dump.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <strings.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <gelf.h>
#include <zlib.h>
#include "ctf_headers.h"
#include "utils.h"
#include "symbol.h"
#define WARN(x) { warn(x); return (E_ERROR); }
/*
* Flags that indicate what data is to be displayed. An explicit `all' value is
* provided to allow the code to distinguish between a request for everything
* (currently requested by invoking ctfdump without flags) and individual
* requests for all of the types of data (an invocation with all flags). In the
* former case, we want to be able to implicitly adjust the definition of `all'
* based on the CTF version of the file being dumped. For example, if a v2 file
* is being dumped, `all' includes F_LABEL - a request to dump the label
* section. If a v1 file is being dumped, `all' does not include F_LABEL,
* because v1 CTF doesn't support labels. We need to be able to distinguish
* between `ctfdump foo', which has an implicit request for labels if `foo'
* supports them, and `ctfdump -l foo', which has an explicity request. In the
* latter case, we exit with an error if `foo' is a v1 CTF file.
*/
static enum {
F_DATA = 0x01, /* show data object section */
F_FUNC = 0x02, /* show function section */
F_HDR = 0x04, /* show header */
F_STR = 0x08, /* show string table */
F_TYPES = 0x10, /* show type section */
F_STATS = 0x20, /* show statistics */
F_LABEL = 0x40, /* show label section */
F_ALL = 0x80, /* explicit request for `all' */
F_ALLMSK = 0xff /* show all sections and statistics */
} flags = 0;
static struct {
ulong_t s_ndata; /* total number of data objects */
ulong_t s_nfunc; /* total number of functions */
ulong_t s_nargs; /* total number of function arguments */
ulong_t s_argmax; /* longest argument list */
ulong_t s_ntypes; /* total number of types */
ulong_t s_types[16]; /* number of types by kind */
ulong_t s_nsmem; /* total number of struct members */
ulong_t s_nsbytes; /* total size of all structs */
ulong_t s_smmax; /* largest struct in terms of members */
ulong_t s_sbmax; /* largest struct in terms of bytes */
ulong_t s_numem; /* total number of union members */
ulong_t s_nubytes; /* total size of all unions */
ulong_t s_ummax; /* largest union in terms of members */
ulong_t s_ubmax; /* largest union in terms of bytes */
ulong_t s_nemem; /* total number of enum members */
ulong_t s_emmax; /* largest enum in terms of members */
ulong_t s_nstr; /* total number of strings */
size_t s_strlen; /* total length of all strings */
size_t s_strmax; /* longest string length */
} stats;
typedef struct ctf_data {
caddr_t cd_ctfdata; /* Pointer to the CTF data */
size_t cd_ctflen; /* Length of CTF data */
/*
* cd_symdata will be non-NULL if the CTF data is being retrieved from
* an ELF file with a symbol table. cd_strdata and cd_nsyms should be
* used only if cd_symdata is non-NULL.
*/
Elf_Data *cd_symdata; /* Symbol table */
Elf_Data *cd_strdata; /* Symbol table strings */
int cd_nsyms; /* Number of symbol table entries */
} ctf_data_t;
static const char *
ref_to_str(uint_t name, const ctf_header_t *hp, const ctf_data_t *cd)
{
size_t offset = CTF_NAME_OFFSET(name);
const char *s = cd->cd_ctfdata + hp->cth_stroff + offset;
if (CTF_NAME_STID(name) != CTF_STRTAB_0)
return ("<< ??? - name in external strtab >>");
if (offset >= hp->cth_strlen)
return ("<< ??? - name exceeds strlab len >>");
if (hp->cth_stroff + offset >= cd->cd_ctflen)
return ("<< ??? - file truncated >>");
if (s[0] == '\0')
return ("(anon)");
return (s);
}
static const char *
int_encoding_to_str(uint_t encoding)
{
static char buf[32];
if (encoding == 0 || (encoding & ~(CTF_INT_SIGNED | CTF_INT_CHAR |
CTF_INT_BOOL | CTF_INT_VARARGS)) != 0)
(void) snprintf(buf, sizeof (buf), " 0x%x", encoding);
else {
buf[0] = '\0';
if (encoding & CTF_INT_SIGNED)
(void) strcat(buf, " SIGNED");
if (encoding & CTF_INT_CHAR)
(void) strcat(buf, " CHAR");
if (encoding & CTF_INT_BOOL)
(void) strcat(buf, " BOOL");
if (encoding & CTF_INT_VARARGS)
(void) strcat(buf, " VARARGS");
}
return (buf + 1);
}
static const char *
fp_encoding_to_str(uint_t encoding)
{
static const char *const encs[] = {
NULL, "SINGLE", "DOUBLE", "COMPLEX", "DCOMPLEX", "LDCOMPLEX",
"LDOUBLE", "INTERVAL", "DINTERVAL", "LDINTERVAL", "IMAGINARY",
"DIMAGINARY", "LDIMAGINARY"
};
static char buf[16];
if (encoding < 1 || encoding >= (sizeof (encs) / sizeof (char *))) {
(void) snprintf(buf, sizeof (buf), "%u", encoding);
return (buf);
}
return (encs[encoding]);
}
static void
print_line(const char *s)
{
static const char line[] = "----------------------------------------"
"----------------------------------------";
(void) printf("\n%s%.*s\n\n", s, (int)(78 - strlen(s)), line);
}
static int
print_header(const ctf_header_t *hp, const ctf_data_t *cd)
{
print_line("- CTF Header ");
(void) printf(" cth_magic = 0x%04x\n", hp->cth_magic);
(void) printf(" cth_version = %u\n", hp->cth_version);
(void) printf(" cth_flags = 0x%02x\n", hp->cth_flags);
(void) printf(" cth_parlabel = %s\n",
ref_to_str(hp->cth_parlabel, hp, cd));
(void) printf(" cth_parname = %s\n",
ref_to_str(hp->cth_parname, hp, cd));
(void) printf(" cth_lbloff = %u\n", hp->cth_lbloff);
(void) printf(" cth_objtoff = %u\n", hp->cth_objtoff);
(void) printf(" cth_funcoff = %u\n", hp->cth_funcoff);
(void) printf(" cth_typeoff = %u\n", hp->cth_typeoff);
(void) printf(" cth_stroff = %u\n", hp->cth_stroff);
(void) printf(" cth_strlen = %u\n", hp->cth_strlen);
return (E_SUCCESS);
}
static int
print_labeltable(const ctf_header_t *hp, const ctf_data_t *cd)
{
/* LINTED - pointer alignment */
const ctf_lblent_t *ctl = (ctf_lblent_t *)(cd->cd_ctfdata +
hp->cth_lbloff);
ulong_t i, n = (hp->cth_objtoff - hp->cth_lbloff) / sizeof (*ctl);
print_line("- Label Table ");
if (hp->cth_lbloff & 3)
WARN("cth_lbloff is not aligned properly\n");
if (hp->cth_lbloff >= cd->cd_ctflen)
WARN("file is truncated or cth_lbloff is corrupt\n");
if (hp->cth_objtoff >= cd->cd_ctflen)
WARN("file is truncated or cth_objtoff is corrupt\n");
if (hp->cth_lbloff > hp->cth_objtoff)
WARN("file is corrupt -- cth_lbloff > cth_objtoff\n");
for (i = 0; i < n; i++, ctl++) {
(void) printf(" %5u %s\n", ctl->ctl_typeidx,
ref_to_str(ctl->ctl_label, hp, cd));
}
return (E_SUCCESS);
}
/*
* Given the current symbol index (-1 to start at the beginning of the symbol
* table) and the type of symbol to match, this function returns the index of
* the next matching symbol (if any), and places the name of that symbol in
* *namep. If no symbol is found, -1 is returned.
*/
static int
next_sym(const ctf_data_t *cd, const int symidx, const uchar_t matchtype,
char **namep)
{
int i;
for (i = symidx + 1; i < cd->cd_nsyms; i++) {
GElf_Sym sym;
char *name;
int type;
if (gelf_getsym(cd->cd_symdata, i, &sym) == 0)
return (-1);
name = (char *)cd->cd_strdata->d_buf + sym.st_name;
type = GELF_ST_TYPE(sym.st_info);
/*
* Skip various types of symbol table entries.
*/
if (type != matchtype || ignore_symbol(&sym, name))
continue;
/* Found one */
*namep = name;
return (i);
}
return (-1);
}
static int
read_data(const ctf_header_t *hp, const ctf_data_t *cd)
{
/* LINTED - pointer alignment */
const ushort_t *idp = (ushort_t *)(cd->cd_ctfdata + hp->cth_objtoff);
ulong_t n = (hp->cth_funcoff - hp->cth_objtoff) / sizeof (ushort_t);
if (flags != F_STATS)
print_line("- Data Objects ");
if (hp->cth_objtoff & 1)
WARN("cth_objtoff is not aligned properly\n");
if (hp->cth_objtoff >= cd->cd_ctflen)
WARN("file is truncated or cth_objtoff is corrupt\n");
if (hp->cth_funcoff >= cd->cd_ctflen)
WARN("file is truncated or cth_funcoff is corrupt\n");
if (hp->cth_objtoff > hp->cth_funcoff)
WARN("file is corrupt -- cth_objtoff > cth_funcoff\n");
if (flags != F_STATS) {
int symidx, len, i;
char *name = NULL;
for (symidx = -1, i = 0; i < n; i++) {
int nextsym;
if (cd->cd_symdata == NULL || (nextsym = next_sym(cd,
symidx, STT_OBJECT, &name)) < 0)
name = NULL;
else
symidx = nextsym;
len = printf(" [%u] %u", i, *idp++);
if (name != NULL)
(void) printf("%*s%s (%u)", (15 - len), "",
name, symidx);
(void) putchar('\n');
}
}
stats.s_ndata = n;
return (E_SUCCESS);
}
static int
read_funcs(const ctf_header_t *hp, const ctf_data_t *cd)
{
/* LINTED - pointer alignment */
const ushort_t *fp = (ushort_t *)(cd->cd_ctfdata + hp->cth_funcoff);
/* LINTED - pointer alignment */
const ushort_t *end = (ushort_t *)(cd->cd_ctfdata + hp->cth_typeoff);
ulong_t id;
int symidx;
if (flags != F_STATS)
print_line("- Functions ");
if (hp->cth_funcoff & 1)
WARN("cth_funcoff is not aligned properly\n");
if (hp->cth_funcoff >= cd->cd_ctflen)
WARN("file is truncated or cth_funcoff is corrupt\n");
if (hp->cth_typeoff >= cd->cd_ctflen)
WARN("file is truncated or cth_typeoff is corrupt\n");
if (hp->cth_funcoff > hp->cth_typeoff)
WARN("file is corrupt -- cth_funcoff > cth_typeoff\n");
for (symidx = -1, id = 0; fp < end; id++) {
ushort_t info = *fp++;
ushort_t kind = CTF_INFO_KIND(info);
ushort_t n = CTF_INFO_VLEN(info);
ushort_t i;
int nextsym;
char *name;
if (cd->cd_symdata == NULL || (nextsym = next_sym(cd, symidx,
STT_FUNC, &name)) < 0)
name = NULL;
else
symidx = nextsym;
if (kind == CTF_K_UNKNOWN && n == 0)
continue; /* skip padding */
if (kind != CTF_K_FUNCTION) {
(void) printf(" [%lu] unexpected kind -- %u\n",
id, kind);
return (E_ERROR);
}
if (fp + n > end) {
(void) printf(" [%lu] vlen %u extends past section "
"boundary\n", id, n);
return (E_ERROR);
}
if (flags != F_STATS) {
(void) printf(" [%lu] FUNC ", id);
if (name != NULL)
(void) printf("(%s) ", name);
(void) printf("returns: %u args: (", *fp++);
if (n != 0) {
(void) printf("%u", *fp++);
for (i = 1; i < n; i++)
(void) printf(", %u", *fp++);
}
(void) printf(")\n");
} else
fp += n + 1; /* skip to next function definition */
stats.s_nfunc++;
stats.s_nargs += n;
stats.s_argmax = MAX(stats.s_argmax, n);
}
return (E_SUCCESS);
}
static int
read_types(const ctf_header_t *hp, const ctf_data_t *cd)
{
/* LINTED - pointer alignment */
const ctf_type_t *tp = (ctf_type_t *)(cd->cd_ctfdata + hp->cth_typeoff);
/* LINTED - pointer alignment */
const ctf_type_t *end = (ctf_type_t *)(cd->cd_ctfdata + hp->cth_stroff);
ulong_t id;
if (flags != F_STATS)
print_line("- Types ");
if (hp->cth_typeoff & 3)
WARN("cth_typeoff is not aligned properly\n");
if (hp->cth_typeoff >= cd->cd_ctflen)
WARN("file is truncated or cth_typeoff is corrupt\n");
if (hp->cth_stroff >= cd->cd_ctflen)
WARN("file is truncated or cth_stroff is corrupt\n");
if (hp->cth_typeoff > hp->cth_stroff)
WARN("file is corrupt -- cth_typeoff > cth_stroff\n");
id = 1;
if (hp->cth_parlabel || hp->cth_parname)
id += 1 << CTF_PARENT_SHIFT;
for (/* */; tp < end; id++) {
ulong_t i, n = CTF_INFO_VLEN(tp->ctt_info);
size_t size, increment, vlen = 0;
int kind = CTF_INFO_KIND(tp->ctt_info);
union {
const void *ptr;
const ctf_array_t *ap;
const ctf_member_t *mp;
const ctf_lmember_t *lmp;
const ctf_enum_t *ep;
const ushort_t *argp;
} u;
if (flags != F_STATS) {
(void) printf(" %c%lu%c ",
"[<"[CTF_INFO_ISROOT(tp->ctt_info)], id,
"]>"[CTF_INFO_ISROOT(tp->ctt_info)]);
}
if (tp->ctt_size == CTF_LSIZE_SENT) {
increment = sizeof (ctf_type_t);
size = (size_t)CTF_TYPE_LSIZE(tp);
} else {
increment = sizeof (ctf_stype_t);
size = tp->ctt_size;
}
u.ptr = (caddr_t)tp + increment;
switch (kind) {
case CTF_K_INTEGER:
if (flags != F_STATS) {
uint_t encoding = *((const uint_t *)u.ptr);
(void) printf("INTEGER %s encoding=%s offset=%u"
" bits=%u", ref_to_str(tp->ctt_name, hp,
cd), int_encoding_to_str(
CTF_INT_ENCODING(encoding)),
CTF_INT_OFFSET(encoding),
CTF_INT_BITS(encoding));
}
vlen = sizeof (uint_t);
break;
case CTF_K_FLOAT:
if (flags != F_STATS) {
uint_t encoding = *((const uint_t *)u.ptr);
(void) printf("FLOAT %s encoding=%s offset=%u "
"bits=%u", ref_to_str(tp->ctt_name, hp,
cd), fp_encoding_to_str(
CTF_FP_ENCODING(encoding)),
CTF_FP_OFFSET(encoding),
CTF_FP_BITS(encoding));
}
vlen = sizeof (uint_t);
break;
case CTF_K_POINTER:
if (flags != F_STATS) {
(void) printf("POINTER %s refers to %u",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
}
break;
case CTF_K_ARRAY:
if (flags != F_STATS) {
(void) printf("ARRAY %s content: %u index: %u "
"nelems: %u\n", ref_to_str(tp->ctt_name,
hp, cd), u.ap->cta_contents,
u.ap->cta_index, u.ap->cta_nelems);
}
vlen = sizeof (ctf_array_t);
break;
case CTF_K_FUNCTION:
if (flags != F_STATS) {
(void) printf("FUNCTION %s returns: %u args: (",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
if (n != 0) {
(void) printf("%u", *u.argp++);
for (i = 1; i < n; i++, u.argp++)
(void) printf(", %u", *u.argp);
}
(void) printf(")");
}
vlen = sizeof (ushort_t) * (n + (n & 1));
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (kind == CTF_K_STRUCT) {
stats.s_nsmem += n;
stats.s_smmax = MAX(stats.s_smmax, n);
stats.s_nsbytes += size;
stats.s_sbmax = MAX(stats.s_sbmax, size);
if (flags != F_STATS)
(void) printf("STRUCT");
} else {
stats.s_numem += n;
stats.s_ummax = MAX(stats.s_ummax, n);
stats.s_nubytes += size;
stats.s_ubmax = MAX(stats.s_ubmax, size);
if (flags != F_STATS)
(void) printf("UNION");
}
if (flags != F_STATS) {
(void) printf(" %s (%d bytes)\n",
ref_to_str(tp->ctt_name, hp, cd), size);
if (size >= CTF_LSTRUCT_THRESH) {
for (i = 0; i < n; i++, u.lmp++) {
(void) printf(
"\t%s type=%u off=%llu\n",
ref_to_str(u.lmp->ctlm_name,
hp, cd), u.lmp->ctlm_type,
CTF_LMEM_OFFSET(u.lmp));
}
} else {
for (i = 0; i < n; i++, u.mp++) {
(void) printf(
"\t%s type=%u off=%u\n",
ref_to_str(u.mp->ctm_name,
hp, cd), u.mp->ctm_type,
u.mp->ctm_offset);
}
}
}
vlen = n * (size >= CTF_LSTRUCT_THRESH ?
sizeof (ctf_lmember_t) : sizeof (ctf_member_t));
break;
case CTF_K_ENUM:
if (flags != F_STATS) {
(void) printf("ENUM %s\n",
ref_to_str(tp->ctt_name, hp, cd));
for (i = 0; i < n; i++, u.ep++) {
(void) printf("\t%s = %d\n",
ref_to_str(u.ep->cte_name, hp, cd),
u.ep->cte_value);
}
}
stats.s_nemem += n;
stats.s_emmax = MAX(stats.s_emmax, n);
vlen = sizeof (ctf_enum_t) * n;
break;
case CTF_K_FORWARD:
if (flags != F_STATS) {
(void) printf("FORWARD %s",
ref_to_str(tp->ctt_name, hp, cd));
}
break;
case CTF_K_TYPEDEF:
if (flags != F_STATS) {
(void) printf("TYPEDEF %s refers to %u",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
}
break;
case CTF_K_VOLATILE:
if (flags != F_STATS) {
(void) printf("VOLATILE %s refers to %u",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
}
break;
case CTF_K_CONST:
if (flags != F_STATS) {
(void) printf("CONST %s refers to %u",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
}
break;
case CTF_K_RESTRICT:
if (flags != F_STATS) {
(void) printf("RESTRICT %s refers to %u",
ref_to_str(tp->ctt_name, hp, cd),
tp->ctt_type);
}
break;
case CTF_K_UNKNOWN:
break; /* hole in type id space */
default:
(void) printf("unexpected kind %u\n", kind);
return (E_ERROR);
}
if (flags != F_STATS)
(void) printf("\n");
stats.s_ntypes++;
stats.s_types[kind]++;
tp = (ctf_type_t *)((uintptr_t)tp + increment + vlen);
}
return (E_SUCCESS);
}
static int
read_strtab(const ctf_header_t *hp, const ctf_data_t *cd)
{
size_t n, off, len = hp->cth_strlen;
const char *s = cd->cd_ctfdata + hp->cth_stroff;
if (flags != F_STATS)
print_line("- String Table ");
if (hp->cth_stroff >= cd->cd_ctflen)
WARN("file is truncated or cth_stroff is corrupt\n");
if (hp->cth_stroff + hp->cth_strlen > cd->cd_ctflen)
WARN("file is truncated or cth_strlen is corrupt\n");
for (off = 0; len != 0; off += n) {
if (flags != F_STATS) {
(void) printf(" [%lu] %s\n", (ulong_t)off,
s[0] == '\0' ? "\\0" : s);
}
n = strlen(s) + 1;
len -= n;
s += n;
stats.s_nstr++;
stats.s_strlen += n;
stats.s_strmax = MAX(stats.s_strmax, n);
}
return (E_SUCCESS);
}
static void
long_stat(const char *name, ulong_t value)
{
(void) printf(" %-36s= %lu\n", name, value);
}
static void
fp_stat(const char *name, float value)
{
(void) printf(" %-36s= %.2f\n", name, value);
}
static int
print_stats(void)
{
print_line("- CTF Statistics ");
long_stat("total number of data objects", stats.s_ndata);
(void) printf("\n");
long_stat("total number of functions", stats.s_nfunc);
long_stat("total number of function arguments", stats.s_nargs);
long_stat("maximum argument list length", stats.s_argmax);
if (stats.s_nfunc != 0) {
fp_stat("average argument list length",
(float)stats.s_nargs / (float)stats.s_nfunc);
}
(void) printf("\n");
long_stat("total number of types", stats.s_ntypes);
long_stat("total number of integers", stats.s_types[CTF_K_INTEGER]);
long_stat("total number of floats", stats.s_types[CTF_K_FLOAT]);
long_stat("total number of pointers", stats.s_types[CTF_K_POINTER]);
long_stat("total number of arrays", stats.s_types[CTF_K_ARRAY]);
long_stat("total number of func types", stats.s_types[CTF_K_FUNCTION]);
long_stat("total number of structs", stats.s_types[CTF_K_STRUCT]);
long_stat("total number of unions", stats.s_types[CTF_K_UNION]);
long_stat("total number of enums", stats.s_types[CTF_K_ENUM]);
long_stat("total number of forward tags", stats.s_types[CTF_K_FORWARD]);
long_stat("total number of typedefs", stats.s_types[CTF_K_TYPEDEF]);
long_stat("total number of volatile types",
stats.s_types[CTF_K_VOLATILE]);
long_stat("total number of const types", stats.s_types[CTF_K_CONST]);
long_stat("total number of restrict types",
stats.s_types[CTF_K_RESTRICT]);
long_stat("total number of unknowns (holes)",
stats.s_types[CTF_K_UNKNOWN]);
(void) printf("\n");
long_stat("total number of struct members", stats.s_nsmem);
long_stat("maximum number of struct members", stats.s_smmax);
long_stat("total size of all structs", stats.s_nsbytes);
long_stat("maximum size of a struct", stats.s_sbmax);
if (stats.s_types[CTF_K_STRUCT] != 0) {
fp_stat("average number of struct members",
(float)stats.s_nsmem / (float)stats.s_types[CTF_K_STRUCT]);
fp_stat("average size of a struct", (float)stats.s_nsbytes /
(float)stats.s_types[CTF_K_STRUCT]);
}
(void) printf("\n");
long_stat("total number of union members", stats.s_numem);
long_stat("maximum number of union members", stats.s_ummax);
long_stat("total size of all unions", stats.s_nubytes);
long_stat("maximum size of a union", stats.s_ubmax);
if (stats.s_types[CTF_K_UNION] != 0) {
fp_stat("average number of union members",
(float)stats.s_numem / (float)stats.s_types[CTF_K_UNION]);
fp_stat("average size of a union", (float)stats.s_nubytes /
(float)stats.s_types[CTF_K_UNION]);
}
(void) printf("\n");
long_stat("total number of enum members", stats.s_nemem);
long_stat("maximum number of enum members", stats.s_emmax);
if (stats.s_types[CTF_K_ENUM] != 0) {
fp_stat("average number of enum members",
(float)stats.s_nemem / (float)stats.s_types[CTF_K_ENUM]);
}
(void) printf("\n");
long_stat("total number of unique strings", stats.s_nstr);
long_stat("bytes of string data", stats.s_strlen);
long_stat("maximum string length", stats.s_strmax);
if (stats.s_nstr != 0) {
fp_stat("average string length",
(float)stats.s_strlen / (float)stats.s_nstr);
}
(void) printf("\n");
return (E_SUCCESS);
}
static int
print_usage(FILE *fp, int verbose)
{
(void) fprintf(fp, "Usage: %s [-dfhlsSt] [-u file] file\n", getpname());
if (verbose) {
(void) fprintf(fp,
"\t-d dump data object section\n"
"\t-f dump function section\n"
"\t-h dump file header\n"
"\t-l dump label table\n"
"\t-s dump string table\n"
"\t-S dump statistics\n"
"\t-t dump type section\n"
"\t-u save uncompressed CTF to a file\n");
}
return (E_USAGE);
}
static Elf_Scn *
findelfscn(Elf *elf, GElf_Ehdr *ehdr, char *secname)
{
GElf_Shdr shdr;
Elf_Scn *scn;
char *name;
for (scn = NULL; (scn = elf_nextscn(elf, scn)) != NULL; ) {
if (gelf_getshdr(scn, &shdr) != NULL && (name =
elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name)) != NULL &&
strcmp(name, secname) == 0)
return (scn);
}
return (NULL);
}
int
main(int argc, char *argv[])
{
const char *filename = NULL;
const char *ufile = NULL;
int error = 0;
int c, fd, ufd;
ctf_data_t cd;
const ctf_preamble_t *pp;
ctf_header_t *hp;
Elf *elf;
GElf_Ehdr ehdr;
(void) elf_version(EV_CURRENT);
for (opterr = 0; optind < argc; optind++) {
while ((c = getopt(argc, argv, "dfhlsStu:")) != (int)EOF) {
switch (c) {
case 'd':
flags |= F_DATA;
break;
case 'f':
flags |= F_FUNC;
break;
case 'h':
flags |= F_HDR;
break;
case 'l':
flags |= F_LABEL;
break;
case 's':
flags |= F_STR;
break;
case 'S':
flags |= F_STATS;
break;
case 't':
flags |= F_TYPES;
break;
case 'u':
ufile = optarg;
break;
default:
if (optopt == '?')
return (print_usage(stdout, 1));
warn("illegal option -- %c\n", optopt);
return (print_usage(stderr, 0));
}
}
if (optind < argc) {
if (filename != NULL)
return (print_usage(stderr, 0));
filename = argv[optind];
}
}
if (filename == NULL)
return (print_usage(stderr, 0));
if (flags == 0 && ufile == NULL)
flags = F_ALLMSK;
if ((fd = open(filename, O_RDONLY)) == -1)
die("failed to open %s", filename);
if ((elf = elf_begin(fd, ELF_C_READ, NULL)) != NULL &&
gelf_getehdr(elf, &ehdr) != NULL) {
Elf_Data *dp;
Elf_Scn *ctfscn = findelfscn(elf, &ehdr, ".SUNW_ctf");
Elf_Scn *symscn;
GElf_Shdr ctfshdr;
if (ctfscn == NULL || (dp = elf_getdata(ctfscn, NULL)) == NULL)
die("%s does not contain .SUNW_ctf data\n", filename);
cd.cd_ctfdata = dp->d_buf;
cd.cd_ctflen = dp->d_size;
/*
* If the sh_link field of the CTF section header is non-zero
* it indicates which section contains the symbol table that
* should be used. We default to the .symtab section if sh_link
* is zero or if there's an error reading the section header.
*/
if (gelf_getshdr(ctfscn, &ctfshdr) != NULL &&
ctfshdr.sh_link != 0) {
symscn = elf_getscn(elf, ctfshdr.sh_link);
} else {
symscn = findelfscn(elf, &ehdr, ".symtab");
}
/* If we found a symbol table, find the corresponding strings */
if (symscn != NULL) {
GElf_Shdr shdr;
Elf_Scn *symstrscn;
if (gelf_getshdr(symscn, &shdr) != NULL) {
symstrscn = elf_getscn(elf, shdr.sh_link);
cd.cd_nsyms = shdr.sh_size / shdr.sh_entsize;
cd.cd_symdata = elf_getdata(symscn, NULL);
cd.cd_strdata = elf_getdata(symstrscn, NULL);
}
}
} else {
struct stat st;
if (fstat(fd, &st) == -1)
die("failed to fstat %s", filename);
cd.cd_ctflen = st.st_size;
cd.cd_ctfdata = mmap(NULL, cd.cd_ctflen, PROT_READ,
MAP_PRIVATE, fd, 0);
if (cd.cd_ctfdata == MAP_FAILED)
die("failed to mmap %s", filename);
}
/*
* Get a pointer to the CTF data buffer and interpret the first portion
* as a ctf_header_t. Validate the magic number and size.
*/
if (cd.cd_ctflen < sizeof (ctf_preamble_t))
die("%s does not contain a CTF preamble\n", filename);
/* LINTED - pointer alignment */
pp = (const ctf_preamble_t *)cd.cd_ctfdata;
if (pp->ctp_magic != CTF_MAGIC)
die("%s does not appear to contain CTF data\n", filename);
if (pp->ctp_version == CTF_VERSION) {
/* LINTED - pointer alignment */
hp = (ctf_header_t *)cd.cd_ctfdata;
cd.cd_ctfdata = (caddr_t)cd.cd_ctfdata + sizeof (ctf_header_t);
if (cd.cd_ctflen < sizeof (ctf_header_t)) {
die("%s does not contain a v%d CTF header\n", filename,
CTF_VERSION);
}
} else {
die("%s contains unsupported CTF version %d\n", filename,
pp->ctp_version);
}
/*
* If the data buffer is compressed, then malloc a buffer large enough
* to hold the decompressed data, and use zlib to decompress it.
*/
if (hp->cth_flags & CTF_F_COMPRESS) {
z_stream zstr;
void *buf;
int rc;
if ((buf = malloc(hp->cth_stroff + hp->cth_strlen)) == NULL)
die("failed to allocate decompression buffer");
bzero(&zstr, sizeof (z_stream));
zstr.next_in = (void *)cd.cd_ctfdata;
zstr.avail_in = cd.cd_ctflen;
zstr.next_out = buf;
zstr.avail_out = hp->cth_stroff + hp->cth_strlen;
if ((rc = inflateInit(&zstr)) != Z_OK)
die("failed to initialize zlib: %s\n", zError(rc));
if ((rc = inflate(&zstr, Z_FINISH)) != Z_STREAM_END)
die("failed to decompress CTF data: %s\n", zError(rc));
if ((rc = inflateEnd(&zstr)) != Z_OK)
die("failed to finish decompression: %s\n", zError(rc));
if (zstr.total_out != hp->cth_stroff + hp->cth_strlen)
die("CTF data is corrupt -- short decompression\n");
cd.cd_ctfdata = buf;
cd.cd_ctflen = hp->cth_stroff + hp->cth_strlen;
}
if (flags & F_HDR)
error |= print_header(hp, &cd);
if (flags & (F_LABEL))
error |= print_labeltable(hp, &cd);
if (flags & (F_DATA | F_STATS))
error |= read_data(hp, &cd);
if (flags & (F_FUNC | F_STATS))
error |= read_funcs(hp, &cd);
if (flags & (F_TYPES | F_STATS))
error |= read_types(hp, &cd);
if (flags & (F_STR | F_STATS))
error |= read_strtab(hp, &cd);
if (flags & F_STATS)
error |= print_stats();
/*
* If the -u option is specified, write the uncompressed CTF data to a
* raw CTF file. CTF data can already be extracted compressed by
* applying elfdump -w -N .SUNW_ctf to an ELF file, so we don't bother.
*/
if (ufile != NULL) {
ctf_header_t h;
bcopy(hp, &h, sizeof (h));
h.cth_flags &= ~CTF_F_COMPRESS;
if ((ufd = open(ufile, O_WRONLY|O_CREAT|O_TRUNC, 0666)) < 0 ||
write(ufd, &h, sizeof (h)) != sizeof (h) ||
write(ufd, cd.cd_ctfdata, cd.cd_ctflen) != cd.cd_ctflen) {
warn("failed to write CTF data to '%s'", ufile);
error |= E_ERROR;
}
(void) close(ufd);
}
if (elf != NULL)
(void) elf_end(elf);
(void) close(fd);
return (error);
}