rt.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/pcb.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/procset.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/rt.h>
#include <sys/rtpriocntl.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/cpuvar.h>
#include <sys/vmsystm.h>
#include <sys/time.h>
#include <sys/policy.h>
#include <sys/sdt.h>
#include <sys/cpupart.h>
#include <sys/modctl.h>
static pri_t rt_init(id_t, int, classfuncs_t **);
static struct sclass csw = {
"RT",
rt_init,
0
};
static struct modlsched modlsched = {
&mod_schedops, "realtime scheduling class", &csw
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlsched, NULL
};
int
_init()
{
return (mod_install(&modlinkage));
}
int
_fini()
{
return (EBUSY); /* don't remove RT for now */
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Class specific code for the real-time class
*/
/*
* Extern declarations for variables defined in the rt master file
*/
#define RTMAXPRI 59
pri_t rt_maxpri = RTMAXPRI; /* maximum real-time priority */
rtdpent_t *rt_dptbl; /* real-time dispatcher parameter table */
/*
* control flags (kparms->rt_cflags).
*/
#define RT_DOPRI 0x01 /* change priority */
#define RT_DOTQ 0x02 /* change RT time quantum */
#define RT_DOSIG 0x04 /* change RT time quantum signal */
static int rt_admin(caddr_t, cred_t *);
static int rt_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
static int rt_fork(kthread_t *, kthread_t *, void *);
static int rt_getclinfo(void *);
static int rt_getclpri(pcpri_t *);
static int rt_parmsin(void *);
static int rt_parmsout(void *, pc_vaparms_t *);
static int rt_vaparmsin(void *, pc_vaparms_t *);
static int rt_vaparmsout(void *, pc_vaparms_t *);
static int rt_parmsset(kthread_t *, void *, id_t, cred_t *);
static int rt_donice(kthread_t *, cred_t *, int, int *);
static void rt_exitclass(void *);
static int rt_canexit(kthread_t *, cred_t *);
static void rt_forkret(kthread_t *, kthread_t *);
static void rt_nullsys();
static void rt_parmsget(kthread_t *, void *);
static void rt_preempt(kthread_t *);
static void rt_setrun(kthread_t *);
static void rt_tick(kthread_t *);
static void rt_wakeup(kthread_t *);
static pri_t rt_swapin(kthread_t *, int);
static pri_t rt_swapout(kthread_t *, int);
static pri_t rt_globpri(kthread_t *);
static void rt_yield(kthread_t *);
static int rt_alloc(void **, int);
static void rt_free(void *);
static void rt_change_priority(kthread_t *, rtproc_t *);
static id_t rt_cid; /* real-time class ID */
static rtproc_t rt_plisthead; /* dummy rtproc at head of rtproc list */
static kmutex_t rt_dptblock; /* protects realtime dispatch table */
static kmutex_t rt_list_lock; /* protects RT thread list */
extern rtdpent_t *rt_getdptbl(void);
static struct classfuncs rt_classfuncs = {
/* class ops */
rt_admin,
rt_getclinfo,
rt_parmsin,
rt_parmsout,
rt_vaparmsin,
rt_vaparmsout,
rt_getclpri,
rt_alloc,
rt_free,
/* thread ops */
rt_enterclass,
rt_exitclass,
rt_canexit,
rt_fork,
rt_forkret,
rt_parmsget,
rt_parmsset,
rt_nullsys, /* stop */
rt_nullsys, /* exit */
rt_nullsys, /* active */
rt_nullsys, /* inactive */
rt_swapin,
rt_swapout,
rt_nullsys, /* trapret */
rt_preempt,
rt_setrun,
rt_nullsys, /* sleep */
rt_tick,
rt_wakeup,
rt_donice,
rt_globpri,
rt_nullsys, /* set_process_group */
rt_yield,
};
/*
* Real-time class initialization. Called by dispinit() at boot time.
* We can ignore the clparmsz argument since we know that the smallest
* possible parameter buffer is big enough for us.
*/
/* ARGSUSED */
pri_t
rt_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
{
rt_dptbl = rt_getdptbl();
rt_cid = cid; /* Record our class ID */
/*
* Initialize the rtproc list.
*/
rt_plisthead.rt_next = rt_plisthead.rt_prev = &rt_plisthead;
/*
* We're required to return a pointer to our classfuncs
* structure and the highest global priority value we use.
*/
*clfuncspp = &rt_classfuncs;
mutex_init(&rt_dptblock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&rt_list_lock, NULL, MUTEX_DEFAULT, NULL);
return (rt_dptbl[rt_maxpri].rt_globpri);
}
/*
* Get or reset the rt_dptbl values per the user's request.
*/
/* ARGSUSED */
static int
rt_admin(caddr_t uaddr, cred_t *reqpcredp)
{
rtadmin_t rtadmin;
rtdpent_t *tmpdpp;
size_t userdpsz;
size_t rtdpsz;
int i;
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(uaddr, &rtadmin, sizeof (rtadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* rtadmin struct from ILP32 callers */
rtadmin32_t rtadmin32;
if (copyin(uaddr, &rtadmin32, sizeof (rtadmin32_t)))
return (EFAULT);
rtadmin.rt_dpents =
(struct rtdpent *)(uintptr_t)rtadmin32.rt_dpents;
rtadmin.rt_ndpents = rtadmin32.rt_ndpents;
rtadmin.rt_cmd = rtadmin32.rt_cmd;
}
#endif /* _SYSCALL32_IMPL */
rtdpsz = (rt_maxpri + 1) * sizeof (rtdpent_t);
switch (rtadmin.rt_cmd) {
case RT_GETDPSIZE:
rtadmin.rt_ndpents = rt_maxpri + 1;
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&rtadmin, uaddr, sizeof (rtadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* return rtadmin struct to ILP32 callers */
rtadmin32_t rtadmin32;
rtadmin32.rt_dpents =
(caddr32_t)(uintptr_t)rtadmin.rt_dpents;
rtadmin32.rt_ndpents = rtadmin.rt_ndpents;
rtadmin32.rt_cmd = rtadmin.rt_cmd;
if (copyout(&rtadmin32, uaddr, sizeof (rtadmin32_t)))
return (EFAULT);
}
#endif /* _SYSCALL32_IMPL */
break;
case RT_GETDPTBL:
userdpsz = MIN(rtadmin.rt_ndpents * sizeof (rtdpent_t),
rtdpsz);
if (copyout(rt_dptbl, rtadmin.rt_dpents, userdpsz))
return (EFAULT);
rtadmin.rt_ndpents = userdpsz / sizeof (rtdpent_t);
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&rtadmin, uaddr, sizeof (rtadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* return rtadmin struct to ILP32 callers */
rtadmin32_t rtadmin32;
rtadmin32.rt_dpents =
(caddr32_t)(uintptr_t)rtadmin.rt_dpents;
rtadmin32.rt_ndpents = rtadmin.rt_ndpents;
rtadmin32.rt_cmd = rtadmin.rt_cmd;
if (copyout(&rtadmin32, uaddr, sizeof (rtadmin32_t)))
return (EFAULT);
}
#endif /* _SYSCALL32_IMPL */
break;
case RT_SETDPTBL:
/*
* We require that the requesting process has sufficient
* priveleges. We also require that the table supplied by
* the user exactly match the current rt_dptbl in size.
*/
if (secpolicy_dispadm(reqpcredp) != 0)
return (EPERM);
if (rtadmin.rt_ndpents * sizeof (rtdpent_t) != rtdpsz)
return (EINVAL);
/*
* We read the user supplied table into a temporary buffer
* where the time quantum values are validated before
* being copied to the rt_dptbl.
*/
tmpdpp = kmem_alloc(rtdpsz, KM_SLEEP);
if (copyin(rtadmin.rt_dpents, tmpdpp, rtdpsz)) {
kmem_free(tmpdpp, rtdpsz);
return (EFAULT);
}
for (i = 0; i < rtadmin.rt_ndpents; i++) {
/*
* Validate the user supplied time quantum values.
*/
if (tmpdpp[i].rt_quantum <= 0 &&
tmpdpp[i].rt_quantum != RT_TQINF) {
kmem_free(tmpdpp, rtdpsz);
return (EINVAL);
}
}
/*
* Copy the user supplied values over the current rt_dptbl
* values. The rt_globpri member is read-only so we don't
* overwrite it.
*/
mutex_enter(&rt_dptblock);
for (i = 0; i < rtadmin.rt_ndpents; i++)
rt_dptbl[i].rt_quantum = tmpdpp[i].rt_quantum;
mutex_exit(&rt_dptblock);
kmem_free(tmpdpp, rtdpsz);
break;
default:
return (EINVAL);
}
return (0);
}
/*
* Allocate a real-time class specific proc structure and
* initialize it with the parameters supplied. Also move thread
* to specified real-time priority.
*/
/* ARGSUSED */
static int
rt_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
void *bufp)
{
rtkparms_t *rtkparmsp = (rtkparms_t *)parmsp;
rtproc_t *rtpp;
/*
* For a thread to enter the real-time class the thread
* which initiates the request must be privileged.
* This may have been checked previously but if our
* caller passed us a credential structure we assume it
* hasn't and we check it here.
*/
if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
rtpp = (rtproc_t *)bufp;
ASSERT(rtpp != NULL);
/*
* If this thread's lwp is swapped out, it will be brought in
* when it is put onto the runqueue.
*
* Now, Initialize the rtproc structure.
*/
if (rtkparmsp == NULL) {
/*
* Use default values
*/
rtpp->rt_pri = 0;
rtpp->rt_pquantum = rt_dptbl[0].rt_quantum;
rtpp->rt_tqsignal = 0;
} else {
/*
* Use supplied values
*/
if ((rtkparmsp->rt_cflags & RT_DOPRI) == 0)
rtpp->rt_pri = 0;
else
rtpp->rt_pri = rtkparmsp->rt_pri;
if (rtkparmsp->rt_tqntm == RT_TQINF)
rtpp->rt_pquantum = RT_TQINF;
else if (rtkparmsp->rt_tqntm == RT_TQDEF ||
(rtkparmsp->rt_cflags & RT_DOTQ) == 0)
rtpp->rt_pquantum = rt_dptbl[rtpp->rt_pri].rt_quantum;
else
rtpp->rt_pquantum = rtkparmsp->rt_tqntm;
if ((rtkparmsp->rt_cflags & RT_DOSIG) == 0)
rtpp->rt_tqsignal = 0;
else
rtpp->rt_tqsignal = rtkparmsp->rt_tqsig;
}
rtpp->rt_flags = 0;
rtpp->rt_tp = t;
/*
* Reset thread priority
*/
thread_lock(t);
t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
t->t_cid = cid;
t->t_cldata = (void *)rtpp;
t->t_schedflag &= ~TS_RUNQMATCH;
rt_change_priority(t, rtpp);
thread_unlock(t);
/*
* Link new structure into rtproc list
*/
mutex_enter(&rt_list_lock);
rtpp->rt_next = rt_plisthead.rt_next;
rtpp->rt_prev = &rt_plisthead;
rt_plisthead.rt_next->rt_prev = rtpp;
rt_plisthead.rt_next = rtpp;
mutex_exit(&rt_list_lock);
return (0);
}
/*
* Free rtproc structure of thread.
*/
static void
rt_exitclass(void *procp)
{
rtproc_t *rtprocp = (rtproc_t *)procp;
mutex_enter(&rt_list_lock);
rtprocp->rt_prev->rt_next = rtprocp->rt_next;
rtprocp->rt_next->rt_prev = rtprocp->rt_prev;
mutex_exit(&rt_list_lock);
kmem_free(rtprocp, sizeof (rtproc_t));
}
/*
* Allocate and initialize real-time class specific
* proc structure for child.
*/
/* ARGSUSED */
static int
rt_fork(kthread_t *t, kthread_t *ct, void *bufp)
{
rtproc_t *prtpp;
rtproc_t *crtpp;
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
/*
* Initialize child's rtproc structure
*/
crtpp = (rtproc_t *)bufp;
ASSERT(crtpp != NULL);
prtpp = (rtproc_t *)t->t_cldata;
thread_lock(t);
crtpp->rt_timeleft = crtpp->rt_pquantum = prtpp->rt_pquantum;
crtpp->rt_pri = prtpp->rt_pri;
crtpp->rt_flags = prtpp->rt_flags & ~RTBACKQ;
crtpp->rt_tqsignal = prtpp->rt_tqsignal;
crtpp->rt_tp = ct;
thread_unlock(t);
/*
* Link new structure into rtproc list
*/
ct->t_cldata = (void *)crtpp;
mutex_enter(&rt_list_lock);
crtpp->rt_next = rt_plisthead.rt_next;
crtpp->rt_prev = &rt_plisthead;
rt_plisthead.rt_next->rt_prev = crtpp;
rt_plisthead.rt_next = crtpp;
mutex_exit(&rt_list_lock);
return (0);
}
/*
* The child goes to the back of its dispatcher queue while the
* parent continues to run after a real time thread forks.
*/
/* ARGSUSED */
static void
rt_forkret(kthread_t *t, kthread_t *ct)
{
proc_t *pp = ttoproc(t);
proc_t *cp = ttoproc(ct);
ASSERT(t == curthread);
ASSERT(MUTEX_HELD(&pidlock));
/*
* Grab the child's p_lock before dropping pidlock to ensure
* the process does not disappear before we set it running.
*/
mutex_enter(&cp->p_lock);
mutex_exit(&pidlock);
continuelwps(cp);
mutex_exit(&cp->p_lock);
mutex_enter(&pp->p_lock);
continuelwps(pp);
mutex_exit(&pp->p_lock);
}
/*
* Get information about the real-time class into the buffer
* pointed to by rtinfop. The maximum configured real-time
* priority is the only information we supply. We ignore the
* class and credential arguments because anyone can have this
* information.
*/
/* ARGSUSED */
static int
rt_getclinfo(void *infop)
{
rtinfo_t *rtinfop = (rtinfo_t *)infop;
rtinfop->rt_maxpri = rt_maxpri;
return (0);
}
/*
* Return the global scheduling priority ranges of the realtime
* class in pcpri_t structure.
*/
static int
rt_getclpri(pcpri_t *pcprip)
{
pcprip->pc_clpmax = rt_dptbl[rt_maxpri].rt_globpri;
pcprip->pc_clpmin = rt_dptbl[0].rt_globpri;
return (0);
}
static void
rt_nullsys()
{
}
/* ARGSUSED */
static int
rt_canexit(kthread_t *t, cred_t *cred)
{
/*
* Thread can always leave RT class
*/
return (0);
}
/*
* Get the real-time scheduling parameters of the thread pointed to by
* rtprocp into the buffer pointed to by rtkparmsp.
*/
static void
rt_parmsget(kthread_t *t, void *parmsp)
{
rtproc_t *rtprocp = (rtproc_t *)t->t_cldata;
rtkparms_t *rtkparmsp = (rtkparms_t *)parmsp;
rtkparmsp->rt_pri = rtprocp->rt_pri;
rtkparmsp->rt_tqntm = rtprocp->rt_pquantum;
rtkparmsp->rt_tqsig = rtprocp->rt_tqsignal;
}
/*
* Check the validity of the real-time parameters in the buffer
* pointed to by rtprmsp.
* We convert the rtparms buffer from the user supplied format to
* our internal format (i.e. time quantum expressed in ticks).
*/
static int
rt_parmsin(void *prmsp)
{
rtparms_t *rtprmsp = (rtparms_t *)prmsp;
longlong_t ticks;
uint_t cflags;
/*
* First check the validity of parameters and convert
* the buffer to kernel format.
*/
if ((rtprmsp->rt_pri < 0 || rtprmsp->rt_pri > rt_maxpri) &&
rtprmsp->rt_pri != RT_NOCHANGE)
return (EINVAL);
cflags = (rtprmsp->rt_pri != RT_NOCHANGE ? RT_DOPRI : 0);
if ((rtprmsp->rt_tqsecs == 0 && rtprmsp->rt_tqnsecs == 0) ||
rtprmsp->rt_tqnsecs >= NANOSEC)
return (EINVAL);
if (rtprmsp->rt_tqnsecs != RT_NOCHANGE)
cflags |= RT_DOTQ;
if (rtprmsp->rt_tqnsecs >= 0) {
if ((ticks = SEC_TO_TICK((longlong_t)rtprmsp->rt_tqsecs) +
NSEC_TO_TICK_ROUNDUP(rtprmsp->rt_tqnsecs)) > INT_MAX)
return (ERANGE);
((rtkparms_t *)rtprmsp)->rt_tqntm = (int)ticks;
} else {
if (rtprmsp->rt_tqnsecs != RT_NOCHANGE &&
rtprmsp->rt_tqnsecs != RT_TQINF &&
rtprmsp->rt_tqnsecs != RT_TQDEF)
return (EINVAL);
((rtkparms_t *)rtprmsp)->rt_tqntm = rtprmsp->rt_tqnsecs;
}
((rtkparms_t *)rtprmsp)->rt_cflags = cflags;
return (0);
}
/*
* Check the validity of the real-time parameters in the pc_vaparms_t
* structure vaparmsp and put them in the buffer pointed to by rtprmsp.
* pc_vaparms_t contains (key, value) pairs of parameter.
* rt_vaparmsin() is the variable parameter version of rt_parmsin().
*/
static int
rt_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
{
uint_t secs = 0;
uint_t cnt;
int nsecs = 0;
int priflag, secflag, nsecflag, sigflag;
longlong_t ticks;
rtkparms_t *rtprmsp = (rtkparms_t *)prmsp;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
/*
* First check the validity of parameters and convert them
* from the user supplied format to the internal format.
*/
priflag = secflag = nsecflag = sigflag = 0;
rtprmsp->rt_cflags = 0;
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case RT_KY_PRI:
if (priflag++)
return (EINVAL);
rtprmsp->rt_cflags |= RT_DOPRI;
rtprmsp->rt_pri = (pri_t)vpp->pc_parm;
if (rtprmsp->rt_pri < 0 || rtprmsp->rt_pri > rt_maxpri)
return (EINVAL);
break;
case RT_KY_TQSECS:
if (secflag++)
return (EINVAL);
rtprmsp->rt_cflags |= RT_DOTQ;
secs = (uint_t)vpp->pc_parm;
break;
case RT_KY_TQNSECS:
if (nsecflag++)
return (EINVAL);
rtprmsp->rt_cflags |= RT_DOTQ;
nsecs = (int)vpp->pc_parm;
break;
case RT_KY_TQSIG:
if (sigflag++)
return (EINVAL);
rtprmsp->rt_cflags |= RT_DOSIG;
rtprmsp->rt_tqsig = (int)vpp->pc_parm;
if (rtprmsp->rt_tqsig < 0 || rtprmsp->rt_tqsig >= NSIG)
return (EINVAL);
break;
default:
return (EINVAL);
}
}
if (vaparmsp->pc_vaparmscnt == 0) {
/*
* Use default parameters.
*/
rtprmsp->rt_pri = 0;
rtprmsp->rt_tqntm = RT_TQDEF;
rtprmsp->rt_tqsig = 0;
rtprmsp->rt_cflags = RT_DOPRI | RT_DOTQ | RT_DOSIG;
} else if ((rtprmsp->rt_cflags & RT_DOTQ) != 0) {
if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
return (EINVAL);
if (nsecs >= 0) {
if ((ticks = SEC_TO_TICK((longlong_t)secs) +
NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
return (ERANGE);
rtprmsp->rt_tqntm = (int)ticks;
} else {
if (nsecs != RT_TQINF && nsecs != RT_TQDEF)
return (EINVAL);
rtprmsp->rt_tqntm = nsecs;
}
}
return (0);
}
/*
* Do required processing on the real-time parameter buffer
* before it is copied out to the user.
* All we have to do is convert the buffer from kernel to user format
* (i.e. convert time quantum from ticks to seconds-nanoseconds).
*/
/* ARGSUSED */
static int
rt_parmsout(void *prmsp, pc_vaparms_t *vaparmsp)
{
rtkparms_t *rtkprmsp = (rtkparms_t *)prmsp;
if (vaparmsp != NULL)
return (0);
if (rtkprmsp->rt_tqntm < 0) {
/*
* Quantum field set to special value (e.g. RT_TQINF)
*/
((rtparms_t *)rtkprmsp)->rt_tqnsecs = rtkprmsp->rt_tqntm;
((rtparms_t *)rtkprmsp)->rt_tqsecs = 0;
} else {
/* Convert quantum from ticks to seconds-nanoseconds */
timestruc_t ts;
TICK_TO_TIMESTRUC(rtkprmsp->rt_tqntm, &ts);
((rtparms_t *)rtkprmsp)->rt_tqsecs = ts.tv_sec;
((rtparms_t *)rtkprmsp)->rt_tqnsecs = ts.tv_nsec;
}
return (0);
}
/*
* Copy all selected real-time class parameters to the user.
* The parameters are specified by a key.
*/
static int
rt_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
{
rtkparms_t *rtkprmsp = (rtkparms_t *)prmsp;
timestruc_t ts;
uint_t cnt;
uint_t secs;
int nsecs;
int priflag, secflag, nsecflag, sigflag;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
priflag = secflag = nsecflag = sigflag = 0;
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
if (rtkprmsp->rt_tqntm < 0) {
/*
* Quantum field set to special value (e.g. RT_TQINF).
*/
secs = 0;
nsecs = rtkprmsp->rt_tqntm;
} else {
/*
* Convert quantum from ticks to seconds-nanoseconds.
*/
TICK_TO_TIMESTRUC(rtkprmsp->rt_tqntm, &ts);
secs = ts.tv_sec;
nsecs = ts.tv_nsec;
}
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case RT_KY_PRI:
if (priflag++)
return (EINVAL);
if (copyout(&rtkprmsp->rt_pri,
(caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
return (EFAULT);
break;
case RT_KY_TQSECS:
if (secflag++)
return (EINVAL);
if (copyout(&secs, (caddr_t)(uintptr_t)vpp->pc_parm,
sizeof (uint_t)))
return (EFAULT);
break;
case RT_KY_TQNSECS:
if (nsecflag++)
return (EINVAL);
if (copyout(&nsecs, (caddr_t)(uintptr_t)vpp->pc_parm,
sizeof (int)))
return (EFAULT);
break;
case RT_KY_TQSIG:
if (sigflag++)
return (EINVAL);
if (copyout(&rtkprmsp->rt_tqsig,
(caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
return (EFAULT);
break;
default:
return (EINVAL);
}
}
return (0);
}
/*
* Set the scheduling parameters of the thread pointed to by rtprocp
* to those specified in the buffer pointed to by rtkprmsp.
* Note that the parameters are expected to be in kernel format
* (i.e. time quantm expressed in ticks). Real time parameters copied
* in from the user should be processed by rt_parmsin() before they are
* passed to this function.
*/
static int
rt_parmsset(kthread_t *tx, void *prmsp, id_t reqpcid, cred_t *reqpcredp)
{
rtkparms_t *rtkprmsp = (rtkparms_t *)prmsp;
rtproc_t *rtpp = (rtproc_t *)tx->t_cldata;
ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
/*
* Basic permissions enforced by generic kernel code
* for all classes require that a thread attempting
* to change the scheduling parameters of a target thread
* be privileged or have a real or effective UID
* matching that of the target thread. We are not
* called unless these basic permission checks have
* already passed. The real-time class requires in addition
* that the requesting thread be real-time unless it is privileged.
* This may also have been checked previously but if our caller
* passes us a credential structure we assume it hasn't and
* we check it here.
*/
if (reqpcredp != NULL && reqpcid != rt_cid &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
thread_lock(tx);
if ((rtkprmsp->rt_cflags & RT_DOPRI) != 0) {
rtpp->rt_pri = rtkprmsp->rt_pri;
rt_change_priority(tx, rtpp);
}
if (rtkprmsp->rt_tqntm == RT_TQINF)
rtpp->rt_pquantum = RT_TQINF;
else if (rtkprmsp->rt_tqntm == RT_TQDEF)
rtpp->rt_timeleft = rtpp->rt_pquantum =
rt_dptbl[rtpp->rt_pri].rt_quantum;
else if ((rtkprmsp->rt_cflags & RT_DOTQ) != 0)
rtpp->rt_timeleft = rtpp->rt_pquantum = rtkprmsp->rt_tqntm;
if ((rtkprmsp->rt_cflags & RT_DOSIG) != 0)
rtpp->rt_tqsignal = rtkprmsp->rt_tqsig;
thread_unlock(tx);
return (0);
}
/*
* Arrange for thread to be placed in appropriate location
* on dispatcher queue. Runs at splhi() since the clock
* interrupt can cause RTBACKQ to be set.
*/
static void
rt_preempt(kthread_t *t)
{
rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
klwp_t *lwp;
ASSERT(THREAD_LOCK_HELD(t));
/*
* If the state is user I allow swapping because I know I won't
* be holding any locks.
*/
if ((lwp = curthread->t_lwp) != NULL && lwp->lwp_state == LWP_USER)
t->t_schedflag &= ~TS_DONT_SWAP;
if ((rtpp->rt_flags & RTBACKQ) != 0) {
rtpp->rt_timeleft = rtpp->rt_pquantum;
rtpp->rt_flags &= ~RTBACKQ;
setbackdq(t);
} else
setfrontdq(t);
}
/*
* Return the global priority associated with this rt_pri.
*/
static pri_t
rt_globpri(kthread_t *t)
{
rtproc_t *rtprocp = (rtproc_t *)t->t_cldata;
return (rt_dptbl[rtprocp->rt_pri].rt_globpri);
}
static void
rt_setrun(kthread_t *t)
{
rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
ASSERT(THREAD_LOCK_HELD(t));
rtpp->rt_timeleft = rtpp->rt_pquantum;
rtpp->rt_flags &= ~RTBACKQ;
setbackdq(t);
}
/*
* Returns the priority of the thread, -1 if the thread is loaded or ineligible
* for swapin.
*
* FX and RT threads are designed so that they don't swapout; however, it
* is possible that while the thread is swapped out and in another class, it
* can be changed to FX or RT. Since these threads should be swapped in as
* soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
* returns SHRT_MAX - 1, so that it gives deference to any swapped out RT
* threads.
*/
/* ARGSUSED */
static pri_t
rt_swapin(kthread_t *t, int flags)
{
pri_t tpri = -1;
ASSERT(THREAD_LOCK_HELD(t));
if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
tpri = (pri_t)SHRT_MAX;
}
return (tpri);
}
/*
* Return an effective priority for swapout.
*/
/* ARGSUSED */
static pri_t
rt_swapout(kthread_t *t, int flags)
{
ASSERT(THREAD_LOCK_HELD(t));
return (-1);
}
/*
* Check for time slice expiration (unless thread has infinite time
* slice). If time slice has expired arrange for thread to be preempted
* and placed on back of queue.
*/
static void
rt_tick(kthread_t *t)
{
rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
thread_lock(t);
if ((rtpp->rt_pquantum != RT_TQINF && --rtpp->rt_timeleft == 0) ||
(DISP_MUST_SURRENDER(t))) {
if (rtpp->rt_timeleft == 0 && rtpp->rt_tqsignal) {
thread_unlock(t);
sigtoproc(ttoproc(t), t, rtpp->rt_tqsignal);
thread_lock(t);
}
rtpp->rt_flags |= RTBACKQ;
cpu_surrender(t);
}
thread_unlock(t);
}
/*
* Place the thread waking up on the dispatcher queue.
*/
static void
rt_wakeup(kthread_t *t)
{
rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
ASSERT(THREAD_LOCK_HELD(t));
rtpp->rt_timeleft = rtpp->rt_pquantum;
rtpp->rt_flags &= ~RTBACKQ;
setbackdq(t);
}
static void
rt_yield(kthread_t *t)
{
rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(t));
rtpp->rt_flags &= ~RTBACKQ;
setbackdq(t);
}
/* ARGSUSED */
static int
rt_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
{
return (EINVAL);
}
static int
rt_alloc(void **p, int flag)
{
void *bufp;
bufp = kmem_alloc(sizeof (rtproc_t), flag);
if (bufp == NULL) {
return (ENOMEM);
} else {
*p = bufp;
return (0);
}
}
static void
rt_free(void *bufp)
{
if (bufp)
kmem_free(bufp, sizeof (rtproc_t));
}
static void
rt_change_priority(kthread_t *t, rtproc_t *rtpp)
{
pri_t new_pri;
ASSERT(THREAD_LOCK_HELD(t));
new_pri = rt_dptbl[rtpp->rt_pri].rt_globpri;
if (t == curthread || t->t_state == TS_ONPROC) {
cpu_t *cp = t->t_disp_queue->disp_cpu;
THREAD_CHANGE_PRI(t, new_pri);
if (t == cp->cpu_dispthread)
cp->cpu_dispatch_pri = DISP_PRIO(t);
if (DISP_MUST_SURRENDER(t)) {
rtpp->rt_flags |= RTBACKQ;
cpu_surrender(t);
} else {
rtpp->rt_timeleft = rtpp->rt_pquantum;
}
} else {
/*
* When the priority of a thread is changed,
* it may be necessary to adjust its position
* on a sleep queue or dispatch queue. The
* function thread_change_pri() accomplishes this.
*/
if (thread_change_pri(t, new_pri, 0)) {
/*
* The thread was on a run queue.
* Reset its CPU timeleft.
*/
rtpp->rt_timeleft = rtpp->rt_pquantum;
} else {
rtpp->rt_flags |= RTBACKQ;
}
}
}