
}
if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
va->va_mask = AT_GID;
(void) nfs3setattr(vp, va, 0, cr);
}
/*
* If vnode is a device create special vnode
*/
if (IS_DEVVP(vp)) {
*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(vp);
} else
*vpp = vp;
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, dvp, cr);
}
return (error);
}
/*
* Weirdness: if the vnode to be removed is open
* we rename it instead of removing it and nfs_inactive
* will remove the new name.
*/
/* ARGSUSED */
static int
nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
{
int error;
REMOVE3args args;
REMOVE3res res;
vnode_t *vp;
char *tmpname;
int douprintf;
rnode_t *rp;
rnode_t *drp;
hrtime_t t;
if (nfs_zone() != VTOMI(dvp)->mi_zone)
return (EPERM);
drp = VTOR(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
return (EINTR);
error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (EPERM);
}
/*
* First just remove the entry from the name cache, as it
* is most likely the only entry for this vp.
*/
dnlc_remove(dvp, nm);
/*
* If the file has a v_count > 1 then there may be more than one
* entry in the name cache due multiple links or an open file,
* but we don't have the real reference count so flush all
* possible entries.
*/
if (vp->v_count > 1)
dnlc_purge_vp(vp);
/*
* Now we have the real reference count on the vnode
*/
rp = VTOR(vp);
mutex_enter(&rp->r_statelock);
if (vp->v_count > 1 &&
(rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
mutex_exit(&rp->r_statelock);
tmpname = newname();
error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
if (error)
kmem_free(tmpname, MAXNAMELEN);
else {
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp == NULL) {
VN_HOLD(dvp);
rp->r_unldvp = dvp;
if (rp->r_unlcred != NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unlcred = cr;
rp->r_unlname = tmpname;
} else {
kmem_free(rp->r_unlname, MAXNAMELEN);
rp->r_unlname = tmpname;
}
mutex_exit(&rp->r_statelock);
}
} else {
mutex_exit(&rp->r_statelock);
/*
* We need to flush any dirty pages which happen to
* be hanging around before removing the file. This
* shouldn't happen very often and mostly on file
* systems mounted "nocto".
*/
if (vn_has_cached_data(vp) &&
((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
if (error && (error == ENOSPC || error == EDQUOT)) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
setdiropargs3(&args.object, nm, dvp);
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
xdr_diropargs3, (caddr_t)&args,
xdr_REMOVE3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
/*
* The xattr dir may be gone after last attr is removed,
* so flush it from dnlc.
*/
if (dvp->v_flag & V_XATTRDIR)
dnlc_purge_vp(dvp);
PURGE_ATTRCACHE(vp);
if (error) {
PURGE_ATTRCACHE(dvp);
} else {
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
cr);
if (HAVE_RDDIR_CACHE(drp))
nfs_purge_rddir_cache(dvp);
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
t, cr);
PURGE_STALE_FH(error, dvp, cr);
}
}
}
if (error == 0) {
vnevent_remove(vp, dvp, nm, ct);
}
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/* ARGSUSED */
static int
nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
caller_context_t *ct, int flags)
{
int error;
LINK3args args;
LINK3res res;
vnode_t *realvp;
int douprintf;
mntinfo_t *mi;
rnode_t *tdrp;
hrtime_t t;
if (nfs_zone() != VTOMI(tdvp)->mi_zone)
return (EPERM);
if (VOP_REALVP(svp, &realvp, ct) == 0)
svp = realvp;
mi = VTOMI(svp);
if (!(mi->mi_flags & MI_LINK))
return (EOPNOTSUPP);
args.file = *VTOFH3(svp);
setdiropargs3(&args.link, tnm, tdvp);
tdrp = VTOR(tdvp);
if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
return (EINTR);
dnlc_remove(tdvp, tnm);
douprintf = 1;
t = gethrtime();
error = rfs3call(mi, NFSPROC3_LINK,
xdr_LINK3args, (caddr_t)&args,
xdr_LINK3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(tdvp);
PURGE_ATTRCACHE(svp);
nfs_rw_exit(&tdrp->r_rwlock);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(tdrp))
nfs_purge_rddir_cache(tdvp);
dnlc_update(tdvp, tnm, svp);
} else {
nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
cr);
nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
if (error == EOPNOTSUPP) {
mutex_enter(&mi->mi_lock);
mi->mi_flags &= ~MI_LINK;
mutex_exit(&mi->mi_lock);
}
}
nfs_rw_exit(&tdrp->r_rwlock);
if (!error) {
/*
* Notify the source file of this link operation.
*/
vnevent_link(svp, ct);
}
return (error);
}
/* ARGSUSED */
static int
nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
caller_context_t *ct, int flags)
{
vnode_t *realvp;
if (nfs_zone() != VTOMI(odvp)->mi_zone)
return (EPERM);
if (VOP_REALVP(ndvp, &realvp, ct) == 0)
ndvp = realvp;
return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
}
/*
* nfs3rename does the real work of renaming in NFS Version 3.
*/
static int
nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
caller_context_t *ct)
{
int error;
RENAME3args args;
RENAME3res res;
int douprintf;
vnode_t *nvp = NULL;
vnode_t *ovp = NULL;
char *tmpname;
rnode_t *rp;
rnode_t *odrp;
rnode_t *ndrp;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
return (EINVAL);
odrp = VTOR(odvp);
ndrp = VTOR(ndvp);
if ((intptr_t)odrp < (intptr_t)ndrp) {
if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
return (EINTR);
if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
nfs_rw_exit(&odrp->r_rwlock);
return (EINTR);
}
} else {
if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
return (EINTR);
if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
nfs_rw_exit(&ndrp->r_rwlock);
return (EINTR);
}
}
/*
* Lookup the target file. If it exists, it needs to be
* checked to see whether it is a mount point and whether
* it is active (open).
*/
error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
if (!error) {
/*
* If this file has been mounted on, then just
* return busy because renaming to it would remove
* the mounted file system from the name space.
*/
if (vn_mountedvfs(nvp) != NULL) {
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (EBUSY);
}
/*
* Purge the name cache of all references to this vnode
* so that we can check the reference count to infer
* whether it is active or not.
*/
/*
* First just remove the entry from the name cache, as it
* is most likely the only entry for this vp.
*/
dnlc_remove(ndvp, nnm);
/*
* If the file has a v_count > 1 then there may be more
* than one entry in the name cache due multiple links
* or an open file, but we don't have the real reference
* count so flush all possible entries.
*/
if (nvp->v_count > 1)
dnlc_purge_vp(nvp);
/*
* If the vnode is active and is not a directory,
* arrange to rename it to a
* temporary file so that it will continue to be
* accessible. This implements the "unlink-open-file"
* semantics for the target of a rename operation.
* Before doing this though, make sure that the
* source and target files are not already the same.
*/
if (nvp->v_count > 1 && nvp->v_type != VDIR) {
/*
* Lookup the source name.
*/
error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
cr, 0);
/*
* The source name *should* already exist.
*/
if (error) {
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
/*
* Compare the two vnodes. If they are the same,
* just release all held vnodes and return success.
*/
if (ovp == nvp) {
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (0);
}
/*
* Can't mix and match directories and non-
* directories in rename operations. We already
* know that the target is not a directory. If
* the source is a directory, return an error.
*/
if (ovp->v_type == VDIR) {
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (ENOTDIR);
}
/*
* The target file exists, is not the same as
* the source file, and is active. Link it
* to a temporary filename to avoid having
* the server removing the file completely.
*/
tmpname = newname();
error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
if (error == EOPNOTSUPP) {
error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
cr, NULL, 0);
}
if (error) {
kmem_free(tmpname, MAXNAMELEN);
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
rp = VTOR(nvp);
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp == NULL) {
VN_HOLD(ndvp);
rp->r_unldvp = ndvp;
if (rp->r_unlcred != NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unlcred = cr;
rp->r_unlname = tmpname;
} else {
kmem_free(rp->r_unlname, MAXNAMELEN);
rp->r_unlname = tmpname;
}
mutex_exit(&rp->r_statelock);
}
}
if (ovp == NULL) {
/*
* When renaming directories to be a subdirectory of a
* different parent, the dnlc entry for ".." will no
* longer be valid, so it must be removed.
*
* We do a lookup here to determine whether we are renaming
* a directory and we need to check if we are renaming
* an unlinked file. This might have already been done
* in previous code, so we check ovp == NULL to avoid
* doing it twice.
*/
error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
/*
* The source name *should* already exist.
*/
if (error) {
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
if (nvp) {
VN_RELE(nvp);
}
return (error);
}
ASSERT(ovp != NULL);
}
dnlc_remove(odvp, onm);
dnlc_remove(ndvp, nnm);
setdiropargs3(&args.from, onm, odvp);
setdiropargs3(&args.to, nnm, ndvp);
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
xdr_RENAME3args, (caddr_t)&args,
xdr_RENAME3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(odvp);
PURGE_ATTRCACHE(ndvp);
VN_RELE(ovp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
if (nvp) {
VN_RELE(nvp);
}
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(odrp))
nfs_purge_rddir_cache(odvp);
if (ndvp != odvp) {
nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(ndrp))
nfs_purge_rddir_cache(ndvp);
}
/*
* when renaming directories to be a subdirectory of a
* different parent, the dnlc entry for ".." will no
* longer be valid, so it must be removed
*/
rp = VTOR(ovp);
if (ndvp != odvp) {
if (ovp->v_type == VDIR) {
dnlc_remove(ovp, "..");
if (HAVE_RDDIR_CACHE(rp))
nfs_purge_rddir_cache(ovp);
}
}
/*
* If we are renaming the unlinked file, update the
* r_unldvp and r_unlname as needed.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp != NULL) {
if (strcmp(rp->r_unlname, onm) == 0) {
(void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
rp->r_unlname[MAXNAMELEN - 1] = '\0';
if (ndvp != rp->r_unldvp) {
VN_RELE(rp->r_unldvp);
rp->r_unldvp = ndvp;
VN_HOLD(ndvp);
}
}
}
mutex_exit(&rp->r_statelock);
} else {
nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
if (ndvp != odvp) {
nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
cr);
}
/*
* System V defines rename to return EEXIST, not
* ENOTEMPTY if the target directory is not empty.
* Over the wire, the error is NFSERR_ENOTEMPTY
* which geterrno maps to ENOTEMPTY.
*/
if (error == ENOTEMPTY)
error = EEXIST;
}
if (error == 0) {
if (nvp)
vnevent_rename_dest(nvp, ndvp, nnm, ct);
if (odvp != ndvp)
vnevent_rename_dest_dir(ndvp, ct);
ASSERT(ovp != NULL);
vnevent_rename_src(ovp, odvp, onm, ct);
}
if (nvp) {
VN_RELE(nvp);
}
VN_RELE(ovp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
/* ARGSUSED */
static int
nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
caller_context_t *ct, int flags, vsecattr_t *vsecp)
{
int error;
MKDIR3args args;
MKDIR3res res;
int douprintf;
struct vattr vattr;
vnode_t *vp;
rnode_t *drp;
hrtime_t t;
if (nfs_zone() != VTOMI(dvp)->mi_zone)
return (EPERM);
setdiropargs3(&args.where, nm, dvp);
/*
* Decide what the group-id and set-gid bit of the created directory
* should be. May have to do a setattr to get the gid right.
*/
error = setdirgid(dvp, &va->va_gid, cr);
if (error)
return (error);
error = setdirmode(dvp, &va->va_mode, cr);
if (error)
return (error);
va->va_mask |= AT_MODE|AT_GID;
error = vattr_to_sattr3(va, &args.attributes);
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
drp = VTOR(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
return (EINTR);
dnlc_remove(dvp, nm);
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
xdr_MKDIR3args, (caddr_t)&args,
xdr_MKDIR3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(dvp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(drp))
nfs_purge_rddir_cache(dvp);
if (!res.resok.obj.handle_follows) {
error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
} else {
if (res.resok.obj_attributes.attributes) {
vp = makenfs3node(&res.resok.obj.handle,
&res.resok.obj_attributes.attr,
dvp->v_vfsp, t, cr, NULL, NULL);
} else {
vp = makenfs3node(&res.resok.obj.handle, NULL,
dvp->v_vfsp, t, cr, NULL, NULL);
if (vp->v_type == VNON) {
vattr.va_mask = AT_TYPE;
error = nfs3getattr(vp, &vattr, cr);
if (error) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
vp->v_type = vattr.va_type;
}
}
dnlc_update(dvp, nm, vp);
}
if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
va->va_mask = AT_GID;
(void) nfs3setattr(vp, va, 0, cr);
}
*vpp = vp;
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, dvp, cr);
}
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/* ARGSUSED */
static int
nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
caller_context_t *ct, int flags)
{
int error;
RMDIR3args args;
RMDIR3res res;
vnode_t *vp;
int douprintf;
rnode_t *drp;
hrtime_t t;
if (nfs_zone() != VTOMI(dvp)->mi_zone)
return (EPERM);
drp = VTOR(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
return (EINTR);
/*
* Attempt to prevent a rmdir(".") from succeeding.
*/
error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
if (vp == cdir) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (EINVAL);
}
setdiropargs3(&args.object, nm, dvp);
/*
* First just remove the entry from the name cache, as it
* is most likely an entry for this vp.
*/
dnlc_remove(dvp, nm);
/*
* If there vnode reference count is greater than one, then
* there may be additional references in the DNLC which will
* need to be purged. First, trying removing the entry for
* the parent directory and see if that removes the additional
* reference(s). If that doesn't do it, then use dnlc_purge_vp
* to completely remove any references to the directory which
* might still exist in the DNLC.
*/
if (vp->v_count > 1) {
dnlc_remove(vp, "..");
if (vp->v_count > 1)
dnlc_purge_vp(vp);
}
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
xdr_diropargs3, (caddr_t)&args,
xdr_RMDIR3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
PURGE_ATTRCACHE(vp);
if (error) {
PURGE_ATTRCACHE(dvp);
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(drp))
nfs_purge_rddir_cache(dvp);
if (HAVE_RDDIR_CACHE(VTOR(vp)))
nfs_purge_rddir_cache(vp);
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, dvp, cr);
/*
* System V defines rmdir to return EEXIST, not
* ENOTEMPTY if the directory is not empty. Over
* the wire, the error is NFSERR_ENOTEMPTY which
* geterrno maps to ENOTEMPTY.
*/
if (error == ENOTEMPTY)
error = EEXIST;
}
if (error == 0) {
vnevent_rmdir(vp, dvp, nm, ct);
}
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/* ARGSUSED */
static int
nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
caller_context_t *ct, int flags)
{
int error;
SYMLINK3args args;
SYMLINK3res res;
int douprintf;
mntinfo_t *mi;
vnode_t *vp;
rnode_t *rp;
char *contents;
rnode_t *drp;
hrtime_t t;
mi = VTOMI(dvp);
if (nfs_zone() != mi->mi_zone)
return (EPERM);
if (!(mi->mi_flags & MI_SYMLINK))
return (EOPNOTSUPP);
setdiropargs3(&args.where, lnm, dvp);
error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
if (error) {
/* req time field(s) overflow - return immediately */
return (error);
}
args.symlink.symlink_data = tnm;
drp = VTOR(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
return (EINTR);
dnlc_remove(dvp, lnm);
douprintf = 1;
t = gethrtime();
error = rfs3call(mi, NFSPROC3_SYMLINK,
xdr_SYMLINK3args, (caddr_t)&args,
xdr_SYMLINK3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, NULL);
if (error) {
PURGE_ATTRCACHE(dvp);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
error = geterrno3(res.status);
if (!error) {
nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
if (HAVE_RDDIR_CACHE(drp))
nfs_purge_rddir_cache(dvp);
if (res.resok.obj.handle_follows) {
if (res.resok.obj_attributes.attributes) {
vp = makenfs3node(&res.resok.obj.handle,
&res.resok.obj_attributes.attr,
dvp->v_vfsp, t, cr, NULL, NULL);
} else {
vp = makenfs3node(&res.resok.obj.handle, NULL,
dvp->v_vfsp, t, cr, NULL, NULL);
vp->v_type = VLNK;
vp->v_rdev = 0;
}
dnlc_update(dvp, lnm, vp);
rp = VTOR(vp);
if (nfs3_do_symlink_cache &&
rp->r_symlink.contents == NULL) {
contents = kmem_alloc(MAXPATHLEN,
KM_NOSLEEP);
if (contents != NULL) {
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents == NULL) {
rp->r_symlink.len = strlen(tnm);
bcopy(tnm, contents,
rp->r_symlink.len);
rp->r_symlink.contents =
contents;
rp->r_symlink.size = MAXPATHLEN;
mutex_exit(&rp->r_statelock);
} else {
mutex_exit(&rp->r_statelock);
kmem_free((void *)contents,
MAXPATHLEN);
}
}
}
VN_RELE(vp);
}
} else {
nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
PURGE_STALE_FH(error, dvp, cr);
if (error == EOPNOTSUPP) {
mutex_enter(&mi->mi_lock);
mi->mi_flags &= ~MI_SYMLINK;
mutex_exit(&mi->mi_lock);
}
}
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
#ifdef DEBUG
static int nfs3_readdir_cache_hits = 0;
static int nfs3_readdir_cache_shorts = 0;
static int nfs3_readdir_cache_waits = 0;
static int nfs3_readdir_cache_misses = 0;
static int nfs3_readdir_readahead = 0;
#endif
static int nfs3_shrinkreaddir = 0;
/*
* Read directory entries.
* There are some weird things to look out for here. The uio_loffset
* field is either 0 or it is the offset returned from a previous
* readdir. It is an opaque value used by the server to find the
* correct directory block to read. The count field is the number
* of blocks to read on the server. This is advisory only, the server
* may return only one block's worth of entries. Entries may be compressed
* on the server.
*/
/* ARGSUSED */
static int
nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
caller_context_t *ct, int flags)
{
int error;
size_t count;
rnode_t *rp;
rddir_cache *rdc;
rddir_cache *nrdc;
rddir_cache *rrdc;
#ifdef DEBUG
int missed;
#endif
int doreadahead;
rddir_cache srdc;
avl_index_t where;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
/*
* Make sure that the directory cache is valid.
*/
if (HAVE_RDDIR_CACHE(rp)) {
if (nfs_disable_rddir_cache) {
/*
* Setting nfs_disable_rddir_cache in /etc/system
* allows interoperability with servers that do not
* properly update the attributes of directories.
* Any cached information gets purged before an
* access is made to it.
*/
nfs_purge_rddir_cache(vp);
} else {
error = nfs3_validate_caches(vp, cr);
if (error)
return (error);
}
}
/*
* It is possible that some servers may not be able to correctly
* handle a large READDIR or READDIRPLUS request due to bugs in
* their implementation. In order to continue to interoperate
* with them, this workaround is provided to limit the maximum
* size of a READDIRPLUS request to 1024. In any case, the request
* size is limited to MAXBSIZE.
*/
count = MIN(uiop->uio_iov->iov_len,
nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
nrdc = NULL;
#ifdef DEBUG
missed = 0;
#endif
top:
/*
* Short circuit last readdir which always returns 0 bytes.
* This can be done after the directory has been read through
* completely at least once. This will set r_direof which
* can be used to find the value of the last cookie.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_direof != NULL &&
uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
nfs3_readdir_cache_shorts++;
#endif
if (eofp)
*eofp = 1;
if (nrdc != NULL)
rddir_cache_rele(nrdc);
return (0);
}
/*
* Look for a cache entry. Cache entries are identified
* by the NFS cookie value and the byte count requested.
*/
srdc.nfs3_cookie = uiop->uio_loffset;
srdc.buflen = count;
rdc = avl_find(&rp->r_dir, &srdc, &where);
if (rdc != NULL) {
rddir_cache_hold(rdc);
/*
* If the cache entry is in the process of being
* filled in, wait until this completes. The
* RDDIRWAIT bit is set to indicate that someone
* is waiting and then the thread currently
* filling the entry is done, it should do a
* cv_broadcast to wakeup all of the threads
* waiting for it to finish.
*/
if (rdc->flags & RDDIR) {
nfs_rw_exit(&rp->r_rwlock);
rdc->flags |= RDDIRWAIT;
#ifdef DEBUG
nfs3_readdir_cache_waits++;
#endif
if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
/*
* We got interrupted, probably
* the user typed ^C or an alarm
* fired. We free the new entry
* if we allocated one.
*/
mutex_exit(&rp->r_statelock);
(void) nfs_rw_enter_sig(&rp->r_rwlock,
RW_READER, FALSE);
rddir_cache_rele(rdc);
if (nrdc != NULL)
rddir_cache_rele(nrdc);
return (EINTR);
}
mutex_exit(&rp->r_statelock);
(void) nfs_rw_enter_sig(&rp->r_rwlock,
RW_READER, FALSE);
rddir_cache_rele(rdc);
goto top;
}
/*
* Check to see if a readdir is required to
* fill the entry. If so, mark this entry
* as being filled, remove our reference,
* and branch to the code to fill the entry.
*/
if (rdc->flags & RDDIRREQ) {
rdc->flags &= ~RDDIRREQ;
rdc->flags |= RDDIR;
if (nrdc != NULL)
rddir_cache_rele(nrdc);
nrdc = rdc;
mutex_exit(&rp->r_statelock);
goto bottom;
}
#ifdef DEBUG
if (!missed)
nfs3_readdir_cache_hits++;
#endif
/*
* If an error occurred while attempting
* to fill the cache entry, just return it.
*/
if (rdc->error) {
error = rdc->error;
mutex_exit(&rp->r_statelock);
rddir_cache_rele(rdc);
if (nrdc != NULL)
rddir_cache_rele(nrdc);
return (error);
}
/*
* The cache entry is complete and good,
* copyout the dirent structs to the calling
* thread.
*/
error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
/*
* If no error occurred during the copyout,
* update the offset in the uio struct to
* contain the value of the next cookie
* and set the eof value appropriately.
*/
if (!error) {
uiop->uio_loffset = rdc->nfs3_ncookie;
if (eofp)
*eofp = rdc->eof;
}
/*
* Decide whether to do readahead.
*
* Don't if have already read to the end of
* directory. There is nothing more to read.
*
* Don't if the application is not doing
* lookups in the directory. The readahead
* is only effective if the application can
* be doing work while an async thread is
* handling the over the wire request.
*/
if (rdc->eof) {
rp->r_direof = rdc;
doreadahead = FALSE;
} else if (!(rp->r_flags & RLOOKUP))
doreadahead = FALSE;
else
doreadahead = TRUE;
if (!doreadahead) {
mutex_exit(&rp->r_statelock);
rddir_cache_rele(rdc);
if (nrdc != NULL)
rddir_cache_rele(nrdc);
return (error);
}
/*
* Check to see whether we found an entry
* for the readahead. If so, we don't need
* to do anything further, so free the new
* entry if one was allocated. Otherwise,
* allocate a new entry, add it to the cache,
* and then initiate an asynchronous readdir
* operation to fill it.
*/
srdc.nfs3_cookie = rdc->nfs3_ncookie;
srdc.buflen = count;
rrdc = avl_find(&rp->r_dir, &srdc, &where);
if (rrdc != NULL) {
if (nrdc != NULL)
rddir_cache_rele(nrdc);
} else {
if (nrdc != NULL)
rrdc = nrdc;
else {
rrdc = rddir_cache_alloc(KM_NOSLEEP);
}
if (rrdc != NULL) {
rrdc->nfs3_cookie = rdc->nfs3_ncookie;
rrdc->buflen = count;
avl_insert(&rp->r_dir, rrdc, where);
rddir_cache_hold(rrdc);
mutex_exit(&rp->r_statelock);
rddir_cache_rele(rdc);
#ifdef DEBUG
nfs3_readdir_readahead++;
#endif
nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
return (error);
}
}
mutex_exit(&rp->r_statelock);
rddir_cache_rele(rdc);
return (error);
}
/*
* Didn't find an entry in the cache. Construct a new empty
* entry and link it into the cache. Other processes attempting
* to access this entry will need to wait until it is filled in.
*
* Since kmem_alloc may block, another pass through the cache
* will need to be taken to make sure that another process
* hasn't already added an entry to the cache for this request.
*/
if (nrdc == NULL) {
mutex_exit(&rp->r_statelock);
nrdc = rddir_cache_alloc(KM_SLEEP);
nrdc->nfs3_cookie = uiop->uio_loffset;
nrdc->buflen = count;
goto top;
}
/*
* Add this entry to the cache.
*/
avl_insert(&rp->r_dir, nrdc, where);
rddir_cache_hold(nrdc);
mutex_exit(&rp->r_statelock);
bottom:
#ifdef DEBUG
missed = 1;
nfs3_readdir_cache_misses++;
#endif
/*
* Do the readdir. This routine decides whether to use
* READDIR or READDIRPLUS.
*/
error = do_nfs3readdir(vp, nrdc, cr);
/*
* If this operation failed, just return the error which occurred.
*/
if (error != 0)
return (error);
/*
* Since the RPC operation will have taken sometime and blocked
* this process, another pass through the cache will need to be
* taken to find the correct cache entry. It is possible that
* the correct cache entry will not be there (although one was
* added) because the directory changed during the RPC operation
* and the readdir cache was flushed. In this case, just start
* over. It is hoped that this will not happen too often... :-)
*/
nrdc = NULL;
goto top;
/* NOTREACHED */
}
static int
do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
{
int error;
rnode_t *rp;
mntinfo_t *mi;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_zone() == mi->mi_zone);
/*
* Issue the proper request.
*
* If the server does not support READDIRPLUS, then use READDIR.
*
* Otherwise --
* Issue a READDIRPLUS if reading to fill an empty cache or if
* an application has performed a lookup in the directory which
* required an over the wire lookup. The use of READDIRPLUS
* will help to (re)populate the DNLC.
*/
if (!(mi->mi_flags & MI_READDIRONLY) &&
(rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
if (rp->r_flags & RREADDIRPLUS) {
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~RREADDIRPLUS;
mutex_exit(&rp->r_statelock);
}
nfs3readdirplus(vp, rdc, cr);
if (rdc->error == EOPNOTSUPP)
nfs3readdir(vp, rdc, cr);
} else
nfs3readdir(vp, rdc, cr);
mutex_enter(&rp->r_statelock);
rdc->flags &= ~RDDIR;
if (rdc->flags & RDDIRWAIT) {
rdc->flags &= ~RDDIRWAIT;
cv_broadcast(&rdc->cv);
}
error = rdc->error;
if (error)
rdc->flags |= RDDIRREQ;
mutex_exit(&rp->r_statelock);
rddir_cache_rele(rdc);
return (error);
}
static void
nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
{
int error;
READDIR3args args;
READDIR3vres res;
vattr_t dva;
rnode_t *rp;
int douprintf;
failinfo_t fi, *fip = NULL;
mntinfo_t *mi;
hrtime_t t;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_zone() == mi->mi_zone);
args.dir = *RTOFH3(rp);
args.cookie = (cookie3)rdc->nfs3_cookie;
args.cookieverf = rp->r_cookieverf;
args.count = rdc->buflen;
/*
* NFS client failover support
* suppress failover unless we have a zero cookie
*/
if (args.cookie == (cookie3) 0) {
fi.vp = vp;
fi.fhp = (caddr_t)&args.dir;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
fip = &fi;
}
#ifdef DEBUG
rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
#else
rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
#endif
res.entries = (dirent64_t *)rdc->entries;
res.entries_size = rdc->buflen;
res.dir_attributes.fres.vap = &dva;
res.dir_attributes.fres.vp = vp;
res.loff = rdc->nfs3_cookie;
douprintf = 1;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
xdr_READDIR3args, (caddr_t)&args,
xdr_READDIR3vres, (caddr_t)&res, cr,
&douprintf, &res.status, 0, fip);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (error)
goto err;
nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
error = geterrno3(res.status);
if (error) {
PURGE_STALE_FH(error, vp, cr);
goto err;
}
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
mutex_exit(&mi->mi_lock);
}
rdc->nfs3_ncookie = res.loff;
rp->r_cookieverf = res.cookieverf;
rdc->eof = res.eof ? 1 : 0;
rdc->entlen = res.size;
ASSERT(rdc->entlen <= rdc->buflen);
rdc->error = 0;
return;
err:
kmem_free(rdc->entries, rdc->buflen);
rdc->entries = NULL;
rdc->error = error;
}
/*
* Read directory entries.
* There are some weird things to look out for here. The uio_loffset
* field is either 0 or it is the offset returned from a previous
* readdir. It is an opaque value used by the server to find the
* correct directory block to read. The count field is the number
* of blocks to read on the server. This is advisory only, the server
* may return only one block's worth of entries. Entries may be compressed
* on the server.
*/
static void
nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
{
int error;
READDIRPLUS3args args;
READDIRPLUS3vres res;
vattr_t dva;
rnode_t *rp;
mntinfo_t *mi;
int douprintf;
failinfo_t fi, *fip = NULL;
rp = VTOR(vp);
mi = VTOMI(vp);
ASSERT(nfs_zone() == mi->mi_zone);
args.dir = *RTOFH3(rp);
args.cookie = (cookie3)rdc->nfs3_cookie;
args.cookieverf = rp->r_cookieverf;
args.dircount = rdc->buflen;
args.maxcount = mi->mi_tsize;
/*
* NFS client failover support
* suppress failover unless we have a zero cookie
*/
if (args.cookie == (cookie3)0) {
fi.vp = vp;
fi.fhp = (caddr_t)&args.dir;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
fip = &fi;
}
#ifdef DEBUG
rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
#else
rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
#endif
res.entries = (dirent64_t *)rdc->entries;
res.entries_size = rdc->buflen;
res.dir_attributes.fres.vap = &dva;
res.dir_attributes.fres.vp = vp;
res.loff = rdc->nfs3_cookie;
res.credentials = cr;
douprintf = 1;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
res.time = gethrtime();
error = rfs3call(mi, NFSPROC3_READDIRPLUS,
xdr_READDIRPLUS3args, (caddr_t)&args,
xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
&douprintf, &res.status, 0, fip);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (error) {
goto err;
}
nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
error = geterrno3(res.status);
if (error) {
PURGE_STALE_FH(error, vp, cr);
if (error == EOPNOTSUPP) {
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI_READDIRONLY;
mutex_exit(&mi->mi_lock);
}
goto err;
}
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
mutex_exit(&mi->mi_lock);
}
rdc->nfs3_ncookie = res.loff;
rp->r_cookieverf = res.cookieverf;
rdc->eof = res.eof ? 1 : 0;
rdc->entlen = res.size;
ASSERT(rdc->entlen <= rdc->buflen);
rdc->error = 0;
return;
err:
kmem_free(rdc->entries, rdc->buflen);
rdc->entries = NULL;
rdc->error = error;
}
#ifdef DEBUG
static int nfs3_bio_do_stop = 0;
#endif
static int
nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
{
rnode_t *rp = VTOR(bp->b_vp);
int count;
int error;
cred_t *cred;
offset_t offset;
ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
offset = ldbtob(bp->b_lblkno);
DTRACE_IO1(start, struct buf *, bp);
if (bp->b_flags & B_READ) {
mutex_enter(&rp->r_statelock);
if (rp->r_cred != NULL) {
cred = rp->r_cred;
crhold(cred);
} else {
rp->r_cred = cr;
crhold(cr);
cred = cr;
crhold(cred);
}
mutex_exit(&rp->r_statelock);
read_again:
error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
offset, bp->b_bcount, &bp->b_resid, cred);
crfree(cred);
if (!error) {
if (bp->b_resid) {
/*
* Didn't get it all because we hit EOF,
* zero all the memory beyond the EOF.
*/
/* bzero(rdaddr + */
bzero(bp->b_un.b_addr +
bp->b_bcount - bp->b_resid, bp->b_resid);
}
mutex_enter(&rp->r_statelock);
if (bp->b_resid == bp->b_bcount &&
offset >= rp->r_size) {
/*
* We didn't read anything at all as we are
* past EOF. Return an error indicator back
* but don't destroy the pages (yet).
*/
error = NFS_EOF;
}
mutex_exit(&rp->r_statelock);
} else if (error == EACCES) {
mutex_enter(&rp->r_statelock);
if (cred != cr) {
if (rp->r_cred != NULL)
crfree(rp->r_cred);
rp->r_cred = cr;
crhold(cr);
cred = cr;
crhold(cred);
mutex_exit(&rp->r_statelock);
goto read_again;
}
mutex_exit(&rp->r_statelock);
}
} else {
if (!(rp->r_flags & RSTALE)) {
mutex_enter(&rp->r_statelock);
if (rp->r_cred != NULL) {
cred = rp->r_cred;
crhold(cred);
} else {
rp->r_cred = cr;
crhold(cr);
cred = cr;
crhold(cred);
}
mutex_exit(&rp->r_statelock);
write_again:
mutex_enter(&rp->r_statelock);
count = MIN(bp->b_bcount, rp->r_size - offset);
mutex_exit(&rp->r_statelock);
if (count < 0)
cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
#ifdef DEBUG
if (count == 0) {
zcmn_err(getzoneid(), CE_WARN,
"nfs3_bio: zero length write at %lld",
offset);
nfs_printfhandle(&rp->r_fh);
if (nfs3_bio_do_stop)
debug_enter("nfs3_bio");
}
#endif
error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
count, cred, stab_comm);
if (error == EACCES) {
mutex_enter(&rp->r_statelock);
if (cred != cr) {
if (rp->r_cred != NULL)
crfree(rp->r_cred);
rp->r_cred = cr;
crhold(cr);
crfree(cred);
cred = cr;
crhold(cred);
mutex_exit(&rp->r_statelock);
goto write_again;
}
mutex_exit(&rp->r_statelock);
}
bp->b_error = error;
if (error && error != EINTR) {
/*
* Don't print EDQUOT errors on the console.
* Don't print asynchronous EACCES errors.
* Don't print EFBIG errors.
* Print all other write errors.
*/
if (error != EDQUOT && error != EFBIG &&
(error != EACCES ||
!(bp->b_flags & B_ASYNC)))
nfs_write_error(bp->b_vp, error, cred);
/*
* Update r_error and r_flags as appropriate.
* If the error was ESTALE, then mark the
* rnode as not being writeable and save
* the error status. Otherwise, save any
* errors which occur from asynchronous
* page invalidations. Any errors occurring
* from other operations should be saved
* by the caller.
*/
mutex_enter(&rp->r_statelock);
if (error == ESTALE) {
rp->r_flags |= RSTALE;
if (!rp->r_error)
rp->r_error = error;
} else if (!rp->r_error &&
(bp->b_flags &
(B_INVAL|B_FORCE|B_ASYNC)) ==
(B_INVAL|B_FORCE|B_ASYNC)) {
rp->r_error = error;
}
mutex_exit(&rp->r_statelock);
}
crfree(cred);
} else
error = rp->r_error;
}
if (error != 0 && error != NFS_EOF)
bp->b_flags |= B_ERROR;
DTRACE_IO1(done, struct buf *, bp);
return (error);
}
/* ARGSUSED */
static int
nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
{
rnode_t *rp;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
fidp->fid_len = rp->r_fh.fh_len;
return (ENOSPC);
}
fidp->fid_len = rp->r_fh.fh_len;
bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
return (0);
}
/* ARGSUSED2 */
static int
nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
{
rnode_t *rp = VTOR(vp);
if (!write_lock) {
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
return (V_WRITELOCK_FALSE);
}
if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
return (V_WRITELOCK_FALSE);
nfs_rw_exit(&rp->r_rwlock);
}
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
return (V_WRITELOCK_TRUE);
}
/* ARGSUSED */
static void
nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
{
rnode_t *rp = VTOR(vp);
nfs_rw_exit(&rp->r_rwlock);
}
/* ARGSUSED */
static int
nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
{
/*
* Because we stuff the readdir cookie into the offset field
* someone may attempt to do an lseek with the cookie which
* we want to succeed.
*/
if (vp->v_type == VDIR)
return (0);
if (*noffp < 0)
return (EINVAL);
return (0);
}
/*
* number of nfs3_bsize blocks to read ahead.
*/
static int nfs3_nra = 4;
#ifdef DEBUG
static int nfs3_lostpage = 0; /* number of times we lost original page */
#endif
/*
* Return all the pages from [off..off+len) in file
*/
/* ARGSUSED */
static int
nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr, caller_context_t *ct)
{
rnode_t *rp;
int error;
mntinfo_t *mi;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
if (protp != NULL)
*protp = PROT_ALL;
/*
* Now valididate that the caches are up to date.
*/
error = nfs3_validate_caches(vp, cr);
if (error)
return (error);
rp = VTOR(vp);
mi = VTOMI(vp);
retry:
mutex_enter(&rp->r_statelock);
/*
* Don't create dirty pages faster than they
* can be cleaned so that the system doesn't
* get imbalanced. If the async queue is
* maxed out, then wait for it to drain before
* creating more dirty pages. Also, wait for
* any threads doing pagewalks in the vop_getattr
* entry points so that they don't block for
* long periods.
*/
if (rw == S_CREATE) {
while ((mi->mi_max_threads != 0 &&
rp->r_awcount > 2 * mi->mi_max_threads) ||
rp->r_gcount > 0)
cv_wait(&rp->r_cv, &rp->r_statelock);
}
/*
* If we are getting called as a side effect of an nfs_write()
* operation the local file size might not be extended yet.
* In this case we want to be able to return pages of zeroes.
*/
if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
mutex_exit(&rp->r_statelock);
return (EFAULT); /* beyond EOF */
}
mutex_exit(&rp->r_statelock);
if (len <= PAGESIZE) {
error = nfs3_getapage(vp, off, len, protp, pl, plsz,
seg, addr, rw, cr);
} else {
error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
pl, plsz, seg, addr, rw, cr);
}
switch (error) {
case NFS_EOF:
nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
goto retry;
case ESTALE:
PURGE_STALE_FH(error, vp, cr);
}
return (error);
}
/*
* Called from pvn_getpages or nfs3_getpage to get a particular page.
*/
/* ARGSUSED */
static int
nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr)
{
rnode_t *rp;
uint_t bsize;
struct buf *bp;
page_t *pp;
u_offset_t lbn;
u_offset_t io_off;
u_offset_t blkoff;
u_offset_t rablkoff;
size_t io_len;
uint_t blksize;
int error;
int readahead;
int readahead_issued = 0;
int ra_window; /* readahead window */
page_t *pagefound;
page_t *savepp;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
reread:
bp = NULL;
pp = NULL;
pagefound = NULL;
if (pl != NULL)
pl[0] = NULL;
error = 0;
lbn = off / bsize;
blkoff = lbn * bsize;
/*
* Queueing up the readahead before doing the synchronous read
* results in a significant increase in read throughput because
* of the increased parallelism between the async threads and
* the process context.
*/
if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
rw != S_CREATE &&
!(vp->v_flag & VNOCACHE)) {
mutex_enter(&rp->r_statelock);
/*
* Calculate the number of readaheads to do.
* a) No readaheads at offset = 0.
* b) Do maximum(nfs3_nra) readaheads when the readahead
* window is closed.
* c) Do readaheads between 1 to (nfs3_nra - 1) depending
* upon how far the readahead window is open or close.
* d) No readaheads if rp->r_nextr is not within the scope
* of the readahead window (random i/o).
*/
if (off == 0)
readahead = 0;
else if (blkoff == rp->r_nextr)
readahead = nfs3_nra;
else if (rp->r_nextr > blkoff &&
((ra_window = (rp->r_nextr - blkoff) / bsize)
<= (nfs3_nra - 1)))
readahead = nfs3_nra - ra_window;
else
readahead = 0;
rablkoff = rp->r_nextr;
while (readahead > 0 && rablkoff + bsize < rp->r_size) {
mutex_exit(&rp->r_statelock);
if (nfs_async_readahead(vp, rablkoff + bsize,
addr + (rablkoff + bsize - off), seg, cr,
nfs3_readahead) < 0) {
mutex_enter(&rp->r_statelock);
break;
}
readahead--;
rablkoff += bsize;
/*
* Indicate that we did a readahead so
* readahead offset is not updated
* by the synchronous read below.
*/
readahead_issued = 1;
mutex_enter(&rp->r_statelock);
/*
* set readahead offset to
* offset of last async readahead
* request.
*/
rp->r_nextr = rablkoff;
}
mutex_exit(&rp->r_statelock);
}
again:
if ((pagefound = page_exists(vp, off)) == NULL) {
if (pl == NULL) {
(void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
nfs3_readahead);
} else if (rw == S_CREATE) {
/*
* Block for this page is not allocated, or the offset
* is beyond the current allocation size, or we're
* allocating a swap slot and the page was not found,
* so allocate it and return a zero page.
*/
if ((pp = page_create_va(vp, off,
PAGESIZE, PG_WAIT, seg, addr)) == NULL)
cmn_err(CE_PANIC, "nfs3_getapage: page_create");
io_len = PAGESIZE;
mutex_enter(&rp->r_statelock);
rp->r_nextr = off + PAGESIZE;
mutex_exit(&rp->r_statelock);
} else {
/*
* Need to go to server to get a BLOCK, exception to
* that being while reading at offset = 0 or doing
* random i/o, in that case read only a PAGE.
*/
mutex_enter(&rp->r_statelock);
if (blkoff < rp->r_size &&
blkoff + bsize >= rp->r_size) {
/*
* If only a block or less is left in
* the file, read all that is remaining.
*/
if (rp->r_size <= off) {
/*
* Trying to access beyond EOF,
* set up to get at least one page.
*/
blksize = off + PAGESIZE - blkoff;
} else
blksize = rp->r_size - blkoff;
} else if ((off == 0) ||
(off != rp->r_nextr && !readahead_issued)) {
blksize = PAGESIZE;
blkoff = off; /* block = page here */
} else
blksize = bsize;
mutex_exit(&rp->r_statelock);
pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
&io_len, blkoff, blksize, 0);
/*
* Some other thread has entered the page,
* so just use it.
*/
if (pp == NULL)
goto again;
/*
* Now round the request size up to page boundaries.
* This ensures that the entire page will be
* initialized to zeroes if EOF is encountered.
*/
io_len = ptob(btopr(io_len));
bp = pageio_setup(pp, io_len, vp, B_READ);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This
* is correct since we want to do I/O on a page
* boundary. bp_mapin will use this addr to calculate
* an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(io_off);
bp->b_file = vp;
bp->b_offset = (offset_t)off;
bp_mapin(bp);
/*
* If doing a write beyond what we believe is EOF,
* don't bother trying to read the pages from the
* server, we'll just zero the pages here. We
* don't check that the rw flag is S_WRITE here
* because some implementations may attempt a
* read access to the buffer before copying data.
*/
mutex_enter(&rp->r_statelock);
if (io_off >= rp->r_size && seg == segkmap) {
mutex_exit(&rp->r_statelock);
bzero(bp->b_un.b_addr, io_len);
} else {
mutex_exit(&rp->r_statelock);
error = nfs3_bio(bp, NULL, cr);
}
/*
* Unmap the buffer before freeing it.
*/
bp_mapout(bp);
pageio_done(bp);
savepp = pp;
do {
pp->p_fsdata = C_NOCOMMIT;
} while ((pp = pp->p_next) != savepp);
if (error == NFS_EOF) {
/*
* If doing a write system call just return
* zeroed pages, else user tried to get pages
* beyond EOF, return error. We don't check
* that the rw flag is S_WRITE here because
* some implementations may attempt a read
* access to the buffer before copying data.
*/
if (seg == segkmap)
error = 0;
else
error = EFAULT;
}
if (!readahead_issued && !error) {
mutex_enter(&rp->r_statelock);
rp->r_nextr = io_off + io_len;
mutex_exit(&rp->r_statelock);
}
}
}
out:
if (pl == NULL)
return (error);
if (error) {
if (pp != NULL)
pvn_read_done(pp, B_ERROR);
return (error);
}
if (pagefound) {
se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
/*
* Page exists in the cache, acquire the appropriate lock.
* If this fails, start all over again.
*/
if ((pp = page_lookup(vp, off, se)) == NULL) {
#ifdef DEBUG
nfs3_lostpage++;
#endif
goto reread;
}
pl[0] = pp;
pl[1] = NULL;
return (0);
}
if (pp != NULL)
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
return (error);
}
static void
nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
cred_t *cr)
{
int error;
page_t *pp;
u_offset_t io_off;
size_t io_len;
struct buf *bp;
uint_t bsize, blksize;
rnode_t *rp = VTOR(vp);
page_t *savepp;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
mutex_enter(&rp->r_statelock);
if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
/*
* If less than a block left in file read less
* than a block.
*/
blksize = rp->r_size - blkoff;
} else
blksize = bsize;
mutex_exit(&rp->r_statelock);
pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
&io_off, &io_len, blkoff, blksize, 1);
/*
* The isra flag passed to the kluster function is 1, we may have
* gotten a return value of NULL for a variety of reasons (# of free
* pages < minfree, someone entered the page on the vnode etc). In all
* cases, we want to punt on the readahead.
*/
if (pp == NULL)
return;
/*
* Now round the request size up to page boundaries.
* This ensures that the entire page will be
* initialized to zeroes if EOF is encountered.
*/
io_len = ptob(btopr(io_len));
bp = pageio_setup(pp, io_len, vp, B_READ);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This is correct since
* we want to do I/O on a page boundary. bp_mapin() will use this addr
* to calculate an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(io_off);
bp->b_file = vp;
bp->b_offset = (offset_t)blkoff;
bp_mapin(bp);
/*
* If doing a write beyond what we believe is EOF, don't bother trying
* to read the pages from the server, we'll just zero the pages here.
* We don't check that the rw flag is S_WRITE here because some
* implementations may attempt a read access to the buffer before
* copying data.
*/
mutex_enter(&rp->r_statelock);
if (io_off >= rp->r_size && seg == segkmap) {
mutex_exit(&rp->r_statelock);
bzero(bp->b_un.b_addr, io_len);
error = 0;
} else {
mutex_exit(&rp->r_statelock);
error = nfs3_bio(bp, NULL, cr);
if (error == NFS_EOF)
error = 0;
}
/*
* Unmap the buffer before freeing it.
*/
bp_mapout(bp);
pageio_done(bp);
savepp = pp;
do {
pp->p_fsdata = C_NOCOMMIT;
} while ((pp = pp->p_next) != savepp);
pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
/*
* In case of error set readahead offset
* to the lowest offset.
* pvn_read_done() calls VN_DISPOSE to destroy the pages
*/
if (error && rp->r_nextr > io_off) {
mutex_enter(&rp->r_statelock);
if (rp->r_nextr > io_off)
rp->r_nextr = io_off;
mutex_exit(&rp->r_statelock);
}
}
/*
* Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
* If len == 0, do from off to EOF.
*
* The normal cases should be len == 0 && off == 0 (entire vp list),
* len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
* (from pageout).
*/
/* ARGSUSED */
static int
nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode_t *rp;
ASSERT(cr != NULL);
/*
* XXX - Why should this check be made here?
*/
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
return (0);
if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
error = nfs_putpages(vp, off, len, flags, cr);
mutex_enter(&rp->r_statelock);
rp->r_count--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Write out a single page, possibly klustering adjacent dirty pages.
*/
int
nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
int flags, cred_t *cr)
{
u_offset_t io_off;
u_offset_t lbn_off;
u_offset_t lbn;
size_t io_len;
uint_t bsize;
int error;
rnode_t *rp;
ASSERT(!vn_is_readonly(vp));
ASSERT(pp != NULL);
ASSERT(cr != NULL);
ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
rp = VTOR(vp);
ASSERT(rp->r_count > 0);
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
lbn = pp->p_offset / bsize;
lbn_off = lbn * bsize;
/*
* Find a kluster that fits in one block, or in
* one page if pages are bigger than blocks. If
* there is less file space allocated than a whole
* page, we'll shorten the i/o request below.
*/
pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
roundup(bsize, PAGESIZE), flags);
/*
* pvn_write_kluster shouldn't have returned a page with offset
* behind the original page we were given. Verify that.
*/
ASSERT((pp->p_offset / bsize) >= lbn);
/*
* Now pp will have the list of kept dirty pages marked for
* write back. It will also handle invalidation and freeing
* of pages that are not dirty. Check for page length rounding
* problems.
*/
if (io_off + io_len > lbn_off + bsize) {
ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
io_len = lbn_off + bsize - io_off;
}
/*
* The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
* consistent value of r_size. RMODINPROGRESS is set in writerp().
* When RMODINPROGRESS is set it indicates that a uiomove() is in
* progress and the r_size has not been made consistent with the
* new size of the file. When the uiomove() completes the r_size is
* updated and the RMODINPROGRESS flag is cleared.
*
* The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
* consistent value of r_size. Without this handshaking, it is
* possible that nfs(3)_bio() picks up the old value of r_size
* before the uiomove() in writerp() completes. This will result
* in the write through nfs(3)_bio() being dropped.
*
* More precisely, there is a window between the time the uiomove()
* completes and the time the r_size is updated. If a VOP_PUTPAGE()
* operation intervenes in this window, the page will be picked up,
* because it is dirty (it will be unlocked, unless it was
* pagecreate'd). When the page is picked up as dirty, the dirty
* bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
* checked. This will still be the old size. Therefore the page will
* not be written out. When segmap_release() calls VOP_PUTPAGE(),
* the page will be found to be clean and the write will be dropped.
*/
if (rp->r_flags & RMODINPROGRESS) {
mutex_enter(&rp->r_statelock);
if ((rp->r_flags & RMODINPROGRESS) &&
rp->r_modaddr + MAXBSIZE > io_off &&
rp->r_modaddr < io_off + io_len) {
page_t *plist;
/*
* A write is in progress for this region of the file.
* If we did not detect RMODINPROGRESS here then this
* path through nfs_putapage() would eventually go to
* nfs(3)_bio() and may not write out all of the data
* in the pages. We end up losing data. So we decide
* to set the modified bit on each page in the page
* list and mark the rnode with RDIRTY. This write
* will be restarted at some later time.
*/
plist = pp;
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
hat_setmod(pp);
page_io_unlock(pp);
page_unlock(pp);
}
rp->r_flags |= RDIRTY;
mutex_exit(&rp->r_statelock);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;
return (0);
}
mutex_exit(&rp->r_statelock);
}
if (flags & B_ASYNC) {
error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
nfs3_sync_putapage);
} else
error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;
return (error);
}
static int
nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr)
{
int error;
rnode_t *rp;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
flags |= B_WRITE;
error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
rp = VTOR(vp);
if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
error == EACCES) &&
(flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
if (!(rp->r_flags & ROUTOFSPACE)) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= ROUTOFSPACE;
mutex_exit(&rp->r_statelock);
}
flags |= B_ERROR;
pvn_write_done(pp, flags);
/*
* If this was not an async thread, then try again to
* write out the pages, but this time, also destroy
* them whether or not the write is successful. This
* will prevent memory from filling up with these
* pages and destroying them is the only alternative
* if they can't be written out.
*
* Don't do this if this is an async thread because
* when the pages are unlocked in pvn_write_done,
* some other thread could have come along, locked
* them, and queued for an async thread. It would be
* possible for all of the async threads to be tied
* up waiting to lock the pages again and they would
* all already be locked and waiting for an async
* thread to handle them. Deadlock.
*/
if (!(flags & B_ASYNC)) {
error = nfs3_putpage(vp, io_off, io_len,
B_INVAL | B_FORCE, cr, NULL);
}
} else {
if (error)
flags |= B_ERROR;
else if (rp->r_flags & ROUTOFSPACE) {
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~ROUTOFSPACE;
mutex_exit(&rp->r_statelock);
}
pvn_write_done(pp, flags);
if (freemem < desfree)
(void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
}
return (error);
}
/* ARGSUSED */
static int
nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
cred_t *cr, caller_context_t *ct)
{
struct segvn_crargs vn_a;
int error;
rnode_t *rp;
struct vattr va;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (off < 0 || off + len < 0)
return (ENXIO);
if (vp->v_type != VREG)
return (ENODEV);
/*
* If there is cached data and if close-to-open consistency
* checking is not turned off and if the file system is not
* mounted readonly, then force an over the wire getattr.
* Otherwise, just invoke nfs3getattr to get a copy of the
* attributes. The attribute cache will be used unless it
* is timed out and if it is, then an over the wire getattr
* will be issued.
*/
va.va_mask = AT_ALL;
if (vn_has_cached_data(vp) &&
!(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
error = nfs3_getattr_otw(vp, &va, cr);
else
error = nfs3getattr(vp, &va, cr);
if (error)
return (error);
/*
* Check to see if the vnode is currently marked as not cachable.
* This means portions of the file are locked (through VOP_FRLOCK).
* In this case the map request must be refused. We use
* rp->r_lkserlock to avoid a race with concurrent lock requests.
*/
rp = VTOR(vp);
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
return (EINTR);
if (vp->v_flag & VNOCACHE) {
error = EAGAIN;
goto done;
}
/*
* Don't allow concurrent locks and mapping if mandatory locking is
* enabled.
*/
if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
MANDLOCK(vp, va.va_mode)) {
error = EAGAIN;
goto done;
}
as_rangelock(as);
if (!(flags & MAP_FIXED)) {
map_addr(addrp, len, off, 1, flags);
if (*addrp == NULL) {
as_rangeunlock(as);
error = ENOMEM;
goto done;
}
} else {
/*
* User specified address - blow away any previous mappings
*/
(void) as_unmap(as, *addrp, len);
}
vn_a.vp = vp;
vn_a.offset = off;
vn_a.type = (flags & MAP_TYPE);
vn_a.prot = (uchar_t)prot;
vn_a.maxprot = (uchar_t)maxprot;
vn_a.flags = (flags & ~MAP_TYPE);
vn_a.cred = cr;
vn_a.amp = NULL;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map(as, *addrp, len, segvn_create, &vn_a);
as_rangeunlock(as);
done:
nfs_rw_exit(&rp->r_lkserlock);
return (error);
}
/* ARGSUSED */
static int
nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
cred_t *cr, caller_context_t *ct)
{
rnode_t *rp;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/*
* Need to hold rwlock while incrementing the mapcnt so that
* mmap'ing can be serialized with writes so that the caching
* can be handled correctly.
*/
rp = VTOR(vp);
if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
return (EINTR);
atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
nfs_rw_exit(&rp->r_rwlock);
return (0);
}
/* ARGSUSED */
static int
nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
caller_context_t *ct)
{
netobj lm_fh3;
int rc;
u_offset_t start, end;
rnode_t *rp;
int error = 0, intr = INTR(vp);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/* check for valid cmd parameter */
if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
return (EINVAL);
/* Verify l_type. */
switch (bfp->l_type) {
case F_RDLCK:
if (cmd != F_GETLK && !(flag & FREAD))
return (EBADF);
break;
case F_WRLCK:
if (cmd != F_GETLK && !(flag & FWRITE))
return (EBADF);
break;
case F_UNLCK:
intr = 0;
break;
default:
return (EINVAL);
}
/* check the validity of the lock range */
if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
return (rc);
if (rc = flk_check_lock_data(start, end, MAXEND))
return (rc);
/*
* If the filesystem is mounted using local locking, pass the
* request off to the local locking code.
*/
if (VTOMI(vp)->mi_flags & MI_LLOCK) {
if (cmd == F_SETLK || cmd == F_SETLKW) {
/*
* For complete safety, we should be holding
* r_lkserlock. However, we can't call
* lm_safelock and then fs_frlock while
* holding r_lkserlock, so just invoke
* lm_safelock and expect that this will
* catch enough of the cases.
*/
if (!lm_safelock(vp, bfp, cr))
return (EAGAIN);
}
return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
}
rp = VTOR(vp);
/*
* Check whether the given lock request can proceed, given the
* current file mappings.
*/
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
return (EINTR);
if (cmd == F_SETLK || cmd == F_SETLKW) {
if (!lm_safelock(vp, bfp, cr)) {
rc = EAGAIN;
goto done;
}
}
/*
* Flush the cache after waiting for async I/O to finish. For new
* locks, this is so that the process gets the latest bits from the
* server. For unlocks, this is so that other clients see the
* latest bits once the file has been unlocked. If currently dirty
* pages can't be flushed, then don't allow a lock to be set. But
* allow unlocks to succeed, to avoid having orphan locks on the
* server.
*/
if (cmd != F_GETLK) {
mutex_enter(&rp->r_statelock);
while (rp->r_count > 0) {
if (intr) {
klwp_t *lwp = ttolwp(curthread);
if (lwp != NULL)
lwp->lwp_nostop++;
if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) {
if (lwp != NULL)
lwp->lwp_nostop--;
rc = EINTR;
break;
}
if (lwp != NULL)
lwp->lwp_nostop--;
} else
cv_wait(&rp->r_cv, &rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
if (rc != 0)
goto done;
error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
if (error) {
if (error == ENOSPC || error == EDQUOT) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
if (bfp->l_type != F_UNLCK) {
rc = ENOLCK;
goto done;
}
}
}
lm_fh3.n_len = VTOFH3(vp)->fh3_length;
lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
/*
* Call the lock manager to do the real work of contacting
* the server and obtaining the lock.
*/
rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
if (rc == 0)
nfs_lockcompletion(vp, cmd);
done:
nfs_rw_exit(&rp->r_lkserlock);
return (rc);
}
/*
* Free storage space associated with the specified vnode. The portion
* to be freed is specified by bfp->l_start and bfp->l_len (already
* normalized to a "whence" of 0).
*
* This is an experimental facility whose continued existence is not
* guaranteed. Currently, we only support the special case
* of l_len == 0, meaning free to end of file.
*/
/* ARGSUSED */
static int
nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, cred_t *cr, caller_context_t *ct)
{
int error;
ASSERT(vp->v_type == VREG);
if (cmd != F_FREESP)
return (EINVAL);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
error = convoff(vp, bfp, 0, offset);
if (!error) {
ASSERT(bfp->l_start >= 0);
if (bfp->l_len == 0) {
struct vattr va;
/*
* ftruncate should not change the ctime and
* mtime if we truncate the file to its
* previous size.
*/
va.va_mask = AT_SIZE;
error = nfs3getattr(vp, &va, cr);
if (error || va.va_size == bfp->l_start)
return (error);
va.va_mask = AT_SIZE;
va.va_size = bfp->l_start;
error = nfs3setattr(vp, &va, 0, cr);
} else
error = EINVAL;
}
return (error);
}
/* ARGSUSED */
static int
nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
{
return (EINVAL);
}
/*
* Setup and add an address space callback to do the work of the delmap call.
* The callback will (and must be) deleted in the actual callback function.
*
* This is done in order to take care of the problem that we have with holding
* the address space's a_lock for a long period of time (e.g. if the NFS server
* is down). Callbacks will be executed in the address space code while the
* a_lock is not held. Holding the address space's a_lock causes things such
* as ps and fork to hang because they are trying to acquire this lock as well.
*/
/* ARGSUSED */
static int
nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uint_t prot, uint_t maxprot, uint_t flags,
cred_t *cr, caller_context_t *ct)
{
int caller_found;
int error;
rnode_t *rp;
nfs_delmap_args_t *dmapp;
nfs_delmapcall_t *delmap_call;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
/*
* A process may not change zones if it has NFS pages mmap'ed
* in, so we can't legitimately get here from the wrong zone.
*/
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
rp = VTOR(vp);
/*
* The way that the address space of this process deletes its mapping
* of this file is via the following call chains:
* - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
* - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
*
* With the use of address space callbacks we are allowed to drop the
* address space lock, a_lock, while executing the NFS operations that
* need to go over the wire. Returning EAGAIN to the caller of this
* function is what drives the execution of the callback that we add
* below. The callback will be executed by the address space code
* after dropping the a_lock. When the callback is finished, since
* we dropped the a_lock, it must be re-acquired and segvn_unmap()
* is called again on the same segment to finish the rest of the work
* that needs to happen during unmapping.
*
* This action of calling back into the segment driver causes
* nfs3_delmap() to get called again, but since the callback was
* already executed at this point, it already did the work and there
* is nothing left for us to do.
*
* To Summarize:
* - The first time nfs3_delmap is called by the current thread is when
* we add the caller associated with this delmap to the delmap caller
* list, add the callback, and return EAGAIN.
* - The second time in this call chain when nfs3_delmap is called we
* will find this caller in the delmap caller list and realize there
* is no more work to do thus removing this caller from the list and
* returning the error that was set in the callback execution.
*/
caller_found = nfs_find_and_delete_delmapcall(rp, &error);
if (caller_found) {
/*
* 'error' is from the actual delmap operations. To avoid
* hangs, we need to handle the return of EAGAIN differently
* since this is what drives the callback execution.
* In this case, we don't want to return EAGAIN and do the
* callback execution because there are none to execute.
*/
if (error == EAGAIN)
return (0);
else
return (error);
}
/* current caller was not in the list */
delmap_call = nfs_init_delmapcall();
mutex_enter(&rp->r_statelock);
list_insert_tail(&rp->r_indelmap, delmap_call);
mutex_exit(&rp->r_statelock);
dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
dmapp->vp = vp;
dmapp->off = off;
dmapp->addr = addr;
dmapp->len = len;
dmapp->prot = prot;
dmapp->maxprot = maxprot;
dmapp->flags = flags;
dmapp->cr = cr;
dmapp->caller = delmap_call;
error = as_add_callback(as, nfs3_delmap_callback, dmapp,
AS_UNMAP_EVENT, addr, len, KM_SLEEP);
return (error ? error : EAGAIN);
}
/*
* Remove some pages from an mmap'd vnode. Just update the
* count of pages. If doing close-to-open, then flush and
* commit all of the pages associated with this file.
* Otherwise, start an asynchronous page flush to write out
* any dirty pages. This will also associate a credential
* with the rnode which can be used to write the pages.
*/
/* ARGSUSED */
static void
nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
{
int error;
rnode_t *rp;
mntinfo_t *mi;
nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
rp = VTOR(dmapp->vp);
mi = VTOMI(dmapp->vp);
atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
ASSERT(rp->r_mapcnt >= 0);
/*
* Initiate a page flush and potential commit if there are
* pages, the file system was not mounted readonly, the segment
* was mapped shared, and the pages themselves were writeable.
*/
if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= RDIRTY;
mutex_exit(&rp->r_statelock);
/*
* If this is a cross-zone access a sync putpage won't work, so
* the best we can do is try an async putpage. That seems
* better than something more draconian such as discarding the
* dirty pages.
*/
if ((mi->mi_flags & MI_NOCTO) ||
nfs_zone() != mi->mi_zone)
error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
B_ASYNC, dmapp->cr, NULL);
else
error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
dmapp->len, dmapp->cr);
if (!error) {
mutex_enter(&rp->r_statelock);
error = rp->r_error;
rp->r_error = 0;
mutex_exit(&rp->r_statelock);
}
} else
error = 0;
if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
(void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
B_INVAL, dmapp->cr, NULL);
dmapp->caller->error = error;
(void) as_delete_callback(as, arg);
kmem_free(dmapp, sizeof (nfs_delmap_args_t));
}
static int nfs3_pathconf_disable_cache = 0;
#ifdef DEBUG
static int nfs3_pathconf_cache_hits = 0;
static int nfs3_pathconf_cache_misses = 0;
#endif
/* ARGSUSED */
static int
nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
caller_context_t *ct)
{
int error;
PATHCONF3args args;
PATHCONF3res res;
int douprintf;
failinfo_t fi;
rnode_t *rp;
hrtime_t t;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/*
* Large file spec - need to base answer on info stored
* on original FSINFO response.
*/
if (cmd == _PC_FILESIZEBITS) {
unsigned long long ll;
long l = 1;
ll = VTOMI(vp)->mi_maxfilesize;
if (ll == 0) {
*valp = 0;
return (0);
}
if (ll & 0xffffffff00000000) {
l += 32; ll >>= 32;
}
if (ll & 0xffff0000) {
l += 16; ll >>= 16;
}
if (ll & 0xff00) {
l += 8; ll >>= 8;
}
if (ll & 0xf0) {
l += 4; ll >>= 4;
}
if (ll & 0xc) {
l += 2; ll >>= 2;
}
if (ll & 0x2)
l += 2;
else if (ll & 0x1)
l += 1;
*valp = l;
return (0);
}
if (cmd == _PC_ACL_ENABLED) {
*valp = _ACL_ACLENT_ENABLED;
return (0);
}
if (cmd == _PC_XATTR_EXISTS) {
error = 0;
*valp = 0;
if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
vnode_t *avp;
rnode_t *rp;
int error = 0;
mntinfo_t *mi = VTOMI(vp);
if (!(mi->mi_flags & MI_EXTATTR))
return (0);
rp = VTOR(vp);
if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
INTR(vp)))
return (EINTR);
error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
if (error || avp == NULL)
error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
nfs_rw_exit(&rp->r_rwlock);
if (error == 0 && avp != NULL) {
VN_RELE(avp);
*valp = 1;
} else if (error == ENOENT)
error = 0;
}
return (error);
}
rp = VTOR(vp);
if (rp->r_pathconf != NULL) {
mutex_enter(&rp->r_statelock);
if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
rp->r_pathconf = NULL;
}
if (rp->r_pathconf != NULL) {
error = 0;
switch (cmd) {
case _PC_LINK_MAX:
*valp = rp->r_pathconf->link_max;
break;
case _PC_NAME_MAX:
*valp = rp->r_pathconf->name_max;
break;
case _PC_PATH_MAX:
case _PC_SYMLINK_MAX:
*valp = MAXPATHLEN;
break;
case _PC_CHOWN_RESTRICTED:
*valp = rp->r_pathconf->chown_restricted;
break;
case _PC_NO_TRUNC:
*valp = rp->r_pathconf->no_trunc;
break;
default:
error = EINVAL;
break;
}
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
nfs3_pathconf_cache_hits++;
#endif
return (error);
}
mutex_exit(&rp->r_statelock);
}
#ifdef DEBUG
nfs3_pathconf_cache_misses++;
#endif
args.object = *VTOFH3(vp);
fi.vp = vp;
fi.fhp = (caddr_t)&args.object;
fi.copyproc = nfs3copyfh;
fi.lookupproc = nfs3lookup;
fi.xattrdirproc = acl_getxattrdir3;
douprintf = 1;
t = gethrtime();
error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
xdr_nfs_fh3, (caddr_t)&args,
xdr_PATHCONF3res, (caddr_t)&res, cr,
&douprintf, &res.status, 0, &fi);
if (error)
return (error);
error = geterrno3(res.status);
if (!error) {
nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
if (!nfs3_pathconf_disable_cache) {
mutex_enter(&rp->r_statelock);
if (rp->r_pathconf == NULL) {
rp->r_pathconf = kmem_alloc(
sizeof (*rp->r_pathconf), KM_NOSLEEP);
if (rp->r_pathconf != NULL)
*rp->r_pathconf = res.resok.info;
}
mutex_exit(&rp->r_statelock);
}
switch (cmd) {
case _PC_LINK_MAX:
*valp = res.resok.info.link_max;
break;
case _PC_NAME_MAX:
*valp = res.resok.info.name_max;
break;
case _PC_PATH_MAX:
case _PC_SYMLINK_MAX:
*valp = MAXPATHLEN;
break;
case _PC_CHOWN_RESTRICTED:
*valp = res.resok.info.chown_restricted;
break;
case _PC_NO_TRUNC:
*valp = res.resok.info.no_trunc;
break;
default:
return (EINVAL);
}
} else {
nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
PURGE_STALE_FH(error, vp, cr);
}
return (error);
}
/*
* Called by async thread to do synchronous pageio. Do the i/o, wait
* for it to complete, and cleanup the page list when done.
*/
static int
nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr)
{
int error;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
if (flags & B_READ)
pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
else
pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
return (error);
}
/* ARGSUSED */
static int
nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr, caller_context_t *ct)
{
int error;
rnode_t *rp;
if (pp == NULL)
return (EINVAL);
if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
rp = VTOR(vp);
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
if (flags & B_ASYNC) {
error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
nfs3_sync_pageio);
} else
error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
mutex_enter(&rp->r_statelock);
rp->r_count--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
return (error);
}
/* ARGSUSED */
static void
nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode_t *rp;
page_t *plist;
page_t *pptr;
offset3 offset;
count3 len;
k_sigset_t smask;
/*
* We should get called with fl equal to either B_FREE or
* B_INVAL. Any other value is illegal.
*
* The page that we are either supposed to free or destroy
* should be exclusive locked and its io lock should not
* be held.
*/
ASSERT(fl == B_FREE || fl == B_INVAL);
ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
rp = VTOR(vp);
/*
* If the page doesn't need to be committed or we shouldn't
* even bother attempting to commit it, then just make sure
* that the p_fsdata byte is clear and then either free or
* destroy the page as appropriate.
*/
if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
return;
}
/*
* If there is a page invalidation operation going on, then
* if this is one of the pages being destroyed, then just
* clear the p_fsdata byte and then either free or destroy
* the page as appropriate.
*/
mutex_enter(&rp->r_statelock);
if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
mutex_exit(&rp->r_statelock);
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
return;
}
/*
* If we are freeing this page and someone else is already
* waiting to do a commit, then just unlock the page and
* return. That other thread will take care of commiting
* this page. The page can be freed sometime after the
* commit has finished. Otherwise, if the page is marked
* as delay commit, then we may be getting called from
* pvn_write_done, one page at a time. This could result
* in one commit per page, so we end up doing lots of small
* commits instead of fewer larger commits. This is bad,
* we want do as few commits as possible.
*/
if (fl == B_FREE) {
if (rp->r_flags & RCOMMITWAIT) {
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
if (pp->p_fsdata == C_DELAYCOMMIT) {
pp->p_fsdata = C_COMMIT;
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
}
/*
* Check to see if there is a signal which would prevent an
* attempt to commit the pages from being successful. If so,
* then don't bother with all of the work to gather pages and
* generate the unsuccessful RPC. Just return from here and
* let the page be committed at some later time.
*/
sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
sigunintr(&smask);
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
sigunintr(&smask);
/*
* We are starting to need to commit pages, so let's try
* to commit as many as possible at once to reduce the
* overhead.
*
* Set the `commit inprogress' state bit. We must
* first wait until any current one finishes. Then
* we initialize the c_pages list with this page.
*/
while (rp->r_flags & RCOMMIT) {
rp->r_flags |= RCOMMITWAIT;
cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
rp->r_flags &= ~RCOMMITWAIT;
}
rp->r_flags |= RCOMMIT;
mutex_exit(&rp->r_statelock);
ASSERT(rp->r_commit.c_pages == NULL);
rp->r_commit.c_pages = pp;
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
/*
* Gather together all other pages which can be committed.
* They will all be chained off r_commit.c_pages.
*/
nfs3_get_commit(vp);
/*
* Clear the `commit inprogress' status and disconnect
* the list of pages to be committed from the rnode.
* At this same time, we also save the starting offset
* and length of data to be committed on the server.
*/
plist = rp->r_commit.c_pages;
rp->r_commit.c_pages = NULL;
offset = rp->r_commit.c_commbase;
len = rp->r_commit.c_commlen;
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~RCOMMIT;
cv_broadcast(&rp->r_commit.c_cv);
mutex_exit(&rp->r_statelock);
if (curproc == proc_pageout || curproc == proc_fsflush ||
nfs_zone() != VTOMI(vp)->mi_zone) {
nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
return;
}
/*
* Actually generate the COMMIT3 over the wire operation.
*/
error = nfs3_commit(vp, offset, len, cr);
/*
* If we got an error during the commit, just unlock all
* of the pages. The pages will get retransmitted to the
* server during a putpage operation.
*/
if (error) {
while (plist != NULL) {
pptr = plist;
page_sub(&plist, pptr);
page_unlock(pptr);
}
return;
}
/*
* We've tried as hard as we can to commit the data to stable
* storage on the server. We release the rest of the pages
* and clear the commit required state. They will be put
* onto the tail of the cachelist if they are nolonger
* mapped.
*/
while (plist != pp) {
pptr = plist;
page_sub(&plist, pptr);
pptr->p_fsdata = C_NOCOMMIT;
(void) page_release(pptr, 1);
}
/*
* It is possible that nfs3_commit didn't return error but
* some other thread has modified the page we are going
* to free/destroy.
* In this case we need to rewrite the page. Do an explicit check
* before attempting to free/destroy the page. If modified, needs to
* be rewritten so unlock the page and return.
*/
if (hat_ismod(pp)) {
pp->p_fsdata = C_NOCOMMIT;
page_unlock(pp);
return;
}
/*
* Now, as appropriate, either free or destroy the page
* that we were called with.
*/
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
}
static int
nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
{
int error;
rnode_t *rp;
COMMIT3args args;
COMMIT3res res;
int douprintf;
cred_t *cred;
rp = VTOR(vp);
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
mutex_enter(&rp->r_statelock);
if (rp->r_cred != NULL) {
cred = rp->r_cred;
crhold(cred);
} else {
rp->r_cred = cr;
crhold(cr);
cred = cr;
crhold(cred);
}
mutex_exit(&rp->r_statelock);
args.file = *VTOFH3(vp);
args.offset = offset;
args.count = count;
doitagain:
douprintf = 1;
error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
xdr_COMMIT3args, (caddr_t)&args,
xdr_COMMIT3res, (caddr_t)&res, cred,
&douprintf, &res.status, 0, NULL);
crfree(cred);
if (error)
return (error);
error = geterrno3(res.status);
if (!error) {
ASSERT(rp->r_flags & RHAVEVERF);
mutex_enter(&rp->r_statelock);
if (rp->r_verf == res.resok.verf) {
mutex_exit(&rp->r_statelock);
return (0);
}
nfs3_set_mod(vp);
rp->r_verf = res.resok.verf;
mutex_exit(&rp->r_statelock);
error = NFS_VERF_MISMATCH;
} else {
if (error == EACCES) {
mutex_enter(&rp->r_statelock);
if (cred != cr) {
if (rp->r_cred != NULL)
crfree(rp->r_cred);
rp->r_cred = cr;
crhold(cr);
cred = cr;
crhold(cred);
mutex_exit(&rp->r_statelock);
goto doitagain;
}
mutex_exit(&rp->r_statelock);
}
/*
* Can't do a PURGE_STALE_FH here because this
* can cause a deadlock. nfs3_commit can
* be called from nfs3_dispose which can be called
* indirectly via pvn_vplist_dirty. PURGE_STALE_FH
* can call back to pvn_vplist_dirty.
*/
if (error == ESTALE) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= RSTALE;
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
PURGE_ATTRCACHE(vp);
} else {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
return (error);
}
static void
nfs3_set_mod(vnode_t *vp)
{
page_t *pp;
kmutex_t *vphm;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
if ((pp = vp->v_pages) != NULL) {
do {
if (pp->p_fsdata != C_NOCOMMIT) {
hat_setmod(pp);
pp->p_fsdata = C_NOCOMMIT;
}
} while ((pp = pp->p_vpnext) != vp->v_pages);
}
mutex_exit(vphm);
}
/*
* This routine is used to gather together a page list of the pages
* which are to be committed on the server. This routine must not
* be called if the calling thread holds any locked pages.
*
* The calling thread must have set RCOMMIT. This bit is used to
* serialize access to the commit structure in the rnode. As long
* as the thread has set RCOMMIT, then it can manipulate the commit
* structure without requiring any other locks.
*/
static void
nfs3_get_commit(vnode_t *vp)
{
rnode_t *rp;
page_t *pp;
kmutex_t *vphm;
rp = VTOR(vp);
ASSERT(rp->r_flags & RCOMMIT);
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
/*
* If there are no pages associated with this vnode, then
* just return.
*/
if ((pp = vp->v_pages) == NULL) {
mutex_exit(vphm);
return;
}
/*
* Step through all of the pages associated with this vnode
* looking for pages which need to be committed.
*/
do {
/*
* If this page does not need to be committed or is
* modified, then just skip it.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
continue;
/*
* Attempt to lock the page. If we can't, then
* someone else is messing with it and we will
* just skip it.
*/
if (!page_trylock(pp, SE_EXCL))
continue;
/*
* If this page does not need to be committed or is
* modified, then just skip it. Recheck now that
* the page is locked.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
page_unlock(pp);
continue;
}
if (PP_ISFREE(pp)) {
cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
(void *)pp);
}
/*
* The page needs to be committed and we locked it.
* Update the base and length parameters and add it
* to r_pages.
*/
if (rp->r_commit.c_pages == NULL) {
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
} else if (pp->p_offset < rp->r_commit.c_commbase) {
rp->r_commit.c_commlen = rp->r_commit.c_commbase -
(offset3)pp->p_offset + rp->r_commit.c_commlen;
rp->r_commit.c_commbase = (offset3)pp->p_offset;
} else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
<= pp->p_offset) {
rp->r_commit.c_commlen = (offset3)pp->p_offset -
rp->r_commit.c_commbase + PAGESIZE;
}
page_add(&rp->r_commit.c_pages, pp);
} while ((pp = pp->p_vpnext) != vp->v_pages);
mutex_exit(vphm);
}
/*
* This routine is used to gather together a page list of the pages
* which are to be committed on the server. This routine must not
* be called if the calling thread holds any locked pages.
*
* The calling thread must have set RCOMMIT. This bit is used to
* serialize access to the commit structure in the rnode. As long
* as the thread has set RCOMMIT, then it can manipulate the commit
* structure without requiring any other locks.
*/
static void
nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
{
rnode_t *rp;
page_t *pp;
u_offset_t end;
u_offset_t off;
ASSERT(len != 0);
rp = VTOR(vp);
ASSERT(rp->r_flags & RCOMMIT);
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
/*
* If there are no pages associated with this vnode, then
* just return.
*/
if ((pp = vp->v_pages) == NULL)
return;
/*
* Calculate the ending offset.
*/
end = soff + len;
for (off = soff; off < end; off += PAGESIZE) {
/*
* Lookup each page by vp, offset.
*/
if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
continue;
/*
* If this page does not need to be committed or is
* modified, then just skip it.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
page_unlock(pp);
continue;
}
ASSERT(PP_ISFREE(pp) == 0);
/*
* The page needs to be committed and we locked it.
* Update the base and length parameters and add it
* to r_pages.
*/
if (rp->r_commit.c_pages == NULL) {
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
} else {
rp->r_commit.c_commlen = (offset3)pp->p_offset -
rp->r_commit.c_commbase + PAGESIZE;
}
page_add(&rp->r_commit.c_pages, pp);
}
}
#if 0 /* unused */
#ifdef DEBUG
static int
nfs3_no_uncommitted_pages(vnode_t *vp)
{
page_t *pp;
kmutex_t *vphm;
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
if ((pp = vp->v_pages) != NULL) {
do {
if (pp->p_fsdata != C_NOCOMMIT) {
mutex_exit(vphm);
return (0);
}
} while ((pp = pp->p_vpnext) != vp->v_pages);
}
mutex_exit(vphm);
return (1);
}
#endif
#endif
static int
nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
{
int error;
writeverf3 write_verf;
rnode_t *rp = VTOR(vp);
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
/*
* Flush the data portion of the file and then commit any
* portions which need to be committed. This may need to
* be done twice if the server has changed state since
* data was last written. The data will need to be
* rewritten to the server and then a new commit done.
*
* In fact, this may need to be done several times if the
* server is having problems and crashing while we are
* attempting to do this.
*/
top:
/*
* Do a flush based on the poff and plen arguments. This
* will asynchronously write out any modified pages in the
* range specified by (poff, plen). This starts all of the
* i/o operations which will be waited for in the next
* call to nfs3_putpage
*/
mutex_enter(&rp->r_statelock);
write_verf = rp->r_verf;
mutex_exit(&rp->r_statelock);
error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
if (error == EAGAIN)
error = 0;
/*
* Do a flush based on the poff and plen arguments. This
* will synchronously write out any modified pages in the
* range specified by (poff, plen) and wait until all of
* the asynchronous i/o's in that range are done as well.
*/
if (!error)
error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
if (error)
return (error);
mutex_enter(&rp->r_statelock);
if (rp->r_verf != write_verf) {
mutex_exit(&rp->r_statelock);
goto top;
}
mutex_exit(&rp->r_statelock);
/*
* Now commit any pages which might need to be committed.
* If the error, NFS_VERF_MISMATCH, is returned, then
* start over with the flush operation.
*/
error = nfs3_commit_vp(vp, poff, plen, cr);
if (error == NFS_VERF_MISMATCH)
goto top;
return (error);
}
static int
nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
{
rnode_t *rp;
page_t *plist;
offset3 offset;
count3 len;
rp = VTOR(vp);
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/*
* Set the `commit inprogress' state bit. We must
* first wait until any current one finishes.
*/
mutex_enter(&rp->r_statelock);
while (rp->r_flags & RCOMMIT) {
rp->r_flags |= RCOMMITWAIT;
cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
rp->r_flags &= ~RCOMMITWAIT;
}
rp->r_flags |= RCOMMIT;
mutex_exit(&rp->r_statelock);
/*
* Gather together all of the pages which need to be
* committed.
*/
if (plen == 0)
nfs3_get_commit(vp);
else
nfs3_get_commit_range(vp, poff, plen);
/*
* Clear the `commit inprogress' bit and disconnect the
* page list which was gathered together in nfs3_get_commit.
*/
plist = rp->r_commit.c_pages;
rp->r_commit.c_pages = NULL;
offset = rp->r_commit.c_commbase;
len = rp->r_commit.c_commlen;
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~RCOMMIT;
cv_broadcast(&rp->r_commit.c_cv);
mutex_exit(&rp->r_statelock);
/*
* If any pages need to be committed, commit them and
* then unlock them so that they can be freed some
* time later.
*/
if (plist != NULL) {
/*
* No error occurred during the flush portion
* of this operation, so now attempt to commit
* the data to stable storage on the server.
*
* This will unlock all of the pages on the list.
*/
return (nfs3_sync_commit(vp, plist, offset, len, cr));
}
return (0);
}
static int
nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
cred_t *cr)
{
int error;
page_t *pp;
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
error = nfs3_commit(vp, offset, count, cr);
/*
* If we got an error, then just unlock all of the pages
* on the list.
*/
if (error) {
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
page_unlock(pp);
}
return (error);
}
/*
* We've tried as hard as we can to commit the data to stable
* storage on the server. We just unlock the pages and clear
* the commit required state. They will get freed later.
*/
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
pp->p_fsdata = C_NOCOMMIT;
page_unlock(pp);
}
return (error);
}
static void
nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
cred_t *cr)
{
ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
(void) nfs3_sync_commit(vp, plist, offset, count, cr);
}
/* ARGSUSED */
static int
nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error;
mntinfo_t *mi;
mi = VTOMI(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (mi->mi_flags & MI_ACL) {
error = acl_setacl3(vp, vsecattr, flag, cr);
if (mi->mi_flags & MI_ACL)
return (error);
}
return (ENOSYS);
}
/* ARGSUSED */
static int
nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error;
mntinfo_t *mi;
mi = VTOMI(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (mi->mi_flags & MI_ACL) {
error = acl_getacl3(vp, vsecattr, flag, cr);
if (mi->mi_flags & MI_ACL)
return (error);
}
return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
}
/* ARGSUSED */
static int
nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error;
struct shrlock nshr;
struct nfs_owner nfs_owner;
netobj lm_fh3;
if (nfs_zone() != VTOMI(vp)->mi_zone)
return (EIO);
/*
* check for valid cmd parameter
*/
if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
return (EINVAL);
/*
* Check access permissions
*/
if (cmd == F_SHARE &&
(((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
((shr->s_access & F_WRACC) && !(flag & FWRITE))))
return (EBADF);
/*
* If the filesystem is mounted using local locking, pass the
* request off to the local share code.
*/
if (VTOMI(vp)->mi_flags & MI_LLOCK)
return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
switch (cmd) {
case F_SHARE:
case F_UNSHARE:
lm_fh3.n_len = VTOFH3(vp)->fh3_length;
lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
/*
* If passed an owner that is too large to fit in an
* nfs_owner it is likely a recursive call from the
* lock manager client and pass it straight through. If
* it is not a nfs_owner then simply return an error.
*/
if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
if (((struct nfs_owner *)shr->s_owner)->magic !=
NFS_OWNER_MAGIC)
return (EINVAL);
if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
error = set_errno(error);
}
return (error);
}
/*
* Remote share reservations owner is a combination of
* a magic number, hostname, and the local owner
*/
bzero(&nfs_owner, sizeof (nfs_owner));
nfs_owner.magic = NFS_OWNER_MAGIC;
(void) strncpy(nfs_owner.hname, uts_nodename(),
sizeof (nfs_owner.hname));
bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
nshr.s_access = shr->s_access;
nshr.s_deny = shr->s_deny;
nshr.s_sysid = 0;
nshr.s_pid = ttoproc(curthread)->p_pid;
nshr.s_own_len = sizeof (nfs_owner);
nshr.s_owner = (caddr_t)&nfs_owner;
if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
error = set_errno(error);
}
break;
case F_HASREMOTELOCKS:
/*
* NFS client can't store remote locks itself
*/
shr->s_access = 0;
error = 0;
break;
default:
error = EINVAL;
break;
}
return (error);
}