fss.c revision 8c34bbb743f69040b9eb165ea639dddb7bb91f37
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/strsubr.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/procset.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/schedctl.h>
#include <sys/vmsystm.h>
#include <sys/atomic.h>
#include <sys/project.h>
#include <sys/modctl.h>
#include <sys/fss.h>
#include <sys/fsspriocntl.h>
#include <sys/cpupart.h>
#include <sys/zone.h>
#include <vm/rm.h>
#include <vm/seg_kmem.h>
#include <sys/tnf_probe.h>
#include <sys/policy.h>
#include <sys/sdt.h>
#include <sys/cpucaps.h>
/*
* FSS Data Structures:
*
* fsszone
* ----- -----
* ----- | | | |
* | |-------->| |<------->| |<---->...
* | | ----- -----
* | | ^ ^ ^
* | |--- | \ \
* ----- | | \ \
* fsspset | | \ \
* | | \ \
* | ----- ----- -----
* -->| |<--->| |<--->| |
* | | | | | |
* ----- ----- -----
* fssproj
*
*
* That is, fsspsets contain a list of fsszone's that are currently active in
* the pset, and a list of fssproj's, corresponding to projects with runnable
* threads on the pset. fssproj's in turn point to the fsszone which they
* are a member of.
*
* An fssproj_t is removed when there are no threads in it.
*
* An fsszone_t is removed when there are no projects with threads in it.
*
* Projects in a zone compete with each other for cpu time, receiving cpu
* allocation within a zone proportional to fssproj->fssp_shares
* (project.cpu-shares); at a higher level zones compete with each other,
* receiving allocation in a pset proportional to fsszone->fssz_shares
* (zone.cpu-shares). See fss_decay_usage() for the precise formula.
*/
static pri_t fss_init(id_t, int, classfuncs_t **);
static struct sclass fss = {
"FSS",
fss_init,
0
};
extern struct mod_ops mod_schedops;
/*
* Module linkage information for the kernel.
*/
static struct modlsched modlsched = {
&mod_schedops, "fair share scheduling class", &fss
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlsched, NULL
};
#define FSS_MAXUPRI 60
/*
* The fssproc_t structures are kept in an array of circular doubly linked
* lists. A hash on the thread pointer is used to determine which list each
* thread should be placed in. Each list has a dummy "head" which is never
* removed, so the list is never empty. fss_update traverses these lists to
* update the priorities of threads that have been waiting on the run queue.
*/
#define FSS_LISTS 16 /* number of lists, must be power of 2 */
#define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
#define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1))
#define FSS_LIST_INSERT(fssproc) \
{ \
int index = FSS_LIST_HASH(fssproc->fss_tp); \
kmutex_t *lockp = &fss_listlock[index]; \
fssproc_t *headp = &fss_listhead[index]; \
mutex_enter(lockp); \
fssproc->fss_next = headp->fss_next; \
fssproc->fss_prev = headp; \
headp->fss_next->fss_prev = fssproc; \
headp->fss_next = fssproc; \
mutex_exit(lockp); \
}
#define FSS_LIST_DELETE(fssproc) \
{ \
int index = FSS_LIST_HASH(fssproc->fss_tp); \
kmutex_t *lockp = &fss_listlock[index]; \
mutex_enter(lockp); \
fssproc->fss_prev->fss_next = fssproc->fss_next; \
fssproc->fss_next->fss_prev = fssproc->fss_prev; \
mutex_exit(lockp); \
}
#define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */
/*
* Decay rate percentages are based on n/128 rather than n/100 so that
* calculations can avoid having to do an integer divide by 100 (divide
* by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
*
* FSS_DECAY_MIN = 83/128 ~= 65%
* FSS_DECAY_MAX = 108/128 ~= 85%
* FSS_DECAY_USG = 96/128 ~= 75%
*/
#define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */
#define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */
#define FSS_DECAY_USG 96 /* fssusage decay pct for projects */
#define FSS_DECAY_BASE 128 /* base for decay percentages above */
#define FSS_NICE_MIN 0
#define FSS_NICE_MAX (2 * NZERO - 1)
#define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1)
static int fss_nice_tick[FSS_NICE_RANGE];
static int fss_nice_decay[FSS_NICE_RANGE];
static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
static pri_t fss_maxumdpri; /* maximum user mode fss priority */
static pri_t fss_maxglobpri; /* maximum global priority used by fss class */
static pri_t fss_minglobpri; /* minimum global priority */
static fssproc_t fss_listhead[FSS_LISTS];
static kmutex_t fss_listlock[FSS_LISTS];
static fsspset_t *fsspsets;
static kmutex_t fsspsets_lock; /* protects fsspsets */
static id_t fss_cid;
static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */
static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */
static int fss_quantum = 11;
static void fss_newpri(fssproc_t *);
static void fss_update(void *);
static int fss_update_list(int);
static void fss_change_priority(kthread_t *, fssproc_t *);
static int fss_admin(caddr_t, cred_t *);
static int fss_getclinfo(void *);
static int fss_parmsin(void *);
static int fss_parmsout(void *, pc_vaparms_t *);
static int fss_vaparmsin(void *, pc_vaparms_t *);
static int fss_vaparmsout(void *, pc_vaparms_t *);
static int fss_getclpri(pcpri_t *);
static int fss_alloc(void **, int);
static void fss_free(void *);
static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
static void fss_exitclass(void *);
static int fss_canexit(kthread_t *, cred_t *);
static int fss_fork(kthread_t *, kthread_t *, void *);
static void fss_forkret(kthread_t *, kthread_t *);
static void fss_parmsget(kthread_t *, void *);
static int fss_parmsset(kthread_t *, void *, id_t, cred_t *);
static void fss_stop(kthread_t *, int, int);
static void fss_exit(kthread_t *);
static void fss_active(kthread_t *);
static void fss_inactive(kthread_t *);
static pri_t fss_swapin(kthread_t *, int);
static pri_t fss_swapout(kthread_t *, int);
static void fss_trapret(kthread_t *);
static void fss_preempt(kthread_t *);
static void fss_setrun(kthread_t *);
static void fss_sleep(kthread_t *);
static void fss_tick(kthread_t *);
static void fss_wakeup(kthread_t *);
static int fss_donice(kthread_t *, cred_t *, int, int *);
static pri_t fss_globpri(kthread_t *);
static void fss_yield(kthread_t *);
static void fss_nullsys();
static struct classfuncs fss_classfuncs = {
/* class functions */
fss_admin,
fss_getclinfo,
fss_parmsin,
fss_parmsout,
fss_vaparmsin,
fss_vaparmsout,
fss_getclpri,
fss_alloc,
fss_free,
/* thread functions */
fss_enterclass,
fss_exitclass,
fss_canexit,
fss_fork,
fss_forkret,
fss_parmsget,
fss_parmsset,
fss_stop,
fss_exit,
fss_active,
fss_inactive,
fss_swapin,
fss_swapout,
fss_trapret,
fss_preempt,
fss_setrun,
fss_sleep,
fss_tick,
fss_wakeup,
fss_donice,
fss_globpri,
fss_nullsys, /* set_process_group */
fss_yield
};
int
_init()
{
return (mod_install(&modlinkage));
}
int
_fini()
{
return (EBUSY);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*ARGSUSED*/
static int
fss_project_walker(kproject_t *kpj, void *buf)
{
return (0);
}
void *
fss_allocbuf(int op, int type)
{
fssbuf_t *fssbuf;
void **fsslist;
int cnt;
int i;
size_t size;
ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
ASSERT(MUTEX_HELD(&cpu_lock));
fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
switch (op) {
case FSS_NPSET_BUF:
cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
break;
case FSS_NPROJ_BUF:
cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
break;
case FSS_ONE_BUF:
cnt = 1;
break;
}
switch (type) {
case FSS_ALLOC_PROJ:
size = sizeof (fssproj_t);
break;
case FSS_ALLOC_ZONE:
size = sizeof (fsszone_t);
break;
}
fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
fssbuf->fssb_size = cnt;
fssbuf->fssb_list = fsslist;
for (i = 0; i < cnt; i++)
fsslist[i] = kmem_zalloc(size, KM_SLEEP);
return (fssbuf);
}
void
fss_freebuf(fssbuf_t *fssbuf, int type)
{
void **fsslist;
int i;
size_t size;
ASSERT(fssbuf != NULL);
ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
fsslist = fssbuf->fssb_list;
switch (type) {
case FSS_ALLOC_PROJ:
size = sizeof (fssproj_t);
break;
case FSS_ALLOC_ZONE:
size = sizeof (fsszone_t);
break;
}
for (i = 0; i < fssbuf->fssb_size; i++) {
if (fsslist[i] != NULL)
kmem_free(fsslist[i], size);
}
kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
kmem_free(fssbuf, sizeof (fssbuf_t));
}
static fsspset_t *
fss_find_fsspset(cpupart_t *cpupart)
{
int i;
fsspset_t *fsspset = NULL;
int found = 0;
ASSERT(cpupart != NULL);
ASSERT(MUTEX_HELD(&fsspsets_lock));
/*
* Search for the cpupart pointer in the array of fsspsets.
*/
for (i = 0; i < max_ncpus; i++) {
fsspset = &fsspsets[i];
if (fsspset->fssps_cpupart == cpupart) {
ASSERT(fsspset->fssps_nproj > 0);
found = 1;
break;
}
}
if (found == 0) {
/*
* If we didn't find anything, then use the first
* available slot in the fsspsets array.
*/
for (i = 0; i < max_ncpus; i++) {
fsspset = &fsspsets[i];
if (fsspset->fssps_cpupart == NULL) {
ASSERT(fsspset->fssps_nproj == 0);
found = 1;
break;
}
}
fsspset->fssps_cpupart = cpupart;
}
ASSERT(found == 1);
return (fsspset);
}
static void
fss_del_fsspset(fsspset_t *fsspset)
{
ASSERT(MUTEX_HELD(&fsspsets_lock));
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
ASSERT(fsspset->fssps_nproj == 0);
ASSERT(fsspset->fssps_list == NULL);
ASSERT(fsspset->fssps_zones == NULL);
fsspset->fssps_cpupart = NULL;
fsspset->fssps_maxfsspri = 0;
fsspset->fssps_shares = 0;
}
/*
* The following routine returns a pointer to the fsszone structure which
* belongs to zone "zone" and cpu partition fsspset, if such structure exists.
*/
static fsszone_t *
fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
{
fsszone_t *fsszone;
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
if (fsspset->fssps_list != NULL) {
/*
* There are projects/zones active on this cpu partition
* already. Try to find our zone among them.
*/
fsszone = fsspset->fssps_zones;
do {
if (fsszone->fssz_zone == zone) {
return (fsszone);
}
fsszone = fsszone->fssz_next;
} while (fsszone != fsspset->fssps_zones);
}
return (NULL);
}
/*
* The following routine links new fsszone structure into doubly linked list of
* zones active on the specified cpu partition.
*/
static void
fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
{
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
fsszone->fssz_zone = zone;
fsszone->fssz_rshares = zone->zone_shares;
if (fsspset->fssps_zones == NULL) {
/*
* This will be the first fsszone for this fsspset
*/
fsszone->fssz_next = fsszone->fssz_prev = fsszone;
fsspset->fssps_zones = fsszone;
} else {
/*
* Insert this fsszone to the doubly linked list.
*/
fsszone_t *fssz_head = fsspset->fssps_zones;
fsszone->fssz_next = fssz_head;
fsszone->fssz_prev = fssz_head->fssz_prev;
fssz_head->fssz_prev->fssz_next = fsszone;
fssz_head->fssz_prev = fsszone;
fsspset->fssps_zones = fsszone;
}
}
/*
* The following routine removes a single fsszone structure from the doubly
* linked list of zones active on the specified cpu partition. Note that
* global fsspsets_lock must be held in case this fsszone structure is the last
* on the above mentioned list. Also note that the fsszone structure is not
* freed here, it is the responsibility of the caller to call kmem_free for it.
*/
static void
fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
{
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
ASSERT(fsszone->fssz_nproj == 0);
ASSERT(fsszone->fssz_shares == 0);
ASSERT(fsszone->fssz_runnable == 0);
if (fsszone->fssz_next != fsszone) {
/*
* This is not the last zone in the list.
*/
fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
if (fsspset->fssps_zones == fsszone)
fsspset->fssps_zones = fsszone->fssz_next;
} else {
/*
* This was the last zone active in this cpu partition.
*/
fsspset->fssps_zones = NULL;
}
}
/*
* The following routine returns a pointer to the fssproj structure
* which belongs to project kpj and cpu partition fsspset, if such structure
* exists.
*/
static fssproj_t *
fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
{
fssproj_t *fssproj;
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
if (fsspset->fssps_list != NULL) {
/*
* There are projects running on this cpu partition already.
* Try to find our project among them.
*/
fssproj = fsspset->fssps_list;
do {
if (fssproj->fssp_proj == kpj) {
ASSERT(fssproj->fssp_pset == fsspset);
return (fssproj);
}
fssproj = fssproj->fssp_next;
} while (fssproj != fsspset->fssps_list);
}
return (NULL);
}
/*
* The following routine links new fssproj structure into doubly linked list
* of projects running on the specified cpu partition.
*/
static void
fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
fssproj_t *fssproj)
{
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
fssproj->fssp_pset = fsspset;
fssproj->fssp_proj = kpj;
fssproj->fssp_shares = kpj->kpj_shares;
fsspset->fssps_nproj++;
if (fsspset->fssps_list == NULL) {
/*
* This will be the first fssproj for this fsspset
*/
fssproj->fssp_next = fssproj->fssp_prev = fssproj;
fsspset->fssps_list = fssproj;
} else {
/*
* Insert this fssproj to the doubly linked list.
*/
fssproj_t *fssp_head = fsspset->fssps_list;
fssproj->fssp_next = fssp_head;
fssproj->fssp_prev = fssp_head->fssp_prev;
fssp_head->fssp_prev->fssp_next = fssproj;
fssp_head->fssp_prev = fssproj;
fsspset->fssps_list = fssproj;
}
fssproj->fssp_fsszone = fsszone;
fsszone->fssz_nproj++;
ASSERT(fsszone->fssz_nproj != 0);
}
/*
* The following routine removes a single fssproj structure from the doubly
* linked list of projects running on the specified cpu partition. Note that
* global fsspsets_lock must be held in case if this fssproj structure is the
* last on the above mentioned list. Also note that the fssproj structure is
* not freed here, it is the responsibility of the caller to call kmem_free
* for it.
*/
static void
fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
{
fsszone_t *fsszone;
ASSERT(MUTEX_HELD(&fsspsets_lock));
ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
ASSERT(fssproj->fssp_runnable == 0);
fsspset->fssps_nproj--;
fsszone = fssproj->fssp_fsszone;
fsszone->fssz_nproj--;
if (fssproj->fssp_next != fssproj) {
/*
* This is not the last part in the list.
*/
fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
if (fsspset->fssps_list == fssproj)
fsspset->fssps_list = fssproj->fssp_next;
if (fsszone->fssz_nproj == 0)
fss_remove_fsszone(fsspset, fsszone);
} else {
/*
* This was the last project part running
* at this cpu partition.
*/
fsspset->fssps_list = NULL;
ASSERT(fsspset->fssps_nproj == 0);
ASSERT(fsszone->fssz_nproj == 0);
fss_remove_fsszone(fsspset, fsszone);
fss_del_fsspset(fsspset);
}
}
static void
fss_inactive(kthread_t *t)
{
fssproc_t *fssproc;
fssproj_t *fssproj;
fsspset_t *fsspset;
fsszone_t *fsszone;
ASSERT(THREAD_LOCK_HELD(t));
fssproc = FSSPROC(t);
fssproj = FSSPROC2FSSPROJ(fssproc);
if (fssproj == NULL) /* if this thread already exited */
return;
fsspset = FSSPROJ2FSSPSET(fssproj);
fsszone = fssproj->fssp_fsszone;
disp_lock_enter_high(&fsspset->fssps_displock);
ASSERT(fssproj->fssp_runnable > 0);
if (--fssproj->fssp_runnable == 0) {
fsszone->fssz_shares -= fssproj->fssp_shares;
if (--fsszone->fssz_runnable == 0)
fsspset->fssps_shares -= fsszone->fssz_rshares;
}
ASSERT(fssproc->fss_runnable == 1);
fssproc->fss_runnable = 0;
disp_lock_exit_high(&fsspset->fssps_displock);
}
static void
fss_active(kthread_t *t)
{
fssproc_t *fssproc;
fssproj_t *fssproj;
fsspset_t *fsspset;
fsszone_t *fsszone;
ASSERT(THREAD_LOCK_HELD(t));
fssproc = FSSPROC(t);
fssproj = FSSPROC2FSSPROJ(fssproc);
if (fssproj == NULL) /* if this thread already exited */
return;
fsspset = FSSPROJ2FSSPSET(fssproj);
fsszone = fssproj->fssp_fsszone;
disp_lock_enter_high(&fsspset->fssps_displock);
if (++fssproj->fssp_runnable == 1) {
fsszone->fssz_shares += fssproj->fssp_shares;
if (++fsszone->fssz_runnable == 1)
fsspset->fssps_shares += fsszone->fssz_rshares;
}
ASSERT(fssproc->fss_runnable == 0);
fssproc->fss_runnable = 1;
disp_lock_exit_high(&fsspset->fssps_displock);
}
/*
* Fair share scheduler initialization. Called by dispinit() at boot time.
* We can ignore clparmsz argument since we know that the smallest possible
* parameter buffer is big enough for us.
*/
/*ARGSUSED*/
static pri_t
fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
{
int i;
ASSERT(MUTEX_HELD(&cpu_lock));
fss_cid = cid;
fss_maxumdpri = minclsyspri - 1;
fss_maxglobpri = minclsyspri;
fss_minglobpri = 0;
fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
/*
* Initialize the fssproc hash table.
*/
for (i = 0; i < FSS_LISTS; i++)
fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
&fss_listhead[i];
*clfuncspp = &fss_classfuncs;
/*
* Fill in fss_nice_tick and fss_nice_decay arrays:
* The cost of a tick is lower at positive nice values (so that it
* will not increase its project's usage as much as normal) with 50%
* drop at the maximum level and 50% increase at the minimum level.
* The fsspri decay is slower at positive nice values. fsspri values
* of processes with negative nice levels must decay faster to receive
* time slices more frequently than normal.
*/
for (i = 0; i < FSS_NICE_RANGE; i++) {
fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
- i)) / FSS_NICE_RANGE;
fss_nice_decay[i] = FSS_DECAY_MIN +
((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
(FSS_NICE_RANGE - 1);
}
return (fss_maxglobpri);
}
/*
* Calculate the new cpupri based on the usage, the number of shares and
* the number of active threads. Reset the tick counter for this thread.
*/
static void
fss_newpri(fssproc_t *fssproc)
{
kthread_t *tp;
fssproj_t *fssproj;
fsspset_t *fsspset;
fsszone_t *fsszone;
fsspri_t fsspri, maxfsspri;
pri_t invpri;
uint32_t ticks;
tp = fssproc->fss_tp;
ASSERT(tp != NULL);
if (tp->t_cid != fss_cid)
return;
ASSERT(THREAD_LOCK_HELD(tp));
fssproj = FSSPROC2FSSPROJ(fssproc);
fsszone = FSSPROJ2FSSZONE(fssproj);
if (fssproj == NULL)
/*
* No need to change priority of exited threads.
*/
return;
fsspset = FSSPROJ2FSSPSET(fssproj);
disp_lock_enter_high(&fsspset->fssps_displock);
if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
/*
* Special case: threads with no shares.
*/
fssproc->fss_umdpri = fss_minglobpri;
fssproc->fss_ticks = 0;
disp_lock_exit_high(&fsspset->fssps_displock);
return;
}
/*
* fsspri += shusage * nrunnable * ticks
*/
ticks = fssproc->fss_ticks;
fssproc->fss_ticks = 0;
fsspri = fssproc->fss_fsspri;
fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks;
fssproc->fss_fsspri = fsspri;
if (fsspri < fss_maxumdpri)
fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */
/*
* The general priority formula:
*
* (fsspri * umdprirange)
* pri = maxumdpri - ------------------------
* maxfsspri
*
* If this thread's fsspri is greater than the previous largest
* fsspri, then record it as the new high and priority for this
* thread will be one (the lowest priority assigned to a thread
* that has non-zero shares).
* Note that this formula cannot produce out of bounds priority
* values; if it is changed, additional checks may need to be
* added.
*/
maxfsspri = fsspset->fssps_maxfsspri;
if (fsspri >= maxfsspri) {
fsspset->fssps_maxfsspri = fsspri;
disp_lock_exit_high(&fsspset->fssps_displock);
fssproc->fss_umdpri = 1;
} else {
disp_lock_exit_high(&fsspset->fssps_displock);
invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
fssproc->fss_umdpri = fss_maxumdpri - invpri;
}
}
/*
* Decays usages of all running projects and resets their tick counters.
* Called once per second from fss_update() after updating priorities.
*/
static void
fss_decay_usage()
{
uint32_t zone_ext_shares, zone_int_shares;
uint32_t kpj_shares, pset_shares;
fsspset_t *fsspset;
fssproj_t *fssproj;
fsszone_t *fsszone;
fsspri_t maxfsspri;
int psetid;
mutex_enter(&fsspsets_lock);
/*
* Go through all active processor sets and decay usages of projects
* running on them.
*/
for (psetid = 0; psetid < max_ncpus; psetid++) {
fsspset = &fsspsets[psetid];
mutex_enter(&fsspset->fssps_lock);
if (fsspset->fssps_cpupart == NULL ||
(fssproj = fsspset->fssps_list) == NULL) {
mutex_exit(&fsspset->fssps_lock);
continue;
}
/*
* Decay maxfsspri for this cpu partition with the
* fastest possible decay rate.
*/
disp_lock_enter(&fsspset->fssps_displock);
maxfsspri = (fsspset->fssps_maxfsspri *
fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
if (maxfsspri < fss_maxumdpri)
maxfsspri = fss_maxumdpri;
fsspset->fssps_maxfsspri = maxfsspri;
do {
/*
* Decay usage for each project running on
* this cpu partition.
*/
fssproj->fssp_usage =
(fssproj->fssp_usage * FSS_DECAY_USG) /
FSS_DECAY_BASE + fssproj->fssp_ticks;
fssproj->fssp_ticks = 0;
fsszone = fssproj->fssp_fsszone;
/*
* Readjust the project's number of shares if it has
* changed since we checked it last time.
*/
kpj_shares = fssproj->fssp_proj->kpj_shares;
if (fssproj->fssp_shares != kpj_shares) {
if (fssproj->fssp_runnable != 0) {
fsszone->fssz_shares -=
fssproj->fssp_shares;
fsszone->fssz_shares += kpj_shares;
}
fssproj->fssp_shares = kpj_shares;
}
/*
* Readjust the zone's number of shares if it
* has changed since we checked it last time.
*/
zone_ext_shares = fsszone->fssz_zone->zone_shares;
if (fsszone->fssz_rshares != zone_ext_shares) {
if (fsszone->fssz_runnable != 0) {
fsspset->fssps_shares -=
fsszone->fssz_rshares;
fsspset->fssps_shares +=
zone_ext_shares;
}
fsszone->fssz_rshares = zone_ext_shares;
}
zone_int_shares = fsszone->fssz_shares;
pset_shares = fsspset->fssps_shares;
/*
* Calculate fssp_shusage value to be used
* for fsspri increments for the next second.
*/
if (kpj_shares == 0 || zone_ext_shares == 0) {
fssproj->fssp_shusage = 0;
} else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
/*
* Project 0 in the global zone has 50%
* of its zone.
*/
fssproj->fssp_shusage = (fssproj->fssp_usage *
zone_int_shares * zone_int_shares) /
(zone_ext_shares * zone_ext_shares);
} else {
/*
* Thread's priority is based on its project's
* normalized usage (shusage) value which gets
* calculated this way:
*
* pset_shares^2 zone_int_shares^2
* usage * ------------- * ------------------
* kpj_shares^2 zone_ext_shares^2
*
* Where zone_int_shares is the sum of shares
* of all active projects within the zone (and
* the pset), and zone_ext_shares is the number
* of zone shares (ie, zone.cpu-shares).
*
* If there is only one zone active on the pset
* the above reduces to:
*
* zone_int_shares^2
* shusage = usage * ---------------------
* kpj_shares^2
*
* If there's only one project active in the
* zone this formula reduces to:
*
* pset_shares^2
* shusage = usage * ----------------------
* zone_ext_shares^2
*/
fssproj->fssp_shusage = fssproj->fssp_usage *
pset_shares * zone_int_shares;
fssproj->fssp_shusage /=
kpj_shares * zone_ext_shares;
fssproj->fssp_shusage *=
pset_shares * zone_int_shares;
fssproj->fssp_shusage /=
kpj_shares * zone_ext_shares;
}
fssproj = fssproj->fssp_next;
} while (fssproj != fsspset->fssps_list);
disp_lock_exit(&fsspset->fssps_displock);
mutex_exit(&fsspset->fssps_lock);
}
mutex_exit(&fsspsets_lock);
}
static void
fss_change_priority(kthread_t *t, fssproc_t *fssproc)
{
pri_t new_pri;
ASSERT(THREAD_LOCK_HELD(t));
new_pri = fssproc->fss_umdpri;
ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
fssproc->fss_flags &= ~FSSRESTORE;
if (t == curthread || t->t_state == TS_ONPROC) {
/*
* curthread is always onproc
*/
cpu_t *cp = t->t_disp_queue->disp_cpu;
THREAD_CHANGE_PRI(t, new_pri);
if (t == cp->cpu_dispthread)
cp->cpu_dispatch_pri = DISP_PRIO(t);
if (DISP_MUST_SURRENDER(t)) {
fssproc->fss_flags |= FSSBACKQ;
cpu_surrender(t);
} else {
fssproc->fss_timeleft = fss_quantum;
}
} else {
/*
* When the priority of a thread is changed, it may be
* necessary to adjust its position on a sleep queue or
* dispatch queue. The function thread_change_pri accomplishes
* this.
*/
if (thread_change_pri(t, new_pri, 0)) {
/*
* The thread was on a run queue.
*/
fssproc->fss_timeleft = fss_quantum;
} else {
fssproc->fss_flags |= FSSBACKQ;
}
}
}
/*
* Update priorities of all fair-sharing threads that are currently runnable
* at a user mode priority based on the number of shares and current usage.
* Called once per second via timeout which we reset here.
*
* There are several lists of fair-sharing threads broken up by a hash on the
* thread pointer. Each list has its own lock. This avoids blocking all
* fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
* fss_update traverses each list in turn.
*/
static void
fss_update(void *arg)
{
int i;
int new_marker = -1;
static int fss_update_marker;
/*
* Decay and update usages for all projects.
*/
fss_decay_usage();
/*
* Start with the fss_update_marker list, then do the rest.
*/
i = fss_update_marker;
/*
* Go around all threads, set new priorities and decay
* per-thread CPU usages.
*/
do {
/*
* If this is the first list after the current marker to have
* threads with priorities updates, advance the marker to this
* list for the next time fss_update runs.
*/
if (fss_update_list(i) &&
new_marker == -1 && i != fss_update_marker)
new_marker = i;
} while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
/*
* Advance marker for the next fss_update call
*/
if (new_marker != -1)
fss_update_marker = new_marker;
(void) timeout(fss_update, arg, hz);
}
/*
* Updates priority for a list of threads. Returns 1 if the priority of one
* of the threads was actually updated, 0 if none were for various reasons
* (thread is no longer in the FSS class, is not runnable, has the preemption
* control no-preempt bit set, etc.)
*/
static int
fss_update_list(int i)
{
fssproc_t *fssproc;
fssproj_t *fssproj;
fsspri_t fsspri;
kthread_t *t;
int updated = 0;
mutex_enter(&fss_listlock[i]);
for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
fssproc = fssproc->fss_next) {
t = fssproc->fss_tp;
/*
* Lock the thread and verify the state.
*/
thread_lock(t);
/*
* Skip the thread if it is no longer in the FSS class or
* is running with kernel mode priority.
*/
if (t->t_cid != fss_cid)
goto next;
if ((fssproc->fss_flags & FSSKPRI) != 0)
goto next;
fssproj = FSSPROC2FSSPROJ(fssproc);
if (fssproj == NULL)
goto next;
if (fssproj->fssp_shares != 0) {
/*
* Decay fsspri value.
*/
fsspri = fssproc->fss_fsspri;
fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
FSS_DECAY_BASE;
fssproc->fss_fsspri = fsspri;
}
if (t->t_schedctl && schedctl_get_nopreempt(t))
goto next;
if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
/*
* Make next syscall/trap call fss_trapret
*/
t->t_trapret = 1;
aston(t);
goto next;
}
fss_newpri(fssproc);
updated = 1;
/*
* Only dequeue the thread if it needs to be moved; otherwise
* it should just round-robin here.
*/
if (t->t_pri != fssproc->fss_umdpri)
fss_change_priority(t, fssproc);
next:
thread_unlock(t);
}
mutex_exit(&fss_listlock[i]);
return (updated);
}
/*ARGSUSED*/
static int
fss_admin(caddr_t uaddr, cred_t *reqpcredp)
{
fssadmin_t fssadmin;
if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
return (EFAULT);
switch (fssadmin.fss_cmd) {
case FSS_SETADMIN:
if (secpolicy_dispadm(reqpcredp) != 0)
return (EPERM);
if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
return (EINVAL);
fss_quantum = fssadmin.fss_quantum;
break;
case FSS_GETADMIN:
fssadmin.fss_quantum = fss_quantum;
if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
return (EFAULT);
break;
default:
return (EINVAL);
}
return (0);
}
static int
fss_getclinfo(void *infop)
{
fssinfo_t *fssinfo = (fssinfo_t *)infop;
fssinfo->fss_maxupri = fss_maxupri;
return (0);
}
static int
fss_parmsin(void *parmsp)
{
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
/*
* Check validity of parameters.
*/
if ((fssparmsp->fss_uprilim > fss_maxupri ||
fssparmsp->fss_uprilim < -fss_maxupri) &&
fssparmsp->fss_uprilim != FSS_NOCHANGE)
return (EINVAL);
if ((fssparmsp->fss_upri > fss_maxupri ||
fssparmsp->fss_upri < -fss_maxupri) &&
fssparmsp->fss_upri != FSS_NOCHANGE)
return (EINVAL);
return (0);
}
/*ARGSUSED*/
static int
fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
{
return (0);
}
static int
fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
{
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
int priflag = 0;
int limflag = 0;
uint_t cnt;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
/*
* FSS_NOCHANGE (-32768) is outside of the range of values for
* fss_uprilim and fss_upri. If the structure fssparms_t is changed,
* FSS_NOCHANGE should be replaced by a flag word.
*/
fssparmsp->fss_uprilim = FSS_NOCHANGE;
fssparmsp->fss_upri = FSS_NOCHANGE;
/*
* Get the varargs parameter and check validity of parameters.
*/
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case FSS_KY_UPRILIM:
if (limflag++)
return (EINVAL);
fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
if (fssparmsp->fss_uprilim > fss_maxupri ||
fssparmsp->fss_uprilim < -fss_maxupri)
return (EINVAL);
break;
case FSS_KY_UPRI:
if (priflag++)
return (EINVAL);
fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
if (fssparmsp->fss_upri > fss_maxupri ||
fssparmsp->fss_upri < -fss_maxupri)
return (EINVAL);
break;
default:
return (EINVAL);
}
}
if (vaparmsp->pc_vaparmscnt == 0) {
/*
* Use default parameters.
*/
fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
}
return (0);
}
/*
* Copy all selected fair-sharing class parameters to the user. The parameters
* are specified by a key.
*/
static int
fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
{
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
int priflag = 0;
int limflag = 0;
uint_t cnt;
pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
return (EINVAL);
for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
switch (vpp->pc_key) {
case FSS_KY_UPRILIM:
if (limflag++)
return (EINVAL);
if (copyout(&fssparmsp->fss_uprilim,
(caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
return (EFAULT);
break;
case FSS_KY_UPRI:
if (priflag++)
return (EINVAL);
if (copyout(&fssparmsp->fss_upri,
(caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
return (EFAULT);
break;
default:
return (EINVAL);
}
}
return (0);
}
static int
fss_getclpri(pcpri_t *pcprip)
{
pcprip->pc_clpmax = fss_maxumdpri;
pcprip->pc_clpmin = 0;
return (0);
}
static int
fss_alloc(void **p, int flag)
{
void *bufp;
if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
return (ENOMEM);
} else {
*p = bufp;
return (0);
}
}
static void
fss_free(void *bufp)
{
if (bufp)
kmem_free(bufp, sizeof (fssproc_t));
}
/*
* Thread functions
*/
static int
fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
void *bufp)
{
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
fssproc_t *fssproc;
pri_t reqfssuprilim;
pri_t reqfssupri;
static uint32_t fssexists = 0;
fsspset_t *fsspset;
fssproj_t *fssproj;
fsszone_t *fsszone;
kproject_t *kpj;
zone_t *zone;
int fsszone_allocated = 0;
fssproc = (fssproc_t *)bufp;
ASSERT(fssproc != NULL);
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
/*
* Only root can move threads to FSS class.
*/
if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
/*
* Initialize the fssproc structure.
*/
fssproc->fss_umdpri = fss_maxumdpri / 2;
if (fssparmsp == NULL) {
/*
* Use default values.
*/
fssproc->fss_nice = NZERO;
fssproc->fss_uprilim = fssproc->fss_upri = 0;
} else {
/*
* Use supplied values.
*/
if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
reqfssuprilim = 0;
} else {
if (fssparmsp->fss_uprilim > 0 &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
reqfssuprilim = fssparmsp->fss_uprilim;
}
if (fssparmsp->fss_upri == FSS_NOCHANGE) {
reqfssupri = reqfssuprilim;
} else {
if (fssparmsp->fss_upri > 0 &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
/*
* Set the user priority to the requested value or
* the upri limit, whichever is lower.
*/
reqfssupri = fssparmsp->fss_upri;
if (reqfssupri > reqfssuprilim)
reqfssupri = reqfssuprilim;
}
fssproc->fss_uprilim = reqfssuprilim;
fssproc->fss_upri = reqfssupri;
fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
if (fssproc->fss_nice > FSS_NICE_MAX)
fssproc->fss_nice = FSS_NICE_MAX;
}
fssproc->fss_timeleft = fss_quantum;
fssproc->fss_tp = t;
cpucaps_sc_init(&fssproc->fss_caps);
/*
* Put a lock on our fsspset structure.
*/
mutex_enter(&fsspsets_lock);
fsspset = fss_find_fsspset(t->t_cpupart);
mutex_enter(&fsspset->fssps_lock);
mutex_exit(&fsspsets_lock);
zone = ttoproc(t)->p_zone;
if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
== NULL) {
mutex_exit(&fsspset->fssps_lock);
return (ENOMEM);
} else {
fsszone_allocated = 1;
fss_insert_fsszone(fsspset, zone, fsszone);
}
}
kpj = ttoproj(t);
if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
== NULL) {
if (fsszone_allocated) {
fss_remove_fsszone(fsspset, fsszone);
kmem_free(fsszone, sizeof (fsszone_t));
}
mutex_exit(&fsspset->fssps_lock);
return (ENOMEM);
} else {
fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
}
}
fssproj->fssp_threads++;
fssproc->fss_proj = fssproj;
/*
* Reset priority. Process goes to a "user mode" priority here
* regardless of whether or not it has slept since entering the kernel.
*/
thread_lock(t);
t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
t->t_cid = cid;
t->t_cldata = (void *)fssproc;
t->t_schedflag |= TS_RUNQMATCH;
fss_change_priority(t, fssproc);
if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
t->t_state == TS_WAIT)
fss_active(t);
thread_unlock(t);
mutex_exit(&fsspset->fssps_lock);
/*
* Link new structure into fssproc list.
*/
FSS_LIST_INSERT(fssproc);
/*
* If this is the first fair-sharing thread to occur since boot,
* we set up the initial call to fss_update() here. Use an atomic
* compare-and-swap since that's easier and faster than a mutex
* (but check with an ordinary load first since most of the time
* this will already be done).
*/
if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0)
(void) timeout(fss_update, NULL, hz);
return (0);
}
/*
* Remove fssproc_t from the list.
*/
static void
fss_exitclass(void *procp)
{
fssproc_t *fssproc = (fssproc_t *)procp;
fssproj_t *fssproj;
fsspset_t *fsspset;
fsszone_t *fsszone;
kthread_t *t = fssproc->fss_tp;
/*
* We should be either getting this thread off the deathrow or
* this thread has already moved to another scheduling class and
* we're being called with its old cldata buffer pointer. In both
* cases, the content of this buffer can not be changed while we're
* here.
*/
mutex_enter(&fsspsets_lock);
thread_lock(t);
if (t->t_cid != fss_cid) {
/*
* We're being called as a result of the priocntl() system
* call -- someone is trying to move our thread to another
* scheduling class. We can't call fss_inactive() here
* because our thread's t_cldata pointer already points
* to another scheduling class specific data.
*/
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
fssproj = FSSPROC2FSSPROJ(fssproc);
fsspset = FSSPROJ2FSSPSET(fssproj);
fsszone = fssproj->fssp_fsszone;
if (fssproc->fss_runnable) {
disp_lock_enter_high(&fsspset->fssps_displock);
if (--fssproj->fssp_runnable == 0) {
fsszone->fssz_shares -= fssproj->fssp_shares;
if (--fsszone->fssz_runnable == 0)
fsspset->fssps_shares -=
fsszone->fssz_rshares;
}
disp_lock_exit_high(&fsspset->fssps_displock);
}
thread_unlock(t);
mutex_enter(&fsspset->fssps_lock);
if (--fssproj->fssp_threads == 0) {
fss_remove_fssproj(fsspset, fssproj);
if (fsszone->fssz_nproj == 0)
kmem_free(fsszone, sizeof (fsszone_t));
kmem_free(fssproj, sizeof (fssproj_t));
}
mutex_exit(&fsspset->fssps_lock);
} else {
ASSERT(t->t_state == TS_FREE);
/*
* We're being called from thread_free() when our thread
* is removed from the deathrow. There is nothing we need
* do here since everything should've been done earlier
* in fss_exit().
*/
thread_unlock(t);
}
mutex_exit(&fsspsets_lock);
FSS_LIST_DELETE(fssproc);
fss_free(fssproc);
}
/*ARGSUSED*/
static int
fss_canexit(kthread_t *t, cred_t *credp)
{
/*
* A thread is allowed to exit FSS only if we have sufficient
* privileges.
*/
if (credp != NULL && secpolicy_setpriority(credp) != 0)
return (EPERM);
else
return (0);
}
/*
* Initialize fair-share class specific proc structure for a child.
*/
static int
fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
{
fssproc_t *pfssproc; /* ptr to parent's fssproc structure */
fssproc_t *cfssproc; /* ptr to child's fssproc structure */
fssproj_t *fssproj;
fsspset_t *fsspset;
ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
ASSERT(ct->t_state == TS_STOPPED);
cfssproc = (fssproc_t *)bufp;
ASSERT(cfssproc != NULL);
bzero(cfssproc, sizeof (fssproc_t));
thread_lock(pt);
pfssproc = FSSPROC(pt);
fssproj = FSSPROC2FSSPROJ(pfssproc);
fsspset = FSSPROJ2FSSPSET(fssproj);
thread_unlock(pt);
mutex_enter(&fsspset->fssps_lock);
/*
* Initialize child's fssproc structure.
*/
thread_lock(pt);
ASSERT(FSSPROJ(pt) == fssproj);
cfssproc->fss_proj = fssproj;
cfssproc->fss_timeleft = fss_quantum;
cfssproc->fss_umdpri = pfssproc->fss_umdpri;
cfssproc->fss_fsspri = 0;
cfssproc->fss_uprilim = pfssproc->fss_uprilim;
cfssproc->fss_upri = pfssproc->fss_upri;
cfssproc->fss_tp = ct;
cfssproc->fss_nice = pfssproc->fss_nice;
cpucaps_sc_init(&cfssproc->fss_caps);
cfssproc->fss_flags =
pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE);
ct->t_cldata = (void *)cfssproc;
ct->t_schedflag |= TS_RUNQMATCH;
thread_unlock(pt);
fssproj->fssp_threads++;
mutex_exit(&fsspset->fssps_lock);
/*
* Link new structure into fssproc hash table.
*/
FSS_LIST_INSERT(cfssproc);
return (0);
}
/*
* Child is placed at back of dispatcher queue and parent gives up processor
* so that the child runs first after the fork. This allows the child
* immediately execing to break the multiple use of copy on write pages with no
* disk home. The parent will get to steal them back rather than uselessly
* copying them.
*/
static void
fss_forkret(kthread_t *t, kthread_t *ct)
{
proc_t *pp = ttoproc(t);
proc_t *cp = ttoproc(ct);
fssproc_t *fssproc;
ASSERT(t == curthread);
ASSERT(MUTEX_HELD(&pidlock));
/*
* Grab the child's p_lock before dropping pidlock to ensure the
* process does not disappear before we set it running.
*/
mutex_enter(&cp->p_lock);
mutex_exit(&pidlock);
continuelwps(cp);
mutex_exit(&cp->p_lock);
mutex_enter(&pp->p_lock);
continuelwps(pp);
mutex_exit(&pp->p_lock);
thread_lock(t);
fssproc = FSSPROC(t);
fss_newpri(fssproc);
fssproc->fss_timeleft = fss_quantum;
t->t_pri = fssproc->fss_umdpri;
ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
fssproc->fss_flags &= ~FSSKPRI;
THREAD_TRANSITION(t);
/*
* We don't want to call fss_setrun(t) here because it may call
* fss_active, which we don't need.
*/
fssproc->fss_flags &= ~FSSBACKQ;
if (t->t_disp_time != lbolt)
setbackdq(t);
else
setfrontdq(t);
thread_unlock(t);
swtch();
}
/*
* Get the fair-sharing parameters of the thread pointed to by fssprocp into
* the buffer pointed by fssparmsp.
*/
static void
fss_parmsget(kthread_t *t, void *parmsp)
{
fssproc_t *fssproc = FSSPROC(t);
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
fssparmsp->fss_uprilim = fssproc->fss_uprilim;
fssparmsp->fss_upri = fssproc->fss_upri;
}
/*ARGSUSED*/
static int
fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
{
char nice;
pri_t reqfssuprilim;
pri_t reqfssupri;
fssproc_t *fssproc = FSSPROC(t);
fssparms_t *fssparmsp = (fssparms_t *)parmsp;
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
reqfssuprilim = fssproc->fss_uprilim;
else
reqfssuprilim = fssparmsp->fss_uprilim;
if (fssparmsp->fss_upri == FSS_NOCHANGE)
reqfssupri = fssproc->fss_upri;
else
reqfssupri = fssparmsp->fss_upri;
/*
* Make sure the user priority doesn't exceed the upri limit.
*/
if (reqfssupri > reqfssuprilim)
reqfssupri = reqfssuprilim;
/*
* Basic permissions enforced by generic kernel code for all classes
* require that a thread attempting to change the scheduling parameters
* of a target thread be privileged or have a real or effective UID
* matching that of the target thread. We are not called unless these
* basic permission checks have already passed. The fair-sharing class
* requires in addition that the calling thread be privileged if it
* is attempting to raise the upri limit above its current value.
* This may have been checked previously but if our caller passed us
* a non-NULL credential pointer we assume it hasn't and we check it
* here.
*/
if ((reqpcredp != NULL) &&
(reqfssuprilim > fssproc->fss_uprilim) &&
secpolicy_setpriority(reqpcredp) != 0)
return (EPERM);
/*
* Set fss_nice to the nice value corresponding to the user priority we
* are setting. Note that setting the nice field of the parameter
* struct won't affect upri or nice.
*/
nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
if (nice > FSS_NICE_MAX)
nice = FSS_NICE_MAX;
thread_lock(t);
fssproc->fss_uprilim = reqfssuprilim;
fssproc->fss_upri = reqfssupri;
fssproc->fss_nice = nice;
fss_newpri(fssproc);
if ((fssproc->fss_flags & FSSKPRI) != 0) {
thread_unlock(t);
return (0);
}
fss_change_priority(t, fssproc);
thread_unlock(t);
return (0);
}
/*
* The thread is being stopped.
*/
/*ARGSUSED*/
static void
fss_stop(kthread_t *t, int why, int what)
{
ASSERT(THREAD_LOCK_HELD(t));
ASSERT(t == curthread);
fss_inactive(t);
}
/*
* The current thread is exiting, do necessary adjustments to its project
*/
static void
fss_exit(kthread_t *t)
{
fsspset_t *fsspset;
fssproj_t *fssproj;
fssproc_t *fssproc;
fsszone_t *fsszone;
int free = 0;
/*
* Thread t here is either a current thread (in which case we hold
* its process' p_lock), or a thread being destroyed by forklwp_fail(),
* in which case we hold pidlock and thread is no longer on the
* thread list.
*/
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
fssproc = FSSPROC(t);
fssproj = FSSPROC2FSSPROJ(fssproc);
fsspset = FSSPROJ2FSSPSET(fssproj);
fsszone = fssproj->fssp_fsszone;
mutex_enter(&fsspsets_lock);
mutex_enter(&fsspset->fssps_lock);
thread_lock(t);
disp_lock_enter_high(&fsspset->fssps_displock);
if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
if (--fssproj->fssp_runnable == 0) {
fsszone->fssz_shares -= fssproj->fssp_shares;
if (--fsszone->fssz_runnable == 0)
fsspset->fssps_shares -= fsszone->fssz_rshares;
}
ASSERT(fssproc->fss_runnable == 1);
fssproc->fss_runnable = 0;
}
if (--fssproj->fssp_threads == 0) {
fss_remove_fssproj(fsspset, fssproj);
free = 1;
}
disp_lock_exit_high(&fsspset->fssps_displock);
fssproc->fss_proj = NULL; /* mark this thread as already exited */
thread_unlock(t);
if (free) {
if (fsszone->fssz_nproj == 0)
kmem_free(fsszone, sizeof (fsszone_t));
kmem_free(fssproj, sizeof (fssproj_t));
}
mutex_exit(&fsspset->fssps_lock);
mutex_exit(&fsspsets_lock);
/*
* A thread could be exiting in between clock ticks, so we need to
* calculate how much CPU time it used since it was charged last time.
*
* CPU caps are not enforced on exiting processes - it is usually
* desirable to exit as soon as possible to free resources.
*/
if (CPUCAPS_ON()) {
thread_lock(t);
fssproc = FSSPROC(t);
(void) cpucaps_charge(t, &fssproc->fss_caps,
CPUCAPS_CHARGE_ONLY);
thread_unlock(t);
}
}
static void
fss_nullsys()
{
}
/*
* fss_swapin() returns -1 if the thread is loaded or is not eligible to be
* swapped in. Otherwise, it returns the thread's effective priority based
* on swapout time and size of process (0 <= epri <= 0 SHRT_MAX).
*/
/*ARGSUSED*/
static pri_t
fss_swapin(kthread_t *t, int flags)
{
fssproc_t *fssproc = FSSPROC(t);
long epri = -1;
proc_t *pp = ttoproc(t);
ASSERT(THREAD_LOCK_HELD(t));
if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
time_t swapout_time;
swapout_time = (lbolt - t->t_stime) / hz;
if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) {
epri = (long)DISP_PRIO(t) + swapout_time;
} else {
/*
* Threads which have been out for a long time,
* have high user mode priority and are associated
* with a small address space are more deserving.
*/
epri = fssproc->fss_umdpri;
ASSERT(epri >= 0 && epri <= fss_maxumdpri);
epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
}
/*
* Scale epri so that SHRT_MAX / 2 represents zero priority.
*/
epri += SHRT_MAX / 2;
if (epri < 0)
epri = 0;
else if (epri > SHRT_MAX)
epri = SHRT_MAX;
}
return ((pri_t)epri);
}
/*
* fss_swapout() returns -1 if the thread isn't loaded or is not eligible to
* be swapped out. Otherwise, it returns the thread's effective priority
* based on if the swapper is in softswap or hardswap mode.
*/
static pri_t
fss_swapout(kthread_t *t, int flags)
{
fssproc_t *fssproc = FSSPROC(t);
long epri = -1;
proc_t *pp = ttoproc(t);
time_t swapin_time;
ASSERT(THREAD_LOCK_HELD(t));
if (INHERITED(t) ||
(fssproc->fss_flags & FSSKPRI) ||
(t->t_proc_flag & TP_LWPEXIT) ||
(t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
TS_ONPROC | TS_WAIT)) ||
!(t->t_schedflag & TS_LOAD) ||
!(SWAP_OK(t)))
return (-1);
ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
swapin_time = (lbolt - t->t_stime) / hz;
if (flags == SOFTSWAP) {
if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
epri = 0;
} else {
return ((pri_t)epri);
}
} else {
pri_t pri;
if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) ||
(t->t_state == TS_RUN && swapin_time > fss_minrun)) {
pri = fss_maxumdpri;
epri = swapin_time -
(rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
} else {
return ((pri_t)epri);
}
}
/*
* Scale epri so that SHRT_MAX / 2 represents zero priority.
*/
epri += SHRT_MAX / 2;
if (epri < 0)
epri = 0;
else if (epri > SHRT_MAX)
epri = SHRT_MAX;
return ((pri_t)epri);
}
/*
* If thread is currently at a kernel mode priority (has slept) and is
* returning to the userland we assign it the appropriate user mode priority
* and time quantum here. If we're lowering the thread's priority below that
* of other runnable threads then we will set runrun via cpu_surrender() to
* cause preemption.
*/
static void
fss_trapret(kthread_t *t)
{
fssproc_t *fssproc = FSSPROC(t);
cpu_t *cp = CPU;
ASSERT(THREAD_LOCK_HELD(t));
ASSERT(t == curthread);
ASSERT(cp->cpu_dispthread == t);
ASSERT(t->t_state == TS_ONPROC);
t->t_kpri_req = 0;
if (fssproc->fss_flags & FSSKPRI) {
/*
* If thread has blocked in the kernel
*/
THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
cp->cpu_dispatch_pri = DISP_PRIO(t);
ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
fssproc->fss_flags &= ~FSSKPRI;
if (DISP_MUST_SURRENDER(t))
cpu_surrender(t);
}
/*
* Swapout lwp if the swapper is waiting for this thread to reach
* a safe point.
*/
if (t->t_schedflag & TS_SWAPENQ) {
thread_unlock(t);
swapout_lwp(ttolwp(t));
thread_lock(t);
}
}
/*
* Arrange for thread to be placed in appropriate location on dispatcher queue.
* This is called with the current thread in TS_ONPROC and locked.
*/
static void
fss_preempt(kthread_t *t)
{
fssproc_t *fssproc = FSSPROC(t);
klwp_t *lwp;
uint_t flags;
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(curthread));
ASSERT(t->t_state == TS_ONPROC);
/*
* If preempted in the kernel, make sure the thread has a kernel
* priority if needed.
*/
lwp = curthread->t_lwp;
if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) {
fssproc->fss_flags |= FSSKPRI;
THREAD_CHANGE_PRI(t, minclsyspri);
ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
t->t_trapret = 1; /* so that fss_trapret will run */
aston(t);
}
/*
* This thread may be placed on wait queue by CPU Caps. In this case we
* do not need to do anything until it is removed from the wait queue.
* Do not enforce CPU caps on threads running at a kernel priority
*/
if (CPUCAPS_ON()) {
(void) cpucaps_charge(t, &fssproc->fss_caps,
CPUCAPS_CHARGE_ENFORCE);
if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t))
return;
}
/*
* If preempted in user-land mark the thread as swappable because it
* cannot be holding any kernel locks.
*/
ASSERT(t->t_schedflag & TS_DONT_SWAP);
if (lwp != NULL && lwp->lwp_state == LWP_USER)
t->t_schedflag &= ~TS_DONT_SWAP;
/*
* Check to see if we're doing "preemption control" here. If
* we are, and if the user has requested that this thread not
* be preempted, and if preemptions haven't been put off for
* too long, let the preemption happen here but try to make
* sure the thread is rescheduled as soon as possible. We do
* this by putting it on the front of the highest priority run
* queue in the FSS class. If the preemption has been put off
* for too long, clear the "nopreempt" bit and let the thread
* be preempted.
*/
if (t->t_schedctl && schedctl_get_nopreempt(t)) {
if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
if (!(fssproc->fss_flags & FSSKPRI)) {
/*
* If not already remembered, remember current
* priority for restoration in fss_yield().
*/
if (!(fssproc->fss_flags & FSSRESTORE)) {
fssproc->fss_scpri = t->t_pri;
fssproc->fss_flags |= FSSRESTORE;
}
THREAD_CHANGE_PRI(t, fss_maxumdpri);
t->t_schedflag |= TS_DONT_SWAP;
}
schedctl_set_yield(t, 1);
setfrontdq(t);
return;
} else {
if (fssproc->fss_flags & FSSRESTORE) {
THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
fssproc->fss_flags &= ~FSSRESTORE;
}
schedctl_set_nopreempt(t, 0);
DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
/*
* Fall through and be preempted below.
*/
}
}
flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI);
if (flags == FSSBACKQ) {
fssproc->fss_timeleft = fss_quantum;
fssproc->fss_flags &= ~FSSBACKQ;
setbackdq(t);
} else if (flags == (FSSBACKQ | FSSKPRI)) {
fssproc->fss_flags &= ~FSSBACKQ;
setbackdq(t);
} else {
setfrontdq(t);
}
}
/*
* Called when a thread is waking up and is to be placed on the run queue.
*/
static void
fss_setrun(kthread_t *t)
{
fssproc_t *fssproc = FSSPROC(t);
ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
fss_active(t);
fssproc->fss_timeleft = fss_quantum;
fssproc->fss_flags &= ~FSSBACKQ;
/*
* If previously were running at the kernel priority then keep that
* priority and the fss_timeleft doesn't matter.
*/
if ((fssproc->fss_flags & FSSKPRI) == 0)
THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
if (t->t_disp_time != lbolt)
setbackdq(t);
else
setfrontdq(t);
}
/*
* Prepare thread for sleep. We reset the thread priority so it will run at the
* kernel priority level when it wakes up.
*/
static void
fss_sleep(kthread_t *t)
{
fssproc_t *fssproc = FSSPROC(t);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(t));
ASSERT(t->t_state == TS_ONPROC);
/*
* Account for time spent on CPU before going to sleep.
*/
(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
fss_inactive(t);
/*
* Assign a system priority to the thread and arrange for it to be
* retained when the thread is next placed on the run queue (i.e.,
* when it wakes up) instead of being given a new pri. Also arrange
* for trapret processing as the thread leaves the system call so it
* will drop back to normal priority range.
*/
if (t->t_kpri_req) {
THREAD_CHANGE_PRI(t, minclsyspri);
fssproc->fss_flags |= FSSKPRI;
t->t_trapret = 1; /* so that fss_trapret will run */
aston(t);
} else if (fssproc->fss_flags & FSSKPRI) {
/*
* The thread has done a THREAD_KPRI_REQUEST(), slept, then
* done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again),
* then slept again all without finishing the current system
* call so trapret won't have cleared FSSKPRI
*/
fssproc->fss_flags &= ~FSSKPRI;
THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
if (DISP_MUST_SURRENDER(curthread))
cpu_surrender(t);
}
t->t_stime = lbolt; /* time stamp for the swapper */
}
/*
* A tick interrupt has ocurrend on a running thread. Check to see if our
* time slice has expired. We must also clear the TS_DONT_SWAP flag in
* t_schedflag if the thread is eligible to be swapped out.
*/
static void
fss_tick(kthread_t *t)
{
fssproc_t *fssproc;
fssproj_t *fssproj;
klwp_t *lwp;
boolean_t call_cpu_surrender = B_FALSE;
boolean_t cpucaps_enforce = B_FALSE;
ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
/*
* It's safe to access fsspset and fssproj structures because we're
* holding our p_lock here.
*/
thread_lock(t);
fssproc = FSSPROC(t);
fssproj = FSSPROC2FSSPROJ(fssproc);
if (fssproj != NULL) {
fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
disp_lock_enter_high(&fsspset->fssps_displock);
fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
fssproc->fss_ticks++;
disp_lock_exit_high(&fsspset->fssps_displock);
}
/*
* Keep track of thread's project CPU usage. Note that projects
* get charged even when threads are running in the kernel.
* Do not surrender CPU if running in the SYS class.
*/
if (CPUCAPS_ON()) {
cpucaps_enforce = cpucaps_charge(t,
&fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) &&
!(fssproc->fss_flags & FSSKPRI);
}
/*
* A thread's execution time for threads running in the SYS class
* is not tracked.
*/
if ((fssproc->fss_flags & FSSKPRI) == 0) {
/*
* If thread is not in kernel mode, decrement its fss_timeleft
*/
if (--fssproc->fss_timeleft <= 0) {
pri_t new_pri;
/*
* If we're doing preemption control and trying to
* avoid preempting this thread, just note that the
* thread should yield soon and let it keep running
* (unless it's been a while).
*/
if (t->t_schedctl && schedctl_get_nopreempt(t)) {
if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
DTRACE_SCHED1(schedctl__nopreempt,
kthread_t *, t);
schedctl_set_yield(t, 1);
thread_unlock_nopreempt(t);
return;
}
}
fssproc->fss_flags &= ~FSSRESTORE;
fss_newpri(fssproc);
new_pri = fssproc->fss_umdpri;
ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
/*
* When the priority of a thread is changed, it may
* be necessary to adjust its position on a sleep queue
* or dispatch queue. The function thread_change_pri
* accomplishes this.
*/
if (thread_change_pri(t, new_pri, 0)) {
if ((t->t_schedflag & TS_LOAD) &&
(lwp = t->t_lwp) &&
lwp->lwp_state == LWP_USER)
t->t_schedflag &= ~TS_DONT_SWAP;
fssproc->fss_timeleft = fss_quantum;
} else {
call_cpu_surrender = B_TRUE;
}
} else if (t->t_state == TS_ONPROC &&
t->t_pri < t->t_disp_queue->disp_maxrunpri) {
/*
* If there is a higher-priority thread which is
* waiting for a processor, then thread surrenders
* the processor.
*/
call_cpu_surrender = B_TRUE;
}
}
if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
/*
* The thread used more than half of its quantum, so assume that
* it used the whole quantum.
*
* Update thread's priority just before putting it on the wait
* queue so that it gets charged for the CPU time from its
* quantum even before that quantum expires.
*/
fss_newpri(fssproc);
if (t->t_pri != fssproc->fss_umdpri)
fss_change_priority(t, fssproc);
/*
* We need to call cpu_surrender for this thread due to cpucaps
* enforcement, but fss_change_priority may have already done
* so. In this case FSSBACKQ is set and there is no need to call
* cpu-surrender again.
*/
if (!(fssproc->fss_flags & FSSBACKQ))
call_cpu_surrender = B_TRUE;
}
if (call_cpu_surrender) {
fssproc->fss_flags |= FSSBACKQ;
cpu_surrender(t);
}
thread_unlock_nopreempt(t); /* clock thread can't be preempted */
}
/*
* Processes waking up go to the back of their queue. We don't need to assign
* a time quantum here because thread is still at a kernel mode priority and
* the time slicing is not done for threads running in the kernel after
* sleeping. The proper time quantum will be assigned by fss_trapret before the
* thread returns to user mode.
*/
static void
fss_wakeup(kthread_t *t)
{
fssproc_t *fssproc;
ASSERT(THREAD_LOCK_HELD(t));
ASSERT(t->t_state == TS_SLEEP);
fss_active(t);
t->t_stime = lbolt; /* time stamp for the swapper */
fssproc = FSSPROC(t);
fssproc->fss_flags &= ~FSSBACKQ;
if (fssproc->fss_flags & FSSKPRI) {
/*
* If we already have a kernel priority assigned, then we
* just use it.
*/
setbackdq(t);
} else if (t->t_kpri_req) {
/*
* Give thread a priority boost if we were asked.
*/
fssproc->fss_flags |= FSSKPRI;
THREAD_CHANGE_PRI(t, minclsyspri);
setbackdq(t);
t->t_trapret = 1; /* so that fss_trapret will run */
aston(t);
} else {
/*
* Otherwise, we recalculate the priority.
*/
if (t->t_disp_time == lbolt) {
setfrontdq(t);
} else {
fssproc->fss_timeleft = fss_quantum;
THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
setbackdq(t);
}
}
}
/*
* fss_donice() is called when a nice(1) command is issued on the thread to
* alter the priority. The nice(1) command exists in Solaris for compatibility.
* Thread priority adjustments should be done via priocntl(1).
*/
static int
fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
{
int newnice;
fssproc_t *fssproc = FSSPROC(t);
fssparms_t fssparms;
/*
* If there is no change to priority, just return current setting.
*/
if (incr == 0) {
if (retvalp)
*retvalp = fssproc->fss_nice - NZERO;
return (0);
}
if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0)
return (EPERM);
/*
* Specifying a nice increment greater than the upper limit of
* FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
* value being set to the upper limit. We check for this before
* computing the new value because otherwise we could get overflow
* if a privileged user specified some ridiculous increment.
*/
if (incr > FSS_NICE_MAX)
incr = FSS_NICE_MAX;
newnice = fssproc->fss_nice + incr;
if (newnice > FSS_NICE_MAX)
newnice = FSS_NICE_MAX;
else if (newnice < FSS_NICE_MIN)
newnice = FSS_NICE_MIN;
fssparms.fss_uprilim = fssparms.fss_upri =
-((newnice - NZERO) * fss_maxupri) / NZERO;
/*
* Reset the uprilim and upri values of the thread.
*/
(void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
/*
* Although fss_parmsset already reset fss_nice it may not have been
* set to precisely the value calculated above because fss_parmsset
* determines the nice value from the user priority and we may have
* truncated during the integer conversion from nice value to user
* priority and back. We reset fss_nice to the value we calculated
* above.
*/
fssproc->fss_nice = (char)newnice;
if (retvalp)
*retvalp = newnice - NZERO;
return (0);
}
/*
* Return the global scheduling priority that would be assigned to a thread
* entering the fair-sharing class with the fss_upri.
*/
/*ARGSUSED*/
static pri_t
fss_globpri(kthread_t *t)
{
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
return (fss_maxumdpri / 2);
}
/*
* Called from the yield(2) system call when a thread is yielding (surrendering)
* the processor. The kernel thread is placed at the back of a dispatch queue.
*/
static void
fss_yield(kthread_t *t)
{
fssproc_t *fssproc = FSSPROC(t);
ASSERT(t == curthread);
ASSERT(THREAD_LOCK_HELD(t));
/*
* Collect CPU usage spent before yielding
*/
(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
/*
* Clear the preemption control "yield" bit since the user is
* doing a yield.
*/
if (t->t_schedctl)
schedctl_set_yield(t, 0);
/*
* If fss_preempt() artifically increased the thread's priority
* to avoid preemption, restore the original priority now.
*/
if (fssproc->fss_flags & FSSRESTORE) {
THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
fssproc->fss_flags &= ~FSSRESTORE;
}
if (fssproc->fss_timeleft < 0) {
/*
* Time slice was artificially extended to avoid preemption,
* so pretend we're preempting it now.
*/
DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
fssproc->fss_timeleft = fss_quantum;
}
fssproc->fss_flags &= ~FSSBACKQ;
setbackdq(t);
}
void
fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
fssbuf_t *zonebuf)
{
kproject_t *kpj_new = kp;
zone_t *zone = zp;
fssproj_t *fssproj_old, *fssproj_new;
fsspset_t *fsspset;
kproject_t *kpj_old;
fssproc_t *fssproc;
fsszone_t *fsszone_old, *fsszone_new;
int free = 0;
int id;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(MUTEX_HELD(&pidlock));
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
if (t->t_cid != fss_cid)
return;
fssproc = FSSPROC(t);
mutex_enter(&fsspsets_lock);
fssproj_old = FSSPROC2FSSPROJ(fssproc);
if (fssproj_old == NULL) {
mutex_exit(&fsspsets_lock);
return;
}
fsspset = FSSPROJ2FSSPSET(fssproj_old);
mutex_enter(&fsspset->fssps_lock);
kpj_old = FSSPROJ2KPROJ(fssproj_old);
fsszone_old = fssproj_old->fssp_fsszone;
ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
if (kpj_old == kpj_new) {
mutex_exit(&fsspset->fssps_lock);
mutex_exit(&fsspsets_lock);
return;
}
if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
/*
* If the zone for the new project is not currently active on
* the cpu partition we're on, get one of the pre-allocated
* buffers and link it in our per-pset zone list. Such buffers
* should already exist.
*/
for (id = 0; id < zonebuf->fssb_size; id++) {
if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
fss_insert_fsszone(fsspset, zone, fsszone_new);
zonebuf->fssb_list[id] = NULL;
break;
}
}
}
ASSERT(fsszone_new != NULL);
if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
/*
* If our new project is not currently running
* on the cpu partition we're on, get one of the
* pre-allocated buffers and link it in our new cpu
* partition doubly linked list. Such buffers should already
* exist.
*/
for (id = 0; id < projbuf->fssb_size; id++) {
if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
fss_insert_fssproj(fsspset, kpj_new,
fsszone_new, fssproj_new);
projbuf->fssb_list[id] = NULL;
break;
}
}
}
ASSERT(fssproj_new != NULL);
thread_lock(t);
if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
t->t_state == TS_WAIT)
fss_inactive(t);
ASSERT(fssproj_old->fssp_threads > 0);
if (--fssproj_old->fssp_threads == 0) {
fss_remove_fssproj(fsspset, fssproj_old);
free = 1;
}
fssproc->fss_proj = fssproj_new;
fssproc->fss_fsspri = 0;
fssproj_new->fssp_threads++;
if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
t->t_state == TS_WAIT)
fss_active(t);
thread_unlock(t);
if (free) {
if (fsszone_old->fssz_nproj == 0)
kmem_free(fsszone_old, sizeof (fsszone_t));
kmem_free(fssproj_old, sizeof (fssproj_t));
}
mutex_exit(&fsspset->fssps_lock);
mutex_exit(&fsspsets_lock);
}
void
fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
fssbuf_t *zonebuf)
{
fsspset_t *fsspset_old, *fsspset_new;
fssproj_t *fssproj_old, *fssproj_new;
fsszone_t *fsszone_old, *fsszone_new;
fssproc_t *fssproc;
kproject_t *kpj;
zone_t *zone;
int id;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(MUTEX_HELD(&pidlock));
ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
if (t->t_cid != fss_cid)
return;
fssproc = FSSPROC(t);
zone = ttoproc(t)->p_zone;
mutex_enter(&fsspsets_lock);
fssproj_old = FSSPROC2FSSPROJ(fssproc);
if (fssproj_old == NULL) {
mutex_exit(&fsspsets_lock);
return;
}
fsszone_old = fssproj_old->fssp_fsszone;
fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
kpj = FSSPROJ2KPROJ(fssproj_old);
if (fsspset_old->fssps_cpupart == newcp) {
mutex_exit(&fsspsets_lock);
return;
}
ASSERT(ttoproj(t) == kpj);
fsspset_new = fss_find_fsspset(newcp);
mutex_enter(&fsspset_new->fssps_lock);
if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
for (id = 0; id < zonebuf->fssb_size; id++) {
if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
fss_insert_fsszone(fsspset_new, zone,
fsszone_new);
zonebuf->fssb_list[id] = NULL;
break;
}
}
}
ASSERT(fsszone_new != NULL);
if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
for (id = 0; id < projbuf->fssb_size; id++) {
if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
fss_insert_fssproj(fsspset_new, kpj,
fsszone_new, fssproj_new);
projbuf->fssb_list[id] = NULL;
break;
}
}
}
ASSERT(fssproj_new != NULL);
fssproj_new->fssp_threads++;
thread_lock(t);
if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
t->t_state == TS_WAIT)
fss_inactive(t);
fssproc->fss_proj = fssproj_new;
fssproc->fss_fsspri = 0;
if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
t->t_state == TS_WAIT)
fss_active(t);
thread_unlock(t);
mutex_exit(&fsspset_new->fssps_lock);
mutex_enter(&fsspset_old->fssps_lock);
if (--fssproj_old->fssp_threads == 0) {
fss_remove_fssproj(fsspset_old, fssproj_old);
if (fsszone_old->fssz_nproj == 0)
kmem_free(fsszone_old, sizeof (fsszone_t));
kmem_free(fssproj_old, sizeof (fssproj_t));
}
mutex_exit(&fsspset_old->fssps_lock);
mutex_exit(&fsspsets_lock);
}