aes.c revision efcbd7a0389435d8e3218fef080cc88afeec61a3
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* AES provider for the Kernel Cryptographic Framework (KCF)
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/modctl.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/crypto/common.h>
#include <sys/crypto/spi.h>
#include <sys/sysmacros.h>
#include <sys/strsun.h>
#include <aes_impl.h>
#include <aes_cbc_crypt.h>
extern struct mod_ops mod_cryptoops;
/*
* Module linkage information for the kernel.
*/
static struct modlcrypto modlcrypto = {
&mod_cryptoops,
"AES Kernel SW Provider %I%"
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modlcrypto,
NULL
};
/*
* CSPI information (entry points, provider info, etc.)
*/
typedef enum aes_mech_type {
AES_ECB_MECH_INFO_TYPE, /* SUN_CKM_AES_ECB */
AES_CBC_MECH_INFO_TYPE, /* SUN_CKM_AES_CBC */
AES_CBC_PAD_MECH_INFO_TYPE, /* SUN_CKM_AES_CBC_PAD */
AES_CTR_MECH_INFO_TYPE, /* SUN_CKM_AES_CTR */
AES_CCM_MECH_INFO_TYPE /* SUN_CKM_AES_CCM */
} aes_mech_type_t;
/*
* The following definitions are to keep EXPORT_SRC happy.
*/
#ifndef AES_MIN_KEY_BYTES
#define AES_MIN_KEY_BYTES 0
#endif
#ifndef AES_MAX_KEY_BYTES
#define AES_MAX_KEY_BYTES 0
#endif
/*
* Mechanism info structure passed to KCF during registration.
*/
static crypto_mech_info_t aes_mech_info_tab[] = {
/* AES_ECB */
{SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CBC */
{SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CTR */
{SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CCM */
{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES}
};
/* operations are in-place if the output buffer is NULL */
#define AES_ARG_INPLACE(input, output) \
if ((output) == NULL) \
(output) = (input);
static void aes_provider_status(crypto_provider_handle_t, uint_t *);
static crypto_control_ops_t aes_control_ops = {
aes_provider_status
};
static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t, boolean_t);
static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
crypto_data_t *, crypto_req_handle_t);
static int aes_encrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
crypto_data_t *, crypto_req_handle_t);
static int aes_decrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static crypto_cipher_ops_t aes_cipher_ops = {
aes_encrypt_init,
aes_encrypt,
aes_encrypt_update,
aes_encrypt_final,
aes_encrypt_atomic,
aes_decrypt_init,
aes_decrypt,
aes_decrypt_update,
aes_decrypt_final,
aes_decrypt_atomic
};
static int aes_create_ctx_template(crypto_provider_handle_t,
crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
size_t *, crypto_req_handle_t);
static int aes_free_context(crypto_ctx_t *);
static crypto_ctx_ops_t aes_ctx_ops = {
aes_create_ctx_template,
aes_free_context
};
static crypto_ops_t aes_crypto_ops = {
&aes_control_ops,
NULL,
&aes_cipher_ops,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
&aes_ctx_ops
};
static crypto_provider_info_t aes_prov_info = {
CRYPTO_SPI_VERSION_1,
"AES Software Provider",
CRYPTO_SW_PROVIDER,
{&modlinkage},
NULL,
&aes_crypto_ops,
sizeof (aes_mech_info_tab)/sizeof (crypto_mech_info_t),
aes_mech_info_tab
};
static crypto_kcf_provider_handle_t aes_prov_handle = NULL;
int
_init(void)
{
int ret;
/*
* Register with KCF. If the registration fails, return error.
*/
if ((ret = crypto_register_provider(&aes_prov_info,
&aes_prov_handle)) != CRYPTO_SUCCESS) {
cmn_err(CE_WARN, "%s _init: crypto_register_provider()"
"failed (0x%x)", CRYPTO_PROVIDER_NAME, ret);
return (EACCES);
}
if ((ret = mod_install(&modlinkage)) != 0) {
int rv;
ASSERT(aes_prov_handle != NULL);
/* We should not return if the unregister returns busy. */
while ((rv = crypto_unregister_provider(aes_prov_handle))
== CRYPTO_BUSY) {
cmn_err(CE_WARN,
"%s _init: crypto_unregister_provider() "
"failed (0x%x). Retrying.",
CRYPTO_PROVIDER_NAME, rv);
/* wait 10 seconds and try again. */
delay(10 * drv_usectohz(1000000));
}
}
return (ret);
}
int
_fini(void)
{
int ret;
/*
* Unregister from KCF if previous registration succeeded.
*/
if (aes_prov_handle != NULL) {
if ((ret = crypto_unregister_provider(aes_prov_handle)) !=
CRYPTO_SUCCESS) {
cmn_err(CE_WARN,
"%s _fini: crypto_unregister_provider() "
"failed (0x%x)", CRYPTO_PROVIDER_NAME, ret);
return (EBUSY);
}
aes_prov_handle = NULL;
}
return (mod_remove(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
static int
aes_check_mech_param(crypto_mechanism_t *mechanism)
{
int rv = CRYPTO_SUCCESS;
switch (mechanism->cm_type) {
case AES_ECB_MECH_INFO_TYPE:
/* no parameter */
break;
case AES_CBC_MECH_INFO_TYPE:
if (mechanism->cm_param != NULL &&
mechanism->cm_param_len != AES_BLOCK_LEN)
rv = CRYPTO_MECHANISM_PARAM_INVALID;
break;
case AES_CTR_MECH_INFO_TYPE:
if (mechanism->cm_param != NULL &&
mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS))
rv = CRYPTO_MECHANISM_PARAM_INVALID;
break;
case AES_CCM_MECH_INFO_TYPE:
if (mechanism->cm_param != NULL &&
mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS))
rv = CRYPTO_MECHANISM_PARAM_INVALID;
break;
default:
rv = CRYPTO_MECHANISM_INVALID;
}
return (rv);
}
/* EXPORT DELETE START */
/*
* Initialize key schedules for AES
*/
static int
init_keysched(crypto_key_t *key, void *newbie)
{
/*
* Only keys by value are supported by this module.
*/
switch (key->ck_format) {
case CRYPTO_KEY_RAW:
if (key->ck_length < AES_MINBITS ||
key->ck_length > AES_MAXBITS) {
return (CRYPTO_KEY_SIZE_RANGE);
}
/* key length must be either 128, 192, or 256 */
if ((key->ck_length & 63) != 0)
return (CRYPTO_KEY_SIZE_RANGE);
break;
default:
return (CRYPTO_KEY_TYPE_INCONSISTENT);
}
aes_init_keysched(key->ck_data, key->ck_length, newbie);
return (CRYPTO_SUCCESS);
}
/* EXPORT DELETE END */
/*
* KCF software provider control entry points.
*/
/* ARGSUSED */
static void
aes_provider_status(crypto_provider_handle_t provider, uint_t *status)
{
*status = CRYPTO_PROVIDER_READY;
}
static int
aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req) {
return (aes_common_init(ctx, mechanism, key, template, req, B_TRUE));
}
static int
aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req) {
return (aes_common_init(ctx, mechanism, key, template, req, B_FALSE));
}
/*
* KCF software provider encrypt entry points.
*/
static int
aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req, boolean_t is_encrypt_init)
{
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx;
int rv;
int kmflag;
/*
* Only keys by value are supported by this module.
*/
if (key->ck_format != CRYPTO_KEY_RAW) {
return (CRYPTO_KEY_TYPE_INCONSISTENT);
}
if ((rv = aes_check_mech_param(mechanism)) != CRYPTO_SUCCESS)
return (rv);
/*
* Allocate an AES context.
*/
kmflag = crypto_kmflag(req);
if ((aes_ctx = kmem_zalloc(sizeof (aes_ctx_t), kmflag)) == NULL)
return (CRYPTO_HOST_MEMORY);
rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, kmflag,
is_encrypt_init);
if (rv != CRYPTO_SUCCESS) {
kmem_free(aes_ctx, sizeof (aes_ctx_t));
return (rv);
}
ctx->cc_provider_private = aes_ctx;
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/*
* Helper AES encrypt update function for iov input data.
*/
static int
aes_cipher_update_iov(aes_ctx_t *aes_ctx, crypto_data_t *input,
crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t,
crypto_data_t *))
{
int rv;
/* EXPORT DELETE START */
if (input->cd_miscdata != NULL) {
if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) {
/* LINTED: pointer alignment */
aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata;
/* LINTED: pointer alignment */
aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8];
} else {
uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0];
uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0];
AES_COPY_BLOCK(miscdata8, iv8);
}
}
if (input->cd_raw.iov_len < input->cd_length)
return (CRYPTO_ARGUMENTS_BAD);
rv = (cipher)(aes_ctx, input->cd_raw.iov_base + input->cd_offset,
input->cd_length, (input == output) ? NULL : output);
/* EXPORT DELETE END */
return (rv);
}
/*
* Helper AES encrypt update function for uio input data.
*/
static int
aes_cipher_update_uio(aes_ctx_t *aes_ctx, crypto_data_t *input,
crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t,
crypto_data_t *))
{
/* EXPORT DELETE START */
uio_t *uiop = input->cd_uio;
off_t offset = input->cd_offset;
size_t length = input->cd_length;
uint_t vec_idx;
size_t cur_len;
if (input->cd_miscdata != NULL) {
if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) {
/* LINTED: pointer alignment */
aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata;
/* LINTED: pointer alignment */
aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8];
} else {
uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0];
uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0];
AES_COPY_BLOCK(miscdata8, iv8);
}
}
if (input->cd_uio->uio_segflg != UIO_SYSSPACE) {
return (CRYPTO_ARGUMENTS_BAD);
}
/*
* Jump to the first iovec containing data to be
* processed.
*/
for (vec_idx = 0; vec_idx < uiop->uio_iovcnt &&
offset >= uiop->uio_iov[vec_idx].iov_len;
offset -= uiop->uio_iov[vec_idx++].iov_len)
;
if (vec_idx == uiop->uio_iovcnt) {
/*
* The caller specified an offset that is larger than the
* total size of the buffers it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
/*
* Now process the iovecs.
*/
while (vec_idx < uiop->uio_iovcnt && length > 0) {
cur_len = MIN(uiop->uio_iov[vec_idx].iov_len -
offset, length);
(cipher)(aes_ctx, uiop->uio_iov[vec_idx].iov_base + offset,
cur_len, (input == output) ? NULL : output);
length -= cur_len;
vec_idx++;
offset = 0;
}
if (vec_idx == uiop->uio_iovcnt && length > 0) {
/*
* The end of the specified iovec's was reached but
* the length requested could not be processed, i.e.
* The caller requested to digest more data than it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/*
* Helper AES encrypt update function for mblk input data.
*/
static int
aes_cipher_update_mp(aes_ctx_t *aes_ctx, crypto_data_t *input,
crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t,
crypto_data_t *))
{
/* EXPORT DELETE START */
off_t offset = input->cd_offset;
size_t length = input->cd_length;
mblk_t *mp;
size_t cur_len;
if (input->cd_miscdata != NULL) {
if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) {
/* LINTED: pointer alignment */
aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata;
/* LINTED: pointer alignment */
aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8];
} else {
uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0];
uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0];
AES_COPY_BLOCK(miscdata8, iv8);
}
}
/*
* Jump to the first mblk_t containing data to be processed.
*/
for (mp = input->cd_mp; mp != NULL && offset >= MBLKL(mp);
offset -= MBLKL(mp), mp = mp->b_cont)
;
if (mp == NULL) {
/*
* The caller specified an offset that is larger than the
* total size of the buffers it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
/*
* Now do the processing on the mblk chain.
*/
while (mp != NULL && length > 0) {
cur_len = MIN(MBLKL(mp) - offset, length);
(cipher)(aes_ctx, (char *)(mp->b_rptr + offset), cur_len,
(input == output) ? NULL : output);
length -= cur_len;
offset = 0;
mp = mp->b_cont;
}
if (mp == NULL && length > 0) {
/*
* The end of the mblk was reached but the length requested
* could not be processed, i.e. The caller requested
* to digest more data than it provided.
*/
return (CRYPTO_DATA_LEN_RANGE);
}
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
crypto_data_t *ciphertext, crypto_req_handle_t req)
{
int ret = CRYPTO_FAILED;
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx;
size_t saved_length, saved_offset, length_needed;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
/*
* For block ciphers, plaintext must be a multiple of AES block size.
* This test is only valid for ciphers whose blocksize is a power of 2.
* Even though AES CCM mode is a block cipher, it does not
* require the plaintext to be a multiple of AES block size.
* The length requirement for AES CCM mode has already been checked
* at init time
*/
if (((aes_ctx->ac_flags & AES_CTR_MODE) == 0) &&
((aes_ctx->ac_flags & AES_CCM_MODE) == 0) &&
(plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
return (CRYPTO_DATA_LEN_RANGE);
AES_ARG_INPLACE(plaintext, ciphertext);
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following case.
*/
if (aes_ctx->ac_flags & AES_CCM_MODE) {
length_needed = plaintext->cd_length + aes_ctx->ac_ccm_mac_len;
} else {
length_needed = plaintext->cd_length;
}
if (ciphertext->cd_length < length_needed) {
ciphertext->cd_length = length_needed;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_length = ciphertext->cd_length;
saved_offset = ciphertext->cd_offset;
/*
* Do an update on the specified input data.
*/
ret = aes_encrypt_update(ctx, plaintext, ciphertext, req);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
/*
* For CCM mode, aes_ccm_encrypt_final() will take care of any
* left-over unprocessed data, and compute the MAC
*/
if (aes_ctx->ac_flags & AES_CCM_MODE) {
/*
* aes_ccm_encrypt_final() will compute the MAC and append
* it to existing ciphertext. So, need to adjust the left over
* length value accordingly
*/
/* order of following 2 lines MUST not be reversed */
ciphertext->cd_offset = ciphertext->cd_length;
ciphertext->cd_length = saved_length - ciphertext->cd_length;
ret = aes_ccm_encrypt_final(aes_ctx, ciphertext);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
ciphertext->cd_offset = saved_offset;
}
ASSERT(aes_ctx->ac_remainder_len == 0);
(void) aes_free_context(ctx);
/* EXPORT DELETE END */
/* LINTED */
return (ret);
}
/* ARGSUSED */
static int
aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
crypto_data_t *plaintext, crypto_req_handle_t req)
{
int ret = CRYPTO_FAILED;
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx;
off_t saved_offset;
size_t saved_length;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
/*
* For block ciphers, plaintext must be a multiple of AES block size.
* This test is only valid for ciphers whose blocksize is a power of 2.
* Even though AES CCM mode is a block cipher, it does not
* require the plaintext to be a multiple of AES block size.
* The length requirement for AES CCM mode has already been checked
* at init time
*/
if (((aes_ctx->ac_flags & AES_CTR_MODE) == 0) &&
((aes_ctx->ac_flags & AES_CCM_MODE) == 0) &&
(ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) {
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
}
AES_ARG_INPLACE(ciphertext, plaintext);
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following case.
*
* For AES CCM mode, size of the plaintext will be MAC_SIZE
* smaller than size of the cipher text.
*/
if (aes_ctx->ac_flags & AES_CCM_MODE) {
if (plaintext->cd_length < aes_ctx->ac_ccm_data_len) {
plaintext->cd_length = aes_ctx->ac_ccm_data_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
} else if (plaintext->cd_length < ciphertext->cd_length) {
plaintext->cd_length = ciphertext->cd_length;
return (CRYPTO_BUFFER_TOO_SMALL);
}
/*
* Do an update on the specified input data.
*/
ret = aes_decrypt_update(ctx, ciphertext, plaintext, req);
if (ret != CRYPTO_SUCCESS) {
goto cleanup;
}
if (aes_ctx->ac_flags & AES_CCM_MODE) {
ASSERT(aes_ctx->ac_ccm_processed_data_len
== aes_ctx->ac_ccm_data_len);
ASSERT(aes_ctx->ac_ccm_processed_mac_len
== aes_ctx->ac_ccm_mac_len);
/* order of following 2 lines MUST not be reversed */
plaintext->cd_offset = plaintext->cd_length;
plaintext->cd_length = saved_length - plaintext->cd_length;
ret = aes_ccm_decrypt_final(aes_ctx, plaintext);
if (ret == CRYPTO_SUCCESS) {
if (plaintext != ciphertext) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
}
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
}
ASSERT(aes_ctx->ac_remainder_len == 0);
cleanup:
if (aes_ctx->ac_ccm_pt_buf) {
kmem_free(aes_ctx->ac_ccm_pt_buf, aes_ctx->ac_ccm_data_len);
}
(void) aes_free_context(ctx);
/* EXPORT DELETE END */
/* LINTED */
return (ret);
}
/* ARGSUSED */
static int
aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
crypto_data_t *ciphertext, crypto_req_handle_t req)
{
off_t saved_offset;
size_t saved_length, out_len;
int ret = CRYPTO_SUCCESS;
aes_ctx_t *aes_ctx;
ASSERT(ctx->cc_provider_private != NULL);
AES_ARG_INPLACE(plaintext, ciphertext);
/* compute number of bytes that will hold the ciphertext */
out_len = ((aes_ctx_t *)ctx->cc_provider_private)->ac_remainder_len;
out_len += plaintext->cd_length;
out_len &= ~(AES_BLOCK_LEN - 1);
/* return length needed to store the output */
if (ciphertext->cd_length < out_len) {
ciphertext->cd_length = out_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = ciphertext->cd_offset;
saved_length = ciphertext->cd_length;
/*
* Do the AES update on the specified input data.
*/
switch (plaintext->cd_format) {
case CRYPTO_DATA_RAW:
ret = aes_cipher_update_iov(ctx->cc_provider_private,
plaintext, ciphertext, aes_encrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = aes_cipher_update_uio(ctx->cc_provider_private,
plaintext, ciphertext, aes_encrypt_contiguous_blocks);
break;
case CRYPTO_DATA_MBLK:
ret = aes_cipher_update_mp(ctx->cc_provider_private,
plaintext, ciphertext, aes_encrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/*
* Since AES counter mode is a stream cipher, we call
* aes_counter_final() to pick up any remaining bytes.
* It is an internal function that does not destroy
* the context like *normal* final routines.
*/
aes_ctx = ctx->cc_provider_private;
if ((aes_ctx->ac_flags & AES_CTR_MODE) &&
(aes_ctx->ac_remainder_len > 0)) {
ret = aes_counter_final(aes_ctx, ciphertext);
}
if (ret == CRYPTO_SUCCESS) {
if (plaintext != ciphertext)
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
} else {
ciphertext->cd_length = saved_length;
}
ciphertext->cd_offset = saved_offset;
return (ret);
}
/* ARGSUSED */
static int
aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
crypto_data_t *plaintext, crypto_req_handle_t req)
{
off_t saved_offset;
size_t saved_length, out_len;
int ret = CRYPTO_SUCCESS;
aes_ctx_t *aes_ctx;
ASSERT(ctx->cc_provider_private != NULL);
AES_ARG_INPLACE(ciphertext, plaintext);
/* compute number of bytes that will hold the plaintext */
out_len = ((aes_ctx_t *)ctx->cc_provider_private)->ac_remainder_len;
out_len += ciphertext->cd_length;
out_len &= ~(AES_BLOCK_LEN - 1);
/* return length needed to store the output */
if (plaintext->cd_length < out_len) {
plaintext->cd_length = out_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
/*
* Do the AES update on the specified input data.
*/
switch (ciphertext->cd_format) {
case CRYPTO_DATA_RAW:
ret = aes_cipher_update_iov(ctx->cc_provider_private,
ciphertext, plaintext, aes_decrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = aes_cipher_update_uio(ctx->cc_provider_private,
ciphertext, plaintext, aes_decrypt_contiguous_blocks);
break;
case CRYPTO_DATA_MBLK:
ret = aes_cipher_update_mp(ctx->cc_provider_private,
ciphertext, plaintext, aes_decrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/*
* Since AES counter mode is a stream cipher, we call
* aes_counter_final() to pick up any remaining bytes.
* It is an internal function that does not destroy
* the context like *normal* final routines.
*/
aes_ctx = ctx->cc_provider_private;
if ((aes_ctx->ac_flags & AES_CTR_MODE) &&
(aes_ctx->ac_remainder_len > 0)) {
ret = aes_counter_final(aes_ctx, plaintext);
}
if (ret == CRYPTO_SUCCESS) {
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
return (ret);
}
/* ARGSUSED */
static int
aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
crypto_req_handle_t req)
{
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx;
int ret;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
if (data->cd_format != CRYPTO_DATA_RAW &&
data->cd_format != CRYPTO_DATA_UIO &&
data->cd_format != CRYPTO_DATA_MBLK) {
return (CRYPTO_ARGUMENTS_BAD);
}
if (aes_ctx->ac_flags & AES_CTR_MODE) {
if (aes_ctx->ac_remainder_len > 0) {
ret = aes_counter_final(aes_ctx, data);
if (ret != CRYPTO_SUCCESS)
return (ret);
}
} else if (aes_ctx->ac_flags & AES_CCM_MODE) {
ret = aes_ccm_encrypt_final(aes_ctx, data);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
} else {
/*
* There must be no unprocessed plaintext.
* This happens if the length of the last data is
* not a multiple of the AES block length.
*/
if (aes_ctx->ac_remainder_len > 0) {
return (CRYPTO_DATA_LEN_RANGE);
}
data->cd_length = 0;
}
(void) aes_free_context(ctx);
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
crypto_req_handle_t req)
{
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx;
int ret;
off_t saved_offset;
size_t saved_length;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
if (data->cd_format != CRYPTO_DATA_RAW &&
data->cd_format != CRYPTO_DATA_UIO &&
data->cd_format != CRYPTO_DATA_MBLK) {
return (CRYPTO_ARGUMENTS_BAD);
}
/*
* There must be no unprocessed ciphertext.
* This happens if the length of the last ciphertext is
* not a multiple of the AES block length.
*/
if (aes_ctx->ac_remainder_len > 0) {
if ((aes_ctx->ac_flags & AES_CTR_MODE) == 0)
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
else {
ret = aes_counter_final(aes_ctx, data);
if (ret != CRYPTO_SUCCESS)
return (ret);
}
}
if (aes_ctx->ac_flags & AES_CCM_MODE) {
/*
* This is where all the plaintext is returned, make sure
* the plaintext buffer is big enough
*/
size_t pt_len = aes_ctx->ac_ccm_data_len;
if (data->cd_length < pt_len) {
data->cd_length = pt_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
ASSERT(aes_ctx->ac_ccm_processed_data_len == pt_len);
ASSERT(aes_ctx->ac_ccm_processed_mac_len
== aes_ctx->ac_ccm_mac_len);
saved_offset = data->cd_offset;
saved_length = data->cd_length;
ret = aes_ccm_decrypt_final(aes_ctx, data);
if (ret == CRYPTO_SUCCESS) {
data->cd_length = data->cd_offset - saved_offset;
} else {
data->cd_length = saved_length;
}
data->cd_offset = saved_offset;
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
}
if (((aes_ctx->ac_flags & AES_CTR_MODE) == 0) &&
((aes_ctx->ac_flags & AES_CCM_MODE) == 0)) {
data->cd_length = 0;
}
if (aes_ctx->ac_ccm_pt_buf != NULL) {
kmem_free(aes_ctx->ac_ccm_pt_buf, aes_ctx->ac_ccm_data_len);
}
(void) aes_free_context(ctx);
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
aes_encrypt_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
aes_ctx_t aes_ctx; /* on the stack */
off_t saved_offset;
size_t saved_length;
int ret;
AES_ARG_INPLACE(plaintext, ciphertext);
if ((mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) &&
(mechanism->cm_type != AES_CCM_MECH_INFO_TYPE)) {
/*
* Plaintext must be a multiple of AES block size.
* This test only works for non-padded mechanisms
* when blocksize is 2^N.
*/
if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
return (CRYPTO_DATA_LEN_RANGE);
}
/* return length needed to store the output */
if (ciphertext->cd_length < plaintext->cd_length) {
ciphertext->cd_length = plaintext->cd_length;
return (CRYPTO_BUFFER_TOO_SMALL);
}
if ((ret = aes_check_mech_param(mechanism)) != CRYPTO_SUCCESS)
return (ret);
bzero(&aes_ctx, sizeof (aes_ctx_t));
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
crypto_kmflag(req), B_TRUE);
if (ret != CRYPTO_SUCCESS)
return (ret);
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
size_t length_needed
= plaintext->cd_length + aes_ctx.ac_ccm_mac_len;
if (ciphertext->cd_length < length_needed) {
ciphertext->cd_length = length_needed;
return (CRYPTO_BUFFER_TOO_SMALL);
}
}
saved_offset = ciphertext->cd_offset;
saved_length = ciphertext->cd_length;
/*
* Do an update on the specified input data.
*/
switch (plaintext->cd_format) {
case CRYPTO_DATA_RAW:
ret = aes_cipher_update_iov(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = aes_cipher_update_uio(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks);
break;
case CRYPTO_DATA_MBLK:
ret = aes_cipher_update_mp(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ret = aes_ccm_encrypt_final(&aes_ctx, ciphertext);
if (ret != CRYPTO_SUCCESS)
goto out;
ASSERT(aes_ctx.ac_remainder_len == 0);
} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
if (aes_ctx.ac_remainder_len > 0) {
ret = aes_counter_final(&aes_ctx, ciphertext);
if (ret != CRYPTO_SUCCESS)
goto out;
}
} else {
ASSERT(aes_ctx.ac_remainder_len == 0);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
} else {
ciphertext->cd_length = saved_length;
}
ciphertext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) {
bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
return (ret);
}
/* ARGSUSED */
static int
aes_decrypt_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
aes_ctx_t aes_ctx; /* on the stack */
off_t saved_offset;
size_t saved_length;
int ret;
AES_ARG_INPLACE(ciphertext, plaintext);
/*
* For block ciphers, ciphertext must be a multiple of AES block size.
* This test is only valid for non-padded mechanisms
* when blocksize is 2^N
* Even though AES CCM mode is a block cipher, it does not
* require the plaintext to be a multiple of AES block size.
* The length requirement for AES CCM mode will be checked
* at init time
*/
if ((mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) &&
(mechanism->cm_type != AES_CCM_MECH_INFO_TYPE) &&
((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0))
return (CRYPTO_DATA_LEN_RANGE);
/*
* return length needed to store the output, length requirement
* for AES CCM mode can not be determined until later
*/
if ((plaintext->cd_length < ciphertext->cd_length) &&
(mechanism->cm_type != AES_CCM_MECH_INFO_TYPE)) {
plaintext->cd_length = ciphertext->cd_length;
return (CRYPTO_BUFFER_TOO_SMALL);
}
if ((ret = aes_check_mech_param(mechanism)) != CRYPTO_SUCCESS)
return (ret);
bzero(&aes_ctx, sizeof (aes_ctx_t));
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
crypto_kmflag(req), B_FALSE);
if (ret != CRYPTO_SUCCESS)
return (ret);
/* check length requirement for AES CCM mode now */
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
if (plaintext->cd_length < aes_ctx.ac_ccm_data_len) {
plaintext->cd_length = aes_ctx.ac_ccm_data_len;
ret = CRYPTO_BUFFER_TOO_SMALL;
goto out;
}
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
/*
* Do an update on the specified input data.
*/
switch (ciphertext->cd_format) {
case CRYPTO_DATA_RAW:
ret = aes_cipher_update_iov(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = aes_cipher_update_uio(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks);
break;
case CRYPTO_DATA_MBLK:
ret = aes_cipher_update_mp(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ASSERT(aes_ctx.ac_ccm_processed_data_len
== aes_ctx.ac_ccm_data_len);
ASSERT(aes_ctx.ac_ccm_processed_mac_len
== aes_ctx.ac_ccm_mac_len);
ret = aes_ccm_decrypt_final(&aes_ctx, plaintext);
ASSERT(aes_ctx.ac_remainder_len == 0);
if ((ret == CRYPTO_SUCCESS) &&
(ciphertext != plaintext)) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
} else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) {
ASSERT(aes_ctx.ac_remainder_len == 0);
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
if (aes_ctx.ac_remainder_len > 0) {
ret = aes_counter_final(&aes_ctx, plaintext);
if (ret != CRYPTO_SUCCESS)
goto out;
}
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
}
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) {
bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
if (aes_ctx.ac_ccm_pt_buf != NULL) {
kmem_free(aes_ctx.ac_ccm_pt_buf, aes_ctx.ac_ccm_data_len);
}
return (ret);
}
/*
* KCF software provider context template entry points.
*/
/* ARGSUSED */
static int
aes_create_ctx_template(crypto_provider_handle_t provider,
crypto_mechanism_t *mechanism, crypto_key_t *key,
crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size, crypto_req_handle_t req)
{
/* EXPORT DELETE START */
void *keysched;
size_t size;
int rv;
if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CBC_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CTR_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CCM_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
if ((keysched = aes_alloc_keysched(&size,
crypto_kmflag(req))) == NULL) {
return (CRYPTO_HOST_MEMORY);
}
/*
* Initialize key schedule. Key length information is stored
* in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
bzero(keysched, size);
kmem_free(keysched, size);
return (rv);
}
*tmpl = keysched;
*tmpl_size = size;
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
aes_free_context(crypto_ctx_t *ctx)
{
/* EXPORT DELETE START */
aes_ctx_t *aes_ctx = ctx->cc_provider_private;
if (aes_ctx != NULL) {
if (aes_ctx->ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) {
ASSERT(aes_ctx->ac_keysched_len != 0);
bzero(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len);
kmem_free(aes_ctx->ac_keysched,
aes_ctx->ac_keysched_len);
}
kmem_free(aes_ctx, sizeof (aes_ctx_t));
ctx->cc_provider_private = NULL;
}
/* EXPORT DELETE END */
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
static int
aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
boolean_t is_encrypt_init)
{
int rv = CRYPTO_SUCCESS;
/* EXPORT DELETE START */
void *keysched;
size_t size;
CK_AES_CCM_PARAMS *ccm_param = NULL;
aes_ctx->ac_flags = 0;
if (mechanism->cm_type == AES_CBC_MECH_INFO_TYPE) {
/*
* Copy 128-bit IV into context.
*
* If cm_param == NULL then the IV comes from the
* cd_miscdata field in the crypto_data structure.
*/
if (mechanism->cm_param != NULL) {
ASSERT(mechanism->cm_param_len == AES_BLOCK_LEN);
if (IS_P2ALIGNED(mechanism->cm_param,
sizeof (uint64_t))) {
uint64_t *param64;
param64 = (uint64_t *)mechanism->cm_param;
aes_ctx->ac_iv[0] = *param64++;
aes_ctx->ac_iv[1] = *param64;
} else {
uint8_t *iv8;
uint8_t *p8;
iv8 = (uint8_t *)&aes_ctx->ac_iv;
p8 = (uint8_t *)&mechanism->cm_param[0];
iv8[0] = p8[0];
iv8[1] = p8[1];
iv8[2] = p8[2];
iv8[3] = p8[3];
iv8[4] = p8[4];
iv8[5] = p8[5];
iv8[6] = p8[6];
iv8[7] = p8[7];
iv8[8] = p8[8];
iv8[9] = p8[9];
iv8[10] = p8[10];
iv8[11] = p8[11];
iv8[12] = p8[12];
iv8[13] = p8[13];
iv8[14] = p8[14];
iv8[15] = p8[15];
}
}
aes_ctx->ac_lastp = (uint8_t *)&aes_ctx->ac_iv[0];
aes_ctx->ac_flags |= AES_CBC_MODE;
} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
if (mechanism->cm_param != NULL) {
CK_AES_CTR_PARAMS *pp;
uint64_t mask = 0;
ulong_t count;
uint8_t *iv8;
uint8_t *p8;
/* XXX what to do about miscdata */
pp = (CK_AES_CTR_PARAMS *)mechanism->cm_param;
count = pp->ulCounterBits;
if (count == 0 || count > 64) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
while (count-- > 0)
mask |= (1ULL << count);
#ifdef _LITTLE_ENDIAN
p8 = (uint8_t *)&mask;
mask = (((uint64_t)p8[0] << 56) |
((uint64_t)p8[1] << 48) |
((uint64_t)p8[2] << 40) |
((uint64_t)p8[3] << 32) |
((uint64_t)p8[4] << 24) |
((uint64_t)p8[5] << 16) |
((uint64_t)p8[6] << 8) |
(uint64_t)p8[7]);
#endif
aes_ctx->ac_counter_mask = mask;
iv8 = (uint8_t *)&aes_ctx->ac_iv;
p8 = (uint8_t *)&pp->cb[0];
iv8[0] = p8[0];
iv8[1] = p8[1];
iv8[2] = p8[2];
iv8[3] = p8[3];
iv8[4] = p8[4];
iv8[5] = p8[5];
iv8[6] = p8[6];
iv8[7] = p8[7];
iv8[8] = p8[8];
iv8[9] = p8[9];
iv8[10] = p8[10];
iv8[11] = p8[11];
iv8[12] = p8[12];
iv8[13] = p8[13];
iv8[14] = p8[14];
iv8[15] = p8[15];
} else {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
aes_ctx->ac_lastp = (uint8_t *)&aes_ctx->ac_iv[0];
aes_ctx->ac_flags |= AES_CTR_MODE;
} else if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
if (mechanism->cm_param != NULL) {
int rc;
ccm_param = (CK_AES_CCM_PARAMS *)mechanism->cm_param;
if ((rc = aes_ccm_validate_args(ccm_param,
is_encrypt_init)) != 0) {
return (rc);
}
aes_ctx->ac_ccm_mac_len = ccm_param->ulMACSize;
if (is_encrypt_init) {
aes_ctx->ac_ccm_data_len
= ccm_param->ulDataSize;
} else {
aes_ctx->ac_ccm_data_len =
ccm_param->ulDataSize
- aes_ctx->ac_ccm_mac_len;
aes_ctx->ac_ccm_processed_mac_len = 0;
}
aes_ctx->ac_ccm_processed_data_len = 0;
aes_ctx->ac_flags |= AES_CCM_MODE;
} else {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
} else {
aes_ctx->ac_flags |= AES_ECB_MODE;
}
if (template == NULL) {
if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
return (CRYPTO_HOST_MEMORY);
/*
* Initialize key schedule.
* Key length is stored in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
kmem_free(keysched, size);
return (rv);
}
aes_ctx->ac_flags |= AES_PROVIDER_OWNS_KEY_SCHEDULE;
aes_ctx->ac_keysched_len = size;
} else {
keysched = template;
}
aes_ctx->ac_keysched = keysched;
/* process the nonce and associated data if it is AES CCM mode */
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
if (aes_ccm_init(aes_ctx, ccm_param->nonce,
ccm_param->ulNonceSize, ccm_param->authData,
ccm_param->ulAuthDataSize) != 0) {
bzero(keysched, size);
kmem_free(keysched, size);
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
if (!is_encrypt_init) {
/* allocate buffer for storing decrypted plaintext */
aes_ctx->ac_ccm_pt_buf =
kmem_alloc(aes_ctx->ac_ccm_data_len, kmflag);
if (aes_ctx->ac_ccm_pt_buf == NULL) {
bzero(keysched, size);
kmem_free(keysched, size);
return (CRYPTO_HOST_MEMORY);
}
}
}
/* EXPORT DELETE END */
return (rv);
}