rdc_io.c revision 5c5f137104b2d56181283389fa902220f2023809
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/sysmacros.h>
#ifdef _SunOS_5_6
/*
* on 2.6 both dki_lock.h and rpc/types.h define bool_t so we
* define enum_t here as it is all we need from rpc/types.h
* anyway and make it look like we included it. Yuck.
*/
#define _RPC_TYPES_H
typedef int enum_t;
#else
#ifndef DS_DDICT
#include <rpc/types.h>
#endif
#endif /* _SunOS_5_6 */
#include <sys/ddi.h>
#include <sys/nsc_thread.h>
#include <sys/nsctl/nsctl.h>
#include <sys/sdt.h> /* dtrace is S10 or later */
#include "rdc_io.h"
#include "rdc_bitmap.h"
#include "rdc_update.h"
#include "rdc_ioctl.h"
#include "rdcsrv.h"
#include "rdc_diskq.h"
#include <sys/unistat/spcs_s.h>
#include <sys/unistat/spcs_s_k.h>
#include <sys/unistat/spcs_errors.h>
volatile int net_exit;
nsc_size_t MAX_RDC_FBAS;
#ifdef DEBUG
int RDC_MAX_SYNC_THREADS = 8;
int rdc_maxthreads_last = 8;
#endif
kmutex_t rdc_ping_lock; /* Ping lock */
static kmutex_t net_blk_lock;
/*
* rdc_conf_lock is used as a global device configuration lock.
* It is also used by enable/resume and disable/suspend code to ensure that
* the transition of an rdc set between configured and unconfigured is
* atomic.
*
* krdc->group->lock is used to protect state changes of a configured rdc
* set (e.g. changes to urdc->flags), such as enabled to disabled and vice
* versa.
*
* rdc_many_lock is also used to protect changes in group membership. A group
* linked list cannot change while this lock is held. The many list and the
* multi-hop list are both protected by rdc_many_lock.
*/
kmutex_t rdc_conf_lock;
kmutex_t rdc_many_lock; /* Many/multi-list lock */
static kmutex_t rdc_net_hnd_id_lock; /* Network handle id lock */
int rdc_debug = 0;
int rdc_debug_sleep = 0;
static int rdc_net_hnd_id = 1;
extern kmutex_t rdc_clnt_lock;
static void rdc_ditemsfree(rdc_net_dataset_t *);
void rdc_clnt_destroy(void);
rdc_k_info_t *rdc_k_info;
rdc_u_info_t *rdc_u_info;
unsigned long rdc_async_timeout;
nsc_size_t rdc_maxthres_queue = RDC_MAXTHRES_QUEUE;
int rdc_max_qitems = RDC_MAX_QITEMS;
int rdc_asyncthr = RDC_ASYNCTHR;
static nsc_svc_t *rdc_volume_update;
static int rdc_prealloc_handle = 1;
extern int _rdc_rsrv_diskq(rdc_group_t *group);
extern void _rdc_rlse_diskq(rdc_group_t *group);
/*
* Forward declare all statics that are used before defined
* to enforce parameter checking
*
* Some (if not all) of these could be removed if the code were reordered
*/
static void rdc_volume_update_svc(intptr_t);
static void halt_sync(rdc_k_info_t *krdc);
void rdc_kstat_create(int index);
void rdc_kstat_delete(int index);
static int rdc_checkforbitmap(int, nsc_off_t);
static int rdc_installbitmap(int, void *, int, nsc_off_t, int, int *, int);
static rdc_group_t *rdc_newgroup();
int rdc_enable_diskq(rdc_k_info_t *krdc);
void rdc_close_diskq(rdc_group_t *group);
int rdc_suspend_diskq(rdc_k_info_t *krdc);
int rdc_resume_diskq(rdc_k_info_t *krdc);
void rdc_init_diskq_header(rdc_group_t *grp, dqheader *header);
void rdc_fail_diskq(rdc_k_info_t *krdc, int wait, int dolog);
void rdc_unfail_diskq(rdc_k_info_t *krdc);
void rdc_unintercept_diskq(rdc_group_t *grp);
int rdc_stamp_diskq(rdc_k_info_t *krdc, int rsrvd, int flags);
void rdc_qfiller_thr(rdc_k_info_t *krdc);
nstset_t *_rdc_ioset;
nstset_t *_rdc_flset;
/*
* RDC threadset tunables
*/
int rdc_threads = 64; /* default number of threads */
int rdc_threads_inc = 8; /* increment for changing the size of the set */
/*
* Private threadset manipulation variables
*/
static int rdc_threads_hysteresis = 2;
/* hysteresis for threadset resizing */
static int rdc_sets_active; /* number of sets currently enabled */
#ifdef DEBUG
kmutex_t rdc_cntlock;
#endif
/*
* rdc_thread_deconfigure - rdc is being deconfigured, stop any
* thread activity.
*
* Inherently single-threaded by the Solaris module unloading code.
*/
static void
rdc_thread_deconfigure(void)
{
nst_destroy(_rdc_ioset);
_rdc_ioset = NULL;
nst_destroy(_rdc_flset);
_rdc_flset = NULL;
nst_destroy(sync_info.rdc_syncset);
sync_info.rdc_syncset = NULL;
}
/*
* rdc_thread_configure - rdc is being configured, initialize the
* threads we need for flushing aync volumes.
*
* Must be called with rdc_conf_lock held.
*/
static int
rdc_thread_configure(void)
{
ASSERT(MUTEX_HELD(&rdc_conf_lock));
if ((_rdc_ioset = nst_init("rdc_thr", rdc_threads)) == NULL)
return (EINVAL);
if ((_rdc_flset = nst_init("rdc_flushthr", 2)) == NULL)
return (EINVAL);
if ((sync_info.rdc_syncset =
nst_init("rdc_syncthr", RDC_MAX_SYNC_THREADS)) == NULL)
return (EINVAL);
return (0);
}
/*
* rdc_thread_tune - called to tune the size of the rdc threadset.
*
* Called from the config code when an rdc_set has been enabled or disabled.
* 'sets' is the increment to the number of active rdc_sets.
*
* Must be called with rdc_conf_lock held.
*/
static void
rdc_thread_tune(int sets)
{
int incr = (sets > 0) ? 1 : -1;
int change = 0;
int nthreads;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
if (sets < 0)
sets = -sets;
while (sets--) {
nthreads = nst_nthread(_rdc_ioset);
rdc_sets_active += incr;
if (rdc_sets_active >= nthreads)
change += nst_add_thread(_rdc_ioset, rdc_threads_inc);
else if ((rdc_sets_active <
(nthreads - (rdc_threads_inc + rdc_threads_hysteresis))) &&
((nthreads - rdc_threads_inc) >= rdc_threads))
change -= nst_del_thread(_rdc_ioset, rdc_threads_inc);
}
#ifdef DEBUG
if (change) {
cmn_err(CE_NOTE, "!rdc_thread_tune: "
"nsets %d, nthreads %d, nthreads change %d",
rdc_sets_active, nst_nthread(_rdc_ioset), change);
}
#endif
}
/*
* _rdc_unload() - cache is being unloaded,
* deallocate any dual copy structures allocated during cache
* loading.
*/
void
_rdc_unload(void)
{
int i;
rdc_k_info_t *krdc;
if (rdc_volume_update) {
(void) nsc_unregister_svc(rdc_volume_update);
rdc_volume_update = NULL;
}
rdc_thread_deconfigure();
if (rdc_k_info != NULL) {
for (i = 0; i < rdc_max_sets; i++) {
krdc = &rdc_k_info[i];
mutex_destroy(&krdc->dc_sleep);
mutex_destroy(&krdc->bmapmutex);
mutex_destroy(&krdc->kstat_mutex);
mutex_destroy(&krdc->bmp_kstat_mutex);
mutex_destroy(&krdc->syncbitmutex);
cv_destroy(&krdc->busycv);
cv_destroy(&krdc->closingcv);
cv_destroy(&krdc->haltcv);
cv_destroy(&krdc->synccv);
}
}
mutex_destroy(&sync_info.lock);
mutex_destroy(&rdc_ping_lock);
mutex_destroy(&net_blk_lock);
mutex_destroy(&rdc_conf_lock);
mutex_destroy(&rdc_many_lock);
mutex_destroy(&rdc_net_hnd_id_lock);
mutex_destroy(&rdc_clnt_lock);
#ifdef DEBUG
mutex_destroy(&rdc_cntlock);
#endif
net_exit = ATM_EXIT;
if (rdc_k_info != NULL)
kmem_free(rdc_k_info, sizeof (*rdc_k_info) * rdc_max_sets);
if (rdc_u_info != NULL)
kmem_free(rdc_u_info, sizeof (*rdc_u_info) * rdc_max_sets);
rdc_k_info = NULL;
rdc_u_info = NULL;
rdc_max_sets = 0;
}
/*
* _rdc_load() - rdc is being loaded, Allocate anything
* that will be needed while the cache is loaded but doesn't really
* depend on configuration parameters.
*
*/
int
_rdc_load(void)
{
int i;
rdc_k_info_t *krdc;
mutex_init(&rdc_ping_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&net_blk_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&rdc_conf_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&rdc_many_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&rdc_net_hnd_id_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&rdc_clnt_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sync_info.lock, NULL, MUTEX_DRIVER, NULL);
#ifdef DEBUG
mutex_init(&rdc_cntlock, NULL, MUTEX_DRIVER, NULL);
#endif
if ((i = nsc_max_devices()) < rdc_max_sets)
rdc_max_sets = i;
/* following case for partial installs that may fail */
if (!rdc_max_sets)
rdc_max_sets = 1024;
rdc_k_info = kmem_zalloc(sizeof (*rdc_k_info) * rdc_max_sets, KM_SLEEP);
if (!rdc_k_info)
return (ENOMEM);
rdc_u_info = kmem_zalloc(sizeof (*rdc_u_info) * rdc_max_sets, KM_SLEEP);
if (!rdc_u_info) {
kmem_free(rdc_k_info, sizeof (*rdc_k_info) * rdc_max_sets);
return (ENOMEM);
}
net_exit = ATM_NONE;
for (i = 0; i < rdc_max_sets; i++) {
krdc = &rdc_k_info[i];
bzero(krdc, sizeof (*krdc));
krdc->index = i;
mutex_init(&krdc->dc_sleep, NULL, MUTEX_DRIVER, NULL);
mutex_init(&krdc->bmapmutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&krdc->kstat_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&krdc->bmp_kstat_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&krdc->syncbitmutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&krdc->busycv, NULL, CV_DRIVER, NULL);
cv_init(&krdc->closingcv, NULL, CV_DRIVER, NULL);
cv_init(&krdc->haltcv, NULL, CV_DRIVER, NULL);
cv_init(&krdc->synccv, NULL, CV_DRIVER, NULL);
}
rdc_volume_update = nsc_register_svc("RDCVolumeUpdated",
rdc_volume_update_svc);
return (0);
}
static void
rdc_u_init(rdc_u_info_t *urdc)
{
const int index = (int)(urdc - &rdc_u_info[0]);
if (urdc->secondary.addr.maxlen)
free_rdc_netbuf(&urdc->secondary.addr);
if (urdc->primary.addr.maxlen)
free_rdc_netbuf(&urdc->primary.addr);
bzero(urdc, sizeof (rdc_u_info_t));
urdc->index = index;
urdc->maxqfbas = rdc_maxthres_queue;
urdc->maxqitems = rdc_max_qitems;
urdc->asyncthr = rdc_asyncthr;
}
/*
* _rdc_configure() - cache is being configured.
*
* Initialize dual copy structures
*/
int
_rdc_configure(void)
{
int index;
rdc_k_info_t *krdc;
for (index = 0; index < rdc_max_sets; index++) {
krdc = &rdc_k_info[index];
krdc->remote_index = -1;
krdc->dcio_bitmap = NULL;
krdc->bitmap_ref = NULL;
krdc->bitmap_size = 0;
krdc->bitmap_write = 0;
krdc->disk_status = 0;
krdc->many_next = krdc;
rdc_u_init(&rdc_u_info[index]);
}
rdc_async_timeout = 120 * HZ; /* Seconds * HZ */
MAX_RDC_FBAS = FBA_LEN(RDC_MAXDATA);
if (net_exit != ATM_INIT) {
net_exit = ATM_INIT;
return (0);
}
return (0);
}
/*
* _rdc_deconfigure - rdc is being deconfigured, shut down any
* dual copy operations and return to an unconfigured state.
*/
void
_rdc_deconfigure(void)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int index;
for (index = 0; index < rdc_max_sets; index++) {
krdc = &rdc_k_info[index];
urdc = &rdc_u_info[index];
krdc->remote_index = -1;
krdc->dcio_bitmap = NULL;
krdc->bitmap_ref = NULL;
krdc->bitmap_size = 0;
krdc->bitmap_write = 0;
krdc->disk_status = 0;
krdc->many_next = krdc;
if (urdc->primary.addr.maxlen)
free_rdc_netbuf(&(urdc->primary.addr));
if (urdc->secondary.addr.maxlen)
free_rdc_netbuf(&(urdc->secondary.addr));
bzero(urdc, sizeof (rdc_u_info_t));
urdc->index = index;
}
net_exit = ATM_EXIT;
rdc_clnt_destroy();
}
/*
* Lock primitives, containing checks that lock ordering isn't broken
*/
/*ARGSUSED*/
void
rdc_many_enter(rdc_k_info_t *krdc)
{
ASSERT(!MUTEX_HELD(&krdc->bmapmutex));
mutex_enter(&rdc_many_lock);
}
/* ARGSUSED */
void
rdc_many_exit(rdc_k_info_t *krdc)
{
mutex_exit(&rdc_many_lock);
}
void
rdc_group_enter(rdc_k_info_t *krdc)
{
ASSERT(!MUTEX_HELD(&rdc_many_lock));
ASSERT(!MUTEX_HELD(&rdc_conf_lock));
ASSERT(!MUTEX_HELD(&krdc->bmapmutex));
mutex_enter(&krdc->group->lock);
}
void
rdc_group_exit(rdc_k_info_t *krdc)
{
mutex_exit(&krdc->group->lock);
}
/*
* Suspend and disable operations use this function to wait until it is safe
* to do continue, without trashing data structures used by other ioctls.
*/
static void
wait_busy(rdc_k_info_t *krdc)
{
ASSERT(MUTEX_HELD(&rdc_conf_lock));
while (krdc->busy_count > 0)
cv_wait(&krdc->busycv, &rdc_conf_lock);
}
/*
* Other ioctls use this function to hold off disable and suspend.
*/
void
set_busy(rdc_k_info_t *krdc)
{
ASSERT(MUTEX_HELD(&rdc_conf_lock));
wait_busy(krdc);
krdc->busy_count++;
}
/*
* Other ioctls use this function to allow disable and suspend to continue.
*/
void
wakeup_busy(rdc_k_info_t *krdc)
{
ASSERT(MUTEX_HELD(&rdc_conf_lock));
if (krdc->busy_count <= 0)
return;
krdc->busy_count--;
cv_broadcast(&krdc->busycv);
}
/*
* Remove the rdc set from its group, and destroy the group if no longer in
* use.
*/
static void
remove_from_group(rdc_k_info_t *krdc)
{
rdc_k_info_t *p;
rdc_group_t *group;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
rdc_many_enter(krdc);
group = krdc->group;
group->count--;
/*
* lock queue while looking at thrnum
*/
mutex_enter(&group->ra_queue.net_qlock);
if ((group->rdc_thrnum == 0) && (group->count == 0)) {
/*
* Assure the we've stopped and the flusher thread has not
* fallen back to sleep
*/
if (krdc->group->ra_queue.qfill_sleeping != RDC_QFILL_DEAD) {
group->ra_queue.qfflags |= RDC_QFILLSTOP;
while (krdc->group->ra_queue.qfflags & RDC_QFILLSTOP) {
if (krdc->group->ra_queue.qfill_sleeping ==
RDC_QFILL_ASLEEP)
cv_broadcast(&group->ra_queue.qfcv);
mutex_exit(&group->ra_queue.net_qlock);
delay(2);
mutex_enter(&group->ra_queue.net_qlock);
}
}
mutex_exit(&group->ra_queue.net_qlock);
mutex_enter(&group->diskqmutex);
rdc_close_diskq(group);
mutex_exit(&group->diskqmutex);
rdc_delgroup(group);
rdc_many_exit(krdc);
krdc->group = NULL;
return;
}
mutex_exit(&group->ra_queue.net_qlock);
/*
* Always clear the group field.
* no, you need it set in rdc_flush_memq().
* to call rdc_group_log()
* krdc->group = NULL;
*/
/* Take this rdc structure off the group list */
for (p = krdc->group_next; p->group_next != krdc; p = p->group_next)
;
p->group_next = krdc->group_next;
rdc_many_exit(krdc);
}
/*
* Add the rdc set to its group, setting up a new group if it's the first one.
*/
static int
add_to_group(rdc_k_info_t *krdc, int options, int cmd)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_u_info_t *utmp;
rdc_k_info_t *ktmp;
int index;
rdc_group_t *group;
int rc = 0;
nsthread_t *trc;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
/*
* Look for matching group name, primary host name and secondary
* host name.
*/
rdc_many_enter(krdc);
for (index = 0; index < rdc_max_sets; index++) {
utmp = &rdc_u_info[index];
ktmp = &rdc_k_info[index];
if (urdc->group_name[0] == 0)
break;
if (!IS_CONFIGURED(ktmp))
continue;
if (strncmp(utmp->group_name, urdc->group_name,
NSC_MAXPATH) != 0)
continue;
if (strncmp(utmp->primary.intf, urdc->primary.intf,
MAX_RDC_HOST_SIZE) != 0) {
/* Same group name, different primary interface */
rdc_many_exit(krdc);
return (-1);
}
if (strncmp(utmp->secondary.intf, urdc->secondary.intf,
MAX_RDC_HOST_SIZE) != 0) {
/* Same group name, different secondary interface */
rdc_many_exit(krdc);
return (-1);
}
/* Group already exists, so add this set to the group */
if (((options & RDC_OPT_ASYNC) == 0) &&
((ktmp->type_flag & RDC_ASYNCMODE) != 0)) {
/* Must be same mode as existing group members */
rdc_many_exit(krdc);
return (-1);
}
if (((options & RDC_OPT_ASYNC) != 0) &&
((ktmp->type_flag & RDC_ASYNCMODE) == 0)) {
/* Must be same mode as existing group members */
rdc_many_exit(krdc);
return (-1);
}
/* cannont reconfigure existing group into new queue this way */
if ((cmd != RDC_CMD_RESUME) &&
!RDC_IS_DISKQ(ktmp->group) && urdc->disk_queue[0] != '\0') {
rdc_many_exit(krdc);
return (RDC_EQNOADD);
}
ktmp->group->count++;
krdc->group = ktmp->group;
krdc->group_next = ktmp->group_next;
ktmp->group_next = krdc;
urdc->autosync = utmp->autosync; /* Same as rest */
(void) strncpy(urdc->disk_queue, utmp->disk_queue, NSC_MAXPATH);
rdc_many_exit(krdc);
return (0);
}
/* This must be a new group */
group = rdc_newgroup();
krdc->group = group;
krdc->group_next = krdc;
urdc->autosync = -1; /* Unknown */
/*
* Tune the thread set by one for each thread created
*/
rdc_thread_tune(1);
trc = nst_create(_rdc_ioset, rdc_qfiller_thr, (void *)krdc, NST_SLEEP);
if (trc == NULL) {
rc = -1;
cmn_err(CE_NOTE, "!unable to create queue filler daemon");
goto fail;
}
if (urdc->disk_queue[0] == '\0') {
krdc->group->flags |= RDC_MEMQUE;
} else {
krdc->group->flags |= RDC_DISKQUE;
/* XXX check here for resume or enable and act accordingly */
if (cmd == RDC_CMD_RESUME) {
rc = rdc_resume_diskq(krdc);
} else if (cmd == RDC_CMD_ENABLE) {
rc = rdc_enable_diskq(krdc);
if ((rc == RDC_EQNOADD) && (cmd != RDC_CMD_ENABLE)) {
cmn_err(CE_WARN, "!disk queue %s enable failed,"
" enabling memory queue",
urdc->disk_queue);
krdc->group->flags &= ~RDC_DISKQUE;
krdc->group->flags |= RDC_MEMQUE;
bzero(urdc->disk_queue, NSC_MAXPATH);
}
}
}
fail:
rdc_many_exit(krdc);
return (rc);
}
/*
* Move the set to a new group if possible
*/
static int
change_group(rdc_k_info_t *krdc, int options)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_u_info_t *utmp;
rdc_k_info_t *ktmp;
rdc_k_info_t *next;
char tmpq[NSC_MAXPATH];
int index;
int rc = -1;
rdc_group_t *group, *old_group;
nsthread_t *trc;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
/*
* Look for matching group name, primary host name and secondary
* host name.
*/
bzero(&tmpq, sizeof (tmpq));
rdc_many_enter(krdc);
old_group = krdc->group;
next = krdc->group_next;
if (RDC_IS_DISKQ(old_group)) { /* can't keep your own queue */
(void) strncpy(tmpq, urdc->disk_queue, NSC_MAXPATH);
bzero(urdc->disk_queue, sizeof (urdc->disk_queue));
}
for (index = 0; index < rdc_max_sets; index++) {
utmp = &rdc_u_info[index];
ktmp = &rdc_k_info[index];
if (ktmp == krdc)
continue;
if (urdc->group_name[0] == 0)
break;
if (!IS_CONFIGURED(ktmp))
continue;
if (strncmp(utmp->group_name, urdc->group_name,
NSC_MAXPATH) != 0)
continue;
if (strncmp(utmp->primary.intf, urdc->primary.intf,
MAX_RDC_HOST_SIZE) != 0)
goto bad;
if (strncmp(utmp->secondary.intf, urdc->secondary.intf,
MAX_RDC_HOST_SIZE) != 0)
goto bad;
/* Group already exists, so add this set to the group */
if (((options & RDC_OPT_ASYNC) == 0) &&
((ktmp->type_flag & RDC_ASYNCMODE) != 0)) {
/* Must be same mode as existing group members */
goto bad;
}
if (((options & RDC_OPT_ASYNC) != 0) &&
((ktmp->type_flag & RDC_ASYNCMODE) == 0)) {
/* Must be same mode as existing group members */
goto bad;
}
ktmp->group->count++;
krdc->group = ktmp->group;
krdc->group_next = ktmp->group_next;
ktmp->group_next = krdc;
bzero(urdc->disk_queue, sizeof (urdc->disk_queue));
(void) strncpy(urdc->disk_queue, utmp->disk_queue, NSC_MAXPATH);
goto good;
}
/* This must be a new group */
group = rdc_newgroup();
krdc->group = group;
krdc->group_next = krdc;
trc = nst_create(_rdc_ioset, rdc_qfiller_thr, (void *)krdc, NST_SLEEP);
if (trc == NULL) {
rc = -1;
cmn_err(CE_NOTE, "!unable to create queue filler daemon");
goto bad;
}
if (urdc->disk_queue[0] == 0) {
krdc->group->flags |= RDC_MEMQUE;
} else {
krdc->group->flags |= RDC_DISKQUE;
if ((rc = rdc_enable_diskq(krdc)) < 0)
goto bad;
}
good:
if (options & RDC_OPT_ASYNC) {
krdc->type_flag |= RDC_ASYNCMODE;
rdc_set_flags(urdc, RDC_ASYNC);
} else {
krdc->type_flag &= ~RDC_ASYNCMODE;
rdc_clr_flags(urdc, RDC_ASYNC);
}
old_group->count--;
if (!old_group->rdc_writer && old_group->count == 0) {
/* Group now empty, so destroy */
if (RDC_IS_DISKQ(old_group)) {
rdc_unintercept_diskq(old_group);
mutex_enter(&old_group->diskqmutex);
rdc_close_diskq(old_group);
mutex_exit(&old_group->diskqmutex);
}
mutex_enter(&old_group->ra_queue.net_qlock);
/*
* Assure the we've stopped and the flusher thread has not
* fallen back to sleep
*/
if (old_group->ra_queue.qfill_sleeping != RDC_QFILL_DEAD) {
old_group->ra_queue.qfflags |= RDC_QFILLSTOP;
while (old_group->ra_queue.qfflags & RDC_QFILLSTOP) {
if (old_group->ra_queue.qfill_sleeping ==
RDC_QFILL_ASLEEP)
cv_broadcast(&old_group->ra_queue.qfcv);
mutex_exit(&old_group->ra_queue.net_qlock);
delay(2);
mutex_enter(&old_group->ra_queue.net_qlock);
}
}
mutex_exit(&old_group->ra_queue.net_qlock);
rdc_delgroup(old_group);
rdc_many_exit(krdc);
return (0);
}
/* Take this rdc structure off the old group list */
for (ktmp = next; ktmp->group_next != krdc; ktmp = ktmp->group_next)
;
ktmp->group_next = next;
rdc_many_exit(krdc);
return (0);
bad:
/* Leave existing group status alone */
(void) strncpy(urdc->disk_queue, tmpq, NSC_MAXPATH);
rdc_many_exit(krdc);
return (rc);
}
/*
* Set flags for an rdc set, setting the group flags as necessary.
*/
void
rdc_set_flags(rdc_u_info_t *urdc, int flags)
{
rdc_k_info_t *krdc = &rdc_k_info[urdc->index];
int vflags, sflags, bflags, ssflags;
DTRACE_PROBE2(rdc_set_flags, int, krdc->index, int, flags);
vflags = flags & RDC_VFLAGS;
sflags = flags & RDC_SFLAGS;
bflags = flags & RDC_BFLAGS;
ssflags = flags & RDC_SYNC_STATE_FLAGS;
if (vflags) {
/* normal volume flags */
ASSERT(MUTEX_HELD(&rdc_conf_lock) ||
MUTEX_HELD(&krdc->group->lock));
if (ssflags)
mutex_enter(&krdc->bmapmutex);
urdc->flags |= vflags;
if (ssflags)
mutex_exit(&krdc->bmapmutex);
}
if (sflags) {
/* Sync state flags that are protected by a different lock */
ASSERT(MUTEX_HELD(&rdc_many_lock));
urdc->sync_flags |= sflags;
}
if (bflags) {
/* Bmap state flags that are protected by a different lock */
ASSERT(MUTEX_HELD(&krdc->bmapmutex));
urdc->bmap_flags |= bflags;
}
}
/*
* Clear flags for an rdc set, clearing the group flags as necessary.
*/
void
rdc_clr_flags(rdc_u_info_t *urdc, int flags)
{
rdc_k_info_t *krdc = &rdc_k_info[urdc->index];
int vflags, sflags, bflags;
DTRACE_PROBE2(rdc_clr_flags, int, krdc->index, int, flags);
vflags = flags & RDC_VFLAGS;
sflags = flags & RDC_SFLAGS;
bflags = flags & RDC_BFLAGS;
if (vflags) {
/* normal volume flags */
ASSERT(MUTEX_HELD(&rdc_conf_lock) ||
MUTEX_HELD(&krdc->group->lock));
urdc->flags &= ~vflags;
}
if (sflags) {
/* Sync state flags that are protected by a different lock */
ASSERT(MUTEX_HELD(&rdc_many_lock));
urdc->sync_flags &= ~sflags;
}
if (bflags) {
/* Bmap state flags that are protected by a different lock */
ASSERT(MUTEX_HELD(&krdc->bmapmutex));
urdc->bmap_flags &= ~bflags;
}
}
/*
* Get the flags for an rdc set.
*/
int
rdc_get_vflags(rdc_u_info_t *urdc)
{
return (urdc->flags | urdc->sync_flags | urdc->bmap_flags);
}
/*
* Initialise flags for an rdc set.
*/
static void
rdc_init_flags(rdc_u_info_t *urdc)
{
urdc->flags = 0;
urdc->mflags = 0;
urdc->sync_flags = 0;
urdc->bmap_flags = 0;
}
/*
* Set flags for a many group.
*/
void
rdc_set_mflags(rdc_u_info_t *urdc, int flags)
{
rdc_k_info_t *krdc = &rdc_k_info[urdc->index];
rdc_k_info_t *this = krdc;
ASSERT(!(flags & ~RDC_MFLAGS));
if (flags == 0)
return;
ASSERT(MUTEX_HELD(&rdc_many_lock));
rdc_set_flags(urdc, flags); /* set flags on local urdc */
urdc->mflags |= flags;
for (krdc = krdc->many_next; krdc != this; krdc = krdc->many_next) {
urdc = &rdc_u_info[krdc->index];
if (!IS_ENABLED(urdc))
continue;
urdc->mflags |= flags;
}
}
/*
* Clear flags for a many group.
*/
void
rdc_clr_mflags(rdc_u_info_t *urdc, int flags)
{
rdc_k_info_t *krdc = &rdc_k_info[urdc->index];
rdc_k_info_t *this = krdc;
rdc_u_info_t *utmp;
ASSERT(!(flags & ~RDC_MFLAGS));
if (flags == 0)
return;
ASSERT(MUTEX_HELD(&rdc_many_lock));
rdc_clr_flags(urdc, flags); /* clear flags on local urdc */
/*
* We must maintain the mflags based on the set of flags for
* all the urdc's that are chained up.
*/
/*
* First look through all the urdc's and remove bits from
* the 'flags' variable that are in use elsewhere.
*/
for (krdc = krdc->many_next; krdc != this; krdc = krdc->many_next) {
utmp = &rdc_u_info[krdc->index];
if (!IS_ENABLED(utmp))
continue;
flags &= ~(rdc_get_vflags(utmp) & RDC_MFLAGS);
if (flags == 0)
break;
}
/*
* Now clear flags as necessary.
*/
if (flags != 0) {
urdc->mflags &= ~flags;
for (krdc = krdc->many_next; krdc != this;
krdc = krdc->many_next) {
utmp = &rdc_u_info[krdc->index];
if (!IS_ENABLED(utmp))
continue;
utmp->mflags &= ~flags;
}
}
}
int
rdc_get_mflags(rdc_u_info_t *urdc)
{
return (urdc->mflags);
}
void
rdc_set_flags_log(rdc_u_info_t *urdc, int flags, char *why)
{
DTRACE_PROBE2(rdc_set_flags_log, int, urdc->index, int, flags);
rdc_set_flags(urdc, flags);
if (why == NULL)
return;
if (flags & RDC_LOGGING)
cmn_err(CE_NOTE, "!sndr: %s:%s entered logging mode: %s",
urdc->secondary.intf, urdc->secondary.file, why);
if (flags & RDC_VOL_FAILED)
cmn_err(CE_NOTE, "!sndr: %s:%s volume failed: %s",
urdc->secondary.intf, urdc->secondary.file, why);
if (flags & RDC_BMP_FAILED)
cmn_err(CE_NOTE, "!sndr: %s:%s bitmap failed: %s",
urdc->secondary.intf, urdc->secondary.file, why);
}
/*
* rdc_lor(source, dest, len)
* logically OR memory pointed to by source and dest, copying result into dest.
*/
void
rdc_lor(const uchar_t *source, uchar_t *dest, int len)
{
int i;
if (source == NULL)
return;
for (i = 0; i < len; i++)
*dest++ |= *source++;
}
static int
check_filesize(int index, spcs_s_info_t kstatus)
{
uint64_t remote_size;
char tmp1[16], tmp2[16];
rdc_u_info_t *urdc = &rdc_u_info[index];
int status;
status = rdc_net_getsize(index, &remote_size);
if (status) {
(void) spcs_s_inttostring(status, tmp1, sizeof (tmp1), 0);
spcs_s_add(kstatus, RDC_EGETSIZE, urdc->secondary.intf,
urdc->secondary.file, tmp1);
(void) rdc_net_state(index, CCIO_ENABLELOG);
return (RDC_EGETSIZE);
}
if (remote_size < (unsigned long long)urdc->volume_size) {
(void) spcs_s_inttostring(
urdc->volume_size, tmp1, sizeof (tmp1), 0);
/*
* Cheat, and covert to int, until we have
* spcs_s_unsignedlonginttostring().
*/
status = (int)remote_size;
(void) spcs_s_inttostring(status, tmp2, sizeof (tmp2), 0);
spcs_s_add(kstatus, RDC_ESIZE, urdc->primary.intf,
urdc->primary.file, tmp1, urdc->secondary.intf,
urdc->secondary.file, tmp2);
(void) rdc_net_state(index, CCIO_ENABLELOG);
return (RDC_ESIZE);
}
return (0);
}
static void
rdc_volume_update_svc(intptr_t arg)
{
rdc_update_t *update = (rdc_update_t *)arg;
rdc_k_info_t *krdc;
rdc_k_info_t *this;
rdc_u_info_t *urdc;
struct net_bdata6 bd;
int index;
int rc;
#ifdef DEBUG_IIUPDATE
cmn_err(CE_NOTE, "!SNDR received update request for %s",
update->volume);
#endif
if ((update->protocol != RDC_SVC_ONRETURN) &&
(update->protocol != RDC_SVC_VOL_ENABLED)) {
/* don't understand what the client intends to do */
update->denied = 1;
spcs_s_add(update->status, RDC_EVERSION);
return;
}
index = rdc_lookup_enabled(update->volume, 0);
if (index < 0)
return;
/*
* warn II that this volume is in use by sndr so
* II can validate the sizes of the master vs shadow
* and avoid trouble later down the line with
* size mis-matches between urdc->volume_size and
* what is returned from nsc_partsize() which may
* be the size of the master when replicating the shadow
*/
if (update->protocol == RDC_SVC_VOL_ENABLED) {
if (index >= 0)
update->denied = 1;
return;
}
krdc = &rdc_k_info[index];
urdc = &rdc_u_info[index];
this = krdc;
do {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING)) {
#ifdef DEBUG_IIUPDATE
cmn_err(CE_NOTE, "!SNDR refused update request for %s",
update->volume);
#endif
update->denied = 1;
spcs_s_add(update->status, RDC_EMIRRORUP);
return;
}
/* 1->many - all must be logging */
if (IS_MANY(krdc) && IS_STATE(urdc, RDC_PRIMARY)) {
rdc_many_enter(krdc);
for (krdc = krdc->many_next; krdc != this;
krdc = krdc->many_next) {
urdc = &rdc_u_info[krdc->index];
if (!IS_ENABLED(urdc))
continue;
break;
}
rdc_many_exit(krdc);
}
} while (krdc != this);
#ifdef DEBUG_IIUPDATE
cmn_err(CE_NOTE, "!SNDR allowed update request for %s", update->volume);
#endif
urdc = &rdc_u_info[krdc->index];
do {
bd.size = min(krdc->bitmap_size, (nsc_size_t)update->size);
bd.data.data_val = (char *)update->bitmap;
bd.offset = 0;
bd.cd = index;
if ((rc = RDC_OR_BITMAP(&bd)) != 0) {
update->denied = 1;
spcs_s_add(update->status, rc);
return;
}
urdc = &rdc_u_info[index];
urdc->bits_set = RDC_COUNT_BITMAP(krdc);
if (IS_MANY(krdc) && IS_STATE(urdc, RDC_PRIMARY)) {
rdc_many_enter(krdc);
for (krdc = krdc->many_next; krdc != this;
krdc = krdc->many_next) {
index = krdc->index;
if (!IS_ENABLED(urdc))
continue;
break;
}
rdc_many_exit(krdc);
}
} while (krdc != this);
/* II (or something else) has updated us, so no need for a sync */
if (rdc_get_vflags(urdc) & (RDC_SYNC_NEEDED | RDC_RSYNC_NEEDED)) {
rdc_many_enter(krdc);
rdc_clr_flags(urdc, RDC_SYNC_NEEDED | RDC_RSYNC_NEEDED);
rdc_many_exit(krdc);
}
if (krdc->bitmap_write > 0)
(void) rdc_write_bitmap(krdc);
}
/*
* rdc_check()
*
* Return 0 if the set is configured, enabled and the supplied
* addressing information matches the in-kernel config, otherwise
* return 1.
*/
static int
rdc_check(rdc_k_info_t *krdc, rdc_set_t *rdc_set)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
ASSERT(MUTEX_HELD(&krdc->group->lock));
if (!IS_ENABLED(urdc))
return (1);
if (strncmp(urdc->primary.file, rdc_set->primary.file,
NSC_MAXPATH) != 0) {
#ifdef DEBUG
cmn_err(CE_WARN, "!rdc_check: primary file mismatch %s vs %s",
urdc->primary.file, rdc_set->primary.file);
#endif
return (1);
}
if (rdc_set->primary.addr.len != 0 &&
bcmp(urdc->primary.addr.buf, rdc_set->primary.addr.buf,
urdc->primary.addr.len) != 0) {
#ifdef DEBUG
cmn_err(CE_WARN, "!rdc_check: primary address mismatch for %s",
urdc->primary.file);
#endif
return (1);
}
if (strncmp(urdc->secondary.file, rdc_set->secondary.file,
NSC_MAXPATH) != 0) {
#ifdef DEBUG
cmn_err(CE_WARN, "!rdc_check: secondary file mismatch %s vs %s",
urdc->secondary.file, rdc_set->secondary.file);
#endif
return (1);
}
if (rdc_set->secondary.addr.len != 0 &&
bcmp(urdc->secondary.addr.buf, rdc_set->secondary.addr.buf,
urdc->secondary.addr.len) != 0) {
#ifdef DEBUG
cmn_err(CE_WARN, "!rdc_check: secondary addr mismatch for %s",
urdc->secondary.file);
#endif
return (1);
}
return (0);
}
/*
* Lookup enabled sets for a bitmap match
*/
int
rdc_lookup_bitmap(char *pathname)
{
rdc_u_info_t *urdc;
#ifdef DEBUG
rdc_k_info_t *krdc;
#endif
int index;
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
#ifdef DEBUG
krdc = &rdc_k_info[index];
#endif
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_ENABLED(urdc))
continue;
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
if (strncmp(pathname, urdc->primary.bitmap,
NSC_MAXPATH) == 0)
return (index);
} else {
if (strncmp(pathname, urdc->secondary.bitmap,
NSC_MAXPATH) == 0)
return (index);
}
}
return (-1);
}
/*
* Translate a pathname to index into rdc_k_info[].
* Returns first match that is enabled.
*/
int
rdc_lookup_enabled(char *pathname, int allow_disabling)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
restart:
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_ENABLED(urdc))
continue;
if (allow_disabling == 0 && krdc->type_flag & RDC_UNREGISTER)
continue;
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
if (strncmp(pathname, urdc->primary.file,
NSC_MAXPATH) == 0)
return (index);
} else {
if (strncmp(pathname, urdc->secondary.file,
NSC_MAXPATH) == 0)
return (index);
}
}
if (allow_disabling == 0) {
/* None found, or only a disabling one found, so try again */
allow_disabling = 1;
goto restart;
}
return (-1);
}
/*
* Translate a pathname to index into rdc_k_info[].
* Returns first match that is configured.
*
* Used by enable & resume code.
* Must be called with rdc_conf_lock held.
*/
int
rdc_lookup_configured(char *pathname)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_CONFIGURED(krdc))
continue;
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
if (strncmp(pathname, urdc->primary.file,
NSC_MAXPATH) == 0)
return (index);
} else {
if (strncmp(pathname, urdc->secondary.file,
NSC_MAXPATH) == 0)
return (index);
}
}
return (-1);
}
/*
* Looks up a configured set with matching secondary interface:volume
* to check for illegal many-to-one volume configs. To be used during
* enable and resume processing.
*
* Must be called with rdc_conf_lock held.
*/
static int
rdc_lookup_many2one(rdc_set_t *rdc_set)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
if (!IS_CONFIGURED(krdc))
continue;
if (strncmp(urdc->secondary.file,
rdc_set->secondary.file, NSC_MAXPATH) != 0)
continue;
if (strncmp(urdc->secondary.intf,
rdc_set->secondary.intf, MAX_RDC_HOST_SIZE) != 0)
continue;
break;
}
if (index < rdc_max_sets)
return (index);
else
return (-1);
}
/*
* Looks up an rdc set to check if it is already configured, to be used from
* functions called from the config ioctl where the interface names can be
* used for comparison.
*
* Must be called with rdc_conf_lock held.
*/
int
rdc_lookup_byname(rdc_set_t *rdc_set)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_CONFIGURED(krdc))
continue;
if (strncmp(urdc->primary.file, rdc_set->primary.file,
NSC_MAXPATH) != 0)
continue;
if (strncmp(urdc->primary.intf, rdc_set->primary.intf,
MAX_RDC_HOST_SIZE) != 0)
continue;
if (strncmp(urdc->secondary.file, rdc_set->secondary.file,
NSC_MAXPATH) != 0)
continue;
if (strncmp(urdc->secondary.intf, rdc_set->secondary.intf,
MAX_RDC_HOST_SIZE) != 0)
continue;
break;
}
if (index < rdc_max_sets)
return (index);
else
return (-1);
}
/*
* Looks up a secondary hostname and device, to be used from
* functions called from the config ioctl where the interface names can be
* used for comparison.
*
* Must be called with rdc_conf_lock held.
*/
int
rdc_lookup_byhostdev(char *intf, char *file)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_CONFIGURED(krdc))
continue;
if (strncmp(urdc->secondary.file, file,
NSC_MAXPATH) != 0)
continue;
if (strncmp(urdc->secondary.intf, intf,
MAX_RDC_HOST_SIZE) != 0)
continue;
break;
}
if (index < rdc_max_sets)
return (index);
else
return (-1);
}
/*
* Looks up an rdc set to see if it is currently enabled, to be used on the
* server so that the interface addresses must be used for comparison, as
* the interface names may differ from those used on the client.
*
*/
int
rdc_lookup_byaddr(rdc_set_t *rdc_set)
{
rdc_u_info_t *urdc;
#ifdef DEBUG
rdc_k_info_t *krdc;
#endif
int index;
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
#ifdef DEBUG
krdc = &rdc_k_info[index];
#endif
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_ENABLED(urdc))
continue;
if (strcmp(urdc->primary.file, rdc_set->primary.file) != 0)
continue;
if (strcmp(urdc->secondary.file, rdc_set->secondary.file) != 0)
continue;
if (bcmp(urdc->primary.addr.buf, rdc_set->primary.addr.buf,
urdc->primary.addr.len) != 0) {
continue;
}
if (bcmp(urdc->secondary.addr.buf, rdc_set->secondary.addr.buf,
urdc->secondary.addr.len) != 0) {
continue;
}
break;
}
if (index < rdc_max_sets)
return (index);
else
return (-1);
}
/*
* Return index of first multihop or 1-to-many
* Behavior controlled by setting ismany.
* ismany TRUE (one-to-many)
* ismany FALSE (multihops)
*
*/
static int
rdc_lookup_multimany(rdc_k_info_t *krdc, const int ismany)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_u_info_t *utmp;
rdc_k_info_t *ktmp;
char *pathname;
int index;
int role;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
ASSERT(MUTEX_HELD(&rdc_many_lock));
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
/* this host is the primary of the krdc set */
pathname = urdc->primary.file;
if (ismany) {
/*
* 1-many sets are linked by primary :
* look for matching primary on this host
*/
role = RDC_PRIMARY;
} else {
/*
* multihop sets link primary to secondary :
* look for matching secondary on this host
*/
role = 0;
}
} else {
/* this host is the secondary of the krdc set */
pathname = urdc->secondary.file;
if (ismany) {
/*
* 1-many sets are linked by primary, so if
* this host is the secondary of the set this
* cannot require 1-many linkage.
*/
return (-1);
} else {
/*
* multihop sets link primary to secondary :
* look for matching primary on this host
*/
role = RDC_PRIMARY;
}
}
for (index = 0; index < rdc_max_sets; index++) {
utmp = &rdc_u_info[index];
ktmp = &rdc_k_info[index];
if (!IS_CONFIGURED(ktmp)) {
continue;
}
if (role == RDC_PRIMARY) {
/*
* Find a primary that is this host and is not
* krdc but shares the same data volume as krdc.
*/
if ((rdc_get_vflags(utmp) & RDC_PRIMARY) &&
strncmp(utmp->primary.file, pathname,
NSC_MAXPATH) == 0 && (krdc != ktmp)) {
break;
}
} else {
/*
* Find a secondary that is this host and is not
* krdc but shares the same data volume as krdc.
*/
if (!(rdc_get_vflags(utmp) & RDC_PRIMARY) &&
strncmp(utmp->secondary.file, pathname,
NSC_MAXPATH) == 0 && (krdc != ktmp)) {
break;
}
}
}
if (index < rdc_max_sets)
return (index);
else
return (-1);
}
/*
* Returns secondary match that is configured.
*
* Used by enable & resume code.
* Must be called with rdc_conf_lock held.
*/
static int
rdc_lookup_secondary(char *pathname)
{
rdc_u_info_t *urdc;
rdc_k_info_t *krdc;
int index;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
for (index = 0; index < rdc_max_sets; index++) {
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
ASSERT(krdc->index == index);
ASSERT(urdc->index == index);
if (!IS_CONFIGURED(krdc))
continue;
if (!IS_STATE(urdc, RDC_PRIMARY)) {
if (strncmp(pathname, urdc->secondary.file,
NSC_MAXPATH) == 0)
return (index);
}
}
return (-1);
}
static nsc_fd_t *
rdc_open_direct(rdc_k_info_t *krdc)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
int rc;
if (krdc->remote_fd == NULL)
krdc->remote_fd = nsc_open(urdc->direct_file,
NSC_RDCHR_ID|NSC_DEVICE|NSC_RDWR, 0, 0, &rc);
return (krdc->remote_fd);
}
static void
rdc_close_direct(rdc_k_info_t *krdc)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
urdc->direct_file[0] = 0;
if (krdc->remote_fd) {
if (nsc_close(krdc->remote_fd) == 0) {
krdc->remote_fd = NULL;
}
}
}
#ifdef DEBUG_MANY
static void
print_many(rdc_k_info_t *start)
{
rdc_k_info_t *p = start;
rdc_u_info_t *q = &rdc_u_info[p->index];
do {
cmn_err(CE_CONT, "!krdc %p, %s %s (many_nxt %p multi_nxt %p)\n",
p, q->primary.file, q->secondary.file, p->many_next,
p->multi_next);
delay(10);
p = p->many_next;
q = &rdc_u_info[p->index];
} while (p && p != start);
}
#endif /* DEBUG_MANY */
static int
add_to_multi(rdc_k_info_t *krdc)
{
rdc_u_info_t *urdc;
rdc_k_info_t *ktmp;
rdc_u_info_t *utmp;
int mindex;
int domulti;
urdc = &rdc_u_info[krdc->index];
ASSERT(MUTEX_HELD(&rdc_conf_lock));
ASSERT(MUTEX_HELD(&rdc_many_lock));
/* Now find companion krdc */
mindex = rdc_lookup_multimany(krdc, FALSE);
#ifdef DEBUG_MANY
cmn_err(CE_NOTE,
"!add_to_multi: lookup_multimany: mindex %d prim %s sec %s",
mindex, urdc->primary.file, urdc->secondary.file);
#endif
if (mindex >= 0) {
ktmp = &rdc_k_info[mindex];
utmp = &rdc_u_info[mindex];
domulti = 1;
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) &&
ktmp->multi_next != NULL) {
/*
* We are adding a new primary to a many
* group that is the target of a multihop, just
* ignore it since we are linked in elsewhere.
*/
domulti = 0;
}
if (domulti) {
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
/* Is previous leg using direct file I/O? */
if (utmp->direct_file[0] != 0) {
/* It is, so cannot proceed */
return (-1);
}
} else {
/* Is this leg using direct file I/O? */
if (urdc->direct_file[0] != 0) {
/* It is, so cannot proceed */
return (-1);
}
}
krdc->multi_next = ktmp;
ktmp->multi_next = krdc;
}
} else {
krdc->multi_next = NULL;
#ifdef DEBUG_MANY
cmn_err(CE_NOTE, "!add_to_multi: NULL multi_next index %d",
krdc->index);
#endif
}
return (0);
}
/*
* Add a new set to the circular list of 1-to-many primaries and chain
* up any multihop as well.
*/
static int
add_to_many(rdc_k_info_t *krdc)
{
rdc_k_info_t *okrdc;
int oindex;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
rdc_many_enter(krdc);
if (add_to_multi(krdc) < 0) {
rdc_many_exit(krdc);
return (-1);
}
oindex = rdc_lookup_multimany(krdc, TRUE);
if (oindex < 0) {
#ifdef DEBUG_MANY
print_many(krdc);
#endif
rdc_many_exit(krdc);
return (0);
}
okrdc = &rdc_k_info[oindex];
#ifdef DEBUG_MANY
print_many(okrdc);
#endif
krdc->many_next = okrdc->many_next;
okrdc->many_next = krdc;
#ifdef DEBUG_MANY
print_many(okrdc);
#endif
rdc_many_exit(krdc);
return (0);
}
/*
* Remove a set from the circular list of 1-to-many primaries.
*/
static void
remove_from_many(rdc_k_info_t *old)
{
rdc_u_info_t *uold = &rdc_u_info[old->index];
rdc_k_info_t *p, *q;
ASSERT(MUTEX_HELD(&rdc_conf_lock));
rdc_many_enter(old);
#ifdef DEBUG_MANY
cmn_err(CE_NOTE, "!rdc: before remove_from_many");
print_many(old);
#endif
if (old->many_next == old) {
/* remove from multihop */
if ((q = old->multi_next) != NULL) {
ASSERT(q->multi_next == old);
q->multi_next = NULL;
old->multi_next = NULL;
}
rdc_many_exit(old);
return;
}
/* search */
for (p = old->many_next; p->many_next != old; p = p->many_next)
;
p->many_next = old->many_next;
old->many_next = old;
if ((q = old->multi_next) != NULL) {
/*
* old was part of a multihop, so switch multi pointers
* to someone remaining on the many chain
*/
ASSERT(p->multi_next == NULL);
q->multi_next = p;
p->multi_next = q;
old->multi_next = NULL;
}
#ifdef DEBUG_MANY
if (p == old) {
cmn_err(CE_NOTE, "!rdc: after remove_from_many empty");
} else {
cmn_err(CE_NOTE, "!rdc: after remove_from_many");
print_many(p);
}
#endif
rdc_clr_mflags(&rdc_u_info[p->index],
(rdc_get_vflags(uold) & RDC_MFLAGS));
rdc_many_exit(old);
}
static int
_rdc_enable(rdc_set_t *rdc_set, int options, spcs_s_info_t kstatus)
{
int index;
char *rhost;
struct netbuf *addrp;
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rdc_srv_t *svp = NULL;
char *local_file;
char *local_bitmap;
char *diskq;
int rc;
nsc_size_t maxfbas;
rdc_group_t *grp;
if ((rdc_set->primary.intf[0] == 0) ||
(rdc_set->primary.addr.len == 0) ||
(rdc_set->primary.file[0] == 0) ||
(rdc_set->primary.bitmap[0] == 0) ||
(rdc_set->secondary.intf[0] == 0) ||
(rdc_set->secondary.addr.len == 0) ||
(rdc_set->secondary.file[0] == 0) ||
(rdc_set->secondary.bitmap[0] == 0)) {
spcs_s_add(kstatus, RDC_EEMPTY);
return (RDC_EEMPTY);
}
/* Next check there aren't any enabled rdc sets which match. */
mutex_enter(&rdc_conf_lock);
if (rdc_lookup_byname(rdc_set) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EENABLED, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EENABLED);
}
if (rdc_lookup_many2one(rdc_set) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EMANY2ONE, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EMANY2ONE);
}
if (rdc_set->netconfig->knc_proto == NULL) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETCONFIG);
return (RDC_ENETCONFIG);
}
if (rdc_set->primary.addr.len == 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETBUF, rdc_set->primary.file);
return (RDC_ENETBUF);
}
if (rdc_set->secondary.addr.len == 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETBUF, rdc_set->secondary.file);
return (RDC_ENETBUF);
}
/* Check that the local data volume isn't in use as a bitmap */
if (options & RDC_OPT_PRIMARY)
local_file = rdc_set->primary.file;
else
local_file = rdc_set->secondary.file;
if (rdc_lookup_bitmap(local_file) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EVOLINUSE, local_file);
return (RDC_EVOLINUSE);
}
/* check that the secondary data volume isn't in use */
if (!(options & RDC_OPT_PRIMARY)) {
local_file = rdc_set->secondary.file;
if (rdc_lookup_secondary(local_file) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EVOLINUSE, local_file);
return (RDC_EVOLINUSE);
}
}
/* check that the local data vol is not in use as a diskqueue */
if (options & RDC_OPT_PRIMARY) {
if (rdc_lookup_diskq(rdc_set->primary.file) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus,
RDC_EVOLINUSE, rdc_set->primary.file);
return (RDC_EVOLINUSE);
}
}
/* Check that the bitmap isn't in use as a data volume */
if (options & RDC_OPT_PRIMARY)
local_bitmap = rdc_set->primary.bitmap;
else
local_bitmap = rdc_set->secondary.bitmap;
if (rdc_lookup_configured(local_bitmap) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EBMPINUSE, local_bitmap);
return (RDC_EBMPINUSE);
}
/* Check that the bitmap isn't already in use as a bitmap */
if (rdc_lookup_bitmap(local_bitmap) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EBMPINUSE, local_bitmap);
return (RDC_EBMPINUSE);
}
/* check that the diskq (if here) is not in use */
diskq = rdc_set->disk_queue;
if (diskq[0] && rdc_diskq_inuse(rdc_set, diskq)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EDISKQINUSE, diskq);
return (RDC_EDISKQINUSE);
}
/* Set urdc->volume_size */
index = rdc_dev_open(rdc_set, options);
if (index < 0) {
mutex_exit(&rdc_conf_lock);
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EOPEN, rdc_set->primary.intf,
rdc_set->primary.file);
else
spcs_s_add(kstatus, RDC_EOPEN, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EOPEN);
}
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
/* copy relevant parts of rdc_set to urdc field by field */
(void) strncpy(urdc->primary.intf, rdc_set->primary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->secondary.intf, rdc_set->secondary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->group_name, rdc_set->group_name, NSC_MAXPATH);
(void) strncpy(urdc->disk_queue, rdc_set->disk_queue, NSC_MAXPATH);
dup_rdc_netbuf(&rdc_set->primary.addr, &urdc->primary.addr);
(void) strncpy(urdc->primary.file, rdc_set->primary.file, NSC_MAXPATH);
(void) strncpy(urdc->primary.bitmap, rdc_set->primary.bitmap,
NSC_MAXPATH);
dup_rdc_netbuf(&rdc_set->secondary.addr, &urdc->secondary.addr);
(void) strncpy(urdc->secondary.file, rdc_set->secondary.file,
NSC_MAXPATH);
(void) strncpy(urdc->secondary.bitmap, rdc_set->secondary.bitmap,
NSC_MAXPATH);
urdc->setid = rdc_set->setid;
/*
* before we try to add to group, or create one, check out
* if we are doing the wrong thing with the diskq
*/
if (urdc->disk_queue[0] && (options & RDC_OPT_SYNC)) {
mutex_exit(&rdc_conf_lock);
rdc_dev_close(krdc);
spcs_s_add(kstatus, RDC_EQWRONGMODE);
return (RDC_EQWRONGMODE);
}
if ((rc = add_to_group(krdc, options, RDC_CMD_ENABLE)) != 0) {
mutex_exit(&rdc_conf_lock);
rdc_dev_close(krdc);
if (rc == RDC_EQNOADD) {
spcs_s_add(kstatus, RDC_EQNOADD, rdc_set->disk_queue);
return (RDC_EQNOADD);
} else {
spcs_s_add(kstatus, RDC_EGROUP,
rdc_set->primary.intf, rdc_set->primary.file,
rdc_set->secondary.intf, rdc_set->secondary.file,
rdc_set->group_name);
return (RDC_EGROUP);
}
}
/*
* maxfbas was set in rdc_dev_open as primary's maxfbas.
* If diskq's maxfbas is smaller, then use diskq's.
*/
grp = krdc->group;
if (grp && RDC_IS_DISKQ(grp) && (grp->diskqfd != 0)) {
rc = _rdc_rsrv_diskq(grp);
if (RDC_SUCCESS(rc)) {
rc = nsc_maxfbas(grp->diskqfd, 0, &maxfbas);
if (rc == 0) {
#ifdef DEBUG
if (krdc->maxfbas != maxfbas)
cmn_err(CE_NOTE,
"!_rdc_enable: diskq maxfbas = %"
NSC_SZFMT ", primary maxfbas = %"
NSC_SZFMT, maxfbas, krdc->maxfbas);
#endif
krdc->maxfbas = min(krdc->maxfbas, maxfbas);
} else {
cmn_err(CE_WARN,
"!_rdc_enable: diskq maxfbas failed (%d)",
rc);
}
_rdc_rlse_diskq(grp);
} else {
cmn_err(CE_WARN,
"!_rdc_enable: diskq reserve failed (%d)", rc);
}
}
rdc_init_flags(urdc);
(void) strncpy(urdc->direct_file, rdc_set->direct_file, NSC_MAXPATH);
if ((options & RDC_OPT_PRIMARY) && rdc_set->direct_file[0]) {
if (rdc_open_direct(krdc) == NULL)
rdc_set_flags(urdc, RDC_FCAL_FAILED);
}
krdc->many_next = krdc;
ASSERT(krdc->type_flag == 0);
krdc->type_flag = RDC_CONFIGURED;
if (options & RDC_OPT_PRIMARY)
rdc_set_flags(urdc, RDC_PRIMARY);
if (options & RDC_OPT_ASYNC)
krdc->type_flag |= RDC_ASYNCMODE;
set_busy(krdc);
urdc->syshostid = rdc_set->syshostid;
if (add_to_many(krdc) < 0) {
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
spcs_s_add(kstatus, RDC_EMULTI);
rc = RDC_EMULTI;
goto fail;
}
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/*
* The rdc set is configured but not yet enabled. Other operations must
* ignore this set until it is enabled.
*/
urdc->sync_pos = 0;
if (rdc_set->maxqfbas > 0)
urdc->maxqfbas = rdc_set->maxqfbas;
else
urdc->maxqfbas = rdc_maxthres_queue;
if (rdc_set->maxqitems > 0)
urdc->maxqitems = rdc_set->maxqitems;
else
urdc->maxqitems = rdc_max_qitems;
if (rdc_set->asyncthr > 0)
urdc->asyncthr = rdc_set->asyncthr;
else
urdc->asyncthr = rdc_asyncthr;
if (urdc->autosync == -1) {
/* Still unknown */
if (rdc_set->autosync > 0)
urdc->autosync = 1;
else
urdc->autosync = 0;
}
urdc->netconfig = rdc_set->netconfig;
if (options & RDC_OPT_PRIMARY) {
rhost = rdc_set->secondary.intf;
addrp = &rdc_set->secondary.addr;
} else {
rhost = rdc_set->primary.intf;
addrp = &rdc_set->primary.addr;
}
if (options & RDC_OPT_ASYNC)
rdc_set_flags(urdc, RDC_ASYNC);
svp = rdc_create_svinfo(rhost, addrp, urdc->netconfig);
if (svp == NULL) {
spcs_s_add(kstatus, ENOMEM);
rc = ENOMEM;
goto fail;
}
urdc->netconfig = NULL; /* This will be no good soon */
rdc_kstat_create(index);
/* Don't set krdc->intf here */
if (rdc_enable_bitmap(krdc, options & RDC_OPT_SETBMP) < 0)
goto bmpfail;
RDC_ZERO_BITREF(krdc);
if (krdc->lsrv == NULL)
krdc->lsrv = svp;
else {
#ifdef DEBUG
cmn_err(CE_WARN, "!_rdc_enable: krdc->lsrv already set: %p",
(void *) krdc->lsrv);
#endif
rdc_destroy_svinfo(svp);
}
svp = NULL;
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/* And finally */
krdc->remote_index = -1;
/* Should we set the whole group logging? */
rdc_set_flags(urdc, RDC_ENABLED | RDC_LOGGING);
rdc_group_exit(krdc);
if (rdc_intercept(krdc) != 0) {
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_ENABLED);
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EREGISTER, urdc->primary.file);
else
spcs_s_add(kstatus, RDC_EREGISTER,
urdc->secondary.file);
#ifdef DEBUG
cmn_err(CE_NOTE, "!nsc_register_path failed %s",
urdc->primary.file);
#endif
rc = RDC_EREGISTER;
goto bmpfail;
}
#ifdef DEBUG
cmn_err(CE_NOTE, "!SNDR: enabled %s %s", urdc->primary.file,
urdc->secondary.file);
#endif
rdc_write_state(urdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (0);
bmpfail:
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EBITMAP, rdc_set->primary.bitmap);
else
spcs_s_add(kstatus, RDC_EBITMAP, rdc_set->secondary.bitmap);
rc = RDC_EBITMAP;
if (rdc_get_vflags(urdc) & RDC_ENABLED) {
rdc_group_exit(krdc);
(void) rdc_unintercept(krdc);
rdc_group_enter(krdc);
}
fail:
rdc_kstat_delete(index);
rdc_group_exit(krdc);
if (krdc->intf) {
rdc_if_t *ip = krdc->intf;
mutex_enter(&rdc_conf_lock);
krdc->intf = NULL;
rdc_remove_from_if(ip);
mutex_exit(&rdc_conf_lock);
}
rdc_group_enter(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_dev_close(krdc);
rdc_close_direct(krdc);
rdc_destroy_svinfo(svp);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_group_exit(krdc);
mutex_enter(&rdc_conf_lock);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
remove_from_group(krdc);
if (IS_MANY(krdc) || IS_MULTI(krdc))
remove_from_many(krdc);
rdc_u_init(urdc);
ASSERT(krdc->type_flag & RDC_CONFIGURED);
krdc->type_flag = 0;
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_enable(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
int rc;
char itmp[10];
if (!(uparms->options & RDC_OPT_SYNC) &&
!(uparms->options & RDC_OPT_ASYNC)) {
rc = RDC_EEINVAL;
(void) spcs_s_inttostring(
uparms->options, itmp, sizeof (itmp), 1);
spcs_s_add(kstatus, RDC_EEINVAL, itmp);
goto done;
}
if (!(uparms->options & RDC_OPT_PRIMARY) &&
!(uparms->options & RDC_OPT_SECONDARY)) {
rc = RDC_EEINVAL;
(void) spcs_s_inttostring(
uparms->options, itmp, sizeof (itmp), 1);
spcs_s_add(kstatus, RDC_EEINVAL, itmp);
goto done;
}
if (!(uparms->options & RDC_OPT_SETBMP) &&
!(uparms->options & RDC_OPT_CLRBMP)) {
rc = RDC_EEINVAL;
(void) spcs_s_inttostring(
uparms->options, itmp, sizeof (itmp), 1);
spcs_s_add(kstatus, RDC_EEINVAL, itmp);
goto done;
}
rc = _rdc_enable(uparms->rdc_set, uparms->options, kstatus);
done:
return (rc);
}
/* ARGSUSED */
static int
_rdc_disable(rdc_k_info_t *krdc, rdc_config_t *uap, spcs_s_info_t kstatus)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_if_t *ip;
int index = krdc->index;
disk_queue *q;
rdc_set_t *rdc_set = uap->rdc_set;
ASSERT(krdc->group != NULL);
rdc_group_enter(krdc);
#ifdef DEBUG
ASSERT(rdc_check(krdc, rdc_set) == 0);
#else
if (((uap->options & RDC_OPT_FORCE_DISABLE) == 0) &&
rdc_check(krdc, rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
return (RDC_EALREADY);
}
#endif
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
halt_sync(krdc);
ASSERT(IS_ENABLED(urdc));
}
q = &krdc->group->diskq;
if (IS_ASYNC(urdc) && RDC_IS_DISKQ(krdc->group) &&
((!IS_STATE(urdc, RDC_LOGGING)) && (!QEMPTY(q)))) {
krdc->type_flag &= ~RDC_DISABLEPEND;
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EQNOTEMPTY, urdc->disk_queue);
return (RDC_EQNOTEMPTY);
}
rdc_group_exit(krdc);
(void) rdc_unintercept(krdc);
#ifdef DEBUG
cmn_err(CE_NOTE, "!SNDR: disabled %s %s", urdc->primary.file,
urdc->secondary.file);
#endif
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/*
* No new io can come in through the io provider.
* Wait for the async flusher to finish.
*/
if (IS_ASYNC(urdc) && !RDC_IS_DISKQ(krdc->group)) {
int tries = 2; /* in case of hopelessly stuck flusher threads */
#ifdef DEBUG
net_queue *qp = &krdc->group->ra_queue;
#endif
do {
if (!krdc->group->rdc_writer)
(void) rdc_writer(krdc->index);
(void) rdc_drain_queue(krdc->index);
} while (krdc->group->rdc_writer && tries--);
/* ok, force it to happen... */
if (rdc_drain_queue(krdc->index) != 0) {
do {
mutex_enter(&krdc->group->ra_queue.net_qlock);
krdc->group->asyncdis = 1;
cv_broadcast(&krdc->group->asyncqcv);
mutex_exit(&krdc->group->ra_queue.net_qlock);
cmn_err(CE_WARN,
"!SNDR: async I/O pending and not flushed "
"for %s during disable",
urdc->primary.file);
#ifdef DEBUG
cmn_err(CE_WARN,
"!nitems: %" NSC_SZFMT " nblocks: %"
NSC_SZFMT " head: 0x%p tail: 0x%p",
qp->nitems, qp->blocks,
(void *)qp->net_qhead,
(void *)qp->net_qtail);
#endif
} while (krdc->group->rdc_thrnum > 0);
}
}
mutex_enter(&rdc_conf_lock);
ip = krdc->intf;
krdc->intf = 0;
if (ip) {
rdc_remove_from_if(ip);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/* Must not hold group lock during this function */
rdc_group_exit(krdc);
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
rdc_group_enter(krdc);
(void) rdc_clear_state(krdc);
rdc_free_bitmap(krdc, RDC_CMD_DISABLE);
rdc_close_bitmap(krdc);
rdc_dev_close(krdc);
rdc_close_direct(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_group_exit(krdc);
/*
* we should now unregister the queue, with no conflicting
* locks held. This is the last(only) member of the group
*/
if (krdc->group && RDC_IS_DISKQ(krdc->group) &&
krdc->group->count == 1) { /* stop protecting queue */
rdc_unintercept_diskq(krdc->group);
}
mutex_enter(&rdc_conf_lock);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
wait_busy(krdc);
if (IS_MANY(krdc) || IS_MULTI(krdc))
remove_from_many(krdc);
remove_from_group(krdc);
krdc->remote_index = -1;
ASSERT(krdc->type_flag & RDC_CONFIGURED);
ASSERT(krdc->type_flag & RDC_DISABLEPEND);
krdc->type_flag = 0;
#ifdef DEBUG
if (krdc->dcio_bitmap)
cmn_err(CE_WARN, "!_rdc_disable: possible mem leak, "
"dcio_bitmap");
#endif
krdc->dcio_bitmap = NULL;
krdc->bitmap_ref = NULL;
krdc->bitmap_size = 0;
krdc->maxfbas = 0;
krdc->bitmap_write = 0;
krdc->disk_status = 0;
rdc_destroy_svinfo(krdc->lsrv);
krdc->lsrv = NULL;
krdc->multi_next = NULL;
rdc_u_init(urdc);
mutex_exit(&rdc_conf_lock);
rdc_kstat_delete(index);
return (0);
}
static int
rdc_disable(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
int index;
int rc;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
krdc->type_flag |= RDC_DISABLEPEND;
wait_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rc = _rdc_disable(krdc, uparms, kstatus);
return (rc);
}
/*
* Checks whether the state of one of the other sets in the 1-many or
* multi-hop config should prevent a sync from starting on this one.
* Return NULL if no just cause or impediment is found, otherwise return
* a pointer to the offending set.
*/
static rdc_u_info_t *
rdc_allow_pri_sync(rdc_u_info_t *urdc, int options)
{
rdc_k_info_t *krdc = &rdc_k_info[urdc->index];
rdc_k_info_t *ktmp;
rdc_u_info_t *utmp;
rdc_k_info_t *kmulti = NULL;
ASSERT(rdc_get_vflags(urdc) & RDC_PRIMARY);
rdc_many_enter(krdc);
/*
* In the reverse sync case we need to check the previous leg of
* the multi-hop config. The link to that set can be from any of
* the 1-many list, so as we go through we keep an eye open for it.
*/
if ((options & RDC_OPT_REVERSE) && (IS_MULTI(krdc))) {
/* This set links to the first leg */
ktmp = krdc->multi_next;
utmp = &rdc_u_info[ktmp->index];
if (IS_ENABLED(utmp))
kmulti = ktmp;
}
if (IS_MANY(krdc)) {
for (ktmp = krdc->many_next; ktmp != krdc;
ktmp = ktmp->many_next) {
utmp = &rdc_u_info[ktmp->index];
if (!IS_ENABLED(utmp))
continue;
if (options & RDC_OPT_FORWARD) {
/*
* Reverse sync needed is bad, as it means a
* reverse sync in progress or started and
* didn't complete, so this primary volume
* is not consistent. So we shouldn't copy
* it to its secondary.
*/
if (rdc_get_mflags(utmp) & RDC_RSYNC_NEEDED) {
rdc_many_exit(krdc);
return (utmp);
}
} else {
/* Reverse, so see if we need to spot kmulti */
if ((kmulti == NULL) && (IS_MULTI(ktmp))) {
/* This set links to the first leg */
kmulti = ktmp->multi_next;
if (!IS_ENABLED(
&rdc_u_info[kmulti->index]))
kmulti = NULL;
}
/*
* Non-logging is bad, as the bitmap will
* be updated with the bits for this sync.
*/
if (!(rdc_get_vflags(utmp) & RDC_LOGGING)) {
rdc_many_exit(krdc);
return (utmp);
}
}
}
}
if (kmulti) {
utmp = &rdc_u_info[kmulti->index];
ktmp = kmulti; /* In case we decide we do need to use ktmp */
ASSERT(options & RDC_OPT_REVERSE);
if (IS_REPLICATING(utmp)) {
/*
* Replicating is bad as data is already flowing to
* the target of the requested sync operation.
*/
rdc_many_exit(krdc);
return (utmp);
}
if (rdc_get_vflags(utmp) & RDC_SYNCING) {
/*
* Forward sync in progress is bad, as data is
* already flowing to the target of the requested
* sync operation.
* Reverse sync in progress is bad, as the primary
* has already decided which data to copy.
*/
rdc_many_exit(krdc);
return (utmp);
}
/*
* Clear the "sync needed" flags, as the multi-hop secondary
* will be updated via this requested sync operation, so does
* not need to complete its aborted forward sync.
*/
if (rdc_get_vflags(utmp) & RDC_SYNC_NEEDED)
rdc_clr_flags(utmp, RDC_SYNC_NEEDED);
}
if (IS_MANY(krdc) && (options & RDC_OPT_REVERSE)) {
for (ktmp = krdc->many_next; ktmp != krdc;
ktmp = ktmp->many_next) {
utmp = &rdc_u_info[ktmp->index];
if (!IS_ENABLED(utmp))
continue;
/*
* Clear any "reverse sync needed" flags, as the
* volume will be updated via this requested
* sync operation, so does not need to complete
* its aborted reverse sync.
*/
if (rdc_get_mflags(utmp) & RDC_RSYNC_NEEDED)
rdc_clr_mflags(utmp, RDC_RSYNC_NEEDED);
}
}
rdc_many_exit(krdc);
return (NULL);
}
static void
_rdc_sync_wrthr(void *thrinfo)
{
rdc_syncthr_t *syncinfo = (rdc_syncthr_t *)thrinfo;
nsc_buf_t *handle = NULL;
rdc_k_info_t *krdc = syncinfo->krdc;
int rc;
int tries = 0;
DTRACE_PROBE2(rdc_sync_loop_netwrite_start, int, krdc->index,
nsc_buf_t *, handle);
retry:
rc = nsc_alloc_buf(RDC_U_FD(krdc), syncinfo->offset, syncinfo->len,
NSC_READ | NSC_NOCACHE, &handle);
if (!RDC_SUCCESS(rc) || krdc->remote_index < 0) {
DTRACE_PROBE(rdc_sync_wrthr_alloc_buf_err);
goto failed;
}
rdc_group_enter(krdc);
if ((krdc->disk_status == 1) || (krdc->dcio_bitmap == NULL)) {
rdc_group_exit(krdc);
goto failed;
}
rdc_group_exit(krdc);
if ((rc = rdc_net_write(krdc->index, krdc->remote_index, handle,
handle->sb_pos, handle->sb_len, RDC_NOSEQ, RDC_NOQUE, NULL)) > 0) {
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
/*
* The following is to handle
* the case where the secondary side
* has thrown our buffer handle token away in a
* attempt to preserve its health on restart
*/
if ((rc == EPROTO) && (tries < 3)) {
(void) nsc_free_buf(handle);
handle = NULL;
tries++;
delay(HZ >> 2);
goto retry;
}
DTRACE_PROBE(rdc_sync_wrthr_remote_write_err);
cmn_err(CE_WARN, "!rdc_sync_wrthr: remote write failed (%d) "
"0x%x", rc, rdc_get_vflags(urdc));
goto failed;
}
(void) nsc_free_buf(handle);
handle = NULL;
return;
failed:
(void) nsc_free_buf(handle);
syncinfo->status->offset = syncinfo->offset;
}
/*
* see above comments on _rdc_sync_wrthr
*/
static void
_rdc_sync_rdthr(void *thrinfo)
{
rdc_syncthr_t *syncinfo = (rdc_syncthr_t *)thrinfo;
nsc_buf_t *handle = NULL;
rdc_k_info_t *krdc = syncinfo->krdc;
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
int rc;
rc = nsc_alloc_buf(RDC_U_FD(krdc), syncinfo->offset, syncinfo->len,
NSC_WRITE | NSC_WRTHRU | NSC_NOCACHE, &handle);
if (!RDC_SUCCESS(rc) || krdc->remote_index < 0) {
goto failed;
}
rdc_group_enter(krdc);
if ((krdc->disk_status == 1) || (krdc->dcio_bitmap == NULL)) {
rdc_group_exit(krdc);
goto failed;
}
rdc_group_exit(krdc);
rc = rdc_net_read(krdc->index, krdc->remote_index, handle,
handle->sb_pos, handle->sb_len);
if (!RDC_SUCCESS(rc)) {
cmn_err(CE_WARN, "!rdc_sync_rdthr: remote read failed(%d)", rc);
goto failed;
}
if (!IS_STATE(urdc, RDC_FULL))
rdc_set_bitmap_many(krdc, handle->sb_pos, handle->sb_len);
rc = nsc_write(handle, handle->sb_pos, handle->sb_len, 0);
if (!RDC_SUCCESS(rc)) {
rdc_many_enter(krdc);
rdc_set_flags_log(urdc, RDC_VOL_FAILED, "nsc_write failed");
rdc_many_exit(krdc);
rdc_write_state(urdc);
goto failed;
}
(void) nsc_free_buf(handle);
handle = NULL;
return;
failed:
(void) nsc_free_buf(handle);
syncinfo->status->offset = syncinfo->offset;
}
/*
* _rdc_sync_wrthr
* sync loop write thread
* if there are avail threads, we have not
* used up the pipe, so the sync loop will, if
* possible use these to multithread the write/read
*/
void
_rdc_sync_thread(void *thrinfo)
{
rdc_syncthr_t *syncinfo = (rdc_syncthr_t *)thrinfo;
rdc_k_info_t *krdc = syncinfo->krdc;
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_thrsync_t *sync = &krdc->syncs;
uint_t bitmask;
int rc;
rc = _rdc_rsrv_devs(krdc, RDC_RAW, RDC_INTERNAL);
if (!RDC_SUCCESS(rc))
goto failed;
if (IS_STATE(urdc, RDC_SLAVE))
_rdc_sync_rdthr(thrinfo);
else
_rdc_sync_wrthr(thrinfo);
_rdc_rlse_devs(krdc, RDC_RAW);
if (krdc->dcio_bitmap == NULL) {
#ifdef DEBUG
cmn_err(CE_NOTE, "!_rdc_sync_wrthr: NULL bitmap");
#else
/*EMPTY*/
#endif
} else if (syncinfo->status->offset < 0) {
RDC_SET_BITMASK(syncinfo->offset, syncinfo->len, &bitmask);
RDC_CLR_BITMAP(krdc, syncinfo->offset, syncinfo->len, \
bitmask, RDC_BIT_FORCE);
}
failed:
/*
* done with this, get rid of it.
* the status is not freed, it should still be a status chain
* that _rdc_sync() has the head of
*/
kmem_free(syncinfo, sizeof (*syncinfo));
/*
* decrement the global sync thread num
*/
mutex_enter(&sync_info.lock);
sync_info.active_thr--;
/* LINTED */
RDC_AVAIL_THR_TUNE(sync_info);
mutex_exit(&sync_info.lock);
/*
* krdc specific stuff
*/
mutex_enter(&sync->lock);
sync->complete++;
cv_broadcast(&sync->cv);
mutex_exit(&sync->lock);
}
int
_rdc_setup_syncthr(rdc_syncthr_t **synthr, nsc_off_t offset,
nsc_size_t len, rdc_k_info_t *krdc, sync_status_t *stats)
{
rdc_syncthr_t *tmp;
/* alloc here, free in the sync thread */
tmp =
(rdc_syncthr_t *)kmem_zalloc(sizeof (rdc_syncthr_t), KM_NOSLEEP);
if (tmp == NULL)
return (-1);
tmp->offset = offset;
tmp->len = len;
tmp->status = stats;
tmp->krdc = krdc;
*synthr = tmp;
return (0);
}
sync_status_t *
_rdc_new_sync_status()
{
sync_status_t *s;
s = (sync_status_t *)kmem_zalloc(sizeof (*s), KM_NOSLEEP);
s->offset = -1;
return (s);
}
void
_rdc_free_sync_status(sync_status_t *status)
{
sync_status_t *s;
while (status) {
s = status->next;
kmem_free(status, sizeof (*status));
status = s;
}
}
int
_rdc_sync_status_ok(sync_status_t *status, int *offset)
{
#ifdef DEBUG_SYNCSTATUS
int i = 0;
#endif
while (status) {
if (status->offset >= 0) {
*offset = status->offset;
return (-1);
}
status = status->next;
#ifdef DEBUG_SYNCSTATUS
i++;
#endif
}
#ifdef DEBUGSYNCSTATUS
cmn_err(CE_NOTE, "!rdc_sync_status_ok: checked %d statuses", i);
#endif
return (0);
}
int mtsync = 1;
/*
* _rdc_sync() : rdc sync loop
*
*/
static void
_rdc_sync(rdc_k_info_t *krdc)
{
nsc_size_t size = 0;
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
int rtype;
int sts;
int reserved = 0;
nsc_buf_t *alloc_h = NULL;
nsc_buf_t *handle = NULL;
nsc_off_t mask;
nsc_size_t maxbit;
nsc_size_t len;
nsc_off_t offset = 0;
int sync_completed = 0;
int tries = 0;
int rc;
int queuing = 0;
uint_t bitmask;
sync_status_t *ss, *sync_status = NULL;
rdc_thrsync_t *sync = &krdc->syncs;
rdc_syncthr_t *syncinfo;
nsthread_t *trc = NULL;
if (IS_STATE(urdc, RDC_QUEUING) && !IS_STATE(urdc, RDC_FULL)) {
/* flusher is handling the sync in the update case */
queuing = 1;
goto sync_done;
}
/*
* Main sync/resync loop
*/
DTRACE_PROBE(rdc_sync_loop_start);
rtype = RDC_RAW;
sts = _rdc_rsrv_devs(krdc, rtype, RDC_INTERNAL);
DTRACE_PROBE(rdc_sync_loop_rsrv);
if (sts != 0)
goto failed_noincr;
reserved = 1;
/*
* pre-allocate a handle if we can - speeds up the sync.
*/
if (rdc_prealloc_handle) {
alloc_h = nsc_alloc_handle(RDC_U_FD(krdc), NULL, NULL, NULL);
#ifdef DEBUG
if (!alloc_h) {
cmn_err(CE_WARN,
"!rdc sync: failed to pre-alloc handle");
}
#endif
} else {
alloc_h = NULL;
}
ASSERT(urdc->volume_size != 0);
size = urdc->volume_size;
mask = ~(LOG_TO_FBA_NUM(1) - 1);
maxbit = FBA_TO_LOG_NUM(size - 1);
/*
* as this while loop can also move data, it is counted as a
* sync loop thread
*/
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_LOGGING);
rdc_set_flags(urdc, RDC_SYNCING);
krdc->group->synccount++;
rdc_group_exit(krdc);
mutex_enter(&sync_info.lock);
sync_info.active_thr++;
/* LINTED */
RDC_AVAIL_THR_TUNE(sync_info);
mutex_exit(&sync_info.lock);
while (offset < size) {
rdc_group_enter(krdc);
ASSERT(krdc->aux_state & RDC_AUXSYNCIP);
if (krdc->disk_status == 1 || krdc->dcio_bitmap == NULL) {
rdc_group_exit(krdc);
if (krdc->disk_status == 1) {
DTRACE_PROBE(rdc_sync_loop_disk_status_err);
} else {
DTRACE_PROBE(rdc_sync_loop_dcio_bitmap_err);
}
goto failed; /* halt sync */
}
rdc_group_exit(krdc);
if (!(rdc_get_vflags(urdc) & RDC_FULL)) {
mutex_enter(&krdc->syncbitmutex);
krdc->syncbitpos = FBA_TO_LOG_NUM(offset);
len = 0;
/* skip unnecessary chunks */
while (krdc->syncbitpos <= maxbit &&
!RDC_BIT_ISSET(krdc, krdc->syncbitpos)) {
offset += LOG_TO_FBA_NUM(1);
krdc->syncbitpos++;
}
/* check for boundary */
if (offset >= size) {
mutex_exit(&krdc->syncbitmutex);
goto sync_done;
}
/* find maximal length we can transfer */
while (krdc->syncbitpos <= maxbit &&
RDC_BIT_ISSET(krdc, krdc->syncbitpos)) {
len += LOG_TO_FBA_NUM(1);
krdc->syncbitpos++;
/* we can only read maxfbas anyways */
if (len >= krdc->maxfbas)
break;
}
len = min(len, (size - offset));
} else {
len = size - offset;
}
/* truncate to the io provider limit */
ASSERT(krdc->maxfbas != 0);
len = min(len, krdc->maxfbas);
if (len > LOG_TO_FBA_NUM(1)) {
/*
* If the update is larger than a bitmap chunk,
* then truncate to a whole number of bitmap
* chunks.
*
* If the update is smaller than a bitmap
* chunk, this must be the last write.
*/
len &= mask;
}
if (!(rdc_get_vflags(urdc) & RDC_FULL)) {
krdc->syncbitpos = FBA_TO_LOG_NUM(offset + len);
mutex_exit(&krdc->syncbitmutex);
}
/*
* Find out if we can reserve a thread here ...
* note: skip the mutex for the first check, if the number
* is up there, why bother even grabbing the mutex to
* only realize that we can't have a thread anyways
*/
if (mtsync && sync_info.active_thr < RDC_MAX_SYNC_THREADS) {
mutex_enter(&sync_info.lock);
if (sync_info.avail_thr >= 1) {
if (sync_status == NULL) {
ss = sync_status =
_rdc_new_sync_status();
} else {
ss = ss->next = _rdc_new_sync_status();
}
if (ss == NULL) {
mutex_exit(&sync_info.lock);
#ifdef DEBUG
cmn_err(CE_WARN, "!rdc_sync: can't "
"allocate status for mt sync");
#endif
goto retry;
}
/*
* syncinfo protected by sync_info lock but
* not part of the sync_info structure
* be careful if moving
*/
if (_rdc_setup_syncthr(&syncinfo,
offset, len, krdc, ss) < 0) {
_rdc_free_sync_status(ss);
}
trc = nst_create(sync_info.rdc_syncset,
_rdc_sync_thread, syncinfo, NST_SLEEP);
if (trc == NULL) {
mutex_exit(&sync_info.lock);
#ifdef DEBUG
cmn_err(CE_NOTE, "!rdc_sync: unable to "
"mt sync");
#endif
_rdc_free_sync_status(ss);
kmem_free(syncinfo, sizeof (*syncinfo));
syncinfo = NULL;
goto retry;
} else {
mutex_enter(&sync->lock);
sync->threads++;
mutex_exit(&sync->lock);
}
sync_info.active_thr++;
/* LINTED */
RDC_AVAIL_THR_TUNE(sync_info);
mutex_exit(&sync_info.lock);
goto threaded;
}
mutex_exit(&sync_info.lock);
}
retry:
handle = alloc_h;
DTRACE_PROBE(rdc_sync_loop_allocbuf_start);
if (rdc_get_vflags(urdc) & RDC_SLAVE)
sts = nsc_alloc_buf(RDC_U_FD(krdc), offset, len,
NSC_WRITE | NSC_WRTHRU | NSC_NOCACHE, &handle);
else
sts = nsc_alloc_buf(RDC_U_FD(krdc), offset, len,
NSC_READ | NSC_NOCACHE, &handle);
DTRACE_PROBE(rdc_sync_loop_allocbuf_end);
if (sts > 0) {
if (handle && handle != alloc_h) {
(void) nsc_free_buf(handle);
}
handle = NULL;
DTRACE_PROBE(rdc_sync_loop_allocbuf_err);
goto failed;
}
if (rdc_get_vflags(urdc) & RDC_SLAVE) {
/* overwrite buffer with remote data */
sts = rdc_net_read(krdc->index, krdc->remote_index,
handle, handle->sb_pos, handle->sb_len);
if (!RDC_SUCCESS(sts)) {
#ifdef DEBUG
cmn_err(CE_WARN,
"!rdc sync: remote read failed (%d)", sts);
#endif
DTRACE_PROBE(rdc_sync_loop_remote_read_err);
goto failed;
}
if (!(rdc_get_vflags(urdc) & RDC_FULL))
rdc_set_bitmap_many(krdc, handle->sb_pos,
handle->sb_len);
/* commit locally */
sts = nsc_write(handle, handle->sb_pos,
handle->sb_len, 0);
if (!RDC_SUCCESS(sts)) {
/* reverse sync needed already set */
rdc_many_enter(krdc);
rdc_set_flags_log(urdc, RDC_VOL_FAILED,
"write failed during sync");
rdc_many_exit(krdc);
rdc_write_state(urdc);
DTRACE_PROBE(rdc_sync_loop_nsc_write_err);
goto failed;
}
} else {
/* send local data to remote */
DTRACE_PROBE2(rdc_sync_loop_netwrite_start,
int, krdc->index, nsc_buf_t *, handle);
if ((sts = rdc_net_write(krdc->index,
krdc->remote_index, handle, handle->sb_pos,
handle->sb_len, RDC_NOSEQ, RDC_NOQUE, NULL)) > 0) {
/*
* The following is to handle
* the case where the secondary side
* has thrown our buffer handle token away in a
* attempt to preserve its health on restart
*/
if ((sts == EPROTO) && (tries < 3)) {
(void) nsc_free_buf(handle);
handle = NULL;
tries++;
delay(HZ >> 2);
goto retry;
}
#ifdef DEBUG
cmn_err(CE_WARN,
"!rdc sync: remote write failed (%d) 0x%x",
sts, rdc_get_vflags(urdc));
#endif
DTRACE_PROBE(rdc_sync_loop_netwrite_err);
goto failed;
}
DTRACE_PROBE(rdc_sync_loop_netwrite_end);
}
(void) nsc_free_buf(handle);
handle = NULL;
if (krdc->dcio_bitmap == NULL) {
#ifdef DEBUG
cmn_err(CE_NOTE, "!_rdc_sync: NULL bitmap");
#else
;
/*EMPTY*/
#endif
} else {
RDC_SET_BITMASK(offset, len, &bitmask);
RDC_CLR_BITMAP(krdc, offset, len, bitmask, \
RDC_BIT_FORCE);
ASSERT(!IS_ASYNC(urdc));
}
/*
* Only release/reserve if someone is waiting
*/
if (krdc->devices->id_release || nsc_waiting(RDC_U_FD(krdc))) {
DTRACE_PROBE(rdc_sync_loop_rlse_start);
if (alloc_h) {
(void) nsc_free_handle(alloc_h);
alloc_h = NULL;
}
_rdc_rlse_devs(krdc, rtype);
reserved = 0;
delay(2);
rtype = RDC_RAW;
sts = _rdc_rsrv_devs(krdc, rtype, RDC_INTERNAL);
if (sts != 0) {
handle = NULL;
DTRACE_PROBE(rdc_sync_loop_rdc_rsrv_err);
goto failed;
}
reserved = 1;
if (rdc_prealloc_handle) {
alloc_h = nsc_alloc_handle(RDC_U_FD(krdc),
NULL, NULL, NULL);
#ifdef DEBUG
if (!alloc_h) {
cmn_err(CE_WARN, "!rdc_sync: "
"failed to pre-alloc handle");
}
#endif
}
DTRACE_PROBE(rdc_sync_loop_rlse_end);
}
threaded:
offset += len;
urdc->sync_pos = offset;
}
sync_done:
sync_completed = 1;
failed:
krdc->group->synccount--;
failed_noincr:
mutex_enter(&sync->lock);
while (sync->complete != sync->threads) {
cv_wait(&sync->cv, &sync->lock);
}
sync->complete = 0;
sync->threads = 0;
mutex_exit(&sync->lock);
/*
* if sync_completed is 0 here,
* we know that the main sync thread failed anyway
* so just free the statuses and fail
*/
if (sync_completed && (_rdc_sync_status_ok(sync_status, &rc) < 0)) {
urdc->sync_pos = rc;
sync_completed = 0; /* at least 1 thread failed */
}
_rdc_free_sync_status(sync_status);
/*
* we didn't increment, we didn't even sync,
* so don't dec sync_info.active_thr
*/
if (!queuing) {
mutex_enter(&sync_info.lock);
sync_info.active_thr--;
/* LINTED */
RDC_AVAIL_THR_TUNE(sync_info);
mutex_exit(&sync_info.lock);
}
if (handle) {
(void) nsc_free_buf(handle);
}
if (alloc_h) {
(void) nsc_free_handle(alloc_h);
}
if (reserved) {
_rdc_rlse_devs(krdc, rtype);
}
notstarted:
rdc_group_enter(krdc);
ASSERT(krdc->aux_state & RDC_AUXSYNCIP);
if (IS_STATE(urdc, RDC_QUEUING))
rdc_clr_flags(urdc, RDC_QUEUING);
if (sync_completed) {
(void) rdc_net_state(krdc->index, CCIO_DONE);
} else {
(void) rdc_net_state(krdc->index, CCIO_ENABLELOG);
}
rdc_clr_flags(urdc, RDC_SYNCING);
if (rdc_get_vflags(urdc) & RDC_SLAVE) {
rdc_many_enter(krdc);
rdc_clr_mflags(urdc, RDC_SLAVE);
rdc_many_exit(krdc);
}
if (krdc->type_flag & RDC_ASYNCMODE)
rdc_set_flags(urdc, RDC_ASYNC);
if (sync_completed) {
rdc_many_enter(krdc);
rdc_clr_mflags(urdc, RDC_RSYNC_NEEDED);
rdc_many_exit(krdc);
} else {
krdc->remote_index = -1;
rdc_set_flags_log(urdc, RDC_LOGGING, "sync failed to complete");
}
rdc_group_exit(krdc);
rdc_write_state(urdc);
mutex_enter(&net_blk_lock);
if (sync_completed)
krdc->sync_done = RDC_COMPLETED;
else
krdc->sync_done = RDC_FAILED;
cv_broadcast(&krdc->synccv);
mutex_exit(&net_blk_lock);
}
static int
rdc_sync(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_set_t *rdc_set = uparms->rdc_set;
int options = uparms->options;
int rc = 0;
int busy = 0;
int index;
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rdc_k_info_t *kmulti;
rdc_u_info_t *umulti;
rdc_group_t *group;
rdc_srv_t *svp;
int sm, um, md;
int sync_completed = 0;
int thrcount;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
rc = RDC_EALREADY;
goto notstarted;
}
urdc = &rdc_u_info[index];
group = krdc->group;
set_busy(krdc);
busy = 1;
if ((krdc->type_flag == 0) || (krdc->type_flag & RDC_DISABLEPEND)) {
/* A resume or enable failed or we raced with a teardown */
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
rc = RDC_EALREADY;
goto notstarted;
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (!IS_STATE(urdc, RDC_LOGGING)) {
spcs_s_add(kstatus, RDC_ESETNOTLOGGING, urdc->secondary.intf,
urdc->secondary.file);
rc = RDC_ENOTLOGGING;
goto notstarted_unlock;
}
if (rdc_check(krdc, rdc_set)) {
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
rc = RDC_EALREADY;
goto notstarted_unlock;
}
if (!(rdc_get_vflags(urdc) & RDC_PRIMARY)) {
spcs_s_add(kstatus, RDC_ENOTPRIMARY, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
rc = RDC_ENOTPRIMARY;
goto notstarted_unlock;
}
if ((options & RDC_OPT_REVERSE) && (IS_STATE(urdc, RDC_QUEUING))) {
/*
* cannot reverse sync when queuing, need to go logging first
*/
spcs_s_add(kstatus, RDC_EQNORSYNC, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
rc = RDC_EQNORSYNC;
goto notstarted_unlock;
}
svp = krdc->lsrv;
krdc->intf = rdc_add_to_if(svp, &(urdc->primary.addr),
&(urdc->secondary.addr), 1);
if (!krdc->intf) {
spcs_s_add(kstatus, RDC_EADDTOIF, urdc->primary.intf,
urdc->secondary.intf);
rc = RDC_EADDTOIF;
goto notstarted_unlock;
}
if (urdc->volume_size == 0) {
/* Implies reserve failed when previous resume was done */
rdc_get_details(krdc);
}
if (urdc->volume_size == 0) {
spcs_s_add(kstatus, RDC_ENOBMAP);
rc = RDC_ENOBMAP;
goto notstarted_unlock;
}
if (krdc->dcio_bitmap == NULL) {
if (rdc_resume_bitmap(krdc) < 0) {
spcs_s_add(kstatus, RDC_ENOBMAP);
rc = RDC_ENOBMAP;
goto notstarted_unlock;
}
}
if ((rdc_get_vflags(urdc) & RDC_BMP_FAILED) && (krdc->bitmapfd)) {
if (rdc_reset_bitmap(krdc)) {
spcs_s_add(kstatus, RDC_EBITMAP);
rc = RDC_EBITMAP;
goto notstarted_unlock;
}
}
if (IS_MANY(krdc) || IS_MULTI(krdc)) {
rdc_u_info_t *ubad;
if ((ubad = rdc_allow_pri_sync(urdc, options)) != NULL) {
spcs_s_add(kstatus, RDC_ESTATE,
ubad->primary.intf, ubad->primary.file,
ubad->secondary.intf, ubad->secondary.file);
rc = RDC_ESTATE;
goto notstarted_unlock;
}
}
/*
* there is a small window where _rdc_sync is still
* running, but has cleared the RDC_SYNCING flag.
* Use aux_state which is only cleared
* after _rdc_sync had done its 'death' broadcast.
*/
if (krdc->aux_state & RDC_AUXSYNCIP) {
#ifdef DEBUG
if (!rdc_get_vflags(urdc) & RDC_SYNCING) {
cmn_err(CE_WARN, "!rdc_sync: "
"RDC_AUXSYNCIP set, SYNCING off");
}
#endif
spcs_s_add(kstatus, RDC_ESYNCING, rdc_set->primary.file);
rc = RDC_ESYNCING;
goto notstarted_unlock;
}
if (krdc->disk_status == 1) {
spcs_s_add(kstatus, RDC_ESYNCING, rdc_set->primary.file);
rc = RDC_ESYNCING;
goto notstarted_unlock;
}
if ((options & RDC_OPT_FORWARD) &&
(rdc_get_mflags(urdc) & RDC_RSYNC_NEEDED)) {
/* cannot forward sync if a reverse sync is needed */
spcs_s_add(kstatus, RDC_ERSYNCNEEDED, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
rc = RDC_ERSYNCNEEDED;
goto notstarted_unlock;
}
urdc->sync_pos = 0;
/* Check if the rdc set is accessible on the remote node */
if (rdc_net_getstate(krdc, &sm, &um, &md, FALSE) < 0) {
/*
* Remote end may be inaccessible, or the rdc set is not
* enabled at the remote end.
*/
spcs_s_add(kstatus, RDC_ECONNOPEN, urdc->secondary.intf,
urdc->secondary.file);
rc = RDC_ECONNOPEN;
goto notstarted_unlock;
}
if (options & RDC_OPT_REVERSE)
krdc->remote_index = rdc_net_state(index, CCIO_RSYNC);
else
krdc->remote_index = rdc_net_state(index, CCIO_SLAVE);
if (krdc->remote_index < 0) {
/*
* Remote note probably not in a valid state to be synced,
* as the state was fetched OK above.
*/
spcs_s_add(kstatus, RDC_ERSTATE, urdc->secondary.intf,
urdc->secondary.file, urdc->primary.intf,
urdc->primary.file);
rc = RDC_ERSTATE;
goto notstarted_unlock;
}
rc = check_filesize(index, kstatus);
if (rc != 0) {
(void) rdc_net_state(krdc->index, CCIO_ENABLELOG);
goto notstarted_unlock;
}
krdc->sync_done = 0;
mutex_enter(&krdc->bmapmutex);
krdc->aux_state |= RDC_AUXSYNCIP;
mutex_exit(&krdc->bmapmutex);
if (options & RDC_OPT_REVERSE) {
rdc_many_enter(krdc);
rdc_set_mflags(urdc, RDC_SLAVE | RDC_RSYNC_NEEDED);
mutex_enter(&krdc->bmapmutex);
rdc_clr_flags(urdc, RDC_VOL_FAILED);
mutex_exit(&krdc->bmapmutex);
rdc_write_state(urdc);
/* LINTED */
if (kmulti = krdc->multi_next) {
umulti = &rdc_u_info[kmulti->index];
if (IS_ENABLED(umulti) && (rdc_get_vflags(umulti) &
(RDC_VOL_FAILED | RDC_SYNC_NEEDED))) {
rdc_clr_flags(umulti, RDC_SYNC_NEEDED);
rdc_clr_flags(umulti, RDC_VOL_FAILED);
rdc_write_state(umulti);
}
}
rdc_many_exit(krdc);
} else {
rdc_clr_flags(urdc, RDC_FCAL_FAILED);
rdc_write_state(urdc);
}
if (options & RDC_OPT_UPDATE) {
ASSERT(urdc->volume_size != 0);
if (rdc_net_getbmap(index,
BMAP_LOG_BYTES(urdc->volume_size)) > 0) {
spcs_s_add(kstatus, RDC_ENOBMAP);
rc = RDC_ENOBMAP;
(void) rdc_net_state(index, CCIO_ENABLELOG);
rdc_clr_flags(urdc, RDC_SYNCING);
if (options & RDC_OPT_REVERSE) {
rdc_many_enter(krdc);
rdc_clr_mflags(urdc, RDC_SLAVE);
rdc_many_exit(krdc);
}
if (krdc->type_flag & RDC_ASYNCMODE)
rdc_set_flags(urdc, RDC_ASYNC);
krdc->remote_index = -1;
rdc_set_flags_log(urdc, RDC_LOGGING,
"failed to read remote bitmap");
rdc_write_state(urdc);
goto failed;
}
rdc_clr_flags(urdc, RDC_FULL);
} else {
/*
* This is a full sync (not an update sync), mark the
* entire bitmap dirty
*/
(void) RDC_FILL_BITMAP(krdc, FALSE);
rdc_set_flags(urdc, RDC_FULL);
}
rdc_group_exit(krdc);
/*
* allow diskq->memq flusher to wake up
*/
mutex_enter(&krdc->group->ra_queue.net_qlock);
krdc->group->ra_queue.qfflags &= ~RDC_QFILLSLEEP;
mutex_exit(&krdc->group->ra_queue.net_qlock);
/*
* if this is a full sync on a non-diskq set or
* a diskq set that has failed, clear the async flag
*/
if (krdc->type_flag & RDC_ASYNCMODE) {
if ((!(options & RDC_OPT_UPDATE)) ||
(!RDC_IS_DISKQ(krdc->group)) ||
(!(IS_STATE(urdc, RDC_QUEUING)))) {
/* full syncs, or core queue are synchronous */
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_ASYNC);
rdc_group_exit(krdc);
}
/*
* if the queue failed because it was full, lets see
* if we can restart it. After _rdc_sync() is done
* the modes will switch and we will begin disk
* queuing again. NOTE: this should only be called
* once per group, as it clears state for all group
* members, also clears the async flag for all members
*/
if (IS_STATE(urdc, RDC_DISKQ_FAILED)) {
rdc_unfail_diskq(krdc);
} else {
/* don't add insult to injury by flushing a dead queue */
/*
* if we are updating, and a diskq and
* the async thread isn't active, start
* it up.
*/
if ((options & RDC_OPT_UPDATE) &&
(IS_STATE(urdc, RDC_QUEUING))) {
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_SYNCING);
rdc_group_exit(krdc);
mutex_enter(&krdc->group->ra_queue.net_qlock);
if (krdc->group->ra_queue.qfill_sleeping ==
RDC_QFILL_ASLEEP)
cv_broadcast(&group->ra_queue.qfcv);
mutex_exit(&krdc->group->ra_queue.net_qlock);
thrcount = urdc->asyncthr;
while ((thrcount-- > 0) &&
!krdc->group->rdc_writer) {
(void) rdc_writer(krdc->index);
}
}
}
}
/*
* For a reverse sync, merge the current bitmap with all other sets
* that share this volume.
*/
if (options & RDC_OPT_REVERSE) {
retry_many:
rdc_many_enter(krdc);
if (IS_MANY(krdc)) {
rdc_k_info_t *kmany;
rdc_u_info_t *umany;
for (kmany = krdc->many_next; kmany != krdc;
kmany = kmany->many_next) {
umany = &rdc_u_info[kmany->index];
if (!IS_ENABLED(umany))
continue;
ASSERT(umany->flags & RDC_PRIMARY);
if (!mutex_tryenter(&kmany->group->lock)) {
rdc_many_exit(krdc);
/* May merge more than once */
goto retry_many;
}
rdc_merge_bitmaps(krdc, kmany);
mutex_exit(&kmany->group->lock);
}
}
rdc_many_exit(krdc);
retry_multi:
rdc_many_enter(krdc);
if (IS_MULTI(krdc)) {
rdc_k_info_t *kmulti = krdc->multi_next;
rdc_u_info_t *umulti = &rdc_u_info[kmulti->index];
if (IS_ENABLED(umulti)) {
ASSERT(!(umulti->flags & RDC_PRIMARY));
if (!mutex_tryenter(&kmulti->group->lock)) {
rdc_many_exit(krdc);
goto retry_multi;
}
rdc_merge_bitmaps(krdc, kmulti);
mutex_exit(&kmulti->group->lock);
}
}
rdc_many_exit(krdc);
}
rdc_group_enter(krdc);
if (krdc->bitmap_write == 0) {
if (rdc_write_bitmap_fill(krdc) >= 0)
krdc->bitmap_write = -1;
}
if (krdc->bitmap_write > 0)
(void) rdc_write_bitmap(krdc);
urdc->bits_set = RDC_COUNT_BITMAP(krdc);
rdc_group_exit(krdc);
if (options & RDC_OPT_REVERSE) {
(void) _rdc_sync_event_notify(RDC_SYNC_START,
urdc->primary.file, urdc->group_name);
}
/* Now set off the sync itself */
mutex_enter(&net_blk_lock);
if (nsc_create_process(
(void (*)(void *))_rdc_sync, (void *)krdc, FALSE)) {
mutex_exit(&net_blk_lock);
spcs_s_add(kstatus, RDC_ENOPROC);
/*
* We used to just return here,
* but we need to clear the AUXSYNCIP bit
* and there is a very small chance that
* someone may be waiting on the disk_status flag.
*/
rc = RDC_ENOPROC;
/*
* need the group lock held at failed.
*/
rdc_group_enter(krdc);
goto failed;
}
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
busy = 0;
mutex_exit(&rdc_conf_lock);
while (krdc->sync_done == 0)
cv_wait(&krdc->synccv, &net_blk_lock);
mutex_exit(&net_blk_lock);
rdc_group_enter(krdc);
if (krdc->sync_done == RDC_FAILED) {
char siztmp1[16];
(void) spcs_s_inttostring(
urdc->sync_pos, siztmp1, sizeof (siztmp1),
0);
spcs_s_add(kstatus, RDC_EFAIL, siztmp1);
rc = RDC_EFAIL;
} else
sync_completed = 1;
failed:
/*
* We use this flag now to make halt_sync() wait for
* us to terminate and let us take the group lock.
*/
krdc->aux_state &= ~RDC_AUXSYNCIP;
if (krdc->disk_status == 1) {
krdc->disk_status = 0;
cv_broadcast(&krdc->haltcv);
}
notstarted_unlock:
rdc_group_exit(krdc);
if (sync_completed && (options & RDC_OPT_REVERSE)) {
(void) _rdc_sync_event_notify(RDC_SYNC_DONE,
urdc->primary.file, urdc->group_name);
}
notstarted:
if (busy) {
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
}
return (rc);
}
/* ARGSUSED */
static int
_rdc_suspend(rdc_k_info_t *krdc, rdc_set_t *rdc_set, spcs_s_info_t kstatus)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_if_t *ip;
int index = krdc->index;
ASSERT(krdc->group != NULL);
rdc_group_enter(krdc);
#ifdef DEBUG
ASSERT(rdc_check(krdc, rdc_set) == 0);
#else
if (rdc_check(krdc, rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
return (RDC_EALREADY);
}
#endif
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
halt_sync(krdc);
ASSERT(IS_ENABLED(urdc));
}
rdc_group_exit(krdc);
(void) rdc_unintercept(krdc);
#ifdef DEBUG
cmn_err(CE_NOTE, "!SNDR: suspended %s %s", urdc->primary.file,
urdc->secondary.file);
#endif
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
if (IS_ASYNC(urdc) && !RDC_IS_DISKQ(krdc->group)) {
int tries = 2; /* in case of possibly stuck flusher threads */
#ifdef DEBUG
net_queue *qp = &krdc->group->ra_queue;
#endif
do {
if (!krdc->group->rdc_writer)
(void) rdc_writer(krdc->index);
(void) rdc_drain_queue(krdc->index);
} while (krdc->group->rdc_writer && tries--);
/* ok, force it to happen... */
if (rdc_drain_queue(krdc->index) != 0) {
do {
mutex_enter(&krdc->group->ra_queue.net_qlock);
krdc->group->asyncdis = 1;
cv_broadcast(&krdc->group->asyncqcv);
mutex_exit(&krdc->group->ra_queue.net_qlock);
cmn_err(CE_WARN,
"!SNDR: async I/O pending and not flushed "
"for %s during suspend",
urdc->primary.file);
#ifdef DEBUG
cmn_err(CE_WARN,
"!nitems: %" NSC_SZFMT " nblocks: %"
NSC_SZFMT " head: 0x%p tail: 0x%p",
qp->nitems, qp->blocks,
(void *)qp->net_qhead,
(void *)qp->net_qtail);
#endif
} while (krdc->group->rdc_thrnum > 0);
}
}
mutex_enter(&rdc_conf_lock);
ip = krdc->intf;
krdc->intf = 0;
if (ip) {
rdc_remove_from_if(ip);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_group_exit(krdc);
/* Must not hold group lock during this function */
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
rdc_group_enter(krdc);
/* Don't rdc_clear_state, unlike _rdc_disable */
rdc_free_bitmap(krdc, RDC_CMD_SUSPEND);
rdc_close_bitmap(krdc);
rdc_dev_close(krdc);
rdc_close_direct(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_group_exit(krdc);
/*
* we should now unregister the queue, with no conflicting
* locks held. This is the last(only) member of the group
*/
if (krdc->group && RDC_IS_DISKQ(krdc->group) &&
krdc->group->count == 1) { /* stop protecting queue */
rdc_unintercept_diskq(krdc->group);
}
mutex_enter(&rdc_conf_lock);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
wait_busy(krdc);
if (IS_MANY(krdc) || IS_MULTI(krdc))
remove_from_many(krdc);
remove_from_group(krdc);
krdc->remote_index = -1;
ASSERT(krdc->type_flag & RDC_CONFIGURED);
ASSERT(krdc->type_flag & RDC_DISABLEPEND);
krdc->type_flag = 0;
#ifdef DEBUG
if (krdc->dcio_bitmap)
cmn_err(CE_WARN, "!_rdc_suspend: possible mem leak, "
"dcio_bitmap");
#endif
krdc->dcio_bitmap = NULL;
krdc->bitmap_ref = NULL;
krdc->bitmap_size = 0;
krdc->maxfbas = 0;
krdc->bitmap_write = 0;
krdc->disk_status = 0;
rdc_destroy_svinfo(krdc->lsrv);
krdc->lsrv = NULL;
krdc->multi_next = NULL;
rdc_u_init(urdc);
mutex_exit(&rdc_conf_lock);
rdc_kstat_delete(index);
return (0);
}
static int
rdc_suspend(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
int index;
int rc;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
krdc->type_flag |= RDC_DISABLEPEND;
wait_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rc = _rdc_suspend(krdc, uparms->rdc_set, kstatus);
return (rc);
}
static int
_rdc_resume(rdc_set_t *rdc_set, int options, spcs_s_info_t kstatus)
{
int index;
char *rhost;
struct netbuf *addrp;
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rdc_srv_t *svp = NULL;
char *local_file;
char *local_bitmap;
int rc, rc1;
nsc_size_t maxfbas;
rdc_group_t *grp;
if ((rdc_set->primary.intf[0] == 0) ||
(rdc_set->primary.addr.len == 0) ||
(rdc_set->primary.file[0] == 0) ||
(rdc_set->primary.bitmap[0] == 0) ||
(rdc_set->secondary.intf[0] == 0) ||
(rdc_set->secondary.addr.len == 0) ||
(rdc_set->secondary.file[0] == 0) ||
(rdc_set->secondary.bitmap[0] == 0)) {
spcs_s_add(kstatus, RDC_EEMPTY);
return (RDC_EEMPTY);
}
/* Next check there aren't any enabled rdc sets which match. */
mutex_enter(&rdc_conf_lock);
if (rdc_lookup_byname(rdc_set) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EENABLED, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EENABLED);
}
if (rdc_lookup_many2one(rdc_set) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EMANY2ONE, rdc_set->primary.intf,
rdc_set->primary.file, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EMANY2ONE);
}
if (rdc_set->netconfig->knc_proto == NULL) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETCONFIG);
return (RDC_ENETCONFIG);
}
if (rdc_set->primary.addr.len == 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETBUF, rdc_set->primary.file);
return (RDC_ENETBUF);
}
if (rdc_set->secondary.addr.len == 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENETBUF, rdc_set->secondary.file);
return (RDC_ENETBUF);
}
/* Check that the local data volume isn't in use as a bitmap */
if (options & RDC_OPT_PRIMARY)
local_file = rdc_set->primary.file;
else
local_file = rdc_set->secondary.file;
if (rdc_lookup_bitmap(local_file) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EVOLINUSE, local_file);
return (RDC_EVOLINUSE);
}
/* check that the secondary data volume isn't in use */
if (!(options & RDC_OPT_PRIMARY)) {
local_file = rdc_set->secondary.file;
if (rdc_lookup_secondary(local_file) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EVOLINUSE, local_file);
return (RDC_EVOLINUSE);
}
}
/* Check that the bitmap isn't in use as a data volume */
if (options & RDC_OPT_PRIMARY)
local_bitmap = rdc_set->primary.bitmap;
else
local_bitmap = rdc_set->secondary.bitmap;
if (rdc_lookup_configured(local_bitmap) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EBMPINUSE, local_bitmap);
return (RDC_EBMPINUSE);
}
/* Check that the bitmap isn't already in use as a bitmap */
if (rdc_lookup_bitmap(local_bitmap) >= 0) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EBMPINUSE, local_bitmap);
return (RDC_EBMPINUSE);
}
/* Set urdc->volume_size */
index = rdc_dev_open(rdc_set, options);
if (index < 0) {
mutex_exit(&rdc_conf_lock);
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EOPEN, rdc_set->primary.intf,
rdc_set->primary.file);
else
spcs_s_add(kstatus, RDC_EOPEN, rdc_set->secondary.intf,
rdc_set->secondary.file);
return (RDC_EOPEN);
}
urdc = &rdc_u_info[index];
krdc = &rdc_k_info[index];
/* copy relevant parts of rdc_set to urdc field by field */
(void) strncpy(urdc->primary.intf, rdc_set->primary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->secondary.intf, rdc_set->secondary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->group_name, rdc_set->group_name, NSC_MAXPATH);
dup_rdc_netbuf(&rdc_set->primary.addr, &urdc->primary.addr);
(void) strncpy(urdc->primary.file, rdc_set->primary.file, NSC_MAXPATH);
(void) strncpy(urdc->primary.bitmap, rdc_set->primary.bitmap,
NSC_MAXPATH);
dup_rdc_netbuf(&rdc_set->secondary.addr, &urdc->secondary.addr);
(void) strncpy(urdc->secondary.file, rdc_set->secondary.file,
NSC_MAXPATH);
(void) strncpy(urdc->secondary.bitmap, rdc_set->secondary.bitmap,
NSC_MAXPATH);
(void) strncpy(urdc->disk_queue, rdc_set->disk_queue, NSC_MAXPATH);
urdc->setid = rdc_set->setid;
if ((options & RDC_OPT_SYNC) && urdc->disk_queue[0]) {
mutex_exit(&rdc_conf_lock);
rdc_dev_close(krdc);
spcs_s_add(kstatus, RDC_EQWRONGMODE);
return (RDC_EQWRONGMODE);
}
/*
* init flags now so that state left by failures in add_to_group()
* are preserved.
*/
rdc_init_flags(urdc);
if ((rc1 = add_to_group(krdc, options, RDC_CMD_RESUME)) != 0) {
if (rc1 == RDC_EQNOADD) { /* something went wrong with queue */
rdc_fail_diskq(krdc, RDC_WAIT, RDC_NOLOG);
/* don't return a failure here, continue with resume */
} else { /* some other group add failure */
mutex_exit(&rdc_conf_lock);
rdc_dev_close(krdc);
spcs_s_add(kstatus, RDC_EGROUP,
rdc_set->primary.intf, rdc_set->primary.file,
rdc_set->secondary.intf, rdc_set->secondary.file,
rdc_set->group_name);
return (RDC_EGROUP);
}
}
/*
* maxfbas was set in rdc_dev_open as primary's maxfbas.
* If diskq's maxfbas is smaller, then use diskq's.
*/
grp = krdc->group;
if (grp && RDC_IS_DISKQ(grp) && (grp->diskqfd != 0)) {
rc = _rdc_rsrv_diskq(grp);
if (RDC_SUCCESS(rc)) {
rc = nsc_maxfbas(grp->diskqfd, 0, &maxfbas);
if (rc == 0) {
#ifdef DEBUG
if (krdc->maxfbas != maxfbas)
cmn_err(CE_NOTE,
"!_rdc_resume: diskq maxfbas = %"
NSC_SZFMT ", primary maxfbas = %"
NSC_SZFMT, maxfbas, krdc->maxfbas);
#endif
krdc->maxfbas = min(krdc->maxfbas,
maxfbas);
} else {
cmn_err(CE_WARN,
"!_rdc_resume: diskq maxfbas failed (%d)",
rc);
}
_rdc_rlse_diskq(grp);
} else {
cmn_err(CE_WARN,
"!_rdc_resume: diskq reserve failed (%d)", rc);
}
}
(void) strncpy(urdc->direct_file, rdc_set->direct_file, NSC_MAXPATH);
if ((options & RDC_OPT_PRIMARY) && rdc_set->direct_file[0]) {
if (rdc_open_direct(krdc) == NULL)
rdc_set_flags(urdc, RDC_FCAL_FAILED);
}
krdc->many_next = krdc;
ASSERT(krdc->type_flag == 0);
krdc->type_flag = RDC_CONFIGURED;
if (options & RDC_OPT_PRIMARY)
rdc_set_flags(urdc, RDC_PRIMARY);
if (options & RDC_OPT_ASYNC)
krdc->type_flag |= RDC_ASYNCMODE;
set_busy(krdc);
urdc->syshostid = rdc_set->syshostid;
if (add_to_many(krdc) < 0) {
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
spcs_s_add(kstatus, RDC_EMULTI);
rc = RDC_EMULTI;
goto fail;
}
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
mutex_exit(&rdc_conf_lock);
if (urdc->volume_size == 0) {
rdc_many_enter(krdc);
if (options & RDC_OPT_PRIMARY)
rdc_set_mflags(urdc, RDC_RSYNC_NEEDED);
else
rdc_set_flags(urdc, RDC_SYNC_NEEDED);
rdc_set_flags(urdc, RDC_VOL_FAILED);
rdc_many_exit(krdc);
}
rdc_group_enter(krdc);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/*
* The rdc set is configured but not yet enabled. Other operations must
* ignore this set until it is enabled.
*/
urdc->sync_pos = 0;
/* Set tunable defaults, we'll pick up tunables from the header later */
urdc->maxqfbas = rdc_maxthres_queue;
urdc->maxqitems = rdc_max_qitems;
urdc->autosync = 0;
urdc->asyncthr = rdc_asyncthr;
urdc->netconfig = rdc_set->netconfig;
if (options & RDC_OPT_PRIMARY) {
rhost = rdc_set->secondary.intf;
addrp = &rdc_set->secondary.addr;
} else {
rhost = rdc_set->primary.intf;
addrp = &rdc_set->primary.addr;
}
if (options & RDC_OPT_ASYNC)
rdc_set_flags(urdc, RDC_ASYNC);
svp = rdc_create_svinfo(rhost, addrp, urdc->netconfig);
if (svp == NULL) {
spcs_s_add(kstatus, ENOMEM);
rc = ENOMEM;
goto fail;
}
urdc->netconfig = NULL; /* This will be no good soon */
/* Don't set krdc->intf here */
rdc_kstat_create(index);
/* if the bitmap resume isn't clean, it will clear queuing flag */
(void) rdc_resume_bitmap(krdc);
if (RDC_IS_DISKQ(krdc->group)) {
disk_queue *q = &krdc->group->diskq;
if ((rc1 == RDC_EQNOADD) ||
IS_QSTATE(q, RDC_QBADRESUME)) {
rdc_clr_flags(urdc, RDC_QUEUING);
RDC_ZERO_BITREF(krdc);
}
}
if (krdc->lsrv == NULL)
krdc->lsrv = svp;
else {
#ifdef DEBUG
cmn_err(CE_WARN, "!_rdc_resume: krdc->lsrv already set: %p",
(void *) krdc->lsrv);
#endif
rdc_destroy_svinfo(svp);
}
svp = NULL;
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
/* And finally */
krdc->remote_index = -1;
/* Should we set the whole group logging? */
rdc_set_flags(urdc, RDC_ENABLED | RDC_LOGGING);
rdc_group_exit(krdc);
if (rdc_intercept(krdc) != 0) {
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_ENABLED);
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EREGISTER, urdc->primary.file);
else
spcs_s_add(kstatus, RDC_EREGISTER,
urdc->secondary.file);
#ifdef DEBUG
cmn_err(CE_NOTE, "!nsc_register_path failed %s",
urdc->primary.file);
#endif
rc = RDC_EREGISTER;
goto bmpfail;
}
#ifdef DEBUG
cmn_err(CE_NOTE, "!SNDR: resumed %s %s", urdc->primary.file,
urdc->secondary.file);
#endif
rdc_write_state(urdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (0);
bmpfail:
if (options & RDC_OPT_PRIMARY)
spcs_s_add(kstatus, RDC_EBITMAP, urdc->primary.bitmap);
else
spcs_s_add(kstatus, RDC_EBITMAP, urdc->secondary.bitmap);
rc = RDC_EBITMAP;
if (rdc_get_vflags(urdc) & RDC_ENABLED) {
rdc_group_exit(krdc);
(void) rdc_unintercept(krdc);
rdc_group_enter(krdc);
}
fail:
rdc_kstat_delete(index);
/* Don't unset krdc->intf here, unlike _rdc_enable */
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_dev_close(krdc);
rdc_close_direct(krdc);
rdc_destroy_svinfo(svp);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
rdc_group_exit(krdc);
mutex_enter(&rdc_conf_lock);
/* Configured but not enabled */
ASSERT(IS_CONFIGURED(krdc) && !IS_ENABLED(urdc));
remove_from_group(krdc);
if (IS_MANY(krdc) || IS_MULTI(krdc))
remove_from_many(krdc);
rdc_u_init(urdc);
ASSERT(krdc->type_flag & RDC_CONFIGURED);
krdc->type_flag = 0;
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_resume(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
char itmp[10];
int rc;
if (!(uparms->options & RDC_OPT_SYNC) &&
!(uparms->options & RDC_OPT_ASYNC)) {
(void) spcs_s_inttostring(
uparms->options, itmp, sizeof (itmp), 1);
spcs_s_add(kstatus, RDC_EEINVAL, itmp);
rc = RDC_EEINVAL;
goto done;
}
if (!(uparms->options & RDC_OPT_PRIMARY) &&
!(uparms->options & RDC_OPT_SECONDARY)) {
(void) spcs_s_inttostring(
uparms->options, itmp, sizeof (itmp), 1);
spcs_s_add(kstatus, RDC_EEINVAL, itmp);
rc = RDC_EEINVAL;
goto done;
}
rc = _rdc_resume(uparms->rdc_set, uparms->options, kstatus);
done:
return (rc);
}
/*
* if rdc_group_log is called because a volume has failed,
* we must disgard the queue to preserve write ordering.
* later perhaps, we can keep queuing, but we would have to
* rewrite the i/o path to acommodate that. currently, if there
* is a volume failure, the buffers are satisfied remotely and
* there is no way to satisfy them from the current diskq config
* phew, if we do that.. it will be difficult
*/
int
rdc_can_queue(rdc_k_info_t *krdc)
{
rdc_k_info_t *p;
rdc_u_info_t *q;
for (p = krdc->group_next; ; p = p->group_next) {
q = &rdc_u_info[p->index];
if (IS_STATE(q, RDC_VOL_FAILED))
return (0);
if (p == krdc)
break;
}
return (1);
}
/*
* wait here, until all in flight async i/o's have either
* finished or failed. Avoid the race with r_net_state()
* which tells remote end to log.
*/
void
rdc_inflwait(rdc_group_t *grp)
{
int bail = RDC_CLNT_TMOUT * 2; /* to include retries */
volatile int *inflitems;
if (RDC_IS_DISKQ(grp))
inflitems = (&(grp->diskq.inflitems));
else
inflitems = (&(grp->ra_queue.inflitems));
while (*inflitems && (--bail > 0))
delay(HZ);
}
void
rdc_group_log(rdc_k_info_t *krdc, int flag, char *why)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_k_info_t *p;
rdc_u_info_t *q;
int do_group;
int sm, um, md;
disk_queue *dq;
void (*flag_op)(rdc_u_info_t *urdc, int flag);
ASSERT(MUTEX_HELD(&krdc->group->lock));
if (!IS_ENABLED(urdc))
return;
rdc_many_enter(krdc);
if ((flag & RDC_QUEUING) && (!IS_STATE(urdc, RDC_SYNCING)) &&
(rdc_can_queue(krdc))) {
flag_op = rdc_set_flags; /* keep queuing, link error */
flag &= ~RDC_FLUSH;
} else {
flag_op = rdc_clr_flags; /* stop queuing, user request */
}
do_group = 1;
if (!(rdc_get_vflags(urdc) & RDC_PRIMARY))
do_group = 0;
else if ((urdc->group_name[0] == 0) ||
(rdc_get_vflags(urdc) & RDC_LOGGING) ||
(rdc_get_vflags(urdc) & RDC_SYNCING))
do_group = 0;
if (do_group) {
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
if (!IS_ENABLED(q))
continue;
if ((rdc_get_vflags(q) & RDC_LOGGING) ||
(rdc_get_vflags(q) & RDC_SYNCING)) {
do_group = 0;
break;
}
}
}
if (!do_group && (flag & RDC_FORCE_GROUP))
do_group = 1;
rdc_many_exit(krdc);
dq = &krdc->group->diskq;
if (do_group) {
#ifdef DEBUG
cmn_err(CE_NOTE, "!SNDR:Group point-in-time for grp: %s %s:%s",
urdc->group_name, urdc->primary.intf, urdc->secondary.intf);
#endif
DTRACE_PROBE(rdc_diskq_group_PIT);
/* Set group logging at the same PIT under rdc_many_lock */
rdc_many_enter(krdc);
rdc_set_flags_log(urdc, RDC_LOGGING, why);
if (RDC_IS_DISKQ(krdc->group))
flag_op(urdc, RDC_QUEUING);
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
if (!IS_ENABLED(q))
continue;
rdc_set_flags_log(q, RDC_LOGGING,
"consistency group member following leader");
if (RDC_IS_DISKQ(p->group))
flag_op(q, RDC_QUEUING);
}
rdc_many_exit(krdc);
/*
* This can cause the async threads to fail,
* which in turn will call rdc_group_log()
* again. Release the lock and re-aquire.
*/
rdc_group_exit(krdc);
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
if (!RDC_IS_DISKQ(krdc->group))
RDC_ZERO_BITREF(krdc);
rdc_inflwait(krdc->group);
/*
* a little lazy, but neat. recall dump_alloc_bufs to
* ensure that the queue pointers & seq are reset properly
* after we have waited for inflight stuff
*/
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
rdc_group_enter(krdc);
if (RDC_IS_DISKQ(krdc->group) && (!(flag & RDC_QUEUING))) {
/* fail or user request */
RDC_ZERO_BITREF(krdc);
mutex_enter(&krdc->group->diskq.disk_qlock);
rdc_init_diskq_header(krdc->group,
&krdc->group->diskq.disk_hdr);
SET_QNXTIO(dq, QHEAD(dq));
mutex_exit(&krdc->group->diskq.disk_qlock);
}
if (flag & RDC_ALLREMOTE) {
/* Tell other node to start logging */
if (krdc->lsrv && krdc->intf && !krdc->intf->if_down)
(void) rdc_net_state(krdc->index,
CCIO_ENABLELOG);
}
if (flag & (RDC_ALLREMOTE | RDC_OTHERREMOTE)) {
rdc_many_enter(krdc);
for (p = krdc->group_next; p != krdc;
p = p->group_next) {
if (p->lsrv && krdc->intf &&
!krdc->intf->if_down) {
(void) rdc_net_state(p->index,
CCIO_ENABLELOG);
}
}
rdc_many_exit(krdc);
}
rdc_write_state(urdc);
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
if (!IS_ENABLED(q))
continue;
rdc_write_state(q);
}
} else {
/* No point in time is possible, just deal with single set */
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
halt_sync(krdc);
} else {
if (rdc_net_getstate(krdc, &sm, &um, &md, TRUE) < 0) {
rdc_clr_flags(urdc, RDC_SYNCING);
rdc_set_flags_log(urdc, RDC_LOGGING,
"failed to read remote state");
rdc_write_state(urdc);
while (rdc_dump_alloc_bufs_cd(krdc->index)
== EAGAIN)
delay(2);
if ((RDC_IS_DISKQ(krdc->group)) &&
(!(flag & RDC_QUEUING))) { /* fail! */
mutex_enter(QLOCK(dq));
rdc_init_diskq_header(krdc->group,
&krdc->group->diskq.disk_hdr);
SET_QNXTIO(dq, QHEAD(dq));
mutex_exit(QLOCK(dq));
}
return;
}
}
if (rdc_get_vflags(urdc) & RDC_SYNCING)
return;
if (RDC_IS_DISKQ(krdc->group))
flag_op(urdc, RDC_QUEUING);
if ((RDC_IS_DISKQ(krdc->group)) &&
(!(flag & RDC_QUEUING))) { /* fail! */
RDC_ZERO_BITREF(krdc);
mutex_enter(QLOCK(dq));
rdc_init_diskq_header(krdc->group,
&krdc->group->diskq.disk_hdr);
SET_QNXTIO(dq, QHEAD(dq));
mutex_exit(QLOCK(dq));
}
if (!(rdc_get_vflags(urdc) & RDC_LOGGING)) {
rdc_set_flags_log(urdc, RDC_LOGGING, why);
rdc_write_state(urdc);
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
if (!RDC_IS_DISKQ(krdc->group))
RDC_ZERO_BITREF(krdc);
rdc_inflwait(krdc->group);
/*
* a little lazy, but neat. recall dump_alloc_bufs to
* ensure that the queue pointers & seq are reset
* properly after we have waited for inflight stuff
*/
while (rdc_dump_alloc_bufs_cd(krdc->index) == EAGAIN)
delay(2);
if (flag & RDC_ALLREMOTE) {
/* Tell other node to start logging */
if (krdc->lsrv && krdc->intf &&
!krdc->intf->if_down) {
(void) rdc_net_state(krdc->index,
CCIO_ENABLELOG);
}
}
}
}
/*
* just in case any threads were in flight during log cleanup
*/
if (RDC_IS_DISKQ(krdc->group)) {
mutex_enter(QLOCK(dq));
cv_broadcast(&dq->qfullcv);
mutex_exit(QLOCK(dq));
}
}
static int
_rdc_log(rdc_k_info_t *krdc, rdc_set_t *rdc_set, spcs_s_info_t kstatus)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
rdc_srv_t *svp;
rdc_group_enter(krdc);
if (rdc_check(krdc, rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, rdc_set->primary.file,
rdc_set->secondary.file);
return (RDC_EALREADY);
}
svp = krdc->lsrv;
if (rdc_get_vflags(urdc) & RDC_PRIMARY)
krdc->intf = rdc_add_to_if(svp, &(urdc->primary.addr),
&(urdc->secondary.addr), 1);
else
krdc->intf = rdc_add_to_if(svp, &(urdc->secondary.addr),
&(urdc->primary.addr), 0);
if (!krdc->intf) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EADDTOIF, urdc->primary.intf,
urdc->secondary.intf);
return (RDC_EADDTOIF);
}
rdc_group_log(krdc, RDC_FLUSH | RDC_ALLREMOTE, NULL);
if (rdc_get_vflags(urdc) & RDC_SYNCING) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_ESYNCING, urdc->primary.file);
return (RDC_ESYNCING);
}
rdc_group_exit(krdc);
return (0);
}
static int
rdc_log(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
int rc = 0;
int index;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rc = _rdc_log(krdc, uparms->rdc_set, kstatus);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_wait(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int index;
int need_check = 0;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
urdc = &rdc_u_info[index];
if (!(rdc_get_vflags(urdc) & RDC_PRIMARY)) {
mutex_exit(&rdc_conf_lock);
return (0);
}
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
rdc_group_exit(krdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
if ((rdc_get_vflags(urdc) & (RDC_SYNCING | RDC_PRIMARY)) !=
(RDC_SYNCING | RDC_PRIMARY)) {
rdc_group_exit(krdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (0);
}
if (rdc_get_vflags(urdc) & RDC_SYNCING) {
need_check = 1;
}
rdc_group_exit(krdc);
mutex_enter(&net_blk_lock);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
(void) cv_wait_sig(&krdc->synccv, &net_blk_lock);
mutex_exit(&net_blk_lock);
if (need_check) {
if (krdc->sync_done == RDC_COMPLETED) {
return (0);
} else if (krdc->sync_done == RDC_FAILED) {
return (EIO);
}
}
return (0);
}
static int
rdc_health(rdc_config_t *uparms, spcs_s_info_t kstatus, int *rvp)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int rc = 0;
int index;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
rc = RDC_EALREADY;
goto done;
}
urdc = &rdc_u_info[index];
if (rdc_isactive_if(&(urdc->primary.addr), &(urdc->secondary.addr)))
*rvp = RDC_ACTIVE;
else
*rvp = RDC_INACTIVE;
rdc_group_exit(krdc);
done:
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_reconfig(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int rc = -2;
int index;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
urdc = &rdc_u_info[index];
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
rc = RDC_EALREADY;
goto done;
}
if ((rdc_get_vflags(urdc) & RDC_BMP_FAILED) && (krdc->bitmapfd))
(void) rdc_reset_bitmap(krdc);
/* Move to a new bitmap if necessary */
if (strncmp(urdc->primary.bitmap, uparms->rdc_set->primary.bitmap,
NSC_MAXPATH) != 0) {
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
rc = rdc_move_bitmap(krdc,
uparms->rdc_set->primary.bitmap);
} else {
(void) strncpy(urdc->primary.bitmap,
uparms->rdc_set->primary.bitmap, NSC_MAXPATH);
/* simulate a succesful rdc_move_bitmap */
rc = 0;
}
}
if (strncmp(urdc->secondary.bitmap, uparms->rdc_set->secondary.bitmap,
NSC_MAXPATH) != 0) {
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
(void) strncpy(urdc->secondary.bitmap,
uparms->rdc_set->secondary.bitmap, NSC_MAXPATH);
/* simulate a succesful rdc_move_bitmap */
rc = 0;
} else {
rc = rdc_move_bitmap(krdc,
uparms->rdc_set->secondary.bitmap);
}
}
if (rc == -1) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EBMPRECONFIG,
uparms->rdc_set->secondary.intf,
uparms->rdc_set->secondary.file);
rc = RDC_EBMPRECONFIG;
goto done;
}
/*
* At this point we fail any other type of reconfig
* if not in logging mode and we did not do a bitmap reconfig
*/
if (!(rdc_get_vflags(urdc) & RDC_LOGGING) && rc == -2) {
/* no other changes possible unless logging */
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_ENOTLOGGING,
uparms->rdc_set->primary.intf,
uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.intf,
uparms->rdc_set->secondary.file);
rc = RDC_ENOTLOGGING;
goto done;
}
rc = 0;
/* Change direct file if necessary */
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) &&
strncmp(urdc->direct_file, uparms->rdc_set->direct_file,
NSC_MAXPATH)) {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING)) {
rdc_group_exit(krdc);
goto notlogging;
}
rdc_close_direct(krdc);
(void) strncpy(urdc->direct_file, uparms->rdc_set->direct_file,
NSC_MAXPATH);
if (urdc->direct_file[0]) {
if (rdc_open_direct(krdc) == NULL)
rdc_set_flags(urdc, RDC_FCAL_FAILED);
else
rdc_clr_flags(urdc, RDC_FCAL_FAILED);
}
}
rdc_group_exit(krdc);
/* Change group if necessary */
if (strncmp(urdc->group_name, uparms->rdc_set->group_name,
NSC_MAXPATH) != 0) {
char orig_group[NSC_MAXPATH];
if (!(rdc_get_vflags(urdc) & RDC_LOGGING))
goto notlogging;
mutex_enter(&rdc_conf_lock);
(void) strncpy(orig_group, urdc->group_name, NSC_MAXPATH);
(void) strncpy(urdc->group_name, uparms->rdc_set->group_name,
NSC_MAXPATH);
rc = change_group(krdc, uparms->options);
if (rc == RDC_EQNOADD) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EQNOADD,
uparms->rdc_set->disk_queue);
goto done;
} else if (rc < 0) {
(void) strncpy(urdc->group_name, orig_group,
NSC_MAXPATH);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EGROUP,
urdc->primary.intf, urdc->primary.file,
urdc->secondary.intf, urdc->secondary.file,
uparms->rdc_set->group_name);
rc = RDC_EGROUP;
goto done;
}
mutex_exit(&rdc_conf_lock);
if (rc >= 0) {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING))
goto notlogging;
if (uparms->options & RDC_OPT_ASYNC) {
mutex_enter(&rdc_conf_lock);
krdc->type_flag |= RDC_ASYNCMODE;
mutex_exit(&rdc_conf_lock);
if (uparms->options & RDC_OPT_PRIMARY)
krdc->bitmap_ref =
(uchar_t *)kmem_zalloc(
(krdc->bitmap_size * BITS_IN_BYTE *
BMAP_REF_PREF_SIZE), KM_SLEEP);
rdc_group_enter(krdc);
rdc_set_flags(urdc, RDC_ASYNC);
rdc_group_exit(krdc);
} else {
mutex_enter(&rdc_conf_lock);
krdc->type_flag &= ~RDC_ASYNCMODE;
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_ASYNC);
rdc_group_exit(krdc);
if (krdc->bitmap_ref) {
kmem_free(krdc->bitmap_ref,
(krdc->bitmap_size * BITS_IN_BYTE *
BMAP_REF_PREF_SIZE));
krdc->bitmap_ref = NULL;
}
}
}
} else {
if ((((uparms->options & RDC_OPT_ASYNC) == 0) &&
((krdc->type_flag & RDC_ASYNCMODE) != 0)) ||
(((uparms->options & RDC_OPT_ASYNC) != 0) &&
((krdc->type_flag & RDC_ASYNCMODE) == 0))) {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING))
goto notlogging;
if (krdc->group->count > 1) {
spcs_s_add(kstatus, RDC_EGROUPMODE);
rc = RDC_EGROUPMODE;
goto done;
}
}
/* Switch sync/async if necessary */
if (krdc->group->count == 1) {
/* Only member of group. Can change sync/async */
if (((uparms->options & RDC_OPT_ASYNC) == 0) &&
((krdc->type_flag & RDC_ASYNCMODE) != 0)) {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING))
goto notlogging;
/* switch to sync */
mutex_enter(&rdc_conf_lock);
krdc->type_flag &= ~RDC_ASYNCMODE;
if (RDC_IS_DISKQ(krdc->group)) {
krdc->group->flags &= ~RDC_DISKQUE;
krdc->group->flags |= RDC_MEMQUE;
rdc_unintercept_diskq(krdc->group);
mutex_enter(&krdc->group->diskqmutex);
rdc_close_diskq(krdc->group);
mutex_exit(&krdc->group->diskqmutex);
bzero(&urdc->disk_queue,
sizeof (urdc->disk_queue));
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
rdc_clr_flags(urdc, RDC_ASYNC);
rdc_group_exit(krdc);
if (krdc->bitmap_ref) {
kmem_free(krdc->bitmap_ref,
(krdc->bitmap_size * BITS_IN_BYTE *
BMAP_REF_PREF_SIZE));
krdc->bitmap_ref = NULL;
}
} else if (((uparms->options & RDC_OPT_ASYNC) != 0) &&
((krdc->type_flag & RDC_ASYNCMODE) == 0)) {
if (!(rdc_get_vflags(urdc) & RDC_LOGGING))
goto notlogging;
/* switch to async */
mutex_enter(&rdc_conf_lock);
krdc->type_flag |= RDC_ASYNCMODE;
mutex_exit(&rdc_conf_lock);
if (uparms->options & RDC_OPT_PRIMARY)
krdc->bitmap_ref =
(uchar_t *)kmem_zalloc(
(krdc->bitmap_size * BITS_IN_BYTE *
BMAP_REF_PREF_SIZE), KM_SLEEP);
rdc_group_enter(krdc);
rdc_set_flags(urdc, RDC_ASYNC);
rdc_group_exit(krdc);
}
}
}
/* Reverse concept of primary and secondary */
if ((uparms->options & RDC_OPT_REVERSE_ROLE) != 0) {
rdc_set_t rdc_set;
struct netbuf paddr, saddr;
mutex_enter(&rdc_conf_lock);
/*
* Disallow role reversal for advanced configurations
*/
if (IS_MANY(krdc) || IS_MULTI(krdc)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EMASTER, urdc->primary.intf,
urdc->primary.file, urdc->secondary.intf,
urdc->secondary.file);
return (RDC_EMASTER);
}
bzero((void *) &rdc_set, sizeof (rdc_set_t));
dup_rdc_netbuf(&urdc->primary.addr, &saddr);
dup_rdc_netbuf(&urdc->secondary.addr, &paddr);
free_rdc_netbuf(&urdc->primary.addr);
free_rdc_netbuf(&urdc->secondary.addr);
dup_rdc_netbuf(&saddr, &urdc->secondary.addr);
dup_rdc_netbuf(&paddr, &urdc->primary.addr);
free_rdc_netbuf(&paddr);
free_rdc_netbuf(&saddr);
/* copy primary parts of urdc to rdc_set field by field */
(void) strncpy(rdc_set.primary.intf, urdc->primary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(rdc_set.primary.file, urdc->primary.file,
NSC_MAXPATH);
(void) strncpy(rdc_set.primary.bitmap, urdc->primary.bitmap,
NSC_MAXPATH);
/* Now overwrite urdc primary */
(void) strncpy(urdc->primary.intf, urdc->secondary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->primary.file, urdc->secondary.file,
NSC_MAXPATH);
(void) strncpy(urdc->primary.bitmap, urdc->secondary.bitmap,
NSC_MAXPATH);
/* Now ovwewrite urdc secondary */
(void) strncpy(urdc->secondary.intf, rdc_set.primary.intf,
MAX_RDC_HOST_SIZE);
(void) strncpy(urdc->secondary.file, rdc_set.primary.file,
NSC_MAXPATH);
(void) strncpy(urdc->secondary.bitmap, rdc_set.primary.bitmap,
NSC_MAXPATH);
if (rdc_get_vflags(urdc) & RDC_PRIMARY) {
rdc_clr_flags(urdc, RDC_PRIMARY);
if (krdc->intf) {
krdc->intf->issecondary = 1;
krdc->intf->isprimary = 0;
krdc->intf->if_down = 1;
}
} else {
rdc_set_flags(urdc, RDC_PRIMARY);
if (krdc->intf) {
krdc->intf->issecondary = 0;
krdc->intf->isprimary = 1;
krdc->intf->if_down = 1;
}
}
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) &&
((krdc->type_flag & RDC_ASYNCMODE) != 0)) {
if (!krdc->bitmap_ref)
krdc->bitmap_ref =
(uchar_t *)kmem_zalloc((krdc->bitmap_size *
BITS_IN_BYTE * BMAP_REF_PREF_SIZE),
KM_SLEEP);
if (krdc->bitmap_ref == NULL) {
cmn_err(CE_WARN,
"!rdc_reconfig: bitmap_ref alloc %"
NSC_SZFMT " failed",
krdc->bitmap_size * BITS_IN_BYTE *
BMAP_REF_PREF_SIZE);
mutex_exit(&rdc_conf_lock);
return (-1);
}
}
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) &&
(rdc_get_vflags(urdc) & RDC_SYNC_NEEDED)) {
/* Primary, so reverse sync needed */
rdc_many_enter(krdc);
rdc_clr_flags(urdc, RDC_SYNC_NEEDED);
rdc_set_mflags(urdc, RDC_RSYNC_NEEDED);
rdc_many_exit(krdc);
} else if (rdc_get_vflags(urdc) & RDC_RSYNC_NEEDED) {
/* Secondary, so forward sync needed */
rdc_many_enter(krdc);
rdc_clr_flags(urdc, RDC_RSYNC_NEEDED);
rdc_set_flags(urdc, RDC_SYNC_NEEDED);
rdc_many_exit(krdc);
}
/*
* rewrite bitmap header
*/
rdc_write_state(urdc);
mutex_exit(&rdc_conf_lock);
}
done:
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
notlogging:
/* no other changes possible unless logging */
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_ENOTLOGGING, urdc->primary.intf,
urdc->primary.file, urdc->secondary.intf,
urdc->secondary.file);
return (RDC_ENOTLOGGING);
}
static int
rdc_reset(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int rc = 0;
int index;
int cleared_error = 0;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
urdc = &rdc_u_info[index];
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
rc = RDC_EALREADY;
goto done;
}
if ((rdc_get_vflags(urdc) & RDC_BMP_FAILED) && (krdc->bitmapfd)) {
if (rdc_reset_bitmap(krdc) == 0)
cleared_error++;
}
/* Fix direct file if necessary */
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) && urdc->direct_file[0]) {
if (rdc_open_direct(krdc) == NULL)
rdc_set_flags(urdc, RDC_FCAL_FAILED);
else {
rdc_clr_flags(urdc, RDC_FCAL_FAILED);
cleared_error++;
}
}
if ((rdc_get_vflags(urdc) & RDC_VOL_FAILED)) {
rdc_many_enter(krdc);
rdc_clr_flags(urdc, RDC_VOL_FAILED);
cleared_error++;
rdc_many_exit(krdc);
}
if (cleared_error) {
/* cleared an error so we should be in logging mode */
rdc_set_flags_log(urdc, RDC_LOGGING, "set reset");
}
rdc_group_exit(krdc);
if ((rdc_get_vflags(urdc) & RDC_DISKQ_FAILED))
rdc_unfail_diskq(krdc);
done:
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_tunable(rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rdc_k_info_t *p;
rdc_u_info_t *q;
int rc = 0;
int index;
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
urdc = &rdc_u_info[index];
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
rc = RDC_EALREADY;
goto done;
}
if (uparms->rdc_set->maxqfbas > 0) {
urdc->maxqfbas = uparms->rdc_set->maxqfbas;
rdc_write_state(urdc);
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
q->maxqfbas = urdc->maxqfbas;
rdc_write_state(q);
}
}
if (uparms->rdc_set->maxqitems > 0) {
urdc->maxqitems = uparms->rdc_set->maxqitems;
rdc_write_state(urdc);
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
q->maxqitems = urdc->maxqitems;
rdc_write_state(q);
}
}
if (uparms->options & RDC_OPT_SET_QNOBLOCK) {
disk_queue *que;
if (!RDC_IS_DISKQ(krdc->group)) {
spcs_s_add(kstatus, RDC_EQNOQUEUE, urdc->primary.intf,
urdc->primary.file, urdc->secondary.intf,
urdc->secondary.file);
rc = RDC_EQNOQUEUE;
goto done;
}
que = &krdc->group->diskq;
mutex_enter(QLOCK(que));
SET_QSTATE(que, RDC_QNOBLOCK);
/* queue will fail if this fails */
(void) rdc_stamp_diskq(krdc, 0, RDC_GROUP_LOCKED);
mutex_exit(QLOCK(que));
}
if (uparms->options & RDC_OPT_CLR_QNOBLOCK) {
disk_queue *que;
if (!RDC_IS_DISKQ(krdc->group)) {
spcs_s_add(kstatus, RDC_EQNOQUEUE, urdc->primary.intf,
urdc->primary.file, urdc->secondary.intf,
urdc->secondary.file);
rc = RDC_EQNOQUEUE;
goto done;
}
que = &krdc->group->diskq;
mutex_enter(QLOCK(que));
CLR_QSTATE(que, RDC_QNOBLOCK);
/* queue will fail if this fails */
(void) rdc_stamp_diskq(krdc, 0, RDC_GROUP_LOCKED);
mutex_exit(QLOCK(que));
}
if (uparms->rdc_set->asyncthr > 0) {
urdc->asyncthr = uparms->rdc_set->asyncthr;
rdc_write_state(urdc);
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
q->asyncthr = urdc->asyncthr;
rdc_write_state(q);
}
}
if (uparms->rdc_set->autosync >= 0) {
if (uparms->rdc_set->autosync == 0)
urdc->autosync = 0;
else
urdc->autosync = 1;
rdc_write_state(urdc);
/* Changed autosync, so update rest of the group */
for (p = krdc->group_next; p != krdc; p = p->group_next) {
q = &rdc_u_info[p->index];
q->autosync = urdc->autosync;
rdc_write_state(q);
}
}
done:
rdc_group_exit(krdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
static int
rdc_status(void *arg, int mode, rdc_config_t *uparms, spcs_s_info_t kstatus)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
disk_queue *dqp;
int rc = 0;
int index;
char *ptr;
extern int rdc_status_copy32(const void *, void *, size_t, int);
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byname(uparms->rdc_set);
if (index >= 0)
krdc = &rdc_k_info[index];
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
set_busy(krdc);
if (krdc->type_flag == 0) {
/* A resume or enable failed */
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
return (RDC_EALREADY);
}
mutex_exit(&rdc_conf_lock);
rdc_group_enter(krdc);
if (rdc_check(krdc, uparms->rdc_set)) {
rdc_group_exit(krdc);
spcs_s_add(kstatus, RDC_EALREADY, uparms->rdc_set->primary.file,
uparms->rdc_set->secondary.file);
rc = RDC_EALREADY;
goto done;
}
urdc = &rdc_u_info[index];
/*
* sneak out qstate in urdc->flags
* this is harmless because it's value is not used
* in urdc->flags. the real qstate is kept in
* group->diskq->disk_hdr.h.state
*/
if (RDC_IS_DISKQ(krdc->group)) {
dqp = &krdc->group->diskq;
if (IS_QSTATE(dqp, RDC_QNOBLOCK))
urdc->flags |= RDC_QNOBLOCK;
}
if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
ptr = (char *)arg + offsetof(struct rdc_config32, rdc_set);
rc = rdc_status_copy32(urdc, ptr, sizeof (struct rdc_set32),
mode);
} else {
ptr = (char *)arg + offsetof(struct rdc_config, rdc_set);
rc = ddi_copyout(urdc, ptr, sizeof (struct rdc_set), mode);
}
/* clear out qstate from flags */
urdc->flags &= ~RDC_QNOBLOCK;
if (rc)
rc = EFAULT;
rdc_group_exit(krdc);
done:
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
return (rc);
}
/*
* Overwrite the bitmap with one supplied by the
* user.
* Copy into all bitmaps that are tracking this volume.
*/
int
rdc_bitmapset(int op, char *sechost, char *secdev, void *bmapaddr, int bmapsz,
nsc_off_t off, int mode)
{
int rc;
rdc_k_info_t *krdc;
int *indexvec;
int index;
int indexit;
kmutex_t **grouplocks;
int i;
int groupind;
if (off % FBA_SIZE(1)) {
/* Must be modulo FBA */
cmn_err(CE_WARN, "!bitmapset: Offset is not on an FBA "
"boundary %llu", (unsigned long long)off);
return (EINVAL);
}
if (bmapsz % FBA_SIZE(1)) {
/* Must be modulo FBA */
cmn_err(CE_WARN, "!bitmapset: Size is not on an FBA "
"boundary %d", bmapsz);
return (EINVAL);
}
mutex_enter(&rdc_conf_lock);
index = rdc_lookup_byhostdev(sechost, secdev);
if (index >= 0) {
krdc = &rdc_k_info[index];
}
if (index < 0 || (krdc->type_flag & RDC_DISABLEPEND)) {
rc = ENODEV;
mutex_exit(&rdc_conf_lock);
return (rc);
}
indexvec = kmem_alloc(rdc_max_sets * sizeof (int), KM_SLEEP);
grouplocks = kmem_alloc(rdc_max_sets * sizeof (kmutex_t *), KM_SLEEP);
/*
* I now have this set, and I want to take the group
* lock on it, and all the group locks of all the
* sets on the many and multi-hop links.
* I have to take the many lock while traversing the
* many/multi links.
* I think I also need to set the busy count on this
* set, otherwise when I drop the conf_lock, what
* will stop some other process from coming in and
* issuing a disable?
*/
set_busy(krdc);
mutex_exit(&rdc_conf_lock);
retrylock:
groupind = 0;
indexit = 0;
rdc_many_enter(krdc);
/*
* Take this initial sets group lock first.
*/
if (!mutex_tryenter(&krdc->group->lock)) {
rdc_many_exit(krdc);
goto retrylock;
}
grouplocks[groupind] = &krdc->group->lock;
groupind++;
rc = rdc_checkforbitmap(index, off + bmapsz);
if (rc) {
goto done;
}
indexvec[indexit] = index;
indexit++;
if (IS_MANY(krdc)) {
rdc_k_info_t *ktmp;
for (ktmp = krdc->many_next; ktmp != krdc;
ktmp = ktmp->many_next) {
/*
* attempt to take the group lock,
* if we don't already have it.
*/
if (ktmp->group == NULL) {
rc = ENODEV;
goto done;
}
for (i = 0; i < groupind; i++) {
if (grouplocks[i] == &ktmp->group->lock)
/* already have the group lock */
break;
}
/*
* didn't find our lock in our collection,
* attempt to take group lock.
*/
if (i >= groupind) {
if (!mutex_tryenter(&ktmp->group->lock)) {
for (i = 0; i < groupind; i++) {
mutex_exit(grouplocks[i]);
}
rdc_many_exit(krdc);
goto retrylock;
}
grouplocks[groupind] = &ktmp->group->lock;
groupind++;
}
rc = rdc_checkforbitmap(ktmp->index, off + bmapsz);
if (rc == 0) {
indexvec[indexit] = ktmp->index;
indexit++;
} else {
goto done;
}
}
}
if (IS_MULTI(krdc)) {
rdc_k_info_t *kmulti = krdc->multi_next;
if (kmulti->group == NULL) {
rc = ENODEV;
goto done;
}
/*
* This can't be in our group already.
*/
if (!mutex_tryenter(&kmulti->group->lock)) {
for (i = 0; i < groupind; i++) {
mutex_exit(grouplocks[i]);
}
rdc_many_exit(krdc);
goto retrylock;
}
grouplocks[groupind] = &kmulti->group->lock;
groupind++;
rc = rdc_checkforbitmap(kmulti->index, off + bmapsz);
if (rc == 0) {
indexvec[indexit] = kmulti->index;
indexit++;
} else {
goto done;
}
}
rc = rdc_installbitmap(op, bmapaddr, bmapsz, off, mode, indexvec,
indexit);
done:
for (i = 0; i < groupind; i++) {
mutex_exit(grouplocks[i]);
}
rdc_many_exit(krdc);
mutex_enter(&rdc_conf_lock);
wakeup_busy(krdc);
mutex_exit(&rdc_conf_lock);
kmem_free(indexvec, rdc_max_sets * sizeof (int));
kmem_free(grouplocks, rdc_max_sets * sizeof (kmutex_t *));
return (rc);
}
static int
rdc_checkforbitmap(int index, nsc_off_t limit)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
krdc = &rdc_k_info[index];
urdc = &rdc_u_info[index];
if (!IS_ENABLED(urdc)) {
return (EIO);
}
if (!(rdc_get_vflags(urdc) & RDC_LOGGING)) {
return (ENXIO);
}
if (krdc->dcio_bitmap == NULL) {
cmn_err(CE_WARN, "!checkforbitmap: No bitmap for set (%s:%s)",
urdc->secondary.intf, urdc->secondary.file);
return (ENOENT);
}
if (limit > krdc->bitmap_size) {
cmn_err(CE_WARN, "!checkbitmap: Bitmap exceeded, "
"incore %" NSC_SZFMT " user supplied %" NSC_SZFMT
" for set (%s:%s)", krdc->bitmap_size,
limit, urdc->secondary.intf, urdc->secondary.file);
return (ENOSPC);
}
return (0);
}
/*
* Copy the user supplied bitmap to this set.
*/
static int
rdc_installbitmap(int op, void *bmapaddr, int bmapsz,
nsc_off_t off, int mode, int *vec, int veccnt)
{
int rc;
nsc_off_t sfba;
nsc_off_t efba;
nsc_off_t fba;
void *ormem = NULL;
int len;
int left;
int copied;
int index;
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rc = 0;
ormem = kmem_alloc(RDC_MAXDATA, KM_SLEEP);
left = bmapsz;
copied = 0;
while (left > 0) {
if (left > RDC_MAXDATA) {
len = RDC_MAXDATA;
} else {
len = left;
}
if (ddi_copyin((char *)bmapaddr + copied, ormem,
len, mode)) {
cmn_err(CE_WARN, "!installbitmap: Copyin failed");
rc = EFAULT;
goto out;
}
sfba = FBA_NUM(off + copied);
efba = FBA_NUM(off + copied + len);
for (index = 0; index < veccnt; index++) {
krdc = &rdc_k_info[vec[index]];
urdc = &rdc_u_info[vec[index]];
mutex_enter(&krdc->bmapmutex);
if (op == RDC_BITMAPSET) {
bcopy(ormem, krdc->dcio_bitmap + off + copied,
len);
} else {
rdc_lor(ormem,
krdc->dcio_bitmap + off + copied, len);
}
/*
* Maybe this should be just done once outside of
* the the loop? (Less work, but leaves a window
* where the bits_set doesn't match the bitmap).
*/
urdc->bits_set = RDC_COUNT_BITMAP(krdc);
mutex_exit(&krdc->bmapmutex);
if (krdc->bitmap_write > 0) {
for (fba = sfba; fba < efba; fba++) {
if (rc = rdc_write_bitmap_fba(krdc,
fba)) {
cmn_err(CE_WARN,
"!installbitmap: "
"write_bitmap_fba failed "
"on fba number %" NSC_SZFMT
" set %s:%s", fba,
urdc->secondary.intf,
urdc->secondary.file);
goto out;
}
}
}
}
copied += len;
left -= len;
}
out:
kmem_free(ormem, RDC_MAXDATA);
return (rc);
}
/*
* _rdc_config
*/
int
_rdc_config(void *arg, int mode, spcs_s_info_t kstatus, int *rvp)
{
int rc = 0;
struct netbuf fsvaddr, tsvaddr;
struct knetconfig *knconf;
char *p = NULL, *pf = NULL;
struct rdc_config *uap;
STRUCT_DECL(knetconfig, knconf_tmp);
STRUCT_DECL(rdc_config, uparms);
int enable, disable;
int cmd;
STRUCT_HANDLE(rdc_set, rs);
STRUCT_HANDLE(rdc_addr, pa);
STRUCT_HANDLE(rdc_addr, sa);
STRUCT_INIT(uparms, mode);
bzero(STRUCT_BUF(uparms), STRUCT_SIZE(uparms));
bzero(&fsvaddr, sizeof (fsvaddr));
bzero(&tsvaddr, sizeof (tsvaddr));
knconf = NULL;
if (ddi_copyin(arg, STRUCT_BUF(uparms), STRUCT_SIZE(uparms), mode)) {
return (EFAULT);
}
STRUCT_SET_HANDLE(rs, mode, STRUCT_FGETP(uparms, rdc_set));
STRUCT_SET_HANDLE(pa, mode, STRUCT_FADDR(rs, primary));
STRUCT_SET_HANDLE(sa, mode, STRUCT_FADDR(rs, secondary));
cmd = STRUCT_FGET(uparms, command);
if (cmd == RDC_CMD_ENABLE || cmd == RDC_CMD_RESUME) {
fsvaddr.len = STRUCT_FGET(pa, addr.len);
fsvaddr.maxlen = STRUCT_FGET(pa, addr.maxlen);
fsvaddr.buf = kmem_zalloc(fsvaddr.len, KM_SLEEP);
if (ddi_copyin(STRUCT_FGETP(pa, addr.buf),
fsvaddr.buf, fsvaddr.len, mode)) {
kmem_free(fsvaddr.buf, fsvaddr.len);
#ifdef DEBUG
cmn_err(CE_WARN, "!copyin failed primary.addr 2");
#endif
return (EFAULT);
}
tsvaddr.len = STRUCT_FGET(sa, addr.len);
tsvaddr.maxlen = STRUCT_FGET(sa, addr.maxlen);
tsvaddr.buf = kmem_zalloc(tsvaddr.len, KM_SLEEP);
if (ddi_copyin(STRUCT_FGETP(sa, addr.buf),
tsvaddr.buf, tsvaddr.len, mode)) {
#ifdef DEBUG
cmn_err(CE_WARN, "!copyin failed secondary addr");
#endif
kmem_free(fsvaddr.buf, fsvaddr.len);
kmem_free(tsvaddr.buf, tsvaddr.len);
return (EFAULT);
}
} else {
fsvaddr.len = 0;
fsvaddr.maxlen = 0;
fsvaddr.buf = kmem_zalloc(fsvaddr.len, KM_SLEEP);
tsvaddr.len = 0;
tsvaddr.maxlen = 0;
tsvaddr.buf = kmem_zalloc(tsvaddr.len, KM_SLEEP);
}
if (STRUCT_FGETP(uparms, rdc_set->netconfig) != NULL) {
STRUCT_INIT(knconf_tmp, mode);
knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
if (ddi_copyin(STRUCT_FGETP(uparms, rdc_set->netconfig),
STRUCT_BUF(knconf_tmp), STRUCT_SIZE(knconf_tmp), mode)) {
#ifdef DEBUG
cmn_err(CE_WARN, "!copyin failed netconfig");
#endif
kmem_free(fsvaddr.buf, fsvaddr.len);
kmem_free(tsvaddr.buf, tsvaddr.len);
kmem_free(knconf, sizeof (*knconf));
return (EFAULT);
}
knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
#ifndef _SunOS_5_6
if ((mode & DATAMODEL_LP64) == 0) {
knconf->knc_rdev =
expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
} else {
#endif
knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
#ifndef _SunOS_5_6
}
#endif
pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
rc = ddi_copyin(knconf->knc_protofmly, pf, KNC_STRSIZE, mode);
if (rc) {
#ifdef DEBUG
cmn_err(CE_WARN, "!copyin failed parms protofmly");
#endif
rc = EFAULT;
goto out;
}
rc = ddi_copyin(knconf->knc_proto, p, KNC_STRSIZE, mode);
if (rc) {
#ifdef DEBUG
cmn_err(CE_WARN, "!copyin failed parms proto");
#endif
rc = EFAULT;
goto out;
}
knconf->knc_protofmly = pf;
knconf->knc_proto = p;
} /* !NULL netconfig */
uap = kmem_alloc(sizeof (*uap), KM_SLEEP);
/* copy relevant parts of rdc_config to uap field by field */
(void) strncpy(uap->rdc_set[0].primary.intf, STRUCT_FGETP(pa, intf),
MAX_RDC_HOST_SIZE);
(void) strncpy(uap->rdc_set[0].primary.file, STRUCT_FGETP(pa, file),
NSC_MAXPATH);
(void) strncpy(uap->rdc_set[0].primary.bitmap, STRUCT_FGETP(pa, bitmap),
NSC_MAXPATH);
uap->rdc_set[0].netconfig = knconf;
uap->rdc_set[0].flags = STRUCT_FGET(uparms, rdc_set->flags);
uap->rdc_set[0].index = STRUCT_FGET(uparms, rdc_set->index);
uap->rdc_set[0].setid = STRUCT_FGET(uparms, rdc_set->setid);
uap->rdc_set[0].sync_pos = STRUCT_FGET(uparms, rdc_set->sync_pos);
uap->rdc_set[0].volume_size = STRUCT_FGET(uparms, rdc_set->volume_size);
uap->rdc_set[0].bits_set = STRUCT_FGET(uparms, rdc_set->bits_set);
uap->rdc_set[0].autosync = STRUCT_FGET(uparms, rdc_set->autosync);
uap->rdc_set[0].maxqfbas = STRUCT_FGET(uparms, rdc_set->maxqfbas);
uap->rdc_set[0].maxqitems = STRUCT_FGET(uparms, rdc_set->maxqitems);
uap->rdc_set[0].asyncthr = STRUCT_FGET(uparms, rdc_set->asyncthr);
uap->rdc_set[0].syshostid = STRUCT_FGET(uparms, rdc_set->syshostid);
uap->rdc_set[0].primary.addr = fsvaddr; /* struct copy */
uap->rdc_set[0].secondary.addr = tsvaddr; /* struct copy */
(void) strncpy(uap->rdc_set[0].secondary.intf, STRUCT_FGETP(sa, intf),
MAX_RDC_HOST_SIZE);
(void) strncpy(uap->rdc_set[0].secondary.file, STRUCT_FGETP(sa, file),
NSC_MAXPATH);
(void) strncpy(uap->rdc_set[0].secondary.bitmap,
STRUCT_FGETP(sa, bitmap), NSC_MAXPATH);
(void) strncpy(uap->rdc_set[0].direct_file,
STRUCT_FGETP(rs, direct_file), NSC_MAXPATH);
(void) strncpy(uap->rdc_set[0].group_name, STRUCT_FGETP(rs, group_name),
NSC_MAXPATH);
(void) strncpy(uap->rdc_set[0].disk_queue, STRUCT_FGETP(rs, disk_queue),
NSC_MAXPATH);
uap->command = STRUCT_FGET(uparms, command);
uap->options = STRUCT_FGET(uparms, options);
enable = (uap->command == RDC_CMD_ENABLE ||
uap->command == RDC_CMD_RESUME);
disable = (uap->command == RDC_CMD_DISABLE ||
uap->command == RDC_CMD_SUSPEND);
/*
* Initialise the threadset if it has not already been done.
*
* This has to be done now, not in rdcattach(), because
* rdcattach() can be called before nskernd is running (eg.
* boot -r) in which case the nst_init() would fail and hence
* the attach would fail.
*
* Threadset creation is locked by the rdc_conf_lock,
* destruction is inherently single threaded as it is done in
* _rdc_unload() which must be the last thing performed by
* rdcdetach().
*/
if (enable && _rdc_ioset == NULL) {
mutex_enter(&rdc_conf_lock);
if (_rdc_ioset == NULL) {
rc = rdc_thread_configure();
}
mutex_exit(&rdc_conf_lock);
if (rc || _rdc_ioset == NULL) {
spcs_s_add(kstatus, RDC_ENOTHREADS);
rc = RDC_ENOTHREADS;
goto outuap;
}
}
switch (uap->command) {
case RDC_CMD_ENABLE:
rc = rdc_enable(uap, kstatus);
break;
case RDC_CMD_DISABLE:
rc = rdc_disable(uap, kstatus);
break;
case RDC_CMD_COPY:
rc = rdc_sync(uap, kstatus);
break;
case RDC_CMD_LOG:
rc = rdc_log(uap, kstatus);
break;
case RDC_CMD_RECONFIG:
rc = rdc_reconfig(uap, kstatus);
break;
case RDC_CMD_RESUME:
rc = rdc_resume(uap, kstatus);
break;
case RDC_CMD_SUSPEND:
rc = rdc_suspend(uap, kstatus);
break;
case RDC_CMD_TUNABLE:
rc = rdc_tunable(uap, kstatus);
break;
case RDC_CMD_WAIT:
rc = rdc_wait(uap, kstatus);
break;
case RDC_CMD_HEALTH:
rc = rdc_health(uap, kstatus, rvp);
break;
case RDC_CMD_STATUS:
rc = rdc_status(arg, mode, uap, kstatus);
break;
case RDC_CMD_RESET:
rc = rdc_reset(uap, kstatus);
break;
case RDC_CMD_ADDQ:
rc = rdc_add_diskq(uap, kstatus);
break;
case RDC_CMD_REMQ:
if ((rc = rdc_rem_diskq(uap, kstatus)) != 0)
break;
/* FALLTHRU */
case RDC_CMD_KILLQ:
rc = rdc_kill_diskq(uap, kstatus);
break;
case RDC_CMD_INITQ:
rc = rdc_init_diskq(uap, kstatus);
break;
default:
rc = EINVAL;
break;
}
/*
* Tune the threadset size after a successful rdc_set addition
* or removal.
*/
if ((enable || disable) && rc == 0) {
mutex_enter(&rdc_conf_lock);
rdc_thread_tune(enable ? 2 : -2);
mutex_exit(&rdc_conf_lock);
}
outuap:
kmem_free(uap, sizeof (*uap));
out:
kmem_free(fsvaddr.buf, fsvaddr.len);
kmem_free(tsvaddr.buf, tsvaddr.len);
if (pf)
kmem_free(pf, KNC_STRSIZE);
if (p)
kmem_free(p, KNC_STRSIZE);
if (knconf)
kmem_free(knconf, sizeof (*knconf));
return (rc);
}
/*
* krdc->group->lock held on entry to halt_sync()
*/
static void
halt_sync(rdc_k_info_t *krdc)
{
rdc_u_info_t *urdc = &rdc_u_info[krdc->index];
ASSERT(MUTEX_HELD(&krdc->group->lock));
ASSERT(IS_ENABLED(urdc));
/*
* If a sync is in progress, halt it
*/
if ((rdc_get_vflags(urdc) & RDC_PRIMARY) &&
(krdc->aux_state & RDC_AUXSYNCIP)) {
krdc->disk_status = 1;
while (krdc->disk_status == 1) {
if (cv_wait_sig(&krdc->haltcv, &krdc->group->lock) == 0)
break;
}
}
}
/*
* return size in blocks
*/
uint64_t
mirror_getsize(int index)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
int rc, rs;
nsc_size_t size;
krdc = &rdc_k_info[index];
urdc = &rdc_u_info[index];
rc = _rdc_rsrv_devs(krdc, RDC_RAW, RDC_INTERNAL);
rs = nsc_partsize(RDC_U_FD(krdc), &size);
urdc->volume_size = size;
if (rc == 0)
_rdc_rlse_devs(krdc, RDC_RAW);
return (rs == 0 ? urdc->volume_size : 0);
}
/*
* Create a new dataset for this transfer, and add it to the list
* of datasets via the net_dataset pointer in the krdc.
*/
rdc_net_dataset_t *
rdc_net_add_set(int index)
{
rdc_k_info_t *krdc;
rdc_u_info_t *urdc;
rdc_net_dataset_t *dset;
if (index >= rdc_max_sets) {
cmn_err(CE_NOTE, "!rdc_net_add_set: bad index %d", index);
return (NULL);
}
krdc = &rdc_k_info[index];
urdc = &rdc_u_info[index];
dset = kmem_alloc(sizeof (*dset), KM_NOSLEEP);
if (dset == NULL) {
cmn_err(CE_NOTE, "!rdc_net_add_set: kmem_alloc failed");
return (NULL);
}
RDC_DSMEMUSE(sizeof (*dset));
dset->inuse = 1;
dset->nitems = 0;
dset->delpend = 0;
dset->head = NULL;
dset->tail = NULL;
mutex_enter(&krdc->dc_sleep);
if (!IS_ENABLED(urdc)) {
/* raced with a disable command */
kmem_free(dset, sizeof (*dset));
RDC_DSMEMUSE(-sizeof (*dset));
mutex_exit(&krdc->dc_sleep);
return (NULL);
}
/*
* Shared the id generator, (and the locks).
*/
mutex_enter(&rdc_net_hnd_id_lock);
if (++rdc_net_hnd_id == 0)
rdc_net_hnd_id = 1;
dset->id = rdc_net_hnd_id;
mutex_exit(&rdc_net_hnd_id_lock);
#ifdef DEBUG
if (krdc->net_dataset != NULL) {
rdc_net_dataset_t *dset2;
for (dset2 = krdc->net_dataset; dset2; dset2 = dset2->next) {
if (dset2->id == dset->id) {
cmn_err(CE_PANIC,
"rdc_net_add_set duplicate id %p:%d %p:%d",
(void *)dset, dset->id,
(void *)dset2, dset2->id);
}
}
}
#endif
dset->next = krdc->net_dataset;
krdc->net_dataset = dset;
mutex_exit(&krdc->dc_sleep);
return (dset);
}
/*
* fetch the previously added dataset.
*/
rdc_net_dataset_t *
rdc_net_get_set(int index, int id)
{
rdc_k_info_t *krdc;
rdc_net_dataset_t *dset;
if (index >= rdc_max_sets) {
cmn_err(CE_NOTE, "!rdc_net_get_set: bad index %d", index);
return (NULL);
}
krdc = &rdc_k_info[index];
mutex_enter(&krdc->dc_sleep);
dset = krdc->net_dataset;
while (dset && (dset->id != id))
dset = dset->next;
if (dset) {
dset->inuse++;
}
mutex_exit(&krdc->dc_sleep);
return (dset);
}
/*
* Decrement the inuse counter. Data may be freed.
*/
void
rdc_net_put_set(int index, rdc_net_dataset_t *dset)
{
rdc_k_info_t *krdc;
if (index >= rdc_max_sets) {
cmn_err(CE_NOTE, "!rdc_net_put_set: bad index %d", index);
return;
}
krdc = &rdc_k_info[index];
mutex_enter(&krdc->dc_sleep);
dset->inuse--;
ASSERT(dset->inuse >= 0);
if ((dset->inuse == 0) && (dset->delpend)) {
rdc_net_free_set(krdc, dset);
}
mutex_exit(&krdc->dc_sleep);
}
/*
* Mark that we are finished with this set. Decrement inuse
* counter, mark as needing deletion, and
* remove from linked list.
*/
void
rdc_net_del_set(int index, rdc_net_dataset_t *dset)
{
rdc_k_info_t *krdc;
if (index >= rdc_max_sets) {
cmn_err(CE_NOTE, "!rdc_net_del_set: bad index %d", index);
return;
}
krdc = &rdc_k_info[index];
mutex_enter(&krdc->dc_sleep);
dset->inuse--;
ASSERT(dset->inuse >= 0);
dset->delpend = 1;
if (dset->inuse == 0) {
rdc_net_free_set(krdc, dset);
}
mutex_exit(&krdc->dc_sleep);
}
/*
* free all the memory associated with this set, and remove from
* list.
* Enters and exits with dc_sleep lock held.
*/
void
rdc_net_free_set(rdc_k_info_t *krdc, rdc_net_dataset_t *dset)
{
rdc_net_dataset_t **dsetp;
#ifdef DEBUG
int found = 0;
#endif
ASSERT(MUTEX_HELD(&krdc->dc_sleep));
ASSERT(dset);
for (dsetp = &krdc->net_dataset; *dsetp; dsetp = &((*dsetp)->next)) {
if (*dsetp == dset) {
*dsetp = dset->next;
#ifdef DEBUG
found = 1;
#endif
break;
}
}
#ifdef DEBUG
if (found == 0) {
cmn_err(CE_WARN, "!rdc_net_free_set: Unable to find "
"dataset 0x%p in krdc list", (void *)dset);
}
#endif
/*
* unlinked from list. Free all the data
*/
rdc_ditemsfree(dset);
/*
* free my core.
*/
kmem_free(dset, sizeof (*dset));
RDC_DSMEMUSE(-sizeof (*dset));
}
/*
* Free all the dataitems and the data it points to.
*/
static void
rdc_ditemsfree(rdc_net_dataset_t *dset)
{
rdc_net_dataitem_t *ditem;
rdc_net_dataitem_t *nitem;
ditem = dset->head;
while (ditem) {
nitem = ditem->next;
kmem_free(ditem->dptr, ditem->mlen);
RDC_DSMEMUSE(-ditem->mlen);
dset->nitems--;
kmem_free(ditem, sizeof (*ditem));
RDC_DSMEMUSE(-sizeof (*ditem));
ditem = nitem;
}
ASSERT(dset->nitems == 0);
}
/*
* allocate and initialize a rdc_aio_t
*/
rdc_aio_t *
rdc_aio_tbuf_get(void *n, void *h, int pos, int len, int flag, int index, int s)
{
rdc_aio_t *p;
p = kmem_zalloc(sizeof (rdc_aio_t), KM_NOSLEEP);
if (p == NULL) {
#ifdef DEBUG
cmn_err(CE_NOTE, "!_rdcaiotbufget: kmem_alloc failed bp aio");
#endif
return (NULL);
} else {
p->next = n; /* overload */
p->handle = h;
p->pos = pos;
p->qpos = -1;
p->len = len;
p->flag = flag;
p->index = index;
p->iostatus = s; /* overload */
/* set up seq later, in case thr create fails */
}
return (p);
}
/*
* rdc_aio_buf_get
* get an aio_buf
*/
aio_buf_t *
rdc_aio_buf_get(rdc_buf_t *h, int index)
{
aio_buf_t *p;
if (index >= rdc_max_sets) {
cmn_err(CE_NOTE, "!rdc: rdc_aio_buf_get bad index %x", index);
return (NULL);
}
mutex_enter(&h->aio_lock);
p = h->rdc_anon;
while (p && (p->kindex != index))
p = p->next;
mutex_exit(&h->aio_lock);
return (p);
}
/*
* rdc_aio_buf_del
* delete a aio_buf
*/
void
rdc_aio_buf_del(rdc_buf_t *h, rdc_k_info_t *krdc)
{
aio_buf_t *p, **pp;
mutex_enter(&h->aio_lock);
p = NULL;
for (pp = &h->rdc_anon; *pp; pp = &((*pp)->next)) {
if ((*pp)->kindex == krdc->index) {
p = *pp;
break;
}
}
if (p) {
*pp = p->next;
kmem_free(p, sizeof (*p));
}
mutex_exit(&h->aio_lock);
}
/*
* rdc_aio_buf_add
* Add a aio_buf.
*/
aio_buf_t *
rdc_aio_buf_add(int index, rdc_buf_t *h)
{
aio_buf_t *p;
p = kmem_zalloc(sizeof (*p), KM_NOSLEEP);
if (p == NULL) {
cmn_err(CE_NOTE, "!rdc_aio_buf_add: kmem_alloc failed");
return (NULL);
}
p->rdc_abufp = NULL;
p->kindex = index;
mutex_enter(&h->aio_lock);
p->next = h->rdc_anon;
h->rdc_anon = p;
mutex_exit(&h->aio_lock);
return (p);
}
/*
* kmemalloc a new group structure and setup the common
* fields.
*/
static rdc_group_t *
rdc_newgroup()
{
rdc_group_t *group;
group = kmem_zalloc(sizeof (rdc_group_t), KM_SLEEP);
group->diskq.lastio = kmem_zalloc(sizeof (rdc_aio_t), KM_SLEEP);
group->count = 1;
group->seq = RDC_NEWSEQ;
group->seqack = RDC_NEWSEQ;
mutex_init(&group->lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&group->ra_queue.net_qlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&group->diskqmutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&group->diskq.disk_qlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&group->diskq.head_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&group->addthrnumlk, NULL, MUTEX_DRIVER, NULL);
cv_init(&group->unregistercv, NULL, CV_DRIVER, NULL);
cv_init(&group->asyncqcv, NULL, CV_DRIVER, NULL);
cv_init(&group->diskq.busycv, NULL, CV_DRIVER, NULL);
cv_init(&group->diskq.qfullcv, NULL, CV_DRIVER, NULL);
cv_init(&group->ra_queue.qfcv, NULL, CV_DRIVER, NULL);
group->ra_queue.qfill_sleeping = RDC_QFILL_DEAD;
group->diskq.busycnt = 0;
ASSERT(group->synccount == 0); /* group was kmem_zalloc'ed */
/*
* add default number of threads to the flusher thread set, plus
* one extra thread for the disk queue flusher
*/
if (nst_add_thread(_rdc_flset, 3) != 3)
cmn_err(CE_NOTE, "!rdc_newgroup: nst_add_thread failed");
return (group);
}
void
rdc_delgroup(rdc_group_t *group)
{
ASSERT(group->asyncstall == 0);
ASSERT(group->rdc_thrnum == 0);
ASSERT(group->count == 0);
ASSERT(MUTEX_HELD(&rdc_many_lock));
mutex_enter(&group->ra_queue.net_qlock);
rdc_sleepqdiscard(group);
mutex_exit(&group->ra_queue.net_qlock);
/* try to remove flusher threads that this group added to _rdc_flset */
if (nst_del_thread(_rdc_flset, group->rdc_addthrnum + 3) !=
group->rdc_addthrnum + 3)
cmn_err(CE_NOTE, "!rdc_delgroup: nst_del_thread failed");
mutex_destroy(&group->lock);
mutex_destroy(&group->ra_queue.net_qlock);
mutex_destroy(&group->diskqmutex);
mutex_destroy(&group->diskq.disk_qlock);
mutex_destroy(&group->diskq.head_lock);
mutex_destroy(&group->addthrnumlk);
cv_destroy(&group->unregistercv);
cv_destroy(&group->asyncqcv);
cv_destroy(&group->diskq.busycv);
cv_destroy(&group->diskq.qfullcv);
cv_destroy(&group->ra_queue.qfcv);
kmem_free(group->diskq.lastio, sizeof (rdc_aio_t));
kmem_free(group, sizeof (rdc_group_t));
}