cpr_dump.c revision 56f33205c9ed776c3c909e07d52e94610a675740
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Fill in and write out the cpr state file
* 1. Allocate and write headers, ELF and cpr dump header
* 2. Allocate bitmaps according to phys_install
* 3. Tag kernel pages into corresponding bitmap
* 4. Write bitmaps to state file
* 5. Write actual physical page data to state file
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/vm.h>
#include <sys/memlist.h>
#include <sys/kmem.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>
#include <sys/errno.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <vm/page.h>
#include <vm/seg.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kpm.h>
#include <vm/hat.h>
#include <sys/cpr.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/panic.h>
#include <sys/thread.h>
#include <sys/note.h>
/* Local defines and variables */
#define BTOb(bytes) ((bytes) << 3) /* Bytes to bits, log2(NBBY) */
#define bTOB(bits) ((bits) >> 3) /* bits to Bytes, log2(NBBY) */
#if defined(__sparc)
static uint_t cpr_pages_tobe_dumped;
static uint_t cpr_regular_pgs_dumped;
static int cpr_dump_regular_pages(vnode_t *);
static int cpr_count_upages(int, bitfunc_t);
static int cpr_compress_and_write(vnode_t *, uint_t, pfn_t, pgcnt_t);
#endif
int cpr_flush_write(vnode_t *);
int cpr_contig_pages(vnode_t *, int);
void cpr_clear_bitmaps();
extern size_t cpr_get_devsize(dev_t);
extern int i_cpr_dump_setup(vnode_t *);
extern int i_cpr_blockzero(char *, char **, int *, vnode_t *);
extern int cpr_test_mode;
int cpr_setbit(pfn_t, int);
int cpr_clrbit(pfn_t, int);
ctrm_t cpr_term;
char *cpr_buf, *cpr_buf_end;
int cpr_buf_blocks; /* size of cpr_buf in blocks */
size_t cpr_buf_size; /* size of cpr_buf in bytes */
size_t cpr_bitmap_size;
int cpr_nbitmaps;
char *cpr_pagedata; /* page buffer for compression / tmp copy */
size_t cpr_pagedata_size; /* page buffer size in bytes */
#if defined(__sparc)
static char *cpr_wptr; /* keep track of where to write to next */
static int cpr_file_bn; /* cpr state-file block offset */
static int cpr_disk_writes_ok;
static size_t cpr_dev_space = 0;
#endif
char cpr_pagecopy[CPR_MAXCONTIG * MMU_PAGESIZE];
#if defined(__sparc)
/*
* On some platforms bcopy may modify the thread structure
* during bcopy (eg, to prevent cpu migration). If the
* range we are currently writing out includes our own
* thread structure then it will be snapshotted by bcopy
* including those modified members - and the updates made
* on exit from bcopy will no longer be seen when we later
* restore the mid-bcopy kthread_t. So if the range we
* need to copy overlaps with our thread structure we will
* use a simple byte copy.
*/
void
cprbcopy(void *from, void *to, size_t bytes)
{
extern int curthreadremapped;
caddr_t kthrend;
kthrend = (caddr_t)curthread + sizeof (kthread_t) - 1;
if (curthreadremapped || (kthrend >= (caddr_t)from &&
kthrend < (caddr_t)from + bytes + sizeof (kthread_t) - 1)) {
caddr_t src = from, dst = to;
while (bytes-- > 0)
*dst++ = *src++;
} else {
bcopy(from, to, bytes);
}
}
/*
* Allocate pages for buffers used in writing out the statefile
*/
static int
cpr_alloc_bufs(void)
{
char *allocerr = "Unable to allocate memory for cpr buffer";
size_t size;
/*
* set the cpr write buffer size to at least the historic
* size (128k) or large enough to store the both the early
* set of statefile structures (well under 0x800) plus the
* bitmaps, and roundup to the next pagesize.
*/
size = PAGE_ROUNDUP(dbtob(4) + cpr_bitmap_size);
cpr_buf_size = MAX(size, CPRBUFSZ);
cpr_buf_blocks = btodb(cpr_buf_size);
cpr_buf = kmem_alloc(cpr_buf_size, KM_NOSLEEP);
if (cpr_buf == NULL) {
cpr_err(CE_WARN, allocerr);
return (ENOMEM);
}
cpr_buf_end = cpr_buf + cpr_buf_size;
cpr_pagedata_size = mmu_ptob(CPR_MAXCONTIG + 1);
cpr_pagedata = kmem_alloc(cpr_pagedata_size, KM_NOSLEEP);
if (cpr_pagedata == NULL) {
kmem_free(cpr_buf, cpr_buf_size);
cpr_buf = NULL;
cpr_err(CE_WARN, allocerr);
return (ENOMEM);
}
return (0);
}
/*
* Set bitmap size in bytes based on phys_install.
*/
void
cpr_set_bitmap_size(void)
{
struct memlist *pmem;
size_t size = 0;
memlist_read_lock();
for (pmem = phys_install; pmem; pmem = pmem->ml_next)
size += pmem->ml_size;
memlist_read_unlock();
cpr_bitmap_size = BITMAP_BYTES(size);
}
/*
* CPR dump header contains the following information:
* 1. header magic -- unique to cpr state file
* 2. kernel return pc & ppn for resume
* 3. current thread info
* 4. debug level and test mode
* 5. number of bitmaps allocated
* 6. number of page records
*/
static int
cpr_write_header(vnode_t *vp)
{
extern ushort_t cpr_mach_type;
struct cpr_dump_desc cdump;
pgcnt_t bitmap_pages;
pgcnt_t kpages, vpages, upages;
pgcnt_t cpr_count_kpages(int mapflag, bitfunc_t bitfunc);
cdump.cdd_magic = (uint_t)CPR_DUMP_MAGIC;
cdump.cdd_version = CPR_VERSION;
cdump.cdd_machine = cpr_mach_type;
cdump.cdd_debug = cpr_debug;
cdump.cdd_test_mode = cpr_test_mode;
cdump.cdd_bitmaprec = cpr_nbitmaps;
cpr_clear_bitmaps();
/*
* Remember how many pages we plan to save to statefile.
* This information will be used for sanity checks.
* Untag those pages that will not be saved to statefile.
*/
kpages = cpr_count_kpages(REGULAR_BITMAP, cpr_setbit);
vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit);
upages = cpr_count_upages(REGULAR_BITMAP, cpr_setbit);
cdump.cdd_dumppgsize = kpages - vpages + upages;
cpr_pages_tobe_dumped = cdump.cdd_dumppgsize;
CPR_DEBUG(CPR_DEBUG7,
"\ncpr_write_header: kpages %ld - vpages %ld + upages %ld = %d\n",
kpages, vpages, upages, cdump.cdd_dumppgsize);
/*
* Some pages contain volatile data (cpr_buf and storage area for
* sensitive kpages), which are no longer needed after the statefile
* is dumped to disk. We have already untagged them from regular
* bitmaps. Now tag them into the volatile bitmaps. The pages in
* volatile bitmaps will be claimed during resume, and the resumed
* kernel will free them.
*/
(void) cpr_count_volatile_pages(VOLATILE_BITMAP, cpr_setbit);
bitmap_pages = mmu_btopr(cpr_bitmap_size);
/*
* Export accurate statefile size for statefile allocation retry.
* statefile_size = all the headers + total pages +
* number of pages used by the bitmaps.
* Roundup will be done in the file allocation code.
*/
STAT->cs_nocomp_statefsz = sizeof (cdd_t) + sizeof (cmd_t) +
(sizeof (cbd_t) * cdump.cdd_bitmaprec) +
(sizeof (cpd_t) * cdump.cdd_dumppgsize) +
mmu_ptob(cdump.cdd_dumppgsize + bitmap_pages);
/*
* If the estimated statefile is not big enough,
* go retry now to save un-necessary operations.
*/
if (!(CPR->c_flags & C_COMPRESSING) &&
(STAT->cs_nocomp_statefsz > STAT->cs_est_statefsz)) {
if (cpr_debug & (CPR_DEBUG1 | CPR_DEBUG7))
prom_printf("cpr_write_header: "
"STAT->cs_nocomp_statefsz > "
"STAT->cs_est_statefsz\n");
return (ENOSPC);
}
/* now write cpr dump descriptor */
return (cpr_write(vp, (caddr_t)&cdump, sizeof (cdd_t)));
}
/*
* CPR dump tail record contains the following information:
* 1. header magic -- unique to cpr state file
* 2. all misc info that needs to be passed to cprboot or resumed kernel
*/
static int
cpr_write_terminator(vnode_t *vp)
{
cpr_term.magic = (uint_t)CPR_TERM_MAGIC;
cpr_term.va = (cpr_ptr)&cpr_term;
cpr_term.pfn = (cpr_ext)va_to_pfn(&cpr_term);
/* count the last one (flush) */
cpr_term.real_statef_size = STAT->cs_real_statefsz +
btod(cpr_wptr - cpr_buf) * DEV_BSIZE;
CPR_DEBUG(CPR_DEBUG9, "cpr_dump: Real Statefile Size: %ld\n",
STAT->cs_real_statefsz);
cpr_tod_get(&cpr_term.tm_shutdown);
return (cpr_write(vp, (caddr_t)&cpr_term, sizeof (cpr_term)));
}
/*
* Write bitmap descriptor array, followed by merged bitmaps.
*/
static int
cpr_write_bitmap(vnode_t *vp)
{
char *rmap, *vmap, *dst, *tail;
size_t size, bytes;
cbd_t *dp;
int err;
dp = CPR->c_bmda;
if (err = cpr_write(vp, (caddr_t)dp, cpr_nbitmaps * sizeof (*dp)))
return (err);
/*
* merge regular and volatile bitmaps into tmp space
* and write to disk
*/
for (; dp->cbd_size; dp++) {
rmap = (char *)dp->cbd_reg_bitmap;
vmap = (char *)dp->cbd_vlt_bitmap;
for (size = dp->cbd_size; size; size -= bytes) {
bytes = min(size, sizeof (cpr_pagecopy));
tail = &cpr_pagecopy[bytes];
for (dst = cpr_pagecopy; dst < tail; dst++)
*dst = *rmap++ | *vmap++;
if (err = cpr_write(vp, cpr_pagecopy, bytes))
break;
}
}
return (err);
}
static int
cpr_write_statefile(vnode_t *vp)
{
uint_t error = 0;
extern int i_cpr_check_pgs_dumped();
void flush_windows(void);
pgcnt_t spages;
char *str;
flush_windows();
/*
* to get an accurate view of kas, we need to untag sensitive
* pages *before* dumping them because the disk driver makes
* allocations and changes kas along the way. The remaining
* pages referenced in the bitmaps are dumped out later as
* regular kpages.
*/
str = "cpr_write_statefile:";
spages = i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_clrbit);
CPR_DEBUG(CPR_DEBUG7, "%s untag %ld sens pages\n", str, spages);
/*
* now it's OK to call a driver that makes allocations
*/
cpr_disk_writes_ok = 1;
/*
* now write out the clean sensitive kpages
* according to the sensitive descriptors
*/
error = i_cpr_dump_sensitive_kpages(vp);
if (error) {
CPR_DEBUG(CPR_DEBUG7,
"%s cpr_dump_sensitive_kpages() failed!\n", str);
return (error);
}
/*
* cpr_dump_regular_pages() counts cpr_regular_pgs_dumped
*/
error = cpr_dump_regular_pages(vp);
if (error) {
CPR_DEBUG(CPR_DEBUG7,
"%s cpr_dump_regular_pages() failed!\n", str);
return (error);
}
/*
* sanity check to verify the right number of pages were dumped
*/
error = i_cpr_check_pgs_dumped(cpr_pages_tobe_dumped,
cpr_regular_pgs_dumped);
if (error) {
prom_printf("\n%s page count mismatch!\n", str);
#ifdef DEBUG
if (cpr_test_mode)
debug_enter(NULL);
#endif
}
return (error);
}
#endif
/*
* creates the CPR state file, the following sections are
* written out in sequence:
* - writes the cpr dump header
* - writes the memory usage bitmaps
* - writes the platform dependent info
* - writes the remaining user pages
* - writes the kernel pages
*/
#if defined(__x86)
_NOTE(ARGSUSED(0))
#endif
int
cpr_dump(vnode_t *vp)
{
#if defined(__sparc)
int error;
if (cpr_buf == NULL) {
ASSERT(cpr_pagedata == NULL);
if (error = cpr_alloc_bufs())
return (error);
}
/* point to top of internal buffer */
cpr_wptr = cpr_buf;
/* initialize global variables used by the write operation */
cpr_file_bn = cpr_statefile_offset();
cpr_dev_space = 0;
/* allocate bitmaps */
if (CPR->c_bmda == NULL) {
if (error = i_cpr_alloc_bitmaps()) {
cpr_err(CE_WARN, "cannot allocate bitmaps");
return (error);
}
}
if (error = i_cpr_prom_pages(CPR_PROM_SAVE))
return (error);
if (error = i_cpr_dump_setup(vp))
return (error);
/*
* set internal cross checking; we dont want to call
* a disk driver that makes allocations until after
* sensitive pages are saved
*/
cpr_disk_writes_ok = 0;
/*
* 1253112: heap corruption due to memory allocation when dumpping
* statefile.
* Theoretically on Sun4u only the kernel data nucleus, kvalloc and
* kvseg segments can be contaminated should memory allocations happen
* during sddump, which is not supposed to happen after the system
* is quiesced. Let's call the kernel pages that tend to be affected
* 'sensitive kpages' here. To avoid saving inconsistent pages, we
* will allocate some storage space to save the clean sensitive pages
* aside before statefile dumping takes place. Since there may not be
* much memory left at this stage, the sensitive pages will be
* compressed before they are saved into the storage area.
*/
if (error = i_cpr_save_sensitive_kpages()) {
CPR_DEBUG(CPR_DEBUG7,
"cpr_dump: save_sensitive_kpages failed!\n");
return (error);
}
/*
* since all cpr allocations are done (space for sensitive kpages,
* bitmaps, cpr_buf), kas is stable, and now we can accurately
* count regular and sensitive kpages.
*/
if (error = cpr_write_header(vp)) {
CPR_DEBUG(CPR_DEBUG7,
"cpr_dump: cpr_write_header() failed!\n");
return (error);
}
if (error = i_cpr_write_machdep(vp))
return (error);
if (error = i_cpr_blockzero(cpr_buf, &cpr_wptr, NULL, NULL))
return (error);
if (error = cpr_write_bitmap(vp))
return (error);
if (error = cpr_write_statefile(vp)) {
CPR_DEBUG(CPR_DEBUG7,
"cpr_dump: cpr_write_statefile() failed!\n");
return (error);
}
if (error = cpr_write_terminator(vp))
return (error);
if (error = cpr_flush_write(vp))
return (error);
if (error = i_cpr_blockzero(cpr_buf, &cpr_wptr, &cpr_file_bn, vp))
return (error);
#endif
return (0);
}
#if defined(__sparc)
/*
* cpr_xwalk() is called many 100x with a range within kvseg or kvseg_reloc;
* a page-count from each range is accumulated at arg->pages.
*/
static void
cpr_xwalk(void *arg, void *base, size_t size)
{
struct cpr_walkinfo *cwip = arg;
cwip->pages += cpr_count_pages(base, size,
cwip->mapflag, cwip->bitfunc, DBG_DONTSHOWRANGE);
cwip->size += size;
cwip->ranges++;
}
/*
* cpr_walk() is called many 100x with a range within kvseg or kvseg_reloc;
* a page-count from each range is accumulated at arg->pages.
*/
static void
cpr_walk(void *arg, void *base, size_t size)
{
caddr_t addr = base;
caddr_t addr_end = addr + size;
/*
* If we are about to start walking the range of addresses we
* carved out of the kernel heap for the large page heap walk
* heap_lp_arena to find what segments are actually populated
*/
if (SEGKMEM_USE_LARGEPAGES &&
addr == heap_lp_base && addr_end == heap_lp_end &&
vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
vmem_walk(heap_lp_arena, VMEM_ALLOC, cpr_xwalk, arg);
} else {
cpr_xwalk(arg, base, size);
}
}
/*
* faster scan of kvseg using vmem_walk() to visit
* allocated ranges.
*/
pgcnt_t
cpr_scan_kvseg(int mapflag, bitfunc_t bitfunc, struct seg *seg)
{
struct cpr_walkinfo cwinfo;
bzero(&cwinfo, sizeof (cwinfo));
cwinfo.mapflag = mapflag;
cwinfo.bitfunc = bitfunc;
vmem_walk(heap_arena, VMEM_ALLOC, cpr_walk, &cwinfo);
if (cpr_debug & CPR_DEBUG7) {
prom_printf("walked %d sub-ranges, total pages %ld\n",
cwinfo.ranges, mmu_btop(cwinfo.size));
cpr_show_range(seg->s_base, seg->s_size,
mapflag, bitfunc, cwinfo.pages);
}
return (cwinfo.pages);
}
/*
* cpr_walk_kpm() is called for every used area within the large
* segkpm virtual address window. A page-count is accumulated at
* arg->pages.
*/
static void
cpr_walk_kpm(void *arg, void *base, size_t size)
{
struct cpr_walkinfo *cwip = arg;
cwip->pages += cpr_count_pages(base, size,
cwip->mapflag, cwip->bitfunc, DBG_DONTSHOWRANGE);
cwip->size += size;
cwip->ranges++;
}
/*
* faster scan of segkpm using hat_kpm_walk() to visit only used ranges.
*/
/*ARGSUSED*/
static pgcnt_t
cpr_scan_segkpm(int mapflag, bitfunc_t bitfunc, struct seg *seg)
{
struct cpr_walkinfo cwinfo;
if (kpm_enable == 0)
return (0);
bzero(&cwinfo, sizeof (cwinfo));
cwinfo.mapflag = mapflag;
cwinfo.bitfunc = bitfunc;
hat_kpm_walk(cpr_walk_kpm, &cwinfo);
if (cpr_debug & CPR_DEBUG7) {
prom_printf("walked %d sub-ranges, total pages %ld\n",
cwinfo.ranges, mmu_btop(cwinfo.size));
cpr_show_range(segkpm->s_base, segkpm->s_size,
mapflag, bitfunc, cwinfo.pages);
}
return (cwinfo.pages);
}
/*
* Sparsely filled kernel segments are registered in kseg_table for
* easier lookup. See also block comment for cpr_count_seg_pages.
*/
#define KSEG_SEG_ADDR 0 /* address of struct seg */
#define KSEG_PTR_ADDR 1 /* address of pointer to struct seg */
typedef struct {
struct seg **st_seg; /* segment pointer or segment address */
pgcnt_t (*st_fcn)(int, bitfunc_t, struct seg *); /* function to call */
int st_addrtype; /* address type in st_seg */
} ksegtbl_entry_t;
ksegtbl_entry_t kseg_table[] = {
{(struct seg **)&kvseg, cpr_scan_kvseg, KSEG_SEG_ADDR},
{&segkpm, cpr_scan_segkpm, KSEG_PTR_ADDR},
{NULL, 0, 0}
};
/*
* Compare seg with each entry in kseg_table; when there is a match
* return the entry pointer, otherwise return NULL.
*/
static ksegtbl_entry_t *
cpr_sparse_seg_check(struct seg *seg)
{
ksegtbl_entry_t *ste = &kseg_table[0];
struct seg *tseg;
for (; ste->st_seg; ste++) {
tseg = (ste->st_addrtype == KSEG_PTR_ADDR) ?
*ste->st_seg : (struct seg *)ste->st_seg;
if (seg == tseg)
return (ste);
}
return ((ksegtbl_entry_t *)NULL);
}
/*
* Count pages within each kernel segment; call cpr_sparse_seg_check()
* to find out whether a sparsely filled segment needs special
* treatment (e.g. kvseg).
* Todo: A "SEGOP_CPR" like SEGOP_DUMP should be introduced, the cpr
* module shouldn't need to know segment details like if it is
* sparsely filled or not (makes kseg_table obsolete).
*/
pgcnt_t
cpr_count_seg_pages(int mapflag, bitfunc_t bitfunc)
{
struct seg *segp;
pgcnt_t pages;
ksegtbl_entry_t *ste;
pages = 0;
for (segp = AS_SEGFIRST(&kas); segp; segp = AS_SEGNEXT(&kas, segp)) {
if (ste = cpr_sparse_seg_check(segp)) {
pages += (ste->st_fcn)(mapflag, bitfunc, segp);
} else {
pages += cpr_count_pages(segp->s_base,
segp->s_size, mapflag, bitfunc, DBG_SHOWRANGE);
}
}
return (pages);
}
/*
* count kernel pages within kas and any special ranges
*/
pgcnt_t
cpr_count_kpages(int mapflag, bitfunc_t bitfunc)
{
pgcnt_t kas_cnt;
/*
* Some pages need to be taken care of differently.
* eg: panicbuf pages of sun4m are not in kas but they need
* to be saved. On sun4u, the physical pages of panicbuf are
* allocated via prom_retain().
*/
kas_cnt = i_cpr_count_special_kpages(mapflag, bitfunc);
kas_cnt += cpr_count_seg_pages(mapflag, bitfunc);
CPR_DEBUG(CPR_DEBUG9, "cpr_count_kpages: kas_cnt=%ld\n", kas_cnt);
CPR_DEBUG(CPR_DEBUG7, "\ncpr_count_kpages: %ld pages, 0x%lx bytes\n",
kas_cnt, mmu_ptob(kas_cnt));
return (kas_cnt);
}
/*
* Set a bit corresponding to the arg phys page number;
* returns 0 when the ppn is valid and the corresponding
* map bit was clear, otherwise returns 1.
*/
int
cpr_setbit(pfn_t ppn, int mapflag)
{
char *bitmap;
cbd_t *dp;
pfn_t rel;
int clr;
for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
if (PPN_IN_RANGE(ppn, dp)) {
bitmap = DESC_TO_MAP(dp, mapflag);
rel = ppn - dp->cbd_spfn;
if ((clr = isclr(bitmap, rel)) != 0)
setbit(bitmap, rel);
return (clr == 0);
}
}
return (1);
}
/*
* Clear a bit corresponding to the arg phys page number.
*/
int
cpr_clrbit(pfn_t ppn, int mapflag)
{
char *bitmap;
cbd_t *dp;
pfn_t rel;
int set;
for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
if (PPN_IN_RANGE(ppn, dp)) {
bitmap = DESC_TO_MAP(dp, mapflag);
rel = ppn - dp->cbd_spfn;
if ((set = isset(bitmap, rel)) != 0)
clrbit(bitmap, rel);
return (set == 0);
}
}
return (1);
}
/* ARGSUSED */
int
cpr_nobit(pfn_t ppn, int mapflag)
{
return (0);
}
/*
* Lookup a bit corresponding to the arg phys page number.
*/
int
cpr_isset(pfn_t ppn, int mapflag)
{
char *bitmap;
cbd_t *dp;
pfn_t rel;
for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
if (PPN_IN_RANGE(ppn, dp)) {
bitmap = DESC_TO_MAP(dp, mapflag);
rel = ppn - dp->cbd_spfn;
return (isset(bitmap, rel));
}
}
return (0);
}
/*
* Go thru all pages and pick up any page not caught during the invalidation
* stage. This is also used to save pages with cow lock or phys page lock held
* (none zero p_lckcnt or p_cowcnt)
*/
static int
cpr_count_upages(int mapflag, bitfunc_t bitfunc)
{
page_t *pp, *page0;
pgcnt_t dcnt = 0, tcnt = 0;
pfn_t pfn;
page0 = pp = page_first();
do {
if (pp->p_vnode == NULL || PP_ISKAS(pp) ||
PP_ISFREE(pp) && PP_ISAGED(pp))
continue;
pfn = page_pptonum(pp);
if (pf_is_memory(pfn)) {
tcnt++;
if ((*bitfunc)(pfn, mapflag) == 0)
dcnt++; /* dirty count */
}
} while ((pp = page_next(pp)) != page0);
STAT->cs_upage2statef = dcnt;
CPR_DEBUG(CPR_DEBUG9, "cpr_count_upages: dirty=%ld total=%ld\n",
dcnt, tcnt);
CPR_DEBUG(CPR_DEBUG7, "cpr_count_upages: %ld pages, 0x%lx bytes\n",
dcnt, mmu_ptob(dcnt));
page0 = NULL; /* for Lint */
return (dcnt);
}
/*
* try compressing pages based on cflag,
* and for DEBUG kernels, verify uncompressed data checksum;
*
* this routine replaces common code from
* i_cpr_compress_and_save() and cpr_compress_and_write()
*/
char *
cpr_compress_pages(cpd_t *dp, pgcnt_t pages, int cflag)
{
size_t nbytes, clen, len;
uint32_t test_sum;
char *datap;
nbytes = mmu_ptob(pages);
/*
* set length to the original uncompressed data size;
* always init cpd_flag to zero
*/
dp->cpd_length = nbytes;
dp->cpd_flag = 0;
#ifdef DEBUG
/*
* Make a copy of the uncompressed data so we can checksum it.
* Compress that copy so the checksum works at the other end
*/
cprbcopy(CPR->c_mapping_area, cpr_pagecopy, nbytes);
dp->cpd_usum = checksum32(cpr_pagecopy, nbytes);
dp->cpd_flag |= CPD_USUM;
datap = cpr_pagecopy;
#else
datap = CPR->c_mapping_area;
dp->cpd_usum = 0;
#endif
/*
* try compressing the raw data to cpr_pagedata;
* if there was a size reduction: record the new length,
* flag the compression, and point to the compressed data.
*/
dp->cpd_csum = 0;
if (cflag) {
clen = compress(datap, cpr_pagedata, nbytes);
if (clen < nbytes) {
dp->cpd_flag |= CPD_COMPRESS;
dp->cpd_length = clen;
datap = cpr_pagedata;
#ifdef DEBUG
dp->cpd_csum = checksum32(datap, clen);
dp->cpd_flag |= CPD_CSUM;
/*
* decompress the data back to a scratch area
* and compare the new checksum with the original
* checksum to verify the compression.
*/
bzero(cpr_pagecopy, sizeof (cpr_pagecopy));
len = decompress(datap, cpr_pagecopy,
clen, sizeof (cpr_pagecopy));
test_sum = checksum32(cpr_pagecopy, len);
ASSERT(test_sum == dp->cpd_usum);
#endif
}
}
return (datap);
}
/*
* 1. Prepare cpr page descriptor and write it to file
* 2. Compress page data and write it out
*/
static int
cpr_compress_and_write(vnode_t *vp, uint_t va, pfn_t pfn, pgcnt_t npg)
{
int error = 0;
char *datap;
cpd_t cpd; /* cpr page descriptor */
extern void i_cpr_mapin(caddr_t, uint_t, pfn_t);
extern void i_cpr_mapout(caddr_t, uint_t);
i_cpr_mapin(CPR->c_mapping_area, npg, pfn);
CPR_DEBUG(CPR_DEBUG3, "mapped-in %ld pages, vaddr 0x%p, pfn 0x%lx\n",
npg, (void *)CPR->c_mapping_area, pfn);
/*
* Fill cpr page descriptor.
*/
cpd.cpd_magic = (uint_t)CPR_PAGE_MAGIC;
cpd.cpd_pfn = pfn;
cpd.cpd_pages = npg;
STAT->cs_dumped_statefsz += mmu_ptob(npg);
datap = cpr_compress_pages(&cpd, npg, CPR->c_flags & C_COMPRESSING);
/* Write cpr page descriptor */
error = cpr_write(vp, (caddr_t)&cpd, sizeof (cpd_t));
/* Write compressed page data */
error = cpr_write(vp, (caddr_t)datap, cpd.cpd_length);
/*
* Unmap the pages for tlb and vac flushing
*/
i_cpr_mapout(CPR->c_mapping_area, npg);
if (error) {
CPR_DEBUG(CPR_DEBUG1,
"cpr_compress_and_write: vp 0x%p va 0x%x ", (void *)vp, va);
CPR_DEBUG(CPR_DEBUG1, "pfn 0x%lx blk %d err %d\n",
pfn, cpr_file_bn, error);
} else {
cpr_regular_pgs_dumped += npg;
}
return (error);
}
int
cpr_write(vnode_t *vp, caddr_t buffer, size_t size)
{
caddr_t fromp = buffer;
size_t bytes, wbytes;
int error;
if (cpr_dev_space == 0) {
if (vp->v_type == VBLK) {
cpr_dev_space = cpr_get_devsize(vp->v_rdev);
ASSERT(cpr_dev_space);
} else
cpr_dev_space = 1; /* not used in this case */
}
/*
* break the write into multiple part if request is large,
* calculate count up to buf page boundary, then write it out.
* repeat until done.
*/
while (size) {
bytes = MIN(size, cpr_buf_end - cpr_wptr);
cprbcopy(fromp, cpr_wptr, bytes);
cpr_wptr += bytes;
fromp += bytes;
size -= bytes;
if (cpr_wptr < cpr_buf_end)
return (0); /* buffer not full yet */
ASSERT(cpr_wptr == cpr_buf_end);
wbytes = dbtob(cpr_file_bn + cpr_buf_blocks);
if (vp->v_type == VBLK) {
if (wbytes > cpr_dev_space)
return (ENOSPC);
} else {
if (wbytes > VTOI(vp)->i_size)
return (ENOSPC);
}
CPR_DEBUG(CPR_DEBUG3,
"cpr_write: frmp=%p wptr=%p cnt=%lx...",
(void *)fromp, (void *)cpr_wptr, bytes);
/*
* cross check, this should not happen!
*/
if (cpr_disk_writes_ok == 0) {
prom_printf("cpr_write: disk write too early!\n");
return (EINVAL);
}
do_polled_io = 1;
error = VOP_DUMP(vp, cpr_buf, cpr_file_bn, cpr_buf_blocks,
NULL);
do_polled_io = 0;
CPR_DEBUG(CPR_DEBUG3, "done\n");
STAT->cs_real_statefsz += cpr_buf_size;
if (error) {
cpr_err(CE_WARN, "cpr_write error %d", error);
return (error);
}
cpr_file_bn += cpr_buf_blocks; /* Increment block count */
cpr_wptr = cpr_buf; /* back to top of buffer */
}
return (0);
}
int
cpr_flush_write(vnode_t *vp)
{
int nblk;
int error;
/*
* Calculate remaining blocks in buffer, rounded up to nearest
* disk block
*/
nblk = btod(cpr_wptr - cpr_buf);
do_polled_io = 1;
error = VOP_DUMP(vp, (caddr_t)cpr_buf, cpr_file_bn, nblk, NULL);
do_polled_io = 0;
cpr_file_bn += nblk;
if (error)
CPR_DEBUG(CPR_DEBUG2, "cpr_flush_write: error (%d)\n",
error);
return (error);
}
void
cpr_clear_bitmaps(void)
{
cbd_t *dp;
for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
bzero((void *)dp->cbd_reg_bitmap,
(size_t)dp->cbd_size * 2);
}
CPR_DEBUG(CPR_DEBUG7, "\ncleared reg and vlt bitmaps\n");
}
int
cpr_contig_pages(vnode_t *vp, int flag)
{
int chunks = 0, error = 0;
pgcnt_t i, j, totbit;
pfn_t spfn;
cbd_t *dp;
uint_t spin_cnt = 0;
extern int i_cpr_compress_and_save();
for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
spfn = dp->cbd_spfn;
totbit = BTOb(dp->cbd_size);
i = 0; /* Beginning of bitmap */
j = 0;
while (i < totbit) {
while ((j < CPR_MAXCONTIG) && ((j + i) < totbit)) {
if (isset((char *)dp->cbd_reg_bitmap, j+i))
j++;
else /* not contiguous anymore */
break;
}
if (j) {
chunks++;
if (flag == SAVE_TO_STORAGE) {
error = i_cpr_compress_and_save(
chunks, spfn + i, j);
if (error)
return (error);
} else if (flag == WRITE_TO_STATEFILE) {
error = cpr_compress_and_write(vp, 0,
spfn + i, j);
if (error)
return (error);
else {
spin_cnt++;
if ((spin_cnt & 0x5F) == 1)
cpr_spinning_bar();
}
}
}
i += j;
if (j != CPR_MAXCONTIG) {
/* Stopped on a non-tagged page */
i++;
}
j = 0;
}
}
if (flag == STORAGE_DESC_ALLOC)
return (chunks);
else
return (0);
}
void
cpr_show_range(caddr_t vaddr, size_t size,
int mapflag, bitfunc_t bitfunc, pgcnt_t count)
{
char *action, *bname;
bname = (mapflag == REGULAR_BITMAP) ? "regular" : "volatile";
if (bitfunc == cpr_setbit)
action = "tag";
else if (bitfunc == cpr_clrbit)
action = "untag";
else
action = "none";
prom_printf("range (0x%p, 0x%p), %s bitmap, %s %ld\n",
(void *)vaddr, (void *)(vaddr + size), bname, action, count);
}
pgcnt_t
cpr_count_pages(caddr_t sva, size_t size,
int mapflag, bitfunc_t bitfunc, int showrange)
{
caddr_t va, eva;
pfn_t pfn;
pgcnt_t count = 0;
eva = sva + PAGE_ROUNDUP(size);
for (va = sva; va < eva; va += MMU_PAGESIZE) {
pfn = va_to_pfn(va);
if (pfn != PFN_INVALID && pf_is_memory(pfn)) {
if ((*bitfunc)(pfn, mapflag) == 0)
count++;
}
}
if ((cpr_debug & CPR_DEBUG7) && showrange == DBG_SHOWRANGE)
cpr_show_range(sva, size, mapflag, bitfunc, count);
return (count);
}
pgcnt_t
cpr_count_volatile_pages(int mapflag, bitfunc_t bitfunc)
{
pgcnt_t count = 0;
if (cpr_buf) {
count += cpr_count_pages(cpr_buf, cpr_buf_size,
mapflag, bitfunc, DBG_SHOWRANGE);
}
if (cpr_pagedata) {
count += cpr_count_pages(cpr_pagedata, cpr_pagedata_size,
mapflag, bitfunc, DBG_SHOWRANGE);
}
count += i_cpr_count_storage_pages(mapflag, bitfunc);
CPR_DEBUG(CPR_DEBUG7, "cpr_count_vpages: %ld pages, 0x%lx bytes\n",
count, mmu_ptob(count));
return (count);
}
static int
cpr_dump_regular_pages(vnode_t *vp)
{
int error;
cpr_regular_pgs_dumped = 0;
error = cpr_contig_pages(vp, WRITE_TO_STATEFILE);
if (!error)
CPR_DEBUG(CPR_DEBUG7, "cpr_dump_regular_pages() done.\n");
return (error);
}
#endif