cpr_stat.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1993-2001 by Sun Microsystems, Inc.
* All rights reserved.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pte.h>
#include <sys/intreg.h>
#include <sys/cpr.h>
/*
* Support routines for CPR statistic collection
*/
struct cpr_event cpr_events_buf[CPR_E_MAX_EVENTNUM];
extern struct cpr_terminator cpr_term;
struct cpr_event *cpr_find_event(char *name, int new);
#define CPR_DEFAULT_PROMTIME 30
#define CE_START_MASK 0x8000000
/*
* Use ctp to specify another time point instead of the current time;
* Otherwise, ctp is NULL.
*/
void
cpr_stat_event_start(char *name, cpr_time_t *ctp)
{
struct cpr_event *cep;
cpr_time_t tv;
if (ctp)
tv = *ctp;
else {
/* need relative time even when hrestime is stoped */
cpr_tod_get(&tv);
}
if ((cep = cpr_find_event(name, 1)) == NULL) {
cpr_err(CE_WARN, "cpr_stat: run out of event buffers");
return;
}
/*
* disallow entering start twice without calling end first
*/
if (cep->ce_ntests & CE_START_MASK)
return;
cep->ce_ntests |= CE_START_MASK;
cep->ce_sec.stime = cep->ce_sec.etime = tv.tv_sec;
cep->ce_sec.ltime = cep->ce_sec.ltime = 0;
cep->ce_msec.stime = cep->ce_msec.etime = tv.tv_nsec / 100000000;
cep->ce_msec.ltime = cep->ce_msec.ltime = 0;
}
void
cpr_stat_event_end(char *name, cpr_time_t *ctp)
{
struct cpr_stat *cp = STAT;
struct cpr_event *cep;
cpr_time_t tv;
if (ctp)
tv = *ctp;
else
cpr_tod_get(&tv);
if ((cep = cpr_find_event(name, 0)) == NULL) {
#ifdef CPR_STAT
errp("cpr_stat: event \"%s\" is not monitored\n", name);
#endif /* CPR_STAT */
return;
}
/*
* diallow entering end twice without calling end first
*/
if (!(cep->ce_ntests & CE_START_MASK))
return;
cep->ce_ntests &= ~CE_START_MASK;
cep->ce_ntests++;
/*
* calculate seconds
*/
cep->ce_sec.etime = tv.tv_sec;
cep->ce_sec.ltime = cep->ce_sec.etime - cep->ce_sec.stime;
cep->ce_sec.mtime = ((cep->ce_sec.mtime * (cep->ce_ntests - 1)) +
cep->ce_sec.ltime) / cep->ce_ntests;
/*
* calculate 100*milliseconds
*/
if (cep->ce_sec.ltime == 0) {
cep->ce_msec.etime = tv.tv_nsec / 100000000;
cep->ce_msec.ltime =
(cep->ce_msec.etime <= cep->ce_msec.stime) ? 0 :
(cep->ce_msec.etime - cep->ce_msec.stime);
cep->ce_msec.mtime =
((cep->ce_msec.mtime * (cep->ce_ntests - 1)) +
cep->ce_msec.ltime) / cep->ce_ntests;
}
cp->cs_ntests = cep->ce_ntests & ~CE_START_MASK;
}
void
cpr_stat_cleanup()
{
struct cpr_stat *cp = STAT;
struct cpr_event *cep;
for (cep = cp->cs_event_head; cep; cep = cep->ce_next) {
if ((cep->ce_ntests & CE_START_MASK) &&
strcmp(cep->ce_name, "POST CPR DELAY") != NULL) {
cpr_stat_event_end(cep->ce_name, 0);
cep->ce_ntests &= ~CE_START_MASK;
}
}
}
void
cpr_stat_init()
{
STAT->cs_real_statefsz = 0;
STAT->cs_dumped_statefsz = 0;
}
void
cpr_stat_record_events()
{
if (cpr_term.real_statef_size) {
int cur_comprate;
STAT->cs_real_statefsz = cpr_term.real_statef_size;
cur_comprate = ((longlong_t)((longlong_t)
STAT->cs_nocomp_statefsz*100)/
STAT->cs_real_statefsz);
if (STAT->cs_min_comprate == 0 ||
(STAT->cs_min_comprate > cur_comprate))
STAT->cs_min_comprate = cur_comprate;
}
}
void
cpr_stat_event_print()
{
struct cpr_stat *cp = STAT;
struct cpr_event *cep;
char *fmt, *tabs;
int len;
printf("\n");
printf("---------------\t\tCPR PERFORMANCE SUMMARY\t\t-------------\n");
printf("Events\t\t\tRepeat[times]\tMeantime[sec]\tLastEvnt[sec]\n");
for (cep = cp->cs_event_head; cep; cep = cep->ce_next) {
len = strlen(cep->ce_name);
if (len < 8)
tabs = "\t\t\t";
else if (len < 16)
tabs = "\t\t";
else
tabs = "\t";
if (strcmp(cep->ce_name, "Suspend Total") == NULL ||
strcmp(cep->ce_name, "Resume Total") == NULL ||
strcmp(cep->ce_name, "POST CPR DELAY") == NULL ||
strcmp(cep->ce_name, "WHOLE CYCLE") == NULL)
fmt = "%s%s%d\t\t%3d.%1d\t\t%3d.%1d\n";
else
fmt = "%s%s%d\t\t %3d.%1d\t\t %3d.%1d\n";
printf(fmt, cep->ce_name, tabs, (int)cep->ce_ntests,
(int)cep->ce_sec.mtime, (int)(cep->ce_msec.mtime / 10),
(int)cep->ce_sec.ltime, (int)(cep->ce_msec.ltime / 10));
}
delay(drv_usectohz(10000)); /* otherwise the next line goes to prom */
/*
* print the rest of the stat data
*/
printf("\nMISCELLANEOUS STATISTICS INFORMATION (units in KBytes)\n\n");
printf("\tUser Pages w/o Swapspace:\t%8lu (%lu pages)\n",
cp->cs_nosw_pages*PAGESIZE/1000, cp->cs_nosw_pages);
printf("\tTotal Upages Saved to Statefile:%8d (%d pages)\n",
cp->cs_upage2statef*PAGESIZE/1000, cp->cs_upage2statef);
if (cp->cs_mclustsz)
printf("\tAverage Cluster Size:\t\t%8d (%d.%1d%1d pages)\n\n",
cp->cs_mclustsz/1000, cp->cs_mclustsz/PAGESIZE,
((cp->cs_mclustsz%PAGESIZE)*10/PAGESIZE),
((cp->cs_mclustsz%PAGESIZE)*100/PAGESIZE)%10);
printf("\tKernel Memory Size:\t\t%8lu\n", cp->cs_nocomp_statefsz/1000);
printf("\tEstimated Statefile Size:\t%8lu\n", cp->cs_est_statefsz/1000);
printf("\tActual Statefile Size:\t\t%8lu\n", cp->cs_real_statefsz/1000);
if (cp->cs_real_statefsz) {
int min = cp->cs_min_comprate;
int new = ((longlong_t)((longlong_t)
cp->cs_nocomp_statefsz*100)/cp->cs_real_statefsz);
printf("\tCompression Ratio:\t\t%5d.%1d%1d (worst %d.%1d%1d)\n",
new/100, (new%100)/10, new%10,
min/100, (min%100)/10, min%10);
}
}
struct cpr_event *
cpr_find_event(char *name, int new)
{
struct cpr_stat *cp = STAT;
struct cpr_event *cep;
int i;
for (cep = cp->cs_event_head; cep; cep = cep->ce_next) {
if (strcmp(name, cep->ce_name) == NULL)
return (cep);
}
/* if not begin not end either */
if (new == NULL)
return (NULL);
for (i = 0; i < CPR_E_MAX_EVENTNUM; i++) {
for (cep = cp->cs_event_head; cep; cep = cep->ce_next) {
if (&cpr_events_buf[i] == cep)
break;
}
if (!cep) {
struct cpr_event *new_cep;
new_cep = &cpr_events_buf[i];
(void) strcpy(new_cep->ce_name, name);
if (!cp->cs_event_head) {
/* The 1st one */
cp->cs_event_head = new_cep;
} else {
/* insert to tail */
new_cep->ce_next = cp->cs_event_tail->ce_next;
cp->cs_event_tail->ce_next = new_cep;
}
cp->cs_event_tail = new_cep;
return (new_cep);
}
}
return (NULL);
}
static time_t min_promtime;
void
cpr_convert_promtime(cpr_time_t *pop)
{
time_t pwroff_time, cb_time;
cpr_time_t *startp, *shdnp, *endp;
startp = &cpr_term.tm_cprboot_start;
shdnp = &cpr_term.tm_shutdown;
endp = &cpr_term.tm_cprboot_end;
cb_time = endp->tv_sec - startp->tv_sec;
cpr_tod_get(endp);
startp->tv_sec = endp->tv_sec - cb_time;
if (min_promtime == 0 ||
min_promtime > (endp->tv_sec - shdnp->tv_sec - cb_time))
min_promtime = endp->tv_sec - shdnp->tv_sec - cb_time;
if (min_promtime > CPR_DEFAULT_PROMTIME)
min_promtime = CPR_DEFAULT_PROMTIME;
pwroff_time = startp->tv_sec - shdnp->tv_sec - min_promtime;
wholecycle_tv.tv_sec += pwroff_time; /* offset the poweroff time */
pop->tv_sec = startp->tv_sec - min_promtime;
}