fx.c revision d5493db7e14e61d7910d92d1316d079110a327ef
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/session.h>
#include <sys/strsubr.h>
#include <sys/user.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/procset.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/fx.h>
#include <sys/fxpriocntl.h>
#include <sys/cpuvar.h>
#include <sys/systm.h>
#include <sys/vtrace.h>
#include <sys/schedctl.h>
#include <sys/tnf_probe.h>
#include <sys/sunddi.h>
#include <sys/spl.h>
#include <sys/modctl.h>
#include <sys/policy.h>
#include <sys/sdt.h>
#include <sys/cpupart.h>
#include <sys/cpucaps.h>
static pri_t fx_init(id_t, int, classfuncs_t **);
static struct sclass csw = {
"FX",
fx_init,
0
};
static struct modlsched modlsched = {
&mod_schedops, "Fixed priority sched class", &csw
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlsched, NULL
};
/*
* control flags (kparms->fx_cflags).
*/
#define FX_DOUPRILIM 0x01 /* change user priority limit */
#define FX_DOUPRI 0x02 /* change user priority */
#define FX_DOTQ 0x04 /* change FX time quantum */
#define FXMAXUPRI 60 /* maximum user priority setting */
#define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */
/*
* The fxproc_t structures that have a registered callback vector,
* are also kept in an array of circular doubly linked lists. A hash on
* the thread id (from ddi_get_kt_did()) is used to determine which list
* each of such fxproc structures should be placed. Each list has a dummy
* "head" which is never removed, so the list is never empty.
*/
#define FX_CB_LISTS 16 /* number of lists, must be power of 2 */
#define FX_CB_LIST_HASH(ktid) ((uint_t)ktid & (FX_CB_LISTS - 1))
/* Insert fxproc into callback list */
#define FX_CB_LIST_INSERT(fxpp) \
{ \
int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
kmutex_t *lockp = &fx_cb_list_lock[index]; \
fxproc_t *headp = &fx_cb_plisthead[index]; \
mutex_enter(lockp); \
fxpp->fx_cb_next = headp->fx_cb_next; \
fxpp->fx_cb_prev = headp; \
headp->fx_cb_next->fx_cb_prev = fxpp; \
headp->fx_cb_next = fxpp; \
mutex_exit(lockp); \
}
/*
* Remove thread from callback list.
*/
#define FX_CB_LIST_DELETE(fxpp) \
{ \
int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
kmutex_t *lockp = &fx_cb_list_lock[index]; \
mutex_enter(lockp); \
fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next; \
fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev; \
mutex_exit(lockp); \
}
#define FX_HAS_CB(fxpp) (fxpp->fx_callback != NULL)
/* adjust x to be between 0 and fx_maxumdpri */
#define FX_ADJUST_PRI(pri) \
{ \
if (pri < 0) \
pri = 0; \
else if (pri > fx_maxumdpri) \
pri = fx_maxumdpri; \
}
#define FX_ADJUST_QUANTUM(q) \
{ \
if (q > INT_MAX) \
q = INT_MAX; \
else if (q <= 0) \
q = FX_TQINF; \
}
#define FX_ISVALID(pri, quantum) \
(((pri >= 0) || (pri == FX_CB_NOCHANGE)) && \
((quantum >= 0) || (quantum == FX_NOCHANGE) || \
(quantum == FX_TQDEF) || (quantum == FX_TQINF)))
static id_t fx_cid; /* fixed priority class ID */
static fxdpent_t *fx_dptbl; /* fixed priority disp parameter table */
static pri_t fx_maxupri = FXMAXUPRI;
static pri_t fx_maxumdpri; /* max user mode fixed priority */
static pri_t fx_maxglobpri; /* maximum global priority used by fx class */
static kmutex_t fx_dptblock; /* protects fixed priority dispatch table */
static kmutex_t fx_cb_list_lock[FX_CB_LISTS]; /* protects list of fxprocs */
/* that have callbacks */
static fxproc_t fx_cb_plisthead[FX_CB_LISTS]; /* dummy fxproc at head of */
/* list of fxprocs with */
/* callbacks */
static int fx_admin(caddr_t, cred_t *);
static int fx_getclinfo(void *);
static int fx_parmsin(void *);
static int fx_parmsout(void *, pc_vaparms_t *);
static int fx_vaparmsin(void *, pc_vaparms_t *);
static int fx_vaparmsout(void *, pc_vaparms_t *);
static int fx_getclpri(pcpri_t *);
static int fx_alloc(void **, int);
static void fx_free(void *);
static int fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
static void fx_exitclass(void *);
static int fx_canexit(kthread_t *, cred_t *);
static int fx_fork(kthread_t *, kthread_t *, void *);
static void fx_forkret(kthread_t *, kthread_t *);
static void fx_parmsget(kthread_t *, void *);
static int fx_parmsset(kthread_t *, void *, id_t, cred_t *);
static void fx_stop(kthread_t *, int, int);
static void fx_exit(kthread_t *);
static pri_t fx_swapin(kthread_t *, int);
static pri_t fx_swapout(kthread_t *, int);
static void fx_trapret(kthread_t *);
static void fx_preempt(kthread_t *);
static void fx_setrun(kthread_t *);
static void fx_sleep(kthread_t *);
static void fx_tick(kthread_t *);
static void fx_wakeup(kthread_t *);
static int fx_donice(kthread_t *, cred_t *, int, int *);
static int fx_doprio(kthread_t *, cred_t *, int, int *);
static pri_t fx_globpri(kthread_t *);
static void fx_yield(kthread_t *);
static void fx_nullsys();
extern fxdpent_t *fx_getdptbl(void);
static void fx_change_priority(kthread_t *, fxproc_t *);
static fxproc_t *fx_list_lookup(kt_did_t);
static void fx_list_release(fxproc_t *);
static struct classfuncs fx_classfuncs = {
/* class functions */
fx_admin,
fx_getclinfo,
fx_parmsin,
fx_parmsout,
fx_vaparmsin,
fx_vaparmsout,
fx_getclpri,
fx_alloc,
fx_free,
/* thread functions */
fx_enterclass,
fx_exitclass,
fx_canexit,
fx_fork,
fx_forkret,
fx_parmsget,
fx_parmsset,
fx_stop,
fx_exit,
fx_nullsys, /* active */
fx_nullsys, /* inactive */
fx_swapin,
fx_swapout,
fx_trapret,
fx_preempt,
fx_setrun,
fx_sleep,
fx_tick,
fx_wakeup,
fx_donice,
fx_globpri,
fx_nullsys, /* set_process_group */
fx_yield,
fx_doprio,
};
int
_init()
{
return (mod_install(&modlinkage));
}
int
_fini()
{
return (EBUSY);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Fixed priority class initialization. Called by dispinit() at boot time.
* We can ignore the clparmsz argument since we know that the smallest
* possible parameter buffer is big enough for us.
*/
/* ARGSUSED */
static pri_t
fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
{
int i;
extern pri_t fx_getmaxumdpri(void);
fx_dptbl = fx_getdptbl();
fx_maxumdpri = fx_getmaxumdpri();
fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
fx_cid = cid; /* Record our class ID */
/*
* Initialize the hash table for fxprocs with callbacks
*/
for (i = 0; i < FX_CB_LISTS; i++) {
fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
&fx_cb_plisthead[i];
}
/*
* We're required to return a pointer to our classfuncs
* structure and the highest global priority value we use.
*/
*clfuncspp = &fx_classfuncs;
return (fx_maxglobpri);
}
/*
* Get or reset the fx_dptbl values per the user's request.
*/
static int
fx_admin(caddr_t uaddr, cred_t *reqpcredp)
{
fxadmin_t fxadmin;
fxdpent_t *tmpdpp;
int userdpsz;
int i;
size_t fxdpsz;
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* get fxadmin struct from ILP32 caller */
fxadmin32_t fxadmin32;
if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
return (EFAULT);
fxadmin.fx_dpents =
(struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
fxadmin.fx_cmd = fxadmin32.fx_cmd;
}
#endif /* _SYSCALL32_IMPL */
fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
switch (fxadmin.fx_cmd) {
case FX_GETDPSIZE:
fxadmin.fx_ndpents = fx_maxumdpri + 1;
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* return fxadmin struct to ILP32 caller */
fxadmin32_t fxadmin32;
fxadmin32.fx_dpents =
(caddr32_t)(uintptr_t)fxadmin.fx_dpents;
fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
fxadmin32.fx_cmd = fxadmin.fx_cmd;
if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
return (EFAULT);
}
#endif /* _SYSCALL32_IMPL */
break;
case FX_GETDPTBL:
userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
fxdpsz);
if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
return (EFAULT);
fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
/* return fxadmin struct to ILP32 callers */
fxadmin32_t fxadmin32;
fxadmin32.fx_dpents =
(caddr32_t)(uintptr_t)fxadmin.fx_dpents;
fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
fxadmin32.fx_cmd = fxadmin.fx_cmd;
if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
return (EFAULT);
}
#endif /* _SYSCALL32_IMPL */
break;
case FX_SETDPTBL:
/*
* We require that the requesting process has sufficient
* privileges. We also require that the table supplied by
* the user exactly match the current fx_dptbl in size.
*/
if (secpolicy_dispadm(reqpcredp) != 0) {
return (EPERM);
}
if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
return (EINVAL);
}
/*
* We read the user supplied table into a temporary buffer
* where it is validated before being copied over the
* fx_dptbl.
*/
tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
kmem_free(tmpdpp, fxdpsz);
return (EFAULT);
}
for (i = 0; i < fxadmin.fx_ndpents; i++) {
/*
* Validate the user supplied values. All we are doing
* here is verifying that the values are within their
* allowable ranges and will not panic the system. We
* make no attempt to ensure that the resulting
* configuration makes sense or results in reasonable
* performance.
*/
if (tmpdpp[i].fx_quantum <= 0 &&
tmpdpp[i].fx_quantum != FX_TQINF) {
kmem_free(tmpdpp, fxdpsz);
return (EINVAL);
}
}
/*
* Copy the user supplied values over the current fx_dptbl
* values. The fx_globpri member is read-only so we don't
* overwrite it.
*/
mutex_enter(&fx_dptblock);
for (i = 0; i < fxadmin.fx_ndpents; i++) {
fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
}
mutex_exit(&fx_dptblock);
kmem_free(tmpdpp, fxdpsz);
break;
default:
return (EINVAL);
}
return (0);
}
/*
* Allocate a fixed priority class specific thread structure and
* initialize it with the parameters supplied. Also move the thread
* to specified priority.
*/
static int
fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
void *bufp)
{
fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
fxproc_t *fxpp;
pri_t reqfxupri;
pri_t reqfxuprilim;
fxpp = (fxproc_t *)bufp;
ASSERT(fxpp != NULL);
/*
* Initialize the fxproc structure.
*/
fxpp->fx_flags = 0;
fxpp->fx_callback = NULL;
fxpp->fx_cookie = NULL;
if (fxkparmsp == NULL) {
/*
* Use default values.
*/
fxpp->fx_pri = fxpp->fx_uprilim = 0;
fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
fxpp->fx_nice = NZERO;
} else {
/*
* Use supplied values.
*/
if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
reqfxuprilim = 0;
} else {
if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
reqfxuprilim = fxkparmsp->fx_uprilim;
FX_ADJUST_PRI(reqfxuprilim);
}
if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
reqfxupri = reqfxuprilim;
} else {
if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
/*
* Set the user priority to the requested value
* or the upri limit, whichever is lower.
*/
reqfxupri = fxkparmsp->fx_upri;
FX_ADJUST_PRI(reqfxupri);
if (reqfxupri > reqfxuprilim)
reqfxupri = reqfxuprilim;
}
fxpp->fx_uprilim = reqfxuprilim;
fxpp->fx_pri = reqfxupri;
fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri;
if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
(fxkparmsp->fx_tqntm == FX_TQDEF)) {
fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
} else {
if (secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
if (fxkparmsp->fx_tqntm == FX_TQINF)
fxpp->fx_pquantum = FX_TQINF;
else {
fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
}
}
}
fxpp->fx_timeleft = fxpp->fx_pquantum;
cpucaps_sc_init(&fxpp->fx_caps);
fxpp->fx_tp = t;
thread_lock(t); /* get dispatcher lock on thread */
t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
t->t_cid = cid;
t->t_cldata = (void *)fxpp;
t->t_schedflag &= ~TS_RUNQMATCH;
fx_change_priority(t, fxpp);
thread_unlock(t);
return (0);
}
/*
* The thread is exiting.
*/
static void
fx_exit(kthread_t *t)
{
fxproc_t *fxpp;
thread_lock(t);
fxpp = (fxproc_t *)(t->t_cldata);
/*
* A thread could be exiting in between clock ticks, so we need to
* calculate how much CPU time it used since it was charged last time.
*
* CPU caps are not enforced on exiting processes - it is usually
* desirable to exit as soon as possible to free resources.
*/
(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
if (FX_HAS_CB(fxpp)) {
FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
fxpp->fx_callback = NULL;
fxpp->fx_cookie = NULL;
thread_unlock(t);
FX_CB_LIST_DELETE(fxpp);
return;
}
thread_unlock(t);
}
/*
* Exiting the class. Free fxproc structure of thread.
*/
static void
fx_exitclass(void *procp)
{
fxproc_t *fxpp = (fxproc_t *)procp;
thread_lock(fxpp->fx_tp);
if (FX_HAS_CB(fxpp)) {
FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
fxpp->fx_callback = NULL;
fxpp->fx_cookie = NULL;
thread_unlock(fxpp->fx_tp);
FX_CB_LIST_DELETE(fxpp);
} else
thread_unlock(fxpp->fx_tp);
kmem_free(fxpp, sizeof (fxproc_t));
}
/* ARGSUSED */
static int
fx_canexit(kthread_t *t, cred_t *cred)
{
/*
* A thread can always leave the FX class
*/
return (0);
}
/*
* Initialize fixed-priority class specific proc structure for a child.
* callbacks are not inherited upon fork.
*/
static int
fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
{
fxproc_t *pfxpp; /* ptr to parent's fxproc structure */
fxproc_t *cfxpp; /* ptr to child's fxproc structure */
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
cfxpp = (fxproc_t *)bufp;
ASSERT(cfxpp != NULL);
thread_lock(t);
pfxpp = (fxproc_t *)t->t_cldata;
/*
* Initialize child's fxproc structure.
*/
cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
cfxpp->fx_pri = pfxpp->fx_pri;
cfxpp->fx_uprilim = pfxpp->fx_uprilim;
cfxpp->fx_nice = pfxpp->fx_nice;
cfxpp->fx_callback = NULL;
cfxpp->fx_cookie = NULL;
cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
cpucaps_sc_init(&cfxpp->fx_caps);
cfxpp->fx_tp = ct;
ct->t_cldata = (void *)cfxpp;
thread_unlock(t);
/*
* Link new structure into fxproc list.
*/
return (0);
}
/*
* Child is placed at back of dispatcher queue and parent gives
* up processor so that the child runs first after the fork.
* This allows the child immediately execing to break the multiple
* use of copy on write pages with no disk home. The parent will
* get to steal them back rather than uselessly copying them.
*/
static void
fx_forkret(kthread_t *t, kthread_t *ct)
{
proc_t *pp = ttoproc(t);
proc_t *cp = ttoproc(ct);
fxproc_t *fxpp;
ASSERT(t == curthread);
ASSERT(MUTEX_HELD(&pidlock));
/*
* Grab the child's p_lock before dropping pidlock to ensure
* the process does not disappear before we set it running.
*/
mutex_enter(&cp->p_lock);
continuelwps(cp);
mutex_exit(&cp->p_lock);
mutex_enter(&pp->p_lock);
mutex_exit(&pidlock);
continuelwps(pp);
thread_lock(t);
fxpp = (fxproc_t *)(t->t_cldata);
t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
THREAD_TRANSITION(t);
fx_setrun(t);
thread_unlock(t);
/*
* Safe to drop p_lock now since it is safe to change
* the scheduling class after this point.
*/
mutex_exit(&pp->p_lock);
swtch();
}
/*
* Get information about the fixed-priority class into the buffer
* pointed to by fxinfop. The maximum configured user priority
* is the only information we supply.
*/
static int
fx_getclinfo(void *infop)
{
fxinfo_t *fxinfop = (fxinfo_t *)infop;
fxinfop->fx_maxupri = fx_maxupri;
return (0);
}
/*
* Return the user mode scheduling priority range.
*/
static int
fx_getclpri(pcpri_t *pcprip)
{
pcprip->pc_clpmax = fx_maxupri;
pcprip->pc_clpmin = 0;
return (0);
}
static void
fx_nullsys()
{}
/*
* Get the fixed-priority parameters of the thread pointed to by
* fxprocp into the buffer pointed to by fxparmsp.
*/
static void
fx_parmsget(kthread_t *t, void *parmsp)
{
fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
fxkparmsp->fx_upri = fxpp->fx_pri;
fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
}
/*
* Check the validity of the fixed-priority parameters in the buffer
* pointed to by fxparmsp.
*/
static int
fx_parmsin(void *parmsp)
{
fxparms_t *fxparmsp = (fxparms_t *)parmsp;
uint_t cflags;
longlong_t ticks;
/*
* Check validity of parameters.
*/
if ((fxparmsp->fx_uprilim > fx_maxupri ||
fxparmsp->fx_uprilim < 0) &&
fxparmsp->fx_uprilim != FX_NOCHANGE)
return (EINVAL);
if ((fxparmsp->fx_upri > fx_maxupri ||
fxparmsp->fx_upri < 0) &&
fxparmsp->fx_upri != FX_NOCHANGE)
return (EINVAL);
if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
fxparmsp->fx_tqnsecs >= NANOSEC)
return (EINVAL);
cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
cflags |= FX_DOUPRILIM;
}
if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
cflags |= FX_DOTQ;
/*
* convert the buffer to kernel format.
*/
if (fxparmsp->fx_tqnsecs >= 0) {
if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
return (ERANGE);
((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
} else {
if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
(fxparmsp->fx_tqnsecs != FX_TQINF) &&
(fxparmsp->fx_tqnsecs != FX_TQDEF))
return (EINVAL);
((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
}
((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
return (0);
}
/*
* Check the validity of the fixed-priority parameters in the pc_vaparms_t
* structure vaparmsp and put them in the buffer pointed to by fxprmsp.
* pc_vaparms_t contains (key, value) pairs of parameter.
*/
static int
fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
{
uint_t secs = 0;
uint_t cnt;
int nsecs = 0;
int priflag, secflag, nsecflag, limflag;
longlong_t ticks;
fxkparms_t *fxprmsp = (fxkparms_t *)prmsp;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
/*
* First check the validity of parameters and convert them
* from the user supplied format to the internal format.
*/
priflag = secflag = nsecflag = limflag = 0;
fxprmsp->fx_cflags = 0;
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case FX_KY_UPRILIM:
if (limflag++)
return (EINVAL);
fxprmsp->fx_cflags |= FX_DOUPRILIM;
fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
if (fxprmsp->fx_uprilim > fx_maxupri ||
fxprmsp->fx_uprilim < 0)
return (EINVAL);
break;
case FX_KY_UPRI:
if (priflag++)
return (EINVAL);
fxprmsp->fx_cflags |= FX_DOUPRI;
fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
if (fxprmsp->fx_upri > fx_maxupri ||
fxprmsp->fx_upri < 0)
return (EINVAL);
break;
case FX_KY_TQSECS:
if (secflag++)
return (EINVAL);
fxprmsp->fx_cflags |= FX_DOTQ;
secs = (uint_t)vpp->pc_parm;
break;
case FX_KY_TQNSECS:
if (nsecflag++)
return (EINVAL);
fxprmsp->fx_cflags |= FX_DOTQ;
nsecs = (int)vpp->pc_parm;
break;
default:
return (EINVAL);
}
}
if (vaparmsp->pc_vaparmscnt == 0) {
/*
* Use default parameters.
*/
fxprmsp->fx_upri = 0;
fxprmsp->fx_uprilim = 0;
fxprmsp->fx_tqntm = FX_TQDEF;
fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
} else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
return (EINVAL);
if (nsecs >= 0) {
if ((ticks = SEC_TO_TICK((longlong_t)secs) +
NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
return (ERANGE);
fxprmsp->fx_tqntm = (int)ticks;
} else {
if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
return (EINVAL);
fxprmsp->fx_tqntm = nsecs;
}
}
return (0);
}
/*
* Nothing to do here but return success.
*/
/* ARGSUSED */
static int
fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
{
register fxkparms_t *fxkprmsp = (fxkparms_t *)parmsp;
if (vaparmsp != NULL)
return (0);
if (fxkprmsp->fx_tqntm < 0) {
/*
* Quantum field set to special value (e.g. FX_TQINF)
*/
((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
} else {
/* Convert quantum from ticks to seconds-nanoseconds */
timestruc_t ts;
TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
}
return (0);
}
/*
* Copy all selected fixed-priority class parameters to the user.
* The parameters are specified by a key.
*/
static int
fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
{
fxkparms_t *fxkprmsp = (fxkparms_t *)prmsp;
timestruc_t ts;
uint_t cnt;
uint_t secs;
int nsecs;
int priflag, secflag, nsecflag, limflag;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
priflag = secflag = nsecflag = limflag = 0;
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
if (fxkprmsp->fx_tqntm < 0) {
/*
* Quantum field set to special value (e.g. FX_TQINF).
*/
secs = 0;
nsecs = fxkprmsp->fx_tqntm;
} else {
/*
* Convert quantum from ticks to seconds-nanoseconds.
*/
TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
secs = ts.tv_sec;
nsecs = ts.tv_nsec;
}
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case FX_KY_UPRILIM:
if (limflag++)
return (EINVAL);
if (copyout(&fxkprmsp->fx_uprilim,
(void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
return (EFAULT);
break;
case FX_KY_UPRI:
if (priflag++)
return (EINVAL);
if (copyout(&fxkprmsp->fx_upri,
(void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
return (EFAULT);
break;
case FX_KY_TQSECS:
if (secflag++)
return (EINVAL);
if (copyout(&secs,
(void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
return (EFAULT);
break;
case FX_KY_TQNSECS:
if (nsecflag++)
return (EINVAL);
if (copyout(&nsecs,
(void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
return (EFAULT);
break;
default:
return (EINVAL);
}
}
return (0);
}
/*
* Set the scheduling parameters of the thread pointed to by fxprocp
* to those specified in the buffer pointed to by fxparmsp.
*/
/* ARGSUSED */
static int
fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
{
char nice;
pri_t reqfxuprilim;
pri_t reqfxupri;
fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
fxproc_t *fxpp;
ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
thread_lock(tx);
fxpp = (fxproc_t *)tx->t_cldata;
if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
reqfxuprilim = fxpp->fx_uprilim;
else
reqfxuprilim = fxkparmsp->fx_uprilim;
/*
* Basic permissions enforced by generic kernel code
* for all classes require that a thread attempting
* to change the scheduling parameters of a target
* thread be privileged or have a real or effective
* UID matching that of the target thread. We are not
* called unless these basic permission checks have
* already passed. The fixed priority class requires in
* addition that the calling thread be privileged if it
* is attempting to raise the pri above its current
* value This may have been checked previously but if our
* caller passed us a non-NULL credential pointer we assume
* it hasn't and we check it here.
*/
if ((reqpcredp != NULL) &&
(reqfxuprilim > fxpp->fx_uprilim ||
((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
secpolicy_setpriority(reqpcredp) != 0) {
thread_unlock(tx);
return (EPERM);
}
FX_ADJUST_PRI(reqfxuprilim);
if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
reqfxupri = fxpp->fx_pri;
else
reqfxupri = fxkparmsp->fx_upri;
/*
* Make sure the user priority doesn't exceed the upri limit.
*/
if (reqfxupri > reqfxuprilim)
reqfxupri = reqfxuprilim;
/*
* Set fx_nice to the nice value corresponding to the user
* priority we are setting. Note that setting the nice field
* of the parameter struct won't affect upri or nice.
*/
nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
if (nice > NZERO)
nice = NZERO;
fxpp->fx_uprilim = reqfxuprilim;
fxpp->fx_pri = reqfxupri;
if (fxkparmsp->fx_tqntm == FX_TQINF)
fxpp->fx_pquantum = FX_TQINF;
else if (fxkparmsp->fx_tqntm == FX_TQDEF)
fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
fxpp->fx_nice = nice;
fx_change_priority(tx, fxpp);
thread_unlock(tx);
return (0);
}
/*
* Return the global scheduling priority that would be assigned
* to a thread entering the fixed-priority class with the fx_upri.
*/
static pri_t
fx_globpri(kthread_t *t)
{
fxproc_t *fxpp;
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
fxpp = (fxproc_t *)t->t_cldata;
return (fx_dptbl[fxpp->fx_pri].fx_globpri);
}
/*
* Arrange for thread to be placed in appropriate location
* on dispatcher queue.
*
* This is called with the current thread in TS_ONPROC and locked.
*/
static void
fx_preempt(kthread_t *t)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(curthread));
(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
/*
* Check to see if we're doing "preemption control" here. If
* we are, and if the user has requested that this thread not
* be preempted, and if preemptions haven't been put off for
* too long, let the preemption happen here but try to make
* sure the thread is rescheduled as soon as possible. We do
* this by putting it on the front of the highest priority run
* queue in the FX class. If the preemption has been put off
* for too long, clear the "nopreempt" bit and let the thread
* be preempted.
*/
if (t->t_schedctl && schedctl_get_nopreempt(t)) {
if (fxpp->fx_pquantum == FX_TQINF ||
fxpp->fx_timeleft > -SC_MAX_TICKS) {
DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
schedctl_set_yield(t, 1);
setfrontdq(t);
return;
} else {
schedctl_set_nopreempt(t, 0);
DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
/* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
tnf_lwpid, lwpid, t->t_tid);
/*
* Fall through and be preempted below.
*/
}
}
if (FX_HAS_CB(fxpp)) {
clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
pri_t newpri = fxpp->fx_pri;
FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
&new_quantum, &newpri);
FX_ADJUST_QUANTUM(new_quantum);
if ((int)new_quantum != fxpp->fx_pquantum) {
fxpp->fx_pquantum = (int)new_quantum;
fxpp->fx_timeleft = fxpp->fx_pquantum;
}
FX_ADJUST_PRI(newpri);
fxpp->fx_pri = newpri;
THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
}
/*
* This thread may be placed on wait queue by CPU Caps. In this case we
* do not need to do anything until it is removed from the wait queue.
*/
if (CPUCAPS_ENFORCE(t)) {
return;
}
if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
fxpp->fx_timeleft = fxpp->fx_pquantum;
fxpp->fx_flags &= ~FXBACKQ;
setbackdq(t);
} else {
setfrontdq(t);
}
}
static void
fx_setrun(kthread_t *t)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
fxpp->fx_flags &= ~FXBACKQ;
if (t->t_disp_time != ddi_get_lbolt())
setbackdq(t);
else
setfrontdq(t);
}
/*
* Prepare thread for sleep. We reset the thread priority so it will
* run at the kernel priority level when it wakes up.
*/
static void
fx_sleep(kthread_t *t)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(t));
/*
* Account for time spent on CPU before going to sleep.
*/
(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
if (FX_HAS_CB(fxpp)) {
FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
}
t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
}
/*
* Return Values:
*
* -1 if the thread is loaded or is not eligible to be swapped in.
*
* FX and RT threads are designed so that they don't swapout; however,
* it is possible that while the thread is swapped out and in another class, it
* can be changed to FX or RT. Since these threads should be swapped in
* as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
* returns SHRT_MAX - 1, so that it gives deference to any swapped out
* RT threads.
*/
/* ARGSUSED */
static pri_t
fx_swapin(kthread_t *t, int flags)
{
pri_t tpri = -1;
ASSERT(THREAD_LOCK_HELD(t));
if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
tpri = (pri_t)SHRT_MAX - 1;
}
return (tpri);
}
/*
* Return Values
* -1 if the thread isn't loaded or is not eligible to be swapped out.
*/
/* ARGSUSED */
static pri_t
fx_swapout(kthread_t *t, int flags)
{
ASSERT(THREAD_LOCK_HELD(t));
return (-1);
}
/* ARGSUSED */
static void
fx_stop(kthread_t *t, int why, int what)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(THREAD_LOCK_HELD(t));
if (FX_HAS_CB(fxpp)) {
FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
}
}
/*
* Check for time slice expiration. If time slice has expired
* set runrun to cause preemption.
*/
static void
fx_tick(kthread_t *t)
{
boolean_t call_cpu_surrender = B_FALSE;
fxproc_t *fxpp;
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
thread_lock(t);
fxpp = (fxproc_t *)(t->t_cldata);
if (FX_HAS_CB(fxpp)) {
clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
pri_t newpri = fxpp->fx_pri;
FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
&new_quantum, &newpri);
FX_ADJUST_QUANTUM(new_quantum);
if ((int)new_quantum != fxpp->fx_pquantum) {
fxpp->fx_pquantum = (int)new_quantum;
fxpp->fx_timeleft = fxpp->fx_pquantum;
}
FX_ADJUST_PRI(newpri);
if (newpri != fxpp->fx_pri) {
fxpp->fx_pri = newpri;
fx_change_priority(t, fxpp);
}
}
/*
* Keep track of thread's project CPU usage. Note that projects
* get charged even when threads are running in the kernel.
*/
call_cpu_surrender = CPUCAPS_CHARGE(t, &fxpp->fx_caps,
CPUCAPS_CHARGE_ENFORCE);
if ((fxpp->fx_pquantum != FX_TQINF) &&
(--fxpp->fx_timeleft <= 0)) {
pri_t new_pri;
/*
* If we're doing preemption control and trying to
* avoid preempting this thread, just note that
* the thread should yield soon and let it keep
* running (unless it's been a while).
*/
if (t->t_schedctl && schedctl_get_nopreempt(t)) {
if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
DTRACE_SCHED1(schedctl__nopreempt,
kthread_t *, t);
schedctl_set_yield(t, 1);
thread_unlock_nopreempt(t);
return;
}
TNF_PROBE_2(schedctl_failsafe,
"schedctl FX fx_tick", /* CSTYLED */,
tnf_pid, pid, ttoproc(t)->p_pid,
tnf_lwpid, lwpid, t->t_tid);
}
new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
/*
* When the priority of a thread is changed,
* it may be necessary to adjust its position
* on a sleep queue or dispatch queue. Even
* when the priority is not changed, we need
* to preserve round robin on dispatch queue.
* The function thread_change_pri accomplishes
* this.
*/
if (thread_change_pri(t, new_pri, 0)) {
fxpp->fx_timeleft = fxpp->fx_pquantum;
} else {
call_cpu_surrender = B_TRUE;
}
} else if (t->t_state == TS_ONPROC &&
t->t_pri < t->t_disp_queue->disp_maxrunpri) {
call_cpu_surrender = B_TRUE;
}
if (call_cpu_surrender) {
fxpp->fx_flags |= FXBACKQ;
cpu_surrender(t);
}
thread_unlock_nopreempt(t); /* clock thread can't be preempted */
}
static void
fx_trapret(kthread_t *t)
{
cpu_t *cp = CPU;
ASSERT(THREAD_LOCK_HELD(t));
ASSERT(t == curthread);
ASSERT(cp->cpu_dispthread == t);
ASSERT(t->t_state == TS_ONPROC);
}
/*
* Processes waking up go to the back of their queue.
*/
static void
fx_wakeup(kthread_t *t)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(THREAD_LOCK_HELD(t));
t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
if (FX_HAS_CB(fxpp)) {
clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
pri_t newpri = fxpp->fx_pri;
FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
&new_quantum, &newpri);
FX_ADJUST_QUANTUM(new_quantum);
if ((int)new_quantum != fxpp->fx_pquantum) {
fxpp->fx_pquantum = (int)new_quantum;
fxpp->fx_timeleft = fxpp->fx_pquantum;
}
FX_ADJUST_PRI(newpri);
if (newpri != fxpp->fx_pri) {
fxpp->fx_pri = newpri;
THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
}
}
fxpp->fx_flags &= ~FXBACKQ;
if (t->t_disp_time != ddi_get_lbolt())
setbackdq(t);
else
setfrontdq(t);
}
/*
* When a thread yields, put it on the back of the run queue.
*/
static void
fx_yield(kthread_t *t)
{
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(t));
/*
* Collect CPU usage spent before yielding CPU.
*/
(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
if (FX_HAS_CB(fxpp)) {
clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
pri_t newpri = fxpp->fx_pri;
FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
&new_quantum, &newpri);
FX_ADJUST_QUANTUM(new_quantum);
if ((int)new_quantum != fxpp->fx_pquantum) {
fxpp->fx_pquantum = (int)new_quantum;
fxpp->fx_timeleft = fxpp->fx_pquantum;
}
FX_ADJUST_PRI(newpri);
fxpp->fx_pri = newpri;
THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
}
/*
* Clear the preemption control "yield" bit since the user is
* doing a yield.
*/
if (t->t_schedctl)
schedctl_set_yield(t, 0);
if (fxpp->fx_timeleft <= 0) {
/*
* Time slice was artificially extended to avoid
* preemption, so pretend we're preempting it now.
*/
DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
fxpp->fx_timeleft = fxpp->fx_pquantum;
THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
}
fxpp->fx_flags &= ~FXBACKQ;
setbackdq(t);
}
/*
* Increment the nice value of the specified thread by incr and
* return the new value in *retvalp.
*/
static int
fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
{
int newnice;
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
fxkparms_t fxkparms;
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
/* If there's no change to priority, just return current setting */
if (incr == 0) {
if (retvalp) {
*retvalp = fxpp->fx_nice - NZERO;
}
return (0);
}
if ((incr < 0 || incr > 2 * NZERO) &&
secpolicy_setpriority(cr) != 0)
return (EPERM);
/*
* Specifying a nice increment greater than the upper limit of
* 2 * NZERO - 1 will result in the thread's nice value being
* set to the upper limit. We check for this before computing
* the new value because otherwise we could get overflow
* if a privileged user specified some ridiculous increment.
*/
if (incr > 2 * NZERO - 1)
incr = 2 * NZERO - 1;
newnice = fxpp->fx_nice + incr;
if (newnice > NZERO)
newnice = NZERO;
else if (newnice < 0)
newnice = 0;
fxkparms.fx_uprilim = fxkparms.fx_upri =
-((newnice - NZERO) * fx_maxupri) / NZERO;
fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
fxkparms.fx_tqntm = FX_TQDEF;
/*
* Reset the uprilim and upri values of the thread. Adjust
* time quantum accordingly.
*/
(void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
/*
* Although fx_parmsset already reset fx_nice it may
* not have been set to precisely the value calculated above
* because fx_parmsset determines the nice value from the
* user priority and we may have truncated during the integer
* conversion from nice value to user priority and back.
* We reset fx_nice to the value we calculated above.
*/
fxpp->fx_nice = (char)newnice;
if (retvalp)
*retvalp = newnice - NZERO;
return (0);
}
/*
* Increment the priority of the specified thread by incr and
* return the new value in *retvalp.
*/
static int
fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
{
int newpri;
fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
fxkparms_t fxkparms;
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
/* If there's no change to priority, just return current setting */
if (incr == 0) {
*retvalp = fxpp->fx_pri;
return (0);
}
newpri = fxpp->fx_pri + incr;
if (newpri > fx_maxupri || newpri < 0)
return (EINVAL);
*retvalp = newpri;
fxkparms.fx_uprilim = fxkparms.fx_upri = newpri;
fxkparms.fx_tqntm = FX_NOCHANGE;
fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
/*
* Reset the uprilim and upri values of the thread.
*/
return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr));
}
static void
fx_change_priority(kthread_t *t, fxproc_t *fxpp)
{
pri_t new_pri;
ASSERT(THREAD_LOCK_HELD(t));
new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
t->t_cpri = fxpp->fx_pri;
if (t == curthread || t->t_state == TS_ONPROC) {
/* curthread is always onproc */
cpu_t *cp = t->t_disp_queue->disp_cpu;
THREAD_CHANGE_PRI(t, new_pri);
if (t == cp->cpu_dispthread)
cp->cpu_dispatch_pri = DISP_PRIO(t);
if (DISP_MUST_SURRENDER(t)) {
fxpp->fx_flags |= FXBACKQ;
cpu_surrender(t);
} else {
fxpp->fx_timeleft = fxpp->fx_pquantum;
}
} else {
/*
* When the priority of a thread is changed,
* it may be necessary to adjust its position
* on a sleep queue or dispatch queue.
* The function thread_change_pri accomplishes
* this.
*/
if (thread_change_pri(t, new_pri, 0)) {
/*
* The thread was on a run queue. Reset
* its CPU timeleft from the quantum
* associated with the new priority.
*/
fxpp->fx_timeleft = fxpp->fx_pquantum;
} else {
fxpp->fx_flags |= FXBACKQ;
}
}
}
static int
fx_alloc(void **p, int flag)
{
void *bufp;
bufp = kmem_alloc(sizeof (fxproc_t), flag);
if (bufp == NULL) {
return (ENOMEM);
} else {
*p = bufp;
return (0);
}
}
static void
fx_free(void *bufp)
{
if (bufp)
kmem_free(bufp, sizeof (fxproc_t));
}
/*
* Release the callback list mutex after successful lookup
*/
void
fx_list_release(fxproc_t *fxpp)
{
int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
kmutex_t *lockp = &fx_cb_list_lock[index];
mutex_exit(lockp);
}
fxproc_t *
fx_list_lookup(kt_did_t ktid)
{
int index = FX_CB_LIST_HASH(ktid);
kmutex_t *lockp = &fx_cb_list_lock[index];
fxproc_t *fxpp;
mutex_enter(lockp);
for (fxpp = fx_cb_plisthead[index].fx_cb_next;
fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
fxpp->fx_callback != NULL) {
/*
* The caller is responsible for calling
* fx_list_release to drop the lock upon
* successful lookup
*/
return (fxpp);
}
}
mutex_exit(lockp);
return ((fxproc_t *)NULL);
}
/*
* register a callback set of routines for current thread
* thread should already be in FX class
*/
int
fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
pri_t pri, clock_t quantum)
{
fxproc_t *fxpp;
if (fx_callback == NULL)
return (EINVAL);
if (secpolicy_dispadm(CRED()) != 0)
return (EPERM);
if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
return (EINVAL);
if (!FX_ISVALID(pri, quantum))
return (EINVAL);
thread_lock(curthread); /* get dispatcher lock on thread */
if (curthread->t_cid != fx_cid) {
thread_unlock(curthread);
return (EINVAL);
}
fxpp = (fxproc_t *)(curthread->t_cldata);
ASSERT(fxpp != NULL);
if (FX_HAS_CB(fxpp)) {
thread_unlock(curthread);
return (EINVAL);
}
fxpp->fx_callback = fx_callback;
fxpp->fx_cookie = cookie;
if (pri != FX_CB_NOCHANGE) {
fxpp->fx_pri = pri;
FX_ADJUST_PRI(fxpp->fx_pri);
if (quantum == FX_TQDEF) {
fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
} else if (quantum == FX_TQINF) {
fxpp->fx_pquantum = FX_TQINF;
} else if (quantum != FX_NOCHANGE) {
FX_ADJUST_QUANTUM(quantum);
fxpp->fx_pquantum = quantum;
}
} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
if (quantum == FX_TQINF)
fxpp->fx_pquantum = FX_TQINF;
else {
FX_ADJUST_QUANTUM(quantum);
fxpp->fx_pquantum = quantum;
}
}
fxpp->fx_ktid = ddi_get_kt_did();
fx_change_priority(curthread, fxpp);
thread_unlock(curthread);
/*
* Link new structure into fxproc list.
*/
FX_CB_LIST_INSERT(fxpp);
return (0);
}
/* unregister a callback set of routines for current thread */
int
fx_unregister_callbacks()
{
fxproc_t *fxpp;
if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
/*
* did not have a registered callback;
*/
return (EINVAL);
}
thread_lock(fxpp->fx_tp);
fxpp->fx_callback = NULL;
fxpp->fx_cookie = NULL;
thread_unlock(fxpp->fx_tp);
fx_list_release(fxpp);
FX_CB_LIST_DELETE(fxpp);
return (0);
}
/*
* modify priority and/or quantum value of a thread with callback
*/
int
fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
{
fxproc_t *fxpp;
if (!FX_ISVALID(pri, quantum))
return (EINVAL);
if ((fxpp = fx_list_lookup(ktid)) == NULL) {
/*
* either thread had exited or did not have a registered
* callback;
*/
return (ESRCH);
}
thread_lock(fxpp->fx_tp);
if (pri != FX_CB_NOCHANGE) {
fxpp->fx_pri = pri;
FX_ADJUST_PRI(fxpp->fx_pri);
if (quantum == FX_TQDEF) {
fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
} else if (quantum == FX_TQINF) {
fxpp->fx_pquantum = FX_TQINF;
} else if (quantum != FX_NOCHANGE) {
FX_ADJUST_QUANTUM(quantum);
fxpp->fx_pquantum = quantum;
}
} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
if (quantum == FX_TQINF) {
fxpp->fx_pquantum = FX_TQINF;
} else {
FX_ADJUST_QUANTUM(quantum);
fxpp->fx_pquantum = quantum;
}
}
fx_change_priority(fxpp->fx_tp, fxpp);
thread_unlock(fxpp->fx_tp);
fx_list_release(fxpp);
return (0);
}
/*
* return an iblock cookie for mutex initialization to be used in callbacks
*/
void *
fx_get_mutex_cookie()
{
return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
}
/*
* return maximum relative priority
*/
pri_t
fx_get_maxpri()
{
return (fx_maxumdpri);
}