tcp.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* tcp.c, Code implementing the TCP protocol.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <socket_impl.h>
#include <socket_inet.h>
#include <sys/sysmacros.h>
#include <sys/promif.h>
#include <sys/socket.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <net/if_types.h>
#include <sys/salib.h>
#include "ipv4.h"
#include "ipv4_impl.h"
#include "mac.h"
#include "mac_impl.h"
#include "v4_sum_impl.h"
#include <sys/bootdebug.h>
#include "tcp_inet.h"
#include "tcp_sack.h"
#include <inet/common.h>
#include <inet/mib2.h>
/*
* We need to redefine BUMP_MIB/UPDATE_MIB to not have DTrace probes.
*/
#undef BUMP_MIB
#define BUMP_MIB(x) (x)++
#undef UPDATE_MIB
#define UPDATE_MIB(x, y) x += y
/*
* MIB-2 stuff for SNMP
*/
mib2_tcp_t tcp_mib; /* SNMP fixed size info */
/* The TCP mib does not include the following errors. */
static uint_t tcp_cksum_errors;
static uint_t tcp_drops;
/* Macros for timestamp comparisons */
#define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0)
#define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0)
/*
* Parameters for TCP Initial Send Sequence number (ISS) generation.
* The ISS is calculated by adding three components: a time component
* which grows by 1 every 4096 nanoseconds (versus every 4 microseconds
* suggested by RFC 793, page 27);
* a per-connection component which grows by 125000 for every new connection;
* and an "extra" component that grows by a random amount centered
* approximately on 64000. This causes the the ISS generator to cycle every
* 4.89 hours if no TCP connections are made, and faster if connections are
* made.
*/
#define ISS_INCR 250000
#define ISS_NSEC_SHT 0
static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */
#define TCP_XMIT_LOWATER 4096
#define TCP_XMIT_HIWATER 49152
#define TCP_RECV_LOWATER 2048
#define TCP_RECV_HIWATER 49152
/*
* PAWS needs a timer for 24 days. This is the number of ms in 24 days
*/
#define PAWS_TIMEOUT ((uint32_t)(24*24*60*60*1000))
/*
* TCP options struct returned from tcp_parse_options.
*/
typedef struct tcp_opt_s {
uint32_t tcp_opt_mss;
uint32_t tcp_opt_wscale;
uint32_t tcp_opt_ts_val;
uint32_t tcp_opt_ts_ecr;
tcp_t *tcp;
} tcp_opt_t;
/*
* RFC1323-recommended phrasing of TSTAMP option, for easier parsing
*/
#ifdef _BIG_ENDIAN
#define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
(TCPOPT_TSTAMP << 8) | 10)
#else
#define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
(TCPOPT_NOP << 8) | TCPOPT_NOP)
#endif
/*
* Flags returned from tcp_parse_options.
*/
#define TCP_OPT_MSS_PRESENT 1
#define TCP_OPT_WSCALE_PRESENT 2
#define TCP_OPT_TSTAMP_PRESENT 4
#define TCP_OPT_SACK_OK_PRESENT 8
#define TCP_OPT_SACK_PRESENT 16
/* TCP option length */
#define TCPOPT_NOP_LEN 1
#define TCPOPT_MAXSEG_LEN 4
#define TCPOPT_WS_LEN 3
#define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1)
#define TCPOPT_TSTAMP_LEN 10
#define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2)
#define TCPOPT_SACK_OK_LEN 2
#define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2)
#define TCPOPT_REAL_SACK_LEN 4
#define TCPOPT_MAX_SACK_LEN 36
#define TCPOPT_HEADER_LEN 2
/* TCP cwnd burst factor. */
#define TCP_CWND_INFINITE 65535
#define TCP_CWND_SS 3
#define TCP_CWND_NORMAL 5
/* Named Dispatch Parameter Management Structure */
typedef struct tcpparam_s {
uint32_t tcp_param_min;
uint32_t tcp_param_max;
uint32_t tcp_param_val;
char *tcp_param_name;
} tcpparam_t;
/* Max size IP datagram is 64k - 1 */
#define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (struct ip) + \
sizeof (tcph_t)))
/* Max of the above */
#define TCP_MSS_MAX TCP_MSS_MAX_IPV4
/* Largest TCP port number */
#define TCP_MAX_PORT (64 * 1024 - 1)
/* Round up the value to the nearest mss. */
#define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss))
#define MS 1L
#define SECONDS (1000 * MS)
#define MINUTES (60 * SECONDS)
#define HOURS (60 * MINUTES)
#define DAYS (24 * HOURS)
/* All NDD params in the core TCP became static variables. */
static int tcp_time_wait_interval = 1 * MINUTES;
static int tcp_conn_req_max_q = 128;
static int tcp_conn_req_max_q0 = 1024;
static int tcp_conn_req_min = 1;
static int tcp_conn_grace_period = 0 * SECONDS;
static int tcp_cwnd_max_ = 1024 * 1024;
static int tcp_smallest_nonpriv_port = 1024;
static int tcp_ip_abort_cinterval = 3 * MINUTES;
static int tcp_ip_abort_linterval = 3 * MINUTES;
static int tcp_ip_abort_interval = 8 * MINUTES;
static int tcp_ip_notify_cinterval = 10 * SECONDS;
static int tcp_ip_notify_interval = 10 * SECONDS;
static int tcp_ipv4_ttl = 64;
static int tcp_mss_def_ipv4 = 536;
static int tcp_mss_max_ipv4 = TCP_MSS_MAX_IPV4;
static int tcp_mss_min = 108;
static int tcp_naglim_def = (4*1024)-1;
static int tcp_rexmit_interval_initial = 3 * SECONDS;
static int tcp_rexmit_interval_max = 60 * SECONDS;
static int tcp_rexmit_interval_min = 400 * MS;
static int tcp_dupack_fast_retransmit = 3;
static int tcp_smallest_anon_port = 32 * 1024;
static int tcp_largest_anon_port = TCP_MAX_PORT;
static int tcp_xmit_lowat = TCP_XMIT_LOWATER;
static int tcp_recv_hiwat_minmss = 4;
static int tcp_fin_wait_2_flush_interval = 1 * MINUTES;
static int tcp_max_buf = 1024 * 1024;
static int tcp_wscale_always = 1;
static int tcp_tstamp_always = 1;
static int tcp_tstamp_if_wscale = 1;
static int tcp_rexmit_interval_extra = 0;
static int tcp_slow_start_after_idle = 2;
static int tcp_slow_start_initial = 2;
static int tcp_sack_permitted = 2;
static int tcp_ecn_permitted = 2;
/* Extra room to fit in headers. */
static uint_t tcp_wroff_xtra;
/* Hint for next port to try. */
static in_port_t tcp_next_port_to_try = 32*1024;
/*
* Figure out the value of window scale opton. Note that the rwnd is
* ASSUMED to be rounded up to the nearest MSS before the calculation.
* We cannot find the scale value and then do a round up of tcp_rwnd
* because the scale value may not be correct after that.
*/
#define SET_WS_VALUE(tcp) \
{ \
int i; \
uint32_t rwnd = (tcp)->tcp_rwnd; \
for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; \
i++, rwnd >>= 1) \
; \
(tcp)->tcp_rcv_ws = i; \
}
/*
* Set ECN capable transport (ECT) code point in IP header.
*
* Note that there are 2 ECT code points '01' and '10', which are called
* ECT(1) and ECT(0) respectively. Here we follow the original ECT code
* point ECT(0) for TCP as described in RFC 2481.
*/
#define SET_ECT(tcp, iph) \
if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
/* We need to clear the code point first. */ \
((struct ip *)(iph))->ip_tos &= 0xFC; \
((struct ip *)(iph))->ip_tos |= IPH_ECN_ECT0; \
}
/*
* The format argument to pass to tcp_display().
* DISP_PORT_ONLY means that the returned string has only port info.
* DISP_ADDR_AND_PORT means that the returned string also contains the
* remote and local IP address.
*/
#define DISP_PORT_ONLY 1
#define DISP_ADDR_AND_PORT 2
/*
* TCP reassembly macros. We hide starting and ending sequence numbers in
* b_next and b_prev of messages on the reassembly queue. The messages are
* chained using b_cont. These macros are used in tcp_reass() so we don't
* have to see the ugly casts and assignments.
*/
#define TCP_REASS_SEQ(mp) ((uint32_t)((mp)->b_next))
#define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = (mblk_t *)(u))
#define TCP_REASS_END(mp) ((uint32_t)((mp)->b_prev))
#define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = (mblk_t *)(u))
#define TCP_TIMER_RESTART(tcp, intvl) \
(tcp)->tcp_rto_timeout = prom_gettime() + intvl; \
(tcp)->tcp_timer_running = B_TRUE;
static int tcp_accept_comm(tcp_t *, tcp_t *, mblk_t *, uint_t);
static mblk_t *tcp_ack_mp(tcp_t *);
static in_port_t tcp_bindi(in_port_t, in_addr_t *, boolean_t, boolean_t);
static uint16_t tcp_cksum(uint16_t *, uint32_t);
static void tcp_clean_death(int, tcp_t *, int err);
static tcp_t *tcp_conn_request(tcp_t *, mblk_t *mp, uint_t, uint_t);
static char *tcp_display(tcp_t *, char *, char);
static int tcp_drain_input(tcp_t *, int, int);
static void tcp_drain_needed(int, tcp_t *);
static boolean_t tcp_drop_q0(tcp_t *);
static mblk_t *tcp_get_seg_mp(tcp_t *, uint32_t, int32_t *);
static int tcp_header_len(struct inetgram *);
static in_port_t tcp_report_ports(uint16_t *, enum Ports);
static int tcp_input(int);
static void tcp_iss_init(tcp_t *);
static tcp_t *tcp_lookup_ipv4(struct ip *, tcpha_t *, int, int *);
static tcp_t *tcp_lookup_listener_ipv4(in_addr_t, in_port_t, int *);
static int tcp_conn_check(tcp_t *);
static int tcp_close(int);
static void tcp_close_detached(tcp_t *);
static void tcp_eager_cleanup(tcp_t *, boolean_t, int);
static void tcp_eager_unlink(tcp_t *);
static void tcp_free(tcp_t *);
static int tcp_header_init_ipv4(tcp_t *);
static void tcp_mss_set(tcp_t *, uint32_t);
static int tcp_parse_options(tcph_t *, tcp_opt_t *);
static boolean_t tcp_paws_check(tcp_t *, tcph_t *, tcp_opt_t *);
static void tcp_process_options(tcp_t *, tcph_t *);
static int tcp_random(void);
static void tcp_random_init(void);
static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t);
static void tcp_reass_elim_overlap(tcp_t *, mblk_t *);
static void tcp_rcv_drain(int sock_id, tcp_t *);
static void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t);
static void tcp_rput_data(tcp_t *, mblk_t *, int);
static int tcp_rwnd_set(tcp_t *, uint32_t);
static int32_t tcp_sack_rxmit(tcp_t *, int);
static void tcp_set_cksum(mblk_t *);
static void tcp_set_rto(tcp_t *, int32_t);
static void tcp_ss_rexmit(tcp_t *, int);
static int tcp_state_wait(int, tcp_t *, int);
static void tcp_timer(tcp_t *, int);
static void tcp_time_wait_append(tcp_t *);
static void tcp_time_wait_collector(void);
static void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
uint32_t, int, tcph_t *, int sock_id);
static void tcp_time_wait_remove(tcp_t *);
static in_port_t tcp_update_next_port(in_port_t);
static int tcp_verify_cksum(mblk_t *);
static void tcp_wput_data(tcp_t *, mblk_t *, int);
static void tcp_xmit_ctl(char *, tcp_t *, mblk_t *, uint32_t, uint32_t,
int, uint_t, int);
static void tcp_xmit_early_reset(char *, int, mblk_t *, uint32_t, uint32_t,
int, uint_t);
static int tcp_xmit_end(tcp_t *, int);
static void tcp_xmit_listeners_reset(int, mblk_t *, uint_t);
static mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);
static int tcp_init_values(tcp_t *, struct inetboot_socket *);
#if DEBUG > 1
#define TCP_DUMP_PACKET(str, mp) \
{ \
int len = (mp)->b_wptr - (mp)->b_rptr; \
\
printf("%s: dump TCP(%d): \n", (str), len); \
hexdump((char *)(mp)->b_rptr, len); \
}
#else
#define TCP_DUMP_PACKET(str, mp)
#endif
#ifdef DEBUG
#define DEBUG_1(str, arg) printf(str, (arg))
#define DEBUG_2(str, arg1, arg2) printf(str, (arg1), (arg2))
#define DEBUG_3(str, arg1, arg2, arg3) printf(str, (arg1), (arg2), (arg3))
#else
#define DEBUG_1(str, arg)
#define DEBUG_2(str, arg1, arg2)
#define DEBUG_3(str, arg1, arg2, arg3)
#endif
/* Whether it is the first time TCP is used. */
static boolean_t tcp_initialized = B_FALSE;
/* TCP time wait list. */
static tcp_t *tcp_time_wait_head;
static tcp_t *tcp_time_wait_tail;
static uint32_t tcp_cum_timewait;
/* When the tcp_time_wait_collector is run. */
static uint32_t tcp_time_wait_runtime;
#define TCP_RUN_TIME_WAIT_COLLECTOR() \
if (prom_gettime() > tcp_time_wait_runtime) \
tcp_time_wait_collector();
/*
* Accept will return with an error if there is no connection coming in
* after this (in ms).
*/
static int tcp_accept_timeout = 60000;
/*
* Initialize the TCP-specific parts of a socket.
*/
void
tcp_socket_init(struct inetboot_socket *isp)
{
/* Do some initializations. */
if (!tcp_initialized) {
tcp_random_init();
/* Extra head room for the MAC layer address. */
if ((tcp_wroff_xtra = mac_get_hdr_len()) & 0x3) {
tcp_wroff_xtra = (tcp_wroff_xtra & ~0x3) + 0x4;
}
/* Schedule the first time wait cleanup time */
tcp_time_wait_runtime = prom_gettime() + tcp_time_wait_interval;
tcp_initialized = B_TRUE;
}
TCP_RUN_TIME_WAIT_COLLECTOR();
isp->proto = IPPROTO_TCP;
isp->input[TRANSPORT_LVL] = tcp_input;
/* Socket layer should call tcp_send() directly. */
isp->output[TRANSPORT_LVL] = NULL;
isp->close[TRANSPORT_LVL] = tcp_close;
isp->headerlen[TRANSPORT_LVL] = tcp_header_len;
isp->ports = tcp_report_ports;
if ((isp->pcb = bkmem_alloc(sizeof (tcp_t))) == NULL) {
errno = ENOBUFS;
return;
}
if ((errno = tcp_init_values((tcp_t *)isp->pcb, isp)) != 0) {
bkmem_free(isp->pcb, sizeof (tcp_t));
return;
}
/*
* This is set last because this field is used to determine if
* a socket is in use or not.
*/
isp->type = INETBOOT_STREAM;
}
/*
* Return the size of a TCP header including TCP option.
*/
static int
tcp_header_len(struct inetgram *igm)
{
mblk_t *pkt;
int ipvers;
/* Just returns the standard TCP header without option */
if (igm == NULL)
return (sizeof (tcph_t));
if ((pkt = igm->igm_mp) == NULL)
return (0);
ipvers = ((struct ip *)pkt->b_rptr)->ip_v;
if (ipvers == IPV4_VERSION) {
return (TCP_HDR_LENGTH((tcph_t *)(pkt + IPH_HDR_LENGTH(pkt))));
} else {
dprintf("tcp_header_len: non-IPv4 packet.\n");
return (0);
}
}
/*
* Return the requested port number in network order.
*/
static in_port_t
tcp_report_ports(uint16_t *tcphp, enum Ports request)
{
if (request == SOURCE)
return (*(uint16_t *)(((tcph_t *)tcphp)->th_lport));
return (*(uint16_t *)(((tcph_t *)tcphp)->th_fport));
}
/*
* Because inetboot is not interrupt driven, TCP can only poll. This
* means that there can be packets stuck in the NIC buffer waiting to
* be processed. Thus we need to drain them before, for example, sending
* anything because an ACK may actually be stuck there.
*
* The timeout arguments determine how long we should wait for draining.
*/
static int
tcp_drain_input(tcp_t *tcp, int sock_id, int timeout)
{
struct inetgram *in_gram;
struct inetgram *old_in_gram;
int old_timeout;
mblk_t *mp;
int i;
dprintf("tcp_drain_input(%d): %s\n", sock_id,
tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
/*
* Since the driver uses the in_timeout value in the socket
* structure to determine the timeout value, we need to save
* the original one so that we can restore that after draining.
*/
old_timeout = sockets[sock_id].in_timeout;
sockets[sock_id].in_timeout = timeout;
/*
* We do this because the input queue may have some user
* data already.
*/
old_in_gram = sockets[sock_id].inq;
sockets[sock_id].inq = NULL;
/* Go out and check the wire */
for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
if (sockets[sock_id].input[i] != NULL) {
if (sockets[sock_id].input[i](sock_id) < 0) {
sockets[sock_id].in_timeout = old_timeout;
if (sockets[sock_id].inq != NULL)
nuke_grams(&sockets[sock_id].inq);
sockets[sock_id].inq = old_in_gram;
return (-1);
}
}
}
#if DEBUG
printf("tcp_drain_input: done with checking packets\n");
#endif
while ((in_gram = sockets[sock_id].inq) != NULL) {
/* Remove unknown inetgrams from the head of inq. */
if (in_gram->igm_level != TRANSPORT_LVL) {
#if DEBUG
printf("tcp_drain_input: unexpected packet "
"level %d frame found\n", in_gram->igm_level);
#endif
del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
continue;
}
mp = in_gram->igm_mp;
del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
tcp_rput_data(tcp, mp, sock_id);
sockets[sock_id].in_timeout = old_timeout;
/*
* The other side may have closed this connection or
* RST us. But we need to continue to process other
* packets in the socket's queue because they may be
* belong to another TCP connections.
*/
if (sockets[sock_id].pcb == NULL)
tcp = NULL;
}
if (tcp == NULL || sockets[sock_id].pcb == NULL) {
if (sockets[sock_id].so_error != 0)
return (-1);
else
return (0);
}
#if DEBUG
printf("tcp_drain_input: done with processing packets\n");
#endif
sockets[sock_id].in_timeout = old_timeout;
sockets[sock_id].inq = old_in_gram;
/*
* Data may have been received so indicate it is available
*/
tcp_drain_needed(sock_id, tcp);
return (0);
}
/*
* The receive entry point for upper layer to call to get data. Note
* that this follows the current architecture that lower layer receive
* routines have been called already. Thus if the inq of socket is
* not NULL, the packets must be for us.
*/
static int
tcp_input(int sock_id)
{
struct inetgram *in_gram;
mblk_t *mp;
tcp_t *tcp;
TCP_RUN_TIME_WAIT_COLLECTOR();
if ((tcp = sockets[sock_id].pcb) == NULL)
return (-1);
while ((in_gram = sockets[sock_id].inq) != NULL) {
/* Remove unknown inetgrams from the head of inq. */
if (in_gram->igm_level != TRANSPORT_LVL) {
#ifdef DEBUG
printf("tcp_input: unexpected packet "
"level %d frame found\n", in_gram->igm_level);
#endif
del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
continue;
}
mp = in_gram->igm_mp;
del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
tcp_rput_data(tcp, mp, sock_id);
/* The TCP may be gone because it gets a RST. */
if (sockets[sock_id].pcb == NULL)
return (-1);
}
/* Flush the receive list. */
if (tcp->tcp_rcv_list != NULL) {
tcp_rcv_drain(sock_id, tcp);
} else {
/* The other side has closed the connection, report this up. */
if (tcp->tcp_state == TCPS_CLOSE_WAIT) {
sockets[sock_id].so_state |= SS_CANTRCVMORE;
return (0);
}
}
return (0);
}
/*
* The send entry point for upper layer to call to send data. In order
* to minimize changes to the core TCP code, we need to put the
* data into mblks.
*/
int
tcp_send(int sock_id, tcp_t *tcp, const void *msg, int len)
{
mblk_t *mp;
mblk_t *head = NULL;
mblk_t *tail;
int mss = tcp->tcp_mss;
int cnt = 0;
int win_size;
char *buf = (char *)msg;
TCP_RUN_TIME_WAIT_COLLECTOR();
/* We don't want to append 0 size mblk. */
if (len == 0)
return (0);
while (len > 0) {
if (len < mss) {
mss = len;
}
/*
* If we cannot allocate more buffer, stop here and
* the number of bytes buffered will be returned.
*
* Note that we follow the core TCP optimization that
* each mblk contains only MSS bytes data.
*/
if ((mp = allocb(mss + tcp->tcp_ip_hdr_len +
TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0)) == NULL) {
break;
}
mp->b_rptr += tcp->tcp_hdr_len + tcp_wroff_xtra;
bcopy(buf, mp->b_rptr, mss);
mp->b_wptr = mp->b_rptr + mss;
buf += mss;
cnt += mss;
len -= mss;
if (head == NULL) {
head = mp;
tail = mp;
} else {
tail->b_cont = mp;
tail = mp;
}
}
/*
* Since inetboot is not interrupt driven, there may be
* some ACKs in the MAC's buffer. Drain them first,
* otherwise, we may not be able to send.
*
* We expect an ACK in two cases:
*
* 1) We have un-ACK'ed data.
*
* 2) All ACK's have been received and the sender's window has been
* closed. We need an ACK back to open the window so that we can
* send. In this case, call tcp_drain_input() if the window size is
* less than 2 * MSS.
*/
/* window size = MIN(swnd, cwnd) - unacked bytes */
win_size = (tcp->tcp_swnd > tcp->tcp_cwnd) ? tcp->tcp_cwnd :
tcp->tcp_swnd;
win_size -= tcp->tcp_snxt;
win_size += tcp->tcp_suna;
if (win_size < (2 * tcp->tcp_mss))
if (tcp_drain_input(tcp, sock_id, 5) < 0)
return (-1);
tcp_wput_data(tcp, head, sock_id);
return (cnt);
}
/* Free up all TCP related stuff */
static void
tcp_free(tcp_t *tcp)
{
if (tcp->tcp_iphc != NULL) {
bkmem_free((caddr_t)tcp->tcp_iphc, tcp->tcp_iphc_len);
tcp->tcp_iphc = NULL;
}
if (tcp->tcp_xmit_head != NULL) {
freemsg(tcp->tcp_xmit_head);
tcp->tcp_xmit_head = NULL;
}
if (tcp->tcp_rcv_list != NULL) {
freemsg(tcp->tcp_rcv_list);
tcp->tcp_rcv_list = NULL;
}
if (tcp->tcp_reass_head != NULL) {
freemsg(tcp->tcp_reass_head);
tcp->tcp_reass_head = NULL;
}
if (tcp->tcp_sack_info != NULL) {
bkmem_free((caddr_t)tcp->tcp_sack_info,
sizeof (tcp_sack_info_t));
tcp->tcp_sack_info = NULL;
}
}
static void
tcp_close_detached(tcp_t *tcp)
{
if (tcp->tcp_listener != NULL)
tcp_eager_unlink(tcp);
tcp_free(tcp);
bkmem_free((caddr_t)tcp, sizeof (tcp_t));
}
/*
* If we are an eager connection hanging off a listener that hasn't
* formally accepted the connection yet, get off his list and blow off
* any data that we have accumulated.
*/
static void
tcp_eager_unlink(tcp_t *tcp)
{
tcp_t *listener = tcp->tcp_listener;
assert(listener != NULL);
if (tcp->tcp_eager_next_q0 != NULL) {
assert(tcp->tcp_eager_prev_q0 != NULL);
/* Remove the eager tcp from q0 */
tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
tcp->tcp_eager_prev_q0;
tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
tcp->tcp_eager_next_q0;
listener->tcp_conn_req_cnt_q0--;
} else {
tcp_t **tcpp = &listener->tcp_eager_next_q;
tcp_t *prev = NULL;
for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
if (tcpp[0] == tcp) {
if (listener->tcp_eager_last_q == tcp) {
/*
* If we are unlinking the last
* element on the list, adjust
* tail pointer. Set tail pointer
* to nil when list is empty.
*/
assert(tcp->tcp_eager_next_q == NULL);
if (listener->tcp_eager_last_q ==
listener->tcp_eager_next_q) {
listener->tcp_eager_last_q =
NULL;
} else {
/*
* We won't get here if there
* is only one eager in the
* list.
*/
assert(prev != NULL);
listener->tcp_eager_last_q =
prev;
}
}
tcpp[0] = tcp->tcp_eager_next_q;
tcp->tcp_eager_next_q = NULL;
tcp->tcp_eager_last_q = NULL;
listener->tcp_conn_req_cnt_q--;
break;
}
prev = tcpp[0];
}
}
tcp->tcp_listener = NULL;
}
/*
* Reset any eager connection hanging off this listener
* and then reclaim it's resources.
*/
static void
tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only, int sock_id)
{
tcp_t *eager;
if (!q0_only) {
/* First cleanup q */
while ((eager = listener->tcp_eager_next_q) != NULL) {
assert(listener->tcp_eager_last_q != NULL);
tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
eager, NULL, eager->tcp_snxt, 0, TH_RST, 0,
sock_id);
tcp_close_detached(eager);
}
assert(listener->tcp_eager_last_q == NULL);
}
/* Then cleanup q0 */
while ((eager = listener->tcp_eager_next_q0) != listener) {
tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
eager, NULL, eager->tcp_snxt, 0, TH_RST, 0, sock_id);
tcp_close_detached(eager);
}
}
/*
* To handle the shutdown request. Called from shutdown()
*/
int
tcp_shutdown(int sock_id)
{
tcp_t *tcp;
DEBUG_1("tcp_shutdown: sock_id %x\n", sock_id);
if ((tcp = sockets[sock_id].pcb) == NULL) {
return (-1);
}
/*
* Since inetboot is not interrupt driven, there may be
* some ACKs in the MAC's buffer. Drain them first,
* otherwise, we may not be able to send.
*/
if (tcp_drain_input(tcp, sock_id, 5) < 0) {
/*
* If we return now without freeing TCP, there will be
* a memory leak.
*/
if (sockets[sock_id].pcb != NULL)
tcp_clean_death(sock_id, tcp, 0);
return (-1);
}
DEBUG_1("tcp_shutdown: tcp_state %x\n", tcp->tcp_state);
switch (tcp->tcp_state) {
case TCPS_SYN_RCVD:
/*
* Shutdown during the connect 3-way handshake
*/
case TCPS_ESTABLISHED:
/*
* Transmit the FIN
* wait for the FIN to be ACKed,
* then remain in FIN_WAIT_2
*/
dprintf("tcp_shutdown: sending fin\n");
if (tcp_xmit_end(tcp, sock_id) == 0 &&
tcp_state_wait(sock_id, tcp, TCPS_FIN_WAIT_2) < 0) {
/* During the wait, TCP may be gone... */
if (sockets[sock_id].pcb == NULL)
return (-1);
}
dprintf("tcp_shutdown: done\n");
break;
default:
break;
}
return (0);
}
/* To handle closing of the socket */
static int
tcp_close(int sock_id)
{
char *msg;
tcp_t *tcp;
int error = 0;
if ((tcp = sockets[sock_id].pcb) == NULL) {
return (-1);
}
TCP_RUN_TIME_WAIT_COLLECTOR();
/*
* Since inetboot is not interrupt driven, there may be
* some ACKs in the MAC's buffer. Drain them first,
* otherwise, we may not be able to send.
*/
if (tcp_drain_input(tcp, sock_id, 5) < 0) {
/*
* If we return now without freeing TCP, there will be
* a memory leak.
*/
if (sockets[sock_id].pcb != NULL)
tcp_clean_death(sock_id, tcp, 0);
return (-1);
}
if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
/* Cleanup for listener */
tcp_eager_cleanup(tcp, 0, sock_id);
}
msg = NULL;
switch (tcp->tcp_state) {
case TCPS_CLOSED:
case TCPS_IDLE:
case TCPS_BOUND:
case TCPS_LISTEN:
break;
case TCPS_SYN_SENT:
msg = "tcp_close, during connect";
break;
case TCPS_SYN_RCVD:
/*
* Close during the connect 3-way handshake
* but here there may or may not be pending data
* already on queue. Process almost same as in
* the ESTABLISHED state.
*/
/* FALLTHRU */
default:
/*
* If SO_LINGER has set a zero linger time, abort the
* connection with a reset.
*/
if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
msg = "tcp_close, zero lingertime";
break;
}
/*
* Abort connection if there is unread data queued.
*/
if (tcp->tcp_rcv_list != NULL ||
tcp->tcp_reass_head != NULL) {
msg = "tcp_close, unread data";
break;
}
if (tcp->tcp_state <= TCPS_LISTEN)
break;
/*
* Transmit the FIN before detaching the tcp_t.
* After tcp_detach returns this queue/perimeter
* no longer owns the tcp_t thus others can modify it.
* The TCP could be closed in tcp_state_wait called by
* tcp_wput_data called by tcp_xmit_end.
*/
(void) tcp_xmit_end(tcp, sock_id);
if (sockets[sock_id].pcb == NULL)
return (0);
/*
* If lingering on close then wait until the fin is acked,
* the SO_LINGER time passes, or a reset is sent/received.
*/
if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
!(tcp->tcp_fin_acked) &&
tcp->tcp_state >= TCPS_ESTABLISHED) {
uint32_t stoptime; /* in ms */
tcp->tcp_client_errno = 0;
stoptime = prom_gettime() +
(tcp->tcp_lingertime * 1000);
while (!(tcp->tcp_fin_acked) &&
tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp->tcp_client_errno == 0 &&
((int32_t)(stoptime - prom_gettime()) > 0)) {
if (tcp_drain_input(tcp, sock_id, 5) < 0) {
if (sockets[sock_id].pcb != NULL) {
tcp_clean_death(sock_id,
tcp, 0);
}
return (-1);
}
}
tcp->tcp_client_errno = 0;
}
if (tcp_state_wait(sock_id, tcp, TCPS_TIME_WAIT) < 0) {
/* During the wait, TCP may be gone... */
if (sockets[sock_id].pcb == NULL)
return (0);
msg = "tcp_close, couldn't detach";
} else {
return (0);
}
break;
}
/* Something went wrong... Send a RST and report the error */
if (msg != NULL) {
if (tcp->tcp_state == TCPS_ESTABLISHED ||
tcp->tcp_state == TCPS_CLOSE_WAIT)
BUMP_MIB(tcp_mib.tcpEstabResets);
if (tcp->tcp_state == TCPS_SYN_SENT ||
tcp->tcp_state == TCPS_SYN_RCVD)
BUMP_MIB(tcp_mib.tcpAttemptFails);
tcp_xmit_ctl(msg, tcp, NULL, tcp->tcp_snxt, 0, TH_RST, 0,
sock_id);
}
tcp_free(tcp);
bkmem_free((caddr_t)tcp, sizeof (tcp_t));
sockets[sock_id].pcb = NULL;
return (error);
}
/* To make an endpoint a listener. */
int
tcp_listen(int sock_id, int backlog)
{
tcp_t *tcp;
if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
errno = EINVAL;
return (-1);
}
/* We allow calling listen() multiple times to change the backlog. */
if (tcp->tcp_state > TCPS_LISTEN || tcp->tcp_state < TCPS_BOUND) {
errno = EOPNOTSUPP;
return (-1);
}
/* The following initialization should only be done once. */
if (tcp->tcp_state != TCPS_LISTEN) {
tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
tcp->tcp_eager_next_q = NULL;
tcp->tcp_state = TCPS_LISTEN;
tcp->tcp_second_ctimer_threshold = tcp_ip_abort_linterval;
}
if ((tcp->tcp_conn_req_max = backlog) > tcp_conn_req_max_q) {
tcp->tcp_conn_req_max = tcp_conn_req_max_q;
}
if (tcp->tcp_conn_req_max < tcp_conn_req_min) {
tcp->tcp_conn_req_max = tcp_conn_req_min;
}
return (0);
}
/* To accept connections. */
int
tcp_accept(int sock_id, struct sockaddr *addr, socklen_t *addr_len)
{
tcp_t *listener;
tcp_t *eager;
int sd, new_sock_id;
struct sockaddr_in *new_addr = (struct sockaddr_in *)addr;
int timeout;
/* Sanity check. */
if ((listener = (tcp_t *)(sockets[sock_id].pcb)) == NULL ||
new_addr == NULL || addr_len == NULL ||
*addr_len < sizeof (struct sockaddr_in) ||
listener->tcp_state != TCPS_LISTEN) {
errno = EINVAL;
return (-1);
}
if (sockets[sock_id].in_timeout > tcp_accept_timeout)
timeout = prom_gettime() + sockets[sock_id].in_timeout;
else
timeout = prom_gettime() + tcp_accept_timeout;
while (listener->tcp_eager_next_q == NULL &&
timeout > prom_gettime()) {
#if DEBUG
printf("tcp_accept: Waiting in tcp_accept()\n");
#endif
if (tcp_drain_input(listener, sock_id, 5) < 0) {
return (-1);
}
}
/* If there is an eager, don't timeout... */
if (timeout <= prom_gettime() && listener->tcp_eager_next_q == NULL) {
#if DEBUG
printf("tcp_accept: timeout\n");
#endif
errno = ETIMEDOUT;
return (-1);
}
#if DEBUG
printf("tcp_accept: got a connection\n");
#endif
/* Now create the socket for this new TCP. */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
return (-1);
}
if ((new_sock_id = so_check_fd(sd, &errno)) == -1)
/* This should not happen! */
prom_panic("so_check_fd() fails in tcp_accept()");
/* Free the TCP PCB in the original socket. */
bkmem_free((caddr_t)(sockets[new_sock_id].pcb), sizeof (tcp_t));
/* Dequeue the eager and attach it to the socket. */
eager = listener->tcp_eager_next_q;
listener->tcp_eager_next_q = eager->tcp_eager_next_q;
if (listener->tcp_eager_last_q == eager)
listener->tcp_eager_last_q = NULL;
eager->tcp_eager_next_q = NULL;
sockets[new_sock_id].pcb = eager;
listener->tcp_conn_req_cnt_q--;
/* Copy in the address info. */
bcopy(&eager->tcp_remote, &new_addr->sin_addr.s_addr,
sizeof (in_addr_t));
bcopy(&eager->tcp_fport, &new_addr->sin_port, sizeof (in_port_t));
new_addr->sin_family = AF_INET;
#ifdef DEBUG
printf("tcp_accept(), new sock_id: %d\n", sd);
#endif
return (sd);
}
/* Update the next anonymous port to use. */
static in_port_t
tcp_update_next_port(in_port_t port)
{
/* Don't allow the port to fall out of the anonymous port range. */
if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port)
port = (in_port_t)tcp_smallest_anon_port;
if (port < tcp_smallest_nonpriv_port)
port = (in_port_t)tcp_smallest_nonpriv_port;
return (port);
}
/* To check whether a bind to a port is allowed. */
static in_port_t
tcp_bindi(in_port_t port, in_addr_t *addr, boolean_t reuseaddr,
boolean_t bind_to_req_port_only)
{
int i, count;
tcp_t *tcp;
count = tcp_largest_anon_port - tcp_smallest_anon_port;
try_again:
for (i = 0; i < MAXSOCKET; i++) {
if (sockets[i].type != INETBOOT_STREAM ||
((tcp = (tcp_t *)sockets[i].pcb) == NULL) ||
ntohs(tcp->tcp_lport) != port) {
continue;
}
/*
* Both TCPs have the same port. If SO_REUSEDADDR is
* set and the bound TCP has a state greater than
* TCPS_LISTEN, it is fine.
*/
if (reuseaddr && tcp->tcp_state > TCPS_LISTEN) {
continue;
}
if (tcp->tcp_bound_source != INADDR_ANY &&
*addr != INADDR_ANY &&
tcp->tcp_bound_source != *addr) {
continue;
}
if (bind_to_req_port_only) {
return (0);
}
if (--count > 0) {
port = tcp_update_next_port(++port);
goto try_again;
} else {
return (0);
}
}
return (port);
}
/* To handle the bind request. */
int
tcp_bind(int sock_id)
{
tcp_t *tcp;
in_port_t requested_port, allocated_port;
boolean_t bind_to_req_port_only;
boolean_t reuseaddr;
if ((tcp = (tcp_t *)sockets[sock_id].pcb) == NULL) {
errno = EINVAL;
return (-1);
}
if (tcp->tcp_state >= TCPS_BOUND) {
/* We don't allow multiple bind(). */
errno = EPROTO;
return (-1);
}
requested_port = ntohs(sockets[sock_id].bind.sin_port);
/* The bound source can be INADDR_ANY. */
tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
/* Verify the port is available. */
if (requested_port == 0)
bind_to_req_port_only = B_FALSE;
else /* T_BIND_REQ and requested_port != 0 */
bind_to_req_port_only = B_TRUE;
if (requested_port == 0) {
requested_port = tcp_update_next_port(++tcp_next_port_to_try);
}
reuseaddr = sockets[sock_id].so_opt & SO_REUSEADDR;
allocated_port = tcp_bindi(requested_port, &(tcp->tcp_bound_source),
reuseaddr, bind_to_req_port_only);
if (allocated_port == 0) {
errno = EADDRINUSE;
return (-1);
}
tcp->tcp_lport = htons(allocated_port);
*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
sockets[sock_id].bind.sin_port = tcp->tcp_lport;
tcp->tcp_state = TCPS_BOUND;
return (0);
}
/*
* Check for duplicate TCP connections.
*/
static int
tcp_conn_check(tcp_t *tcp)
{
int i;
tcp_t *tmp_tcp;
for (i = 0; i < MAXSOCKET; i++) {
if (sockets[i].type != INETBOOT_STREAM)
continue;
/* Socket may not be closed but the TCP can be gone. */
if ((tmp_tcp = (tcp_t *)sockets[i].pcb) == NULL)
continue;
/* We only care about TCP in states later than SYN_SENT. */
if (tmp_tcp->tcp_state < TCPS_SYN_SENT)
continue;
if (tmp_tcp->tcp_lport != tcp->tcp_lport ||
tmp_tcp->tcp_fport != tcp->tcp_fport ||
tmp_tcp->tcp_bound_source != tcp->tcp_bound_source ||
tmp_tcp->tcp_remote != tcp->tcp_remote) {
continue;
} else {
return (-1);
}
}
return (0);
}
/* To handle a connect request. */
int
tcp_connect(int sock_id)
{
tcp_t *tcp;
in_addr_t dstaddr;
in_port_t dstport;
tcph_t *tcph;
int mss;
mblk_t *syn_mp;
if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
errno = EINVAL;
return (-1);
}
TCP_RUN_TIME_WAIT_COLLECTOR();
dstaddr = sockets[sock_id].remote.sin_addr.s_addr;
dstport = sockets[sock_id].remote.sin_port;
/*
* Check for attempt to connect to INADDR_ANY or non-unicast addrress.
* We don't have enough info to check for broadcast addr, except
* for the all 1 broadcast.
*/
if (dstaddr == INADDR_ANY || IN_CLASSD(ntohl(dstaddr)) ||
dstaddr == INADDR_BROADCAST) {
/*
* SunOS 4.x and 4.3 BSD allow an application
* to connect a TCP socket to INADDR_ANY.
* When they do this, the kernel picks the
* address of one interface and uses it
* instead. The kernel usually ends up
* picking the address of the loopback
* interface. This is an undocumented feature.
* However, we provide the same thing here
* in order to have source and binary
* compatibility with SunOS 4.x.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*
* Fail this for inetboot TCP.
*/
errno = EINVAL;
return (-1);
}
/* It is not bound to any address yet... */
if (tcp->tcp_bound_source == INADDR_ANY) {
ipv4_getipaddr(&(sockets[sock_id].bind.sin_addr));
/* We don't have an address! */
if (ntohl(sockets[sock_id].bind.sin_addr.s_addr) ==
INADDR_ANY) {
errno = EPROTO;
return (-1);
}
tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
}
/*
* Don't let an endpoint connect to itself.
*/
if (dstaddr == tcp->tcp_ipha->ip_src.s_addr &&
dstport == tcp->tcp_lport) {
errno = EINVAL;
return (-1);
}
tcp->tcp_ipha->ip_dst.s_addr = dstaddr;
tcp->tcp_remote = dstaddr;
tcph = tcp->tcp_tcph;
*(uint16_t *)tcph->th_fport = dstport;
tcp->tcp_fport = dstport;
/*
* Don't allow this connection to completely duplicate
* an existing connection.
*/
if (tcp_conn_check(tcp) < 0) {
errno = EADDRINUSE;
return (-1);
}
/*
* Just make sure our rwnd is at
* least tcp_recv_hiwat_mss * MSS
* large, and round up to the nearest
* MSS.
*
* We do the round up here because
* we need to get the interface
* MTU first before we can do the
* round up.
*/
mss = tcp->tcp_mss - tcp->tcp_hdr_len;
tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
tcp_recv_hiwat_minmss * mss);
tcp->tcp_rwnd_max = tcp->tcp_rwnd;
SET_WS_VALUE(tcp);
U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
tcp->tcp_tcph->th_win);
if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
tcp->tcp_snd_ws_ok = B_TRUE;
/*
* Set tcp_snd_ts_ok to true
* so that tcp_xmit_mp will
* include the timestamp
* option in the SYN segment.
*/
if (tcp_tstamp_always ||
(tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
tcp->tcp_snd_ts_ok = B_TRUE;
}
if (tcp_sack_permitted == 2 ||
tcp->tcp_snd_sack_ok) {
assert(tcp->tcp_sack_info == NULL);
if ((tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
sizeof (tcp_sack_info_t))) == NULL) {
tcp->tcp_snd_sack_ok = B_FALSE;
} else {
tcp->tcp_snd_sack_ok = B_TRUE;
}
}
/*
* Should we use ECN? Note that the current
* default value (SunOS 5.9) of tcp_ecn_permitted
* is 2. The reason for doing this is that there
* are equipments out there that will drop ECN
* enabled IP packets. Setting it to 1 avoids
* compatibility problems.
*/
if (tcp_ecn_permitted == 2)
tcp->tcp_ecn_ok = B_TRUE;
tcp_iss_init(tcp);
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
tcp->tcp_active_open = B_TRUE;
tcp->tcp_state = TCPS_SYN_SENT;
syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_iss, B_FALSE,
NULL, B_FALSE);
if (syn_mp != NULL) {
int ret;
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_connect", syn_mp);
/* Send out the SYN packet. */
ret = ipv4_tcp_output(sock_id, syn_mp);
freeb(syn_mp);
if (ret < 0) {
return (-1);
}
/* tcp_state_wait() will finish the 3 way handshake. */
return (tcp_state_wait(sock_id, tcp, TCPS_ESTABLISHED));
} else {
errno = ENOBUFS;
return (-1);
}
}
/*
* Common accept code. Called by tcp_conn_request.
* cr_pkt is the SYN packet.
*/
static int
tcp_accept_comm(tcp_t *listener, tcp_t *acceptor, mblk_t *cr_pkt,
uint_t ip_hdr_len)
{
tcph_t *tcph;
#ifdef DEBUG
printf("tcp_accept_comm #######################\n");
#endif
/*
* When we get here, we know that the acceptor header template
* has already been initialized.
* However, it may not match the listener if the listener
* includes options...
* It may also not match the listener if the listener is v6 and
* and the acceptor is v4
*/
acceptor->tcp_lport = listener->tcp_lport;
if (listener->tcp_ipversion == acceptor->tcp_ipversion) {
if (acceptor->tcp_iphc_len != listener->tcp_iphc_len) {
/*
* Listener had options of some sort; acceptor inherits.
* Free up the acceptor template and allocate one
* of the right size.
*/
bkmem_free(acceptor->tcp_iphc, acceptor->tcp_iphc_len);
acceptor->tcp_iphc = bkmem_zalloc(
listener->tcp_iphc_len);
if (acceptor->tcp_iphc == NULL) {
acceptor->tcp_iphc_len = 0;
return (ENOMEM);
}
acceptor->tcp_iphc_len = listener->tcp_iphc_len;
}
acceptor->tcp_hdr_len = listener->tcp_hdr_len;
acceptor->tcp_ip_hdr_len = listener->tcp_ip_hdr_len;
acceptor->tcp_tcp_hdr_len = listener->tcp_tcp_hdr_len;
/*
* Copy the IP+TCP header template from listener to acceptor
*/
bcopy(listener->tcp_iphc, acceptor->tcp_iphc,
listener->tcp_hdr_len);
acceptor->tcp_ipha = (struct ip *)acceptor->tcp_iphc;
acceptor->tcp_tcph = (tcph_t *)(acceptor->tcp_iphc +
acceptor->tcp_ip_hdr_len);
} else {
prom_panic("tcp_accept_comm: version not equal");
}
/* Copy our new dest and fport from the connection request packet */
if (acceptor->tcp_ipversion == IPV4_VERSION) {
struct ip *ipha;
ipha = (struct ip *)cr_pkt->b_rptr;
acceptor->tcp_ipha->ip_dst = ipha->ip_src;
acceptor->tcp_remote = ipha->ip_src.s_addr;
acceptor->tcp_ipha->ip_src = ipha->ip_dst;
acceptor->tcp_bound_source = ipha->ip_dst.s_addr;
tcph = (tcph_t *)&cr_pkt->b_rptr[ip_hdr_len];
} else {
prom_panic("tcp_accept_comm: not IPv4");
}
bcopy(tcph->th_lport, acceptor->tcp_tcph->th_fport, sizeof (in_port_t));
bcopy(acceptor->tcp_tcph->th_fport, &acceptor->tcp_fport,
sizeof (in_port_t));
/*
* For an all-port proxy listener, the local port is determined by
* the port number field in the SYN packet.
*/
if (listener->tcp_lport == 0) {
acceptor->tcp_lport = *(in_port_t *)tcph->th_fport;
bcopy(tcph->th_fport, acceptor->tcp_tcph->th_lport,
sizeof (in_port_t));
}
/* Inherit various TCP parameters from the listener */
acceptor->tcp_naglim = listener->tcp_naglim;
acceptor->tcp_first_timer_threshold =
listener->tcp_first_timer_threshold;
acceptor->tcp_second_timer_threshold =
listener->tcp_second_timer_threshold;
acceptor->tcp_first_ctimer_threshold =
listener->tcp_first_ctimer_threshold;
acceptor->tcp_second_ctimer_threshold =
listener->tcp_second_ctimer_threshold;
acceptor->tcp_xmit_hiwater = listener->tcp_xmit_hiwater;
acceptor->tcp_state = TCPS_LISTEN;
tcp_iss_init(acceptor);
/* Process all TCP options. */
tcp_process_options(acceptor, tcph);
/* Is the other end ECN capable? */
if (tcp_ecn_permitted >= 1 &&
(tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
acceptor->tcp_ecn_ok = B_TRUE;
}
/*
* listener->tcp_rq->q_hiwat should be the default window size or a
* window size changed via SO_RCVBUF option. First round up the
* acceptor's tcp_rwnd to the nearest MSS. Then find out the window
* scale option value if needed. Call tcp_rwnd_set() to finish the
* setting.
*
* Note if there is a rpipe metric associated with the remote host,
* we should not inherit receive window size from listener.
*/
acceptor->tcp_rwnd = MSS_ROUNDUP(
(acceptor->tcp_rwnd == 0 ? listener->tcp_rwnd_max :
acceptor->tcp_rwnd), acceptor->tcp_mss);
if (acceptor->tcp_snd_ws_ok)
SET_WS_VALUE(acceptor);
/*
* Note that this is the only place tcp_rwnd_set() is called for
* accepting a connection. We need to call it here instead of
* after the 3-way handshake because we need to tell the other
* side our rwnd in the SYN-ACK segment.
*/
(void) tcp_rwnd_set(acceptor, acceptor->tcp_rwnd);
return (0);
}
/*
* Defense for the SYN attack -
* 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
* one that doesn't have the dontdrop bit set.
* 2. Don't drop a SYN request before its first timeout. This gives every
* request at least til the first timeout to complete its 3-way handshake.
* 3. The current threshold is - # of timeout > q0len/4 => SYN alert on
* # of timeout drops back to <= q0len/32 => SYN alert off
*/
static boolean_t
tcp_drop_q0(tcp_t *tcp)
{
tcp_t *eager;
assert(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
/*
* New one is added after next_q0 so prev_q0 points to the oldest
* Also do not drop any established connections that are deferred on
* q0 due to q being full
*/
eager = tcp->tcp_eager_prev_q0;
while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
/* XXX should move the eager to the head */
eager = eager->tcp_eager_prev_q0;
if (eager == tcp) {
eager = tcp->tcp_eager_prev_q0;
break;
}
}
dprintf("tcp_drop_q0: listen half-open queue (max=%d) overflow"
" (%d pending) on %s, drop one", tcp_conn_req_max_q0,
tcp->tcp_conn_req_cnt_q0,
tcp_display(tcp, NULL, DISP_PORT_ONLY));
BUMP_MIB(tcp_mib.tcpHalfOpenDrop);
bkmem_free((caddr_t)eager, sizeof (tcp_t));
return (B_TRUE);
}
/* ARGSUSED */
static tcp_t *
tcp_conn_request(tcp_t *tcp, mblk_t *mp, uint_t sock_id, uint_t ip_hdr_len)
{
tcp_t *eager;
struct ip *ipha;
int err;
#ifdef DEBUG
printf("tcp_conn_request ###################\n");
#endif
if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
BUMP_MIB(tcp_mib.tcpListenDrop);
dprintf("tcp_conn_request: listen backlog (max=%d) "
"overflow (%d pending) on %s",
tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
tcp_display(tcp, NULL, DISP_PORT_ONLY));
return (NULL);
}
assert(OK_32PTR(mp->b_rptr));
if (tcp->tcp_conn_req_cnt_q0 >=
tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
/*
* Q0 is full. Drop a pending half-open req from the queue
* to make room for the new SYN req. Also mark the time we
* drop a SYN.
*/
tcp->tcp_last_rcv_lbolt = prom_gettime();
if (!tcp_drop_q0(tcp)) {
freemsg(mp);
BUMP_MIB(tcp_mib.tcpListenDropQ0);
dprintf("tcp_conn_request: listen half-open queue "
"(max=%d) full (%d pending) on %s",
tcp_conn_req_max_q0,
tcp->tcp_conn_req_cnt_q0,
tcp_display(tcp, NULL, DISP_PORT_ONLY));
return (NULL);
}
}
ipha = (struct ip *)mp->b_rptr;
if (IN_CLASSD(ntohl(ipha->ip_src.s_addr)) ||
ipha->ip_src.s_addr == INADDR_BROADCAST ||
ipha->ip_src.s_addr == INADDR_ANY ||
ipha->ip_dst.s_addr == INADDR_BROADCAST) {
freemsg(mp);
return (NULL);
}
/*
* We allow the connection to proceed
* by generating a detached tcp state vector and put it in
* the eager queue. When an accept happens, it will be
* dequeued sequentially.
*/
if ((eager = (tcp_t *)bkmem_alloc(sizeof (tcp_t))) == NULL) {
freemsg(mp);
errno = ENOBUFS;
return (NULL);
}
if ((errno = tcp_init_values(eager, NULL)) != 0) {
freemsg(mp);
bkmem_free((caddr_t)eager, sizeof (tcp_t));
return (NULL);
}
/*
* Eager connection inherits address form from its listener,
* but its packet form comes from the version of the received
* SYN segment.
*/
eager->tcp_family = tcp->tcp_family;
err = tcp_accept_comm(tcp, eager, mp, ip_hdr_len);
if (err) {
bkmem_free((caddr_t)eager, sizeof (tcp_t));
return (NULL);
}
tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
tcp->tcp_eager_next_q0 = eager;
eager->tcp_eager_prev_q0 = tcp;
/* Set tcp_listener before adding it to tcp_conn_fanout */
eager->tcp_listener = tcp;
tcp->tcp_conn_req_cnt_q0++;
return (eager);
}
/*
* To get around the non-interrupt problem of inetboot.
* Keep on processing packets until a certain state is reached or the
* TCP is destroyed because of getting a RST packet.
*/
static int
tcp_state_wait(int sock_id, tcp_t *tcp, int state)
{
int i;
struct inetgram *in_gram;
mblk_t *mp;
int timeout;
boolean_t changed = B_FALSE;
/*
* We need to make sure that the MAC does not wait longer
* than RTO for any packet so that TCP can do retransmission.
* But if the MAC timeout is less than tcp_rto, we are fine
* and do not need to change it.
*/
timeout = sockets[sock_id].in_timeout;
if (timeout > tcp->tcp_rto) {
sockets[sock_id].in_timeout = tcp->tcp_rto;
changed = B_TRUE;
}
retry:
if (sockets[sock_id].inq == NULL) {
/* Go out and check the wire */
for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
if (sockets[sock_id].input[i] != NULL) {
if (sockets[sock_id].input[i](sock_id) < 0) {
if (changed) {
sockets[sock_id].in_timeout =
timeout;
}
return (-1);
}
}
}
}
while ((in_gram = sockets[sock_id].inq) != NULL) {
if (tcp != NULL && tcp->tcp_state == state)
break;
/* Remove unknown inetgrams from the head of inq. */
if (in_gram->igm_level != TRANSPORT_LVL) {
#ifdef DEBUG
printf("tcp_state_wait for state %d: unexpected "
"packet level %d frame found\n", state,
in_gram->igm_level);
#endif
del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
continue;
}
mp = in_gram->igm_mp;
del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
tcp_rput_data(tcp, mp, sock_id);
/*
* The other side may have closed this connection or
* RST us. But we need to continue to process other
* packets in the socket's queue because they may be
* belong to another TCP connections.
*/
if (sockets[sock_id].pcb == NULL) {
tcp = NULL;
}
}
/* If the other side has closed the connection, just return. */
if (tcp == NULL || sockets[sock_id].pcb == NULL) {
#ifdef DEBUG
printf("tcp_state_wait other side dead: state %d "
"error %d\n", state, sockets[sock_id].so_error);
#endif
if (sockets[sock_id].so_error != 0)
return (-1);
else
return (0);
}
/*
* TCPS_ALL_ACKED is not a valid TCP state, it is just used as an
* indicator to tcp_state_wait to mean that it is being called
* to wait till we have received acks for all the new segments sent.
*/
if ((state == TCPS_ALL_ACKED) && (tcp->tcp_suna == tcp->tcp_snxt)) {
goto done;
}
if (tcp->tcp_state != state) {
if (prom_gettime() > tcp->tcp_rto_timeout)
tcp_timer(tcp, sock_id);
goto retry;
}
done:
if (changed)
sockets[sock_id].in_timeout = timeout;
tcp_drain_needed(sock_id, tcp);
return (0);
}
/* Verify the checksum of a segment. */
static int
tcp_verify_cksum(mblk_t *mp)
{
struct ip *iph;
tcpha_t *tcph;
int len;
uint16_t old_sum;
iph = (struct ip *)mp->b_rptr;
tcph = (tcpha_t *)(iph + 1);
len = ntohs(iph->ip_len);
/*
* Calculate the TCP checksum. Need to include the psuedo header,
* which is similar to the real IP header starting at the TTL field.
*/
iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
old_sum = tcph->tha_sum;
tcph->tha_sum = 0;
iph->ip_ttl = 0;
if (old_sum == tcp_cksum((uint16_t *)&(iph->ip_ttl),
len - IP_SIMPLE_HDR_LENGTH + 12)) {
return (0);
} else {
tcp_cksum_errors++;
return (-1);
}
}
/* To find a TCP connection matching the incoming segment. */
static tcp_t *
tcp_lookup_ipv4(struct ip *iph, tcpha_t *tcph, int min_state, int *sock_id)
{
int i;
tcp_t *tcp;
for (i = 0; i < MAXSOCKET; i++) {
if (sockets[i].type == INETBOOT_STREAM &&
(tcp = (tcp_t *)sockets[i].pcb) != NULL) {
if (tcph->tha_lport == tcp->tcp_fport &&
tcph->tha_fport == tcp->tcp_lport &&
iph->ip_src.s_addr == tcp->tcp_remote &&
iph->ip_dst.s_addr == tcp->tcp_bound_source &&
tcp->tcp_state >= min_state) {
*sock_id = i;
return (tcp);
}
}
}
/* Find it in the time wait list. */
for (tcp = tcp_time_wait_head; tcp != NULL;
tcp = tcp->tcp_time_wait_next) {
if (tcph->tha_lport == tcp->tcp_fport &&
tcph->tha_fport == tcp->tcp_lport &&
iph->ip_src.s_addr == tcp->tcp_remote &&
iph->ip_dst.s_addr == tcp->tcp_bound_source &&
tcp->tcp_state >= min_state) {
*sock_id = -1;
return (tcp);
}
}
return (NULL);
}
/* To find a TCP listening connection matching the incoming segment. */
static tcp_t *
tcp_lookup_listener_ipv4(in_addr_t addr, in_port_t port, int *sock_id)
{
int i;
tcp_t *tcp;
for (i = 0; i < MAXSOCKET; i++) {
if (sockets[i].type == INETBOOT_STREAM &&
(tcp = (tcp_t *)sockets[i].pcb) != NULL) {
if (tcp->tcp_lport == port &&
(tcp->tcp_bound_source == addr ||
tcp->tcp_bound_source == INADDR_ANY)) {
*sock_id = i;
return (tcp);
}
}
}
return (NULL);
}
/* To find a TCP eager matching the incoming segment. */
static tcp_t *
tcp_lookup_eager_ipv4(tcp_t *listener, struct ip *iph, tcpha_t *tcph)
{
tcp_t *tcp;
#ifdef DEBUG
printf("tcp_lookup_eager_ipv4 ###############\n");
#endif
for (tcp = listener->tcp_eager_next_q; tcp != NULL;
tcp = tcp->tcp_eager_next_q) {
if (tcph->tha_lport == tcp->tcp_fport &&
tcph->tha_fport == tcp->tcp_lport &&
iph->ip_src.s_addr == tcp->tcp_remote &&
iph->ip_dst.s_addr == tcp->tcp_bound_source) {
return (tcp);
}
}
for (tcp = listener->tcp_eager_next_q0; tcp != listener;
tcp = tcp->tcp_eager_next_q0) {
if (tcph->tha_lport == tcp->tcp_fport &&
tcph->tha_fport == tcp->tcp_lport &&
iph->ip_src.s_addr == tcp->tcp_remote &&
iph->ip_dst.s_addr == tcp->tcp_bound_source) {
return (tcp);
}
}
#ifdef DEBUG
printf("No eager found\n");
#endif
return (NULL);
}
/* To destroy a TCP control block. */
static void
tcp_clean_death(int sock_id, tcp_t *tcp, int err)
{
tcp_free(tcp);
if (tcp->tcp_state == TCPS_TIME_WAIT)
tcp_time_wait_remove(tcp);
if (sock_id >= 0) {
sockets[sock_id].pcb = NULL;
if (err != 0)
sockets[sock_id].so_error = err;
}
bkmem_free((caddr_t)tcp, sizeof (tcp_t));
}
/*
* tcp_rwnd_set() is called to adjust the receive window to a desired value.
* We do not allow the receive window to shrink. After setting rwnd,
* set the flow control hiwat of the stream.
*
* This function is called in 2 cases:
*
* 1) Before data transfer begins, in tcp_accept_comm() for accepting a
* connection (passive open) and in tcp_rput_data() for active connect.
* This is called after tcp_mss_set() when the desired MSS value is known.
* This makes sure that our window size is a mutiple of the other side's
* MSS.
* 2) Handling SO_RCVBUF option.
*
* It is ASSUMED that the requested size is a multiple of the current MSS.
*
* XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
* user requests so.
*/
static int
tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
{
uint32_t mss = tcp->tcp_mss;
uint32_t old_max_rwnd;
uint32_t max_transmittable_rwnd;
if (tcp->tcp_rwnd_max != 0)
old_max_rwnd = tcp->tcp_rwnd_max;
else
old_max_rwnd = tcp->tcp_rwnd;
/*
* Insist on a receive window that is at least
* tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
* funny TCP interactions of Nagle algorithm, SWS avoidance
* and delayed acknowledgement.
*/
rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
/*
* If window size info has already been exchanged, TCP should not
* shrink the window. Shrinking window is doable if done carefully.
* We may add that support later. But so far there is not a real
* need to do that.
*/
if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
/* MSS may have changed, do a round up again. */
rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
}
/*
* tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
* can be applied even before the window scale option is decided.
*/
max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
if (rwnd > max_transmittable_rwnd) {
rwnd = max_transmittable_rwnd -
(max_transmittable_rwnd % mss);
if (rwnd < mss)
rwnd = max_transmittable_rwnd;
/*
* If we're over the limit we may have to back down tcp_rwnd.
* The increment below won't work for us. So we set all three
* here and the increment below will have no effect.
*/
tcp->tcp_rwnd = old_max_rwnd = rwnd;
}
/*
* Increment the current rwnd by the amount the maximum grew (we
* can not overwrite it since we might be in the middle of a
* connection.)
*/
tcp->tcp_rwnd += rwnd - old_max_rwnd;
U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
tcp->tcp_cwnd_max = rwnd;
tcp->tcp_rwnd_max = rwnd;
return (rwnd);
}
/*
* Extract option values from a tcp header. We put any found values into the
* tcpopt struct and return a bitmask saying which options were found.
*/
static int
tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
{
uchar_t *endp;
int len;
uint32_t mss;
uchar_t *up = (uchar_t *)tcph;
int found = 0;
int32_t sack_len;
tcp_seq sack_begin, sack_end;
tcp_t *tcp;
endp = up + TCP_HDR_LENGTH(tcph);
up += TCP_MIN_HEADER_LENGTH;
while (up < endp) {
len = endp - up;
switch (*up) {
case TCPOPT_EOL:
break;
case TCPOPT_NOP:
up++;
continue;
case TCPOPT_MAXSEG:
if (len < TCPOPT_MAXSEG_LEN ||
up[1] != TCPOPT_MAXSEG_LEN)
break;
mss = BE16_TO_U16(up+2);
/* Caller must handle tcp_mss_min and tcp_mss_max_* */
tcpopt->tcp_opt_mss = mss;
found |= TCP_OPT_MSS_PRESENT;
up += TCPOPT_MAXSEG_LEN;
continue;
case TCPOPT_WSCALE:
if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
break;
if (up[2] > TCP_MAX_WINSHIFT)
tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
else
tcpopt->tcp_opt_wscale = up[2];
found |= TCP_OPT_WSCALE_PRESENT;
up += TCPOPT_WS_LEN;
continue;
case TCPOPT_SACK_PERMITTED:
if (len < TCPOPT_SACK_OK_LEN ||
up[1] != TCPOPT_SACK_OK_LEN)
break;
found |= TCP_OPT_SACK_OK_PRESENT;
up += TCPOPT_SACK_OK_LEN;
continue;
case TCPOPT_SACK:
if (len <= 2 || up[1] <= 2 || len < up[1])
break;
/* If TCP is not interested in SACK blks... */
if ((tcp = tcpopt->tcp) == NULL) {
up += up[1];
continue;
}
sack_len = up[1] - TCPOPT_HEADER_LEN;
up += TCPOPT_HEADER_LEN;
/*
* If the list is empty, allocate one and assume
* nothing is sack'ed.
*/
assert(tcp->tcp_sack_info != NULL);
if (tcp->tcp_notsack_list == NULL) {
tcp_notsack_update(&(tcp->tcp_notsack_list),
tcp->tcp_suna, tcp->tcp_snxt,
&(tcp->tcp_num_notsack_blk),
&(tcp->tcp_cnt_notsack_list));
/*
* Make sure tcp_notsack_list is not NULL.
* This happens when kmem_alloc(KM_NOSLEEP)
* returns NULL.
*/
if (tcp->tcp_notsack_list == NULL) {
up += sack_len;
continue;
}
tcp->tcp_fack = tcp->tcp_suna;
}
while (sack_len > 0) {
if (up + 8 > endp) {
up = endp;
break;
}
sack_begin = BE32_TO_U32(up);
up += 4;
sack_end = BE32_TO_U32(up);
up += 4;
sack_len -= 8;
/*
* Bounds checking. Make sure the SACK
* info is within tcp_suna and tcp_snxt.
* If this SACK blk is out of bound, ignore
* it but continue to parse the following
* blks.
*/
if (SEQ_LEQ(sack_end, sack_begin) ||
SEQ_LT(sack_begin, tcp->tcp_suna) ||
SEQ_GT(sack_end, tcp->tcp_snxt)) {
continue;
}
tcp_notsack_insert(&(tcp->tcp_notsack_list),
sack_begin, sack_end,
&(tcp->tcp_num_notsack_blk),
&(tcp->tcp_cnt_notsack_list));
if (SEQ_GT(sack_end, tcp->tcp_fack)) {
tcp->tcp_fack = sack_end;
}
}
found |= TCP_OPT_SACK_PRESENT;
continue;
case TCPOPT_TSTAMP:
if (len < TCPOPT_TSTAMP_LEN ||
up[1] != TCPOPT_TSTAMP_LEN)
break;
tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
found |= TCP_OPT_TSTAMP_PRESENT;
up += TCPOPT_TSTAMP_LEN;
continue;
default:
if (len <= 1 || len < (int)up[1] || up[1] == 0)
break;
up += up[1];
continue;
}
break;
}
return (found);
}
/*
* Set the mss associated with a particular tcp based on its current value,
* and a new one passed in. Observe minimums and maximums, and reset
* other state variables that we want to view as multiples of mss.
*
* This function is called in various places mainly because
* 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
* other side's SYN/SYN-ACK packet arrives.
* 2) PMTUd may get us a new MSS.
* 3) If the other side stops sending us timestamp option, we need to
* increase the MSS size to use the extra bytes available.
*/
static void
tcp_mss_set(tcp_t *tcp, uint32_t mss)
{
uint32_t mss_max;
mss_max = tcp_mss_max_ipv4;
if (mss < tcp_mss_min)
mss = tcp_mss_min;
if (mss > mss_max)
mss = mss_max;
/*
* Unless naglim has been set by our client to
* a non-mss value, force naglim to track mss.
* This can help to aggregate small writes.
*/
if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
tcp->tcp_naglim = mss;
/*
* TCP should be able to buffer at least 4 MSS data for obvious
* performance reason.
*/
if ((mss << 2) > tcp->tcp_xmit_hiwater)
tcp->tcp_xmit_hiwater = mss << 2;
tcp->tcp_mss = mss;
/*
* Initialize cwnd according to draft-floyd-incr-init-win-01.txt.
* Previously, we use tcp_slow_start_initial to control the size
* of the initial cwnd. Now, when tcp_slow_start_initial * mss
* is smaller than the cwnd calculated from the formula suggested in
* the draft, we use tcp_slow_start_initial * mss as the cwnd.
* Otherwise, use the cwnd from the draft's formula. The default
* of tcp_slow_start_initial is 2.
*/
tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
tcp->tcp_cwnd_cnt = 0;
}
/*
* Process all TCP option in SYN segment.
*
* This function sets up the correct tcp_mss value according to the
* MSS option value and our header size. It also sets up the window scale
* and timestamp values, and initialize SACK info blocks. But it does not
* change receive window size after setting the tcp_mss value. The caller
* should do the appropriate change.
*/
void
tcp_process_options(tcp_t *tcp, tcph_t *tcph)
{
int options;
tcp_opt_t tcpopt;
uint32_t mss_max;
char *tmp_tcph;
tcpopt.tcp = NULL;
options = tcp_parse_options(tcph, &tcpopt);
/*
* Process MSS option. Note that MSS option value does not account
* for IP or TCP options. This means that it is equal to MTU - minimum
* IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
* IPv6.
*/
if (!(options & TCP_OPT_MSS_PRESENT)) {
tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
} else {
if (tcp->tcp_ipversion == IPV4_VERSION)
mss_max = tcp_mss_max_ipv4;
if (tcpopt.tcp_opt_mss < tcp_mss_min)
tcpopt.tcp_opt_mss = tcp_mss_min;
else if (tcpopt.tcp_opt_mss > mss_max)
tcpopt.tcp_opt_mss = mss_max;
}
/* Process Window Scale option. */
if (options & TCP_OPT_WSCALE_PRESENT) {
tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
tcp->tcp_snd_ws_ok = B_TRUE;
} else {
tcp->tcp_snd_ws = B_FALSE;
tcp->tcp_snd_ws_ok = B_FALSE;
tcp->tcp_rcv_ws = B_FALSE;
}
/* Process Timestamp option. */
if ((options & TCP_OPT_TSTAMP_PRESENT) &&
(tcp->tcp_snd_ts_ok || !tcp->tcp_active_open)) {
tmp_tcph = (char *)tcp->tcp_tcph;
tcp->tcp_snd_ts_ok = B_TRUE;
tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
tcp->tcp_last_rcv_lbolt = prom_gettime();
assert(OK_32PTR(tmp_tcph));
assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
/* Fill in our template header with basic timestamp option. */
tmp_tcph += tcp->tcp_tcp_hdr_len;
tmp_tcph[0] = TCPOPT_NOP;
tmp_tcph[1] = TCPOPT_NOP;
tmp_tcph[2] = TCPOPT_TSTAMP;
tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
} else {
tcp->tcp_snd_ts_ok = B_FALSE;
}
/*
* Process SACK options. If SACK is enabled for this connection,
* then allocate the SACK info structure.
*/
if ((options & TCP_OPT_SACK_OK_PRESENT) &&
(tcp->tcp_snd_sack_ok ||
(tcp_sack_permitted != 0 && !tcp->tcp_active_open))) {
/* This should be true only in the passive case. */
if (tcp->tcp_sack_info == NULL) {
tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
sizeof (tcp_sack_info_t));
}
if (tcp->tcp_sack_info == NULL) {
tcp->tcp_snd_sack_ok = B_FALSE;
} else {
tcp->tcp_snd_sack_ok = B_TRUE;
if (tcp->tcp_snd_ts_ok) {
tcp->tcp_max_sack_blk = 3;
} else {
tcp->tcp_max_sack_blk = 4;
}
}
} else {
/*
* Resetting tcp_snd_sack_ok to B_FALSE so that
* no SACK info will be used for this
* connection. This assumes that SACK usage
* permission is negotiated. This may need
* to be changed once this is clarified.
*/
if (tcp->tcp_sack_info != NULL) {
bkmem_free((caddr_t)tcp->tcp_sack_info,
sizeof (tcp_sack_info_t));
tcp->tcp_sack_info = NULL;
}
tcp->tcp_snd_sack_ok = B_FALSE;
}
/*
* Now we know the exact TCP/IP header length, subtract
* that from tcp_mss to get our side's MSS.
*/
tcp->tcp_mss -= tcp->tcp_hdr_len;
/*
* Here we assume that the other side's header size will be equal to
* our header size. We calculate the real MSS accordingly. Need to
* take into additional stuffs IPsec puts in.
*
* Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
*/
tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len -
(IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH);
/*
* Set MSS to the smaller one of both ends of the connection.
* We should not have called tcp_mss_set() before, but our
* side of the MSS should have been set to a proper value
* by tcp_adapt_ire(). tcp_mss_set() will also set up the
* STREAM head parameters properly.
*
* If we have a larger-than-16-bit window but the other side
* didn't want to do window scale, tcp_rwnd_set() will take
* care of that.
*/
tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
}
/*
* This function does PAWS protection check. Returns B_TRUE if the
* segment passes the PAWS test, else returns B_FALSE.
*/
boolean_t
tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
{
uint8_t flags;
int options;
uint8_t *up;
flags = (unsigned int)tcph->th_flags[0] & 0xFF;
/*
* If timestamp option is aligned nicely, get values inline,
* otherwise call general routine to parse. Only do that
* if timestamp is the only option.
*/
if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
TCPOPT_REAL_TS_LEN &&
OK_32PTR((up = ((uint8_t *)tcph) +
TCP_MIN_HEADER_LENGTH)) &&
*(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
options = TCP_OPT_TSTAMP_PRESENT;
} else {
if (tcp->tcp_snd_sack_ok) {
tcpoptp->tcp = tcp;
} else {
tcpoptp->tcp = NULL;
}
options = tcp_parse_options(tcph, tcpoptp);
}
if (options & TCP_OPT_TSTAMP_PRESENT) {
/*
* Do PAWS per RFC 1323 section 4.2. Accept RST
* regardless of the timestamp, page 18 RFC 1323.bis.
*/
if ((flags & TH_RST) == 0 &&
TSTMP_LT(tcpoptp->tcp_opt_ts_val,
tcp->tcp_ts_recent)) {
if (TSTMP_LT(prom_gettime(),
tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
/* This segment is not acceptable. */
return (B_FALSE);
} else {
/*
* Connection has been idle for
* too long. Reset the timestamp
* and assume the segment is valid.
*/
tcp->tcp_ts_recent =
tcpoptp->tcp_opt_ts_val;
}
}
} else {
/*
* If we don't get a timestamp on every packet, we
* figure we can't really trust 'em, so we stop sending
* and parsing them.
*/
tcp->tcp_snd_ts_ok = B_FALSE;
tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
if (tcp->tcp_snd_sack_ok) {
assert(tcp->tcp_sack_info != NULL);
tcp->tcp_max_sack_blk = 4;
}
}
return (B_TRUE);
}
/*
* tcp_get_seg_mp() is called to get the pointer to a segment in the
* send queue which starts at the given seq. no.
*
* Parameters:
* tcp_t *tcp: the tcp instance pointer.
* uint32_t seq: the starting seq. no of the requested segment.
* int32_t *off: after the execution, *off will be the offset to
* the returned mblk which points to the requested seq no.
*
* Return:
* A mblk_t pointer pointing to the requested segment in send queue.
*/
static mblk_t *
tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
{
int32_t cnt;
mblk_t *mp;
/* Defensive coding. Make sure we don't send incorrect data. */
if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt) ||
off == NULL) {
return (NULL);
}
cnt = seq - tcp->tcp_suna;
mp = tcp->tcp_xmit_head;
while (cnt > 0 && mp) {
cnt -= mp->b_wptr - mp->b_rptr;
if (cnt < 0) {
cnt += mp->b_wptr - mp->b_rptr;
break;
}
mp = mp->b_cont;
}
assert(mp != NULL);
*off = cnt;
return (mp);
}
/*
* This function handles all retransmissions if SACK is enabled for this
* connection. First it calculates how many segments can be retransmitted
* based on tcp_pipe. Then it goes thru the notsack list to find eligible
* segments. A segment is eligible if sack_cnt for that segment is greater
* than or equal tcp_dupack_fast_retransmit. After it has retransmitted
* all eligible segments, it checks to see if TCP can send some new segments
* (fast recovery). If it can, it returns 1. Otherwise it returns 0.
*
* Parameters:
* tcp_t *tcp: the tcp structure of the connection.
*
* Return:
* 1 if the pipe is not full (new data can be sent), 0 otherwise
*/
static int32_t
tcp_sack_rxmit(tcp_t *tcp, int sock_id)
{
notsack_blk_t *notsack_blk;
int32_t usable_swnd;
int32_t mss;
uint32_t seg_len;
mblk_t *xmit_mp;
assert(tcp->tcp_sack_info != NULL);
assert(tcp->tcp_notsack_list != NULL);
assert(tcp->tcp_rexmit == B_FALSE);
/* Defensive coding in case there is a bug... */
if (tcp->tcp_notsack_list == NULL) {
return (0);
}
notsack_blk = tcp->tcp_notsack_list;
mss = tcp->tcp_mss;
/*
* Limit the num of outstanding data in the network to be
* tcp_cwnd_ssthresh, which is half of the original congestion wnd.
*/
usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
/* At least retransmit 1 MSS of data. */
if (usable_swnd <= 0) {
usable_swnd = mss;
}
/* Make sure no new RTT samples will be taken. */
tcp->tcp_csuna = tcp->tcp_snxt;
notsack_blk = tcp->tcp_notsack_list;
while (usable_swnd > 0) {
mblk_t *snxt_mp, *tmp_mp;
tcp_seq begin = tcp->tcp_sack_snxt;
tcp_seq end;
int32_t off;
for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
if (SEQ_GT(notsack_blk->end, begin) &&
(notsack_blk->sack_cnt >=
tcp_dupack_fast_retransmit)) {
end = notsack_blk->end;
if (SEQ_LT(begin, notsack_blk->begin)) {
begin = notsack_blk->begin;
}
break;
}
}
/*
* All holes are filled. Manipulate tcp_cwnd to send more
* if we can. Note that after the SACK recovery, tcp_cwnd is
* set to tcp_cwnd_ssthresh.
*/
if (notsack_blk == NULL) {
usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
if (usable_swnd <= 0) {
tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
assert(tcp->tcp_cwnd > 0);
return (0);
} else {
usable_swnd = usable_swnd / mss;
tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
MAX(usable_swnd * mss, mss);
return (1);
}
}
/*
* Note that we may send more than usable_swnd allows here
* because of round off, but no more than 1 MSS of data.
*/
seg_len = end - begin;
if (seg_len > mss)
seg_len = mss;
snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
assert(snxt_mp != NULL);
/* This should not happen. Defensive coding again... */
if (snxt_mp == NULL) {
return (0);
}
xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
&tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
if (xmit_mp == NULL)
return (0);
usable_swnd -= seg_len;
tcp->tcp_pipe += seg_len;
tcp->tcp_sack_snxt = begin + seg_len;
TCP_DUMP_PACKET("tcp_sack_rxmit", xmit_mp);
(void) ipv4_tcp_output(sock_id, xmit_mp);
freeb(xmit_mp);
/*
* Update the send timestamp to avoid false retransmission.
*/
snxt_mp->b_prev = (mblk_t *)prom_gettime();
BUMP_MIB(tcp_mib.tcpRetransSegs);
UPDATE_MIB(tcp_mib.tcpRetransBytes, seg_len);
BUMP_MIB(tcp_mib.tcpOutSackRetransSegs);
/*
* Update tcp_rexmit_max to extend this SACK recovery phase.
* This happens when new data sent during fast recovery is
* also lost. If TCP retransmits those new data, it needs
* to extend SACK recover phase to avoid starting another
* fast retransmit/recovery unnecessarily.
*/
if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
}
}
return (0);
}
static void
tcp_rput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
{
uchar_t *rptr;
struct ip *iph;
tcp_t *tcp1;
tcpha_t *tcph;
uint32_t seg_ack;
int seg_len;
uint_t ip_hdr_len;
uint32_t seg_seq;
mblk_t *mp1;
uint_t flags;
uint32_t new_swnd = 0;
int mss;
boolean_t ofo_seg = B_FALSE; /* Out of order segment */
int32_t gap;
int32_t rgap;
tcp_opt_t tcpopt;
int32_t bytes_acked;
int npkt;
uint32_t cwnd;
uint32_t add;
#ifdef DEBUG
printf("tcp_rput_data sock %d mp %x mp_datap %x #################\n",
sock_id, mp, mp->b_datap);
#endif
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_rput_data", mp);
assert(OK_32PTR(mp->b_rptr));
rptr = mp->b_rptr;
iph = (struct ip *)rptr;
ip_hdr_len = IPH_HDR_LENGTH(rptr);
if (ip_hdr_len != IP_SIMPLE_HDR_LENGTH) {
#ifdef DEBUG
printf("Not simple IP header\n");
#endif
/* We cannot handle IP option yet... */
tcp_drops++;
freeb(mp);
return;
}
/* The TCP header must be aligned. */
tcph = (tcpha_t *)&rptr[ip_hdr_len];
seg_seq = ntohl(tcph->tha_seq);
seg_ack = ntohl(tcph->tha_ack);
assert((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
seg_len = (int)(mp->b_wptr - rptr) -
(ip_hdr_len + TCP_HDR_LENGTH(((tcph_t *)tcph)));
/* In inetboot, b_cont should always be NULL. */
assert(mp->b_cont == NULL);
/* Verify the checksum. */
if (tcp_verify_cksum(mp) < 0) {
#ifdef DEBUG
printf("tcp_rput_data: wrong cksum\n");
#endif
freemsg(mp);
return;
}
/*
* This segment is not for us, try to find its
* intended receiver.
*/
if (tcp == NULL ||
tcph->tha_lport != tcp->tcp_fport ||
tcph->tha_fport != tcp->tcp_lport ||
iph->ip_src.s_addr != tcp->tcp_remote ||
iph->ip_dst.s_addr != tcp->tcp_bound_source) {
#ifdef DEBUG
printf("tcp_rput_data: not for us, state %d\n",
tcp->tcp_state);
#endif
/*
* First try to find a established connection. If none
* is found, look for a listener.
*
* If a listener is found, we need to check to see if the
* incoming segment is for one of its eagers. If it is,
* give it to the eager. If not, listener should take care
* of it.
*/
if ((tcp1 = tcp_lookup_ipv4(iph, tcph, TCPS_SYN_SENT,
&sock_id)) != NULL ||
(tcp1 = tcp_lookup_listener_ipv4(iph->ip_dst.s_addr,
tcph->tha_fport, &sock_id)) != NULL) {
if (tcp1->tcp_state == TCPS_LISTEN) {
if ((tcp = tcp_lookup_eager_ipv4(tcp1,
iph, tcph)) == NULL) {
/* No eager... sent to listener */
#ifdef DEBUG
printf("found the listener: %s\n",
tcp_display(tcp1, NULL,
DISP_ADDR_AND_PORT));
#endif
tcp = tcp1;
}
#ifdef DEBUG
else {
printf("found the eager: %s\n",
tcp_display(tcp, NULL,
DISP_ADDR_AND_PORT));
}
#endif
} else {
/* Non listener found... */
#ifdef DEBUG
printf("found the connection: %s\n",
tcp_display(tcp1, NULL,
DISP_ADDR_AND_PORT));
#endif
tcp = tcp1;
}
} else {
/*
* No connection for this segment...
* Send a RST to the other side.
*/
tcp_xmit_listeners_reset(sock_id, mp, ip_hdr_len);
return;
}
}
flags = tcph->tha_flags & 0xFF;
BUMP_MIB(tcp_mib.tcpInSegs);
if (tcp->tcp_state == TCPS_TIME_WAIT) {
tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
seg_len, (tcph_t *)tcph, sock_id);
return;
}
/*
* From this point we can assume that the tcp is not compressed,
* since we would have branched off to tcp_time_wait_processing()
* in such a case.
*/
assert(tcp != NULL && tcp->tcp_state != TCPS_TIME_WAIT);
/*
* After this point, we know we have the correct TCP, so update
* the receive time.
*/
tcp->tcp_last_recv_time = prom_gettime();
/* In inetboot, we do not handle urgent pointer... */
if (flags & TH_URG) {
freemsg(mp);
DEBUG_1("tcp_rput_data(%d): received segment with urgent "
"pointer\n", sock_id);
tcp_drops++;
return;
}
switch (tcp->tcp_state) {
case TCPS_LISTEN:
if ((flags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
if (flags & TH_RST) {
freemsg(mp);
return;
}
if (flags & TH_ACK) {
tcp_xmit_early_reset("TCPS_LISTEN-TH_ACK",
sock_id, mp, seg_ack, 0, TH_RST,
ip_hdr_len);
return;
}
if (!(flags & TH_SYN)) {
freemsg(mp);
return;
}
printf("tcp_rput_data: %d\n", __LINE__);
prom_panic("inetboot");
}
if (tcp->tcp_conn_req_max > 0) {
tcp = tcp_conn_request(tcp, mp, sock_id, ip_hdr_len);
if (tcp == NULL) {
freemsg(mp);
return;
}
#ifdef DEBUG
printf("tcp_rput_data: new tcp created\n");
#endif
}
tcp->tcp_irs = seg_seq;
tcp->tcp_rack = seg_seq;
tcp->tcp_rnxt = seg_seq + 1;
U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
BUMP_MIB(tcp_mib.tcpPassiveOpens);
goto syn_rcvd;
case TCPS_SYN_SENT:
if (flags & TH_ACK) {
/*
* Note that our stack cannot send data before a
* connection is established, therefore the
* following check is valid. Otherwise, it has
* to be changed.
*/
if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
SEQ_GT(seg_ack, tcp->tcp_snxt)) {
if (flags & TH_RST) {
freemsg(mp);
return;
}
tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
tcp, mp, seg_ack, 0, TH_RST,
ip_hdr_len, sock_id);
return;
}
assert(tcp->tcp_suna + 1 == seg_ack);
}
if (flags & TH_RST) {
freemsg(mp);
if (flags & TH_ACK) {
tcp_clean_death(sock_id, tcp, ECONNREFUSED);
}
return;
}
if (!(flags & TH_SYN)) {
freemsg(mp);
return;
}
/* Process all TCP options. */
tcp_process_options(tcp, (tcph_t *)tcph);
/*
* The following changes our rwnd to be a multiple of the
* MIN(peer MSS, our MSS) for performance reason.
*/
(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rwnd,
tcp->tcp_mss));
/* Is the other end ECN capable? */
if (tcp->tcp_ecn_ok) {
if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
tcp->tcp_ecn_ok = B_FALSE;
}
}
/*
* Clear ECN flags because it may interfere with later
* processing.
*/
flags &= ~(TH_ECE|TH_CWR);
tcp->tcp_irs = seg_seq;
tcp->tcp_rack = seg_seq;
tcp->tcp_rnxt = seg_seq + 1;
U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
if (flags & TH_ACK) {
/* One for the SYN */
tcp->tcp_suna = tcp->tcp_iss + 1;
tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
tcp->tcp_state = TCPS_ESTABLISHED;
/*
* If SYN was retransmitted, need to reset all
* retransmission info. This is because this
* segment will be treated as a dup ACK.
*/
if (tcp->tcp_rexmit) {
tcp->tcp_rexmit = B_FALSE;
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
tcp->tcp_rexmit_max = tcp->tcp_snxt;
tcp->tcp_snd_burst = TCP_CWND_NORMAL;
/*
* Set tcp_cwnd back to 1 MSS, per
* recommendation from
* draft-floyd-incr-init-win-01.txt,
* Increasing TCP's Initial Window.
*/
tcp->tcp_cwnd = tcp->tcp_mss;
}
tcp->tcp_swl1 = seg_seq;
tcp->tcp_swl2 = seg_ack;
new_swnd = BE16_TO_U16(((tcph_t *)tcph)->th_win);
tcp->tcp_swnd = new_swnd;
if (new_swnd > tcp->tcp_max_swnd)
tcp->tcp_max_swnd = new_swnd;
/*
* Always send the three-way handshake ack immediately
* in order to make the connection complete as soon as
* possible on the accepting host.
*/
flags |= TH_ACK_NEEDED;
/*
* Check to see if there is data to be sent. If
* yes, set the transmit flag. Then check to see
* if received data processing needs to be done.
* If not, go straight to xmit_check. This short
* cut is OK as we don't support T/TCP.
*/
if (tcp->tcp_unsent)
flags |= TH_XMIT_NEEDED;
if (seg_len == 0) {
freemsg(mp);
goto xmit_check;
}
flags &= ~TH_SYN;
seg_seq++;
break;
}
syn_rcvd:
tcp->tcp_state = TCPS_SYN_RCVD;
mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
if (mp1 != NULL) {
TCP_DUMP_PACKET("tcp_rput_data replying SYN", mp1);
(void) ipv4_tcp_output(sock_id, mp1);
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
freeb(mp1);
/*
* Let's wait till our SYN has been ACKED since we
* don't have a timer.
*/
if (tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED) < 0) {
freemsg(mp);
return;
}
}
freemsg(mp);
return;
default:
break;
}
mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH((tcph_t *)tcph);
new_swnd = ntohs(tcph->tha_win) <<
((flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
mss = tcp->tcp_mss;
if (tcp->tcp_snd_ts_ok) {
if (!tcp_paws_check(tcp, (tcph_t *)tcph, &tcpopt)) {
/*
* This segment is not acceptable.
* Drop it and send back an ACK.
*/
freemsg(mp);
flags |= TH_ACK_NEEDED;
goto ack_check;
}
} else if (tcp->tcp_snd_sack_ok) {
assert(tcp->tcp_sack_info != NULL);
tcpopt.tcp = tcp;
/*
* SACK info in already updated in tcp_parse_options. Ignore
* all other TCP options...
*/
(void) tcp_parse_options((tcph_t *)tcph, &tcpopt);
}
try_again:;
gap = seg_seq - tcp->tcp_rnxt;
rgap = tcp->tcp_rwnd - (gap + seg_len);
/*
* gap is the amount of sequence space between what we expect to see
* and what we got for seg_seq. A positive value for gap means
* something got lost. A negative value means we got some old stuff.
*/
if (gap < 0) {
/* Old stuff present. Is the SYN in there? */
if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
(seg_len != 0)) {
flags &= ~TH_SYN;
seg_seq++;
/* Recompute the gaps after noting the SYN. */
goto try_again;
}
BUMP_MIB(tcp_mib.tcpInDataDupSegs);
UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
(seg_len > -gap ? -gap : seg_len));
/* Remove the old stuff from seg_len. */
seg_len += gap;
/*
* Anything left?
* Make sure to check for unack'd FIN when rest of data
* has been previously ack'd.
*/
if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
/*
* Resets are only valid if they lie within our offered
* window. If the RST bit is set, we just ignore this
* segment.
*/
if (flags & TH_RST) {
freemsg(mp);
return;
}
/*
* This segment is "unacceptable". None of its
* sequence space lies within our advertized window.
*
* Adjust seg_len to the original value for tracing.
*/
seg_len -= gap;
#ifdef DEBUG
printf("tcp_rput: unacceptable, gap %d, rgap "
"%d, flags 0x%x, seg_seq %u, seg_ack %u, "
"seg_len %d, rnxt %u, snxt %u, %s",
gap, rgap, flags, seg_seq, seg_ack,
seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
#endif
/*
* Arrange to send an ACK in response to the
* unacceptable segment per RFC 793 page 69. There
* is only one small difference between ours and the
* acceptability test in the RFC - we accept ACK-only
* packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
* will be generated.
*
* Note that we have to ACK an ACK-only packet at least
* for stacks that send 0-length keep-alives with
* SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
* section 4.2.3.6. As long as we don't ever generate
* an unacceptable packet in response to an incoming
* packet that is unacceptable, it should not cause
* "ACK wars".
*/
flags |= TH_ACK_NEEDED;
/*
* Continue processing this segment in order to use the
* ACK information it contains, but skip all other
* sequence-number processing. Processing the ACK
* information is necessary in order to
* re-synchronize connections that may have lost
* synchronization.
*
* We clear seg_len and flag fields related to
* sequence number processing as they are not
* to be trusted for an unacceptable segment.
*/
seg_len = 0;
flags &= ~(TH_SYN | TH_FIN | TH_URG);
goto process_ack;
}
/* Fix seg_seq, and chew the gap off the front. */
seg_seq = tcp->tcp_rnxt;
do {
mblk_t *mp2;
assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
(uintptr_t)UINT_MAX);
gap += (uint_t)(mp->b_wptr - mp->b_rptr);
if (gap > 0) {
mp->b_rptr = mp->b_wptr - gap;
break;
}
mp2 = mp;
mp = mp->b_cont;
freeb(mp2);
} while (gap < 0);
}
/*
* rgap is the amount of stuff received out of window. A negative
* value is the amount out of window.
*/
if (rgap < 0) {
mblk_t *mp2;
if (tcp->tcp_rwnd == 0)
BUMP_MIB(tcp_mib.tcpInWinProbe);
else {
BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
}
/*
* seg_len does not include the FIN, so if more than
* just the FIN is out of window, we act like we don't
* see it. (If just the FIN is out of window, rgap
* will be zero and we will go ahead and acknowledge
* the FIN.)
*/
flags &= ~TH_FIN;
/* Fix seg_len and make sure there is something left. */
seg_len += rgap;
if (seg_len <= 0) {
/*
* Resets are only valid if they lie within our offered
* window. If the RST bit is set, we just ignore this
* segment.
*/
if (flags & TH_RST) {
freemsg(mp);
return;
}
/* Per RFC 793, we need to send back an ACK. */
flags |= TH_ACK_NEEDED;
/*
* If this is a zero window probe, continue to
* process the ACK part. But we need to set seg_len
* to 0 to avoid data processing. Otherwise just
* drop the segment and send back an ACK.
*/
if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
flags &= ~(TH_SYN | TH_URG);
seg_len = 0;
/* Let's see if we can update our rwnd */
tcp_rcv_drain(sock_id, tcp);
goto process_ack;
} else {
freemsg(mp);
goto ack_check;
}
}
/* Pitch out of window stuff off the end. */
rgap = seg_len;
mp2 = mp;
do {
assert((uintptr_t)(mp2->b_wptr -
mp2->b_rptr) <= (uintptr_t)INT_MAX);
rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
if (rgap < 0) {
mp2->b_wptr += rgap;
if ((mp1 = mp2->b_cont) != NULL) {
mp2->b_cont = NULL;
freemsg(mp1);
}
break;
}
} while ((mp2 = mp2->b_cont) != NULL);
}
ok:;
/*
* TCP should check ECN info for segments inside the window only.
* Therefore the check should be done here.
*/
if (tcp->tcp_ecn_ok) {
uchar_t tos = ((struct ip *)rptr)->ip_tos;
if (flags & TH_CWR) {
tcp->tcp_ecn_echo_on = B_FALSE;
}
/*
* Note that both ECN_CE and CWR can be set in the
* same segment. In this case, we once again turn
* on ECN_ECHO.
*/
if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
tcp->tcp_ecn_echo_on = B_TRUE;
}
}
/*
* Check whether we can update tcp_ts_recent. This test is
* NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP
* Extensions for High Performance: An Update", Internet Draft.
*/
if (tcp->tcp_snd_ts_ok &&
TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
tcp->tcp_last_rcv_lbolt = prom_gettime();
}
if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
/*
* FIN in an out of order segment. We record this in
* tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
* Clear the FIN so that any check on FIN flag will fail.
* Remember that FIN also counts in the sequence number
* space. So we need to ack out of order FIN only segments.
*/
if (flags & TH_FIN) {
tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
flags &= ~TH_FIN;
flags |= TH_ACK_NEEDED;
}
if (seg_len > 0) {
/* Fill in the SACK blk list. */
if (tcp->tcp_snd_sack_ok) {
assert(tcp->tcp_sack_info != NULL);
tcp_sack_insert(tcp->tcp_sack_list,
seg_seq, seg_seq + seg_len,
&(tcp->tcp_num_sack_blk));
}
/*
* Attempt reassembly and see if we have something
* ready to go.
*/
mp = tcp_reass(tcp, mp, seg_seq);
/* Always ack out of order packets */
flags |= TH_ACK_NEEDED | TH_PUSH;
if (mp != NULL) {
assert((uintptr_t)(mp->b_wptr -
mp->b_rptr) <= (uintptr_t)INT_MAX);
seg_len = mp->b_cont ? msgdsize(mp) :
(int)(mp->b_wptr - mp->b_rptr);
seg_seq = tcp->tcp_rnxt;
/*
* A gap is filled and the seq num and len
* of the gap match that of a previously
* received FIN, put the FIN flag back in.
*/
if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
flags |= TH_FIN;
tcp->tcp_valid_bits &=
~TCP_OFO_FIN_VALID;
}
} else {
/*
* Keep going even with NULL mp.
* There may be a useful ACK or something else
* we don't want to miss.
*
* But TCP should not perform fast retransmit
* because of the ack number. TCP uses
* seg_len == 0 to determine if it is a pure
* ACK. And this is not a pure ACK.
*/
seg_len = 0;
ofo_seg = B_TRUE;
}
}
} else if (seg_len > 0) {
BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
/*
* If an out of order FIN was received before, and the seq
* num and len of the new segment match that of the FIN,
* put the FIN flag back in.
*/
if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
flags |= TH_FIN;
tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
}
}
if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
if (flags & TH_RST) {
freemsg(mp);
switch (tcp->tcp_state) {
case TCPS_SYN_RCVD:
(void) tcp_clean_death(sock_id, tcp, ECONNREFUSED);
break;
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
break;
case TCPS_CLOSING:
case TCPS_LAST_ACK:
(void) tcp_clean_death(sock_id, tcp, 0);
break;
default:
assert(tcp->tcp_state != TCPS_TIME_WAIT);
(void) tcp_clean_death(sock_id, tcp, ENXIO);
break;
}
return;
}
if (flags & TH_SYN) {
/*
* See RFC 793, Page 71
*
* The seq number must be in the window as it should
* be "fixed" above. If it is outside window, it should
* be already rejected. Note that we allow seg_seq to be
* rnxt + rwnd because we want to accept 0 window probe.
*/
assert(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
freemsg(mp);
/*
* If the ACK flag is not set, just use our snxt as the
* seq number of the RST segment.
*/
if (!(flags & TH_ACK)) {
seg_ack = tcp->tcp_snxt;
}
tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack,
seg_seq + 1, TH_RST|TH_ACK, 0, sock_id);
assert(tcp->tcp_state != TCPS_TIME_WAIT);
(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
return;
}
process_ack:
if (!(flags & TH_ACK)) {
#ifdef DEBUG
printf("No ack in segment, dropped it, seq:%x\n", seg_seq);
#endif
freemsg(mp);
goto xmit_check;
}
}
bytes_acked = (int)(seg_ack - tcp->tcp_suna);
if (tcp->tcp_state == TCPS_SYN_RCVD) {
tcp_t *listener = tcp->tcp_listener;
#ifdef DEBUG
printf("Done with eager 3-way handshake\n");
#endif
/*
* NOTE: RFC 793 pg. 72 says this should be 'bytes_acked < 0'
* but that would mean we have an ack that ignored our SYN.
*/
if (bytes_acked < 1 || SEQ_GT(seg_ack, tcp->tcp_snxt)) {
freemsg(mp);
tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
tcp, NULL, seg_ack, 0, TH_RST, 0, sock_id);
return;
}
/*
* if the conn_req_q is full defer processing
* until space is availabe after accept()
* processing
*/
if (listener->tcp_conn_req_cnt_q <
listener->tcp_conn_req_max) {
tcp_t *tail;
listener->tcp_conn_req_cnt_q0--;
listener->tcp_conn_req_cnt_q++;
/* Move from SYN_RCVD to ESTABLISHED list */
tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
tcp->tcp_eager_prev_q0;
tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
tcp->tcp_eager_next_q0;
tcp->tcp_eager_prev_q0 = NULL;
tcp->tcp_eager_next_q0 = NULL;
/*
* Insert at end of the queue because sockfs
* sends down T_CONN_RES in chronological
* order. Leaving the older conn indications
* at front of the queue helps reducing search
* time.
*/
tail = listener->tcp_eager_last_q;
if (tail != NULL) {
tail->tcp_eager_next_q = tcp;
} else {
listener->tcp_eager_next_q = tcp;
}
listener->tcp_eager_last_q = tcp;
tcp->tcp_eager_next_q = NULL;
} else {
/*
* Defer connection on q0 and set deferred
* connection bit true
*/
tcp->tcp_conn_def_q0 = B_TRUE;
/* take tcp out of q0 ... */
tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
tcp->tcp_eager_next_q0;
tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
tcp->tcp_eager_prev_q0;
/* ... and place it at the end of q0 */
tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
tcp->tcp_eager_next_q0 = listener;
listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
listener->tcp_eager_prev_q0 = tcp;
}
tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */
bytes_acked--;
/*
* If SYN was retransmitted, need to reset all
* retransmission info as this segment will be
* treated as a dup ACK.
*/
if (tcp->tcp_rexmit) {
tcp->tcp_rexmit = B_FALSE;
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
tcp->tcp_rexmit_max = tcp->tcp_snxt;
tcp->tcp_snd_burst = TCP_CWND_NORMAL;
tcp->tcp_ms_we_have_waited = 0;
tcp->tcp_cwnd = mss;
}
/*
* We set the send window to zero here.
* This is needed if there is data to be
* processed already on the queue.
* Later (at swnd_update label), the
* "new_swnd > tcp_swnd" condition is satisfied
* the XMIT_NEEDED flag is set in the current
* (SYN_RCVD) state. This ensures tcp_wput_data() is
* called if there is already data on queue in
* this state.
*/
tcp->tcp_swnd = 0;
if (new_swnd > tcp->tcp_max_swnd)
tcp->tcp_max_swnd = new_swnd;
tcp->tcp_swl1 = seg_seq;
tcp->tcp_swl2 = seg_ack;
tcp->tcp_state = TCPS_ESTABLISHED;
tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
}
/* This code follows 4.4BSD-Lite2 mostly. */
if (bytes_acked < 0)
goto est;
/*
* If TCP is ECN capable and the congestion experience bit is
* set, reduce tcp_cwnd and tcp_ssthresh. But this should only be
* done once per window (or more loosely, per RTT).
*/
if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
tcp->tcp_cwr = B_FALSE;
if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
if (!tcp->tcp_cwr) {
npkt = (MIN(tcp->tcp_cwnd, tcp->tcp_swnd) >> 1) / mss;
tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
tcp->tcp_cwnd = npkt * mss;
/*
* If the cwnd is 0, use the timer to clock out
* new segments. This is required by the ECN spec.
*/
if (npkt == 0) {
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
/*
* This makes sure that when the ACK comes
* back, we will increase tcp_cwnd by 1 MSS.
*/
tcp->tcp_cwnd_cnt = 0;
}
tcp->tcp_cwr = B_TRUE;
/*
* This marks the end of the current window of in
* flight data. That is why we don't use
* tcp_suna + tcp_swnd. Only data in flight can
* provide ECN info.
*/
tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
tcp->tcp_ecn_cwr_sent = B_FALSE;
}
}
mp1 = tcp->tcp_xmit_head;
if (bytes_acked == 0) {
if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
int dupack_cnt;
BUMP_MIB(tcp_mib.tcpInDupAck);
/*
* Fast retransmit. When we have seen exactly three
* identical ACKs while we have unacked data
* outstanding we take it as a hint that our peer
* dropped something.
*
* If TCP is retransmitting, don't do fast retransmit.
*/
if (mp1 != NULL && tcp->tcp_suna != tcp->tcp_snxt &&
! tcp->tcp_rexmit) {
/* Do Limited Transmit */
if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
tcp_dupack_fast_retransmit) {
/*
* RFC 3042
*
* What we need to do is temporarily
* increase tcp_cwnd so that new
* data can be sent if it is allowed
* by the receive window (tcp_rwnd).
* tcp_wput_data() will take care of
* the rest.
*
* If the connection is SACK capable,
* only do limited xmit when there
* is SACK info.
*
* Note how tcp_cwnd is incremented.
* The first dup ACK will increase
* it by 1 MSS. The second dup ACK
* will increase it by 2 MSS. This
* means that only 1 new segment will
* be sent for each dup ACK.
*/
if (tcp->tcp_unsent > 0 &&
(!tcp->tcp_snd_sack_ok ||
(tcp->tcp_snd_sack_ok &&
tcp->tcp_notsack_list != NULL))) {
tcp->tcp_cwnd += mss <<
(tcp->tcp_dupack_cnt - 1);
flags |= TH_LIMIT_XMIT;
}
} else if (dupack_cnt ==
tcp_dupack_fast_retransmit) {
BUMP_MIB(tcp_mib.tcpOutFastRetrans);
/*
* If we have reduced tcp_ssthresh
* because of ECN, do not reduce it again
* unless it is already one window of data
* away. After one window of data, tcp_cwr
* should then be cleared. Note that
* for non ECN capable connection, tcp_cwr
* should always be false.
*
* Adjust cwnd since the duplicate
* ack indicates that a packet was
* dropped (due to congestion.)
*/
if (!tcp->tcp_cwr) {
npkt = (MIN(tcp->tcp_cwnd,
tcp->tcp_swnd) >> 1) / mss;
if (npkt < 2)
npkt = 2;
tcp->tcp_cwnd_ssthresh = npkt * mss;
tcp->tcp_cwnd = (npkt +
tcp->tcp_dupack_cnt) * mss;
}
if (tcp->tcp_ecn_ok) {
tcp->tcp_cwr = B_TRUE;
tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
tcp->tcp_ecn_cwr_sent = B_FALSE;
}
/*
* We do Hoe's algorithm. Refer to her
* paper "Improving the Start-up Behavior
* of a Congestion Control Scheme for TCP,"
* appeared in SIGCOMM'96.
*
* Save highest seq no we have sent so far.
* Be careful about the invisible FIN byte.
*/
if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
(tcp->tcp_unsent == 0)) {
tcp->tcp_rexmit_max = tcp->tcp_fss;
} else {
tcp->tcp_rexmit_max = tcp->tcp_snxt;
}
/*
* Do not allow bursty traffic during.
* fast recovery. Refer to Fall and Floyd's
* paper "Simulation-based Comparisons of
* Tahoe, Reno and SACK TCP" (in CCR ??)
* This is a best current practise.
*/
tcp->tcp_snd_burst = TCP_CWND_SS;
/*
* For SACK:
* Calculate tcp_pipe, which is the
* estimated number of bytes in
* network.
*
* tcp_fack is the highest sack'ed seq num
* TCP has received.
*
* tcp_pipe is explained in the above quoted
* Fall and Floyd's paper. tcp_fack is
* explained in Mathis and Mahdavi's
* "Forward Acknowledgment: Refining TCP
* Congestion Control" in SIGCOMM '96.
*/
if (tcp->tcp_snd_sack_ok) {
assert(tcp->tcp_sack_info != NULL);
if (tcp->tcp_notsack_list != NULL) {
tcp->tcp_pipe = tcp->tcp_snxt -
tcp->tcp_fack;
tcp->tcp_sack_snxt = seg_ack;
flags |= TH_NEED_SACK_REXMIT;
} else {
/*
* Always initialize tcp_pipe
* even though we don't have
* any SACK info. If later
* we get SACK info and
* tcp_pipe is not initialized,
* funny things will happen.
*/
tcp->tcp_pipe =
tcp->tcp_cwnd_ssthresh;
}
} else {
flags |= TH_REXMIT_NEEDED;
} /* tcp_snd_sack_ok */
} else {
/*
* Here we perform congestion
* avoidance, but NOT slow start.
* This is known as the Fast
* Recovery Algorithm.
*/
if (tcp->tcp_snd_sack_ok &&
tcp->tcp_notsack_list != NULL) {
flags |= TH_NEED_SACK_REXMIT;
tcp->tcp_pipe -= mss;
if (tcp->tcp_pipe < 0)
tcp->tcp_pipe = 0;
} else {
/*
* We know that one more packet has
* left the pipe thus we can update
* cwnd.
*/
cwnd = tcp->tcp_cwnd + mss;
if (cwnd > tcp->tcp_cwnd_max)
cwnd = tcp->tcp_cwnd_max;
tcp->tcp_cwnd = cwnd;
flags |= TH_XMIT_NEEDED;
}
}
}
} else if (tcp->tcp_zero_win_probe) {
/*
* If the window has opened, need to arrange
* to send additional data.
*/
if (new_swnd != 0) {
/* tcp_suna != tcp_snxt */
/* Packet contains a window update */
BUMP_MIB(tcp_mib.tcpInWinUpdate);
tcp->tcp_zero_win_probe = 0;
tcp->tcp_timer_backoff = 0;
tcp->tcp_ms_we_have_waited = 0;
/*
* Transmit starting with tcp_suna since
* the one byte probe is not ack'ed.
* If TCP has sent more than one identical
* probe, tcp_rexmit will be set. That means
* tcp_ss_rexmit() will send out the one
* byte along with new data. Otherwise,
* fake the retransmission.
*/
flags |= TH_XMIT_NEEDED;
if (!tcp->tcp_rexmit) {
tcp->tcp_rexmit = B_TRUE;
tcp->tcp_dupack_cnt = 0;
tcp->tcp_rexmit_nxt = tcp->tcp_suna;
tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
}
}
}
goto swnd_update;
}
/*
* Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
* If the ACK value acks something that we have not yet sent, it might
* be an old duplicate segment. Send an ACK to re-synchronize the
* other side.
* Note: reset in response to unacceptable ACK in SYN_RECEIVE
* state is handled above, so we can always just drop the segment and
* send an ACK here.
*
* Should we send ACKs in response to ACK only segments?
*/
if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
BUMP_MIB(tcp_mib.tcpInAckUnsent);
/* drop the received segment */
freemsg(mp);
/* Send back an ACK. */
mp = tcp_ack_mp(tcp);
if (mp == NULL) {
return;
}
BUMP_MIB(tcp_mib.tcpOutAck);
(void) ipv4_tcp_output(sock_id, mp);
freeb(mp);
return;
}
/*
* TCP gets a new ACK, update the notsack'ed list to delete those
* blocks that are covered by this ACK.
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
&(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
}
/*
* If we got an ACK after fast retransmit, check to see
* if it is a partial ACK. If it is not and the congestion
* window was inflated to account for the other side's
* cached packets, retract it. If it is, do Hoe's algorithm.
*/
if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
assert(tcp->tcp_rexmit == B_FALSE);
if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
tcp->tcp_dupack_cnt = 0;
/*
* Restore the orig tcp_cwnd_ssthresh after
* fast retransmit phase.
*/
if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
}
tcp->tcp_rexmit_max = seg_ack;
tcp->tcp_cwnd_cnt = 0;
tcp->tcp_snd_burst = TCP_CWND_NORMAL;
/*
* Remove all notsack info to avoid confusion with
* the next fast retrasnmit/recovery phase.
*/
if (tcp->tcp_snd_sack_ok &&
tcp->tcp_notsack_list != NULL) {
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
}
} else {
if (tcp->tcp_snd_sack_ok &&
tcp->tcp_notsack_list != NULL) {
flags |= TH_NEED_SACK_REXMIT;
tcp->tcp_pipe -= mss;
if (tcp->tcp_pipe < 0)
tcp->tcp_pipe = 0;
} else {
/*
* Hoe's algorithm:
*
* Retransmit the unack'ed segment and
* restart fast recovery. Note that we
* need to scale back tcp_cwnd to the
* original value when we started fast
* recovery. This is to prevent overly
* aggressive behaviour in sending new
* segments.
*/
tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
tcp_dupack_fast_retransmit * mss;
tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
BUMP_MIB(tcp_mib.tcpOutFastRetrans);
flags |= TH_REXMIT_NEEDED;
}
}
} else {
tcp->tcp_dupack_cnt = 0;
if (tcp->tcp_rexmit) {
/*
* TCP is retranmitting. If the ACK ack's all
* outstanding data, update tcp_rexmit_max and
* tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt
* to the correct value.
*
* Note that SEQ_LEQ() is used. This is to avoid
* unnecessary fast retransmit caused by dup ACKs
* received when TCP does slow start retransmission
* after a time out. During this phase, TCP may
* send out segments which are already received.
* This causes dup ACKs to be sent back.
*/
if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
tcp->tcp_rexmit_nxt = seg_ack;
}
if (seg_ack != tcp->tcp_rexmit_max) {
flags |= TH_XMIT_NEEDED;
}
} else {
tcp->tcp_rexmit = B_FALSE;
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
tcp->tcp_snd_burst = TCP_CWND_NORMAL;
}
tcp->tcp_ms_we_have_waited = 0;
}
}
BUMP_MIB(tcp_mib.tcpInAckSegs);
UPDATE_MIB(tcp_mib.tcpInAckBytes, bytes_acked);
tcp->tcp_suna = seg_ack;
if (tcp->tcp_zero_win_probe != 0) {
tcp->tcp_zero_win_probe = 0;
tcp->tcp_timer_backoff = 0;
}
/*
* If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
* Note that it cannot be the SYN being ack'ed. The code flow
* will not reach here.
*/
if (mp1 == NULL) {
goto fin_acked;
}
/*
* Update the congestion window.
*
* If TCP is not ECN capable or TCP is ECN capable but the
* congestion experience bit is not set, increase the tcp_cwnd as
* usual.
*/
if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
cwnd = tcp->tcp_cwnd;
add = mss;
if (cwnd >= tcp->tcp_cwnd_ssthresh) {
/*
* This is to prevent an increase of less than 1 MSS of
* tcp_cwnd. With partial increase, tcp_wput_data()
* may send out tinygrams in order to preserve mblk
* boundaries.
*
* By initializing tcp_cwnd_cnt to new tcp_cwnd and
* decrementing it by 1 MSS for every ACKs, tcp_cwnd is
* increased by 1 MSS for every RTTs.
*/
if (tcp->tcp_cwnd_cnt <= 0) {
tcp->tcp_cwnd_cnt = cwnd + add;
} else {
tcp->tcp_cwnd_cnt -= add;
add = 0;
}
}
tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
}
/* Can we update the RTT estimates? */
if (tcp->tcp_snd_ts_ok) {
/* Ignore zero timestamp echo-reply. */
if (tcpopt.tcp_opt_ts_ecr != 0) {
tcp_set_rto(tcp, (int32_t)(prom_gettime() -
tcpopt.tcp_opt_ts_ecr));
}
/* If needed, restart the timer. */
if (tcp->tcp_set_timer == 1) {
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
tcp->tcp_set_timer = 0;
}
/*
* Update tcp_csuna in case the other side stops sending
* us timestamps.
*/
tcp->tcp_csuna = tcp->tcp_snxt;
} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
/*
* An ACK sequence we haven't seen before, so get the RTT
* and update the RTO.
*/
tcp_set_rto(tcp, (int32_t)(prom_gettime() -
(uint32_t)mp1->b_prev));
/* Remeber the last sequence to be ACKed */
tcp->tcp_csuna = seg_ack;
if (tcp->tcp_set_timer == 1) {
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
tcp->tcp_set_timer = 0;
}
} else {
BUMP_MIB(tcp_mib.tcpRttNoUpdate);
}
/* Eat acknowledged bytes off the xmit queue. */
for (;;) {
mblk_t *mp2;
uchar_t *wptr;
wptr = mp1->b_wptr;
assert((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
bytes_acked -= (int)(wptr - mp1->b_rptr);
if (bytes_acked < 0) {
mp1->b_rptr = wptr + bytes_acked;
break;
}
mp1->b_prev = NULL;
mp2 = mp1;
mp1 = mp1->b_cont;
freeb(mp2);
if (bytes_acked == 0) {
if (mp1 == NULL) {
/* Everything is ack'ed, clear the tail. */
tcp->tcp_xmit_tail = NULL;
goto pre_swnd_update;
}
if (mp2 != tcp->tcp_xmit_tail)
break;
tcp->tcp_xmit_tail = mp1;
assert((uintptr_t)(mp1->b_wptr -
mp1->b_rptr) <= (uintptr_t)INT_MAX);
tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
mp1->b_rptr);
break;
}
if (mp1 == NULL) {
/*
* More was acked but there is nothing more
* outstanding. This means that the FIN was
* just acked or that we're talking to a clown.
*/
fin_acked:
assert(tcp->tcp_fin_sent);
tcp->tcp_xmit_tail = NULL;
if (tcp->tcp_fin_sent) {
tcp->tcp_fin_acked = B_TRUE;
} else {
/*
* We should never got here because
* we have already checked that the
* number of bytes ack'ed should be
* smaller than or equal to what we
* have sent so far (it is the
* acceptability check of the ACK).
* We can only get here if the send
* queue is corrupted.
*
* Terminate the connection and
* panic the system. It is better
* for us to panic instead of
* continuing to avoid other disaster.
*/
tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_RST|TH_ACK, 0, sock_id);
printf("Memory corruption "
"detected for connection %s.\n",
tcp_display(tcp, NULL,
DISP_ADDR_AND_PORT));
/* We should never get here... */
prom_panic("tcp_rput_data");
return;
}
goto pre_swnd_update;
}
assert(mp2 != tcp->tcp_xmit_tail);
}
if (tcp->tcp_unsent) {
flags |= TH_XMIT_NEEDED;
}
pre_swnd_update:
tcp->tcp_xmit_head = mp1;
swnd_update:
/*
* The following check is different from most other implementations.
* For bi-directional transfer, when segments are dropped, the
* "normal" check will not accept a window update in those
* retransmitted segemnts. Failing to do that, TCP may send out
* segments which are outside receiver's window. As TCP accepts
* the ack in those retransmitted segments, if the window update in
* the same segment is not accepted, TCP will incorrectly calculates
* that it can send more segments. This can create a deadlock
* with the receiver if its window becomes zero.
*/
if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
SEQ_LT(tcp->tcp_swl1, seg_seq) ||
(tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
/*
* The criteria for update is:
*
* 1. the segment acknowledges some data. Or
* 2. the segment is new, i.e. it has a higher seq num. Or
* 3. the segment is not old and the advertised window is
* larger than the previous advertised window.
*/
if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
flags |= TH_XMIT_NEEDED;
tcp->tcp_swnd = new_swnd;
if (new_swnd > tcp->tcp_max_swnd)
tcp->tcp_max_swnd = new_swnd;
tcp->tcp_swl1 = seg_seq;
tcp->tcp_swl2 = seg_ack;
}
est:
if (tcp->tcp_state > TCPS_ESTABLISHED) {
switch (tcp->tcp_state) {
case TCPS_FIN_WAIT_1:
if (tcp->tcp_fin_acked) {
tcp->tcp_state = TCPS_FIN_WAIT_2;
/*
* We implement the non-standard BSD/SunOS
* FIN_WAIT_2 flushing algorithm.
* If there is no user attached to this
* TCP endpoint, then this TCP struct
* could hang around forever in FIN_WAIT_2
* state if the peer forgets to send us
* a FIN. To prevent this, we wait only
* 2*MSL (a convenient time value) for
* the FIN to arrive. If it doesn't show up,
* we flush the TCP endpoint. This algorithm,
* though a violation of RFC-793, has worked
* for over 10 years in BSD systems.
* Note: SunOS 4.x waits 675 seconds before
* flushing the FIN_WAIT_2 connection.
*/
TCP_TIMER_RESTART(tcp,
tcp_fin_wait_2_flush_interval);
}
break;
case TCPS_FIN_WAIT_2:
break; /* Shutdown hook? */
case TCPS_LAST_ACK:
freemsg(mp);
if (tcp->tcp_fin_acked) {
(void) tcp_clean_death(sock_id, tcp, 0);
return;
}
goto xmit_check;
case TCPS_CLOSING:
if (tcp->tcp_fin_acked) {
tcp->tcp_state = TCPS_TIME_WAIT;
tcp_time_wait_append(tcp);
TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
}
/*FALLTHRU*/
case TCPS_CLOSE_WAIT:
freemsg(mp);
goto xmit_check;
default:
assert(tcp->tcp_state != TCPS_TIME_WAIT);
break;
}
}
if (flags & TH_FIN) {
/* Make sure we ack the fin */
flags |= TH_ACK_NEEDED;
if (!tcp->tcp_fin_rcvd) {
tcp->tcp_fin_rcvd = B_TRUE;
tcp->tcp_rnxt++;
U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
switch (tcp->tcp_state) {
case TCPS_SYN_RCVD:
case TCPS_ESTABLISHED:
tcp->tcp_state = TCPS_CLOSE_WAIT;
/* Keepalive? */
break;
case TCPS_FIN_WAIT_1:
if (!tcp->tcp_fin_acked) {
tcp->tcp_state = TCPS_CLOSING;
break;
}
/* FALLTHRU */
case TCPS_FIN_WAIT_2:
tcp->tcp_state = TCPS_TIME_WAIT;
tcp_time_wait_append(tcp);
TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
if (seg_len) {
/*
* implies data piggybacked on FIN.
* break to handle data.
*/
break;
}
freemsg(mp);
goto ack_check;
}
}
}
if (mp == NULL)
goto xmit_check;
if (seg_len == 0) {
freemsg(mp);
goto xmit_check;
}
if (mp->b_rptr == mp->b_wptr) {
/*
* The header has been consumed, so we remove the
* zero-length mblk here.
*/
mp1 = mp;
mp = mp->b_cont;
freeb(mp1);
}
/*
* ACK every other segments, unless the input queue is empty
* as we don't have a timer available.
*/
if (++tcp->tcp_rack_cnt == 2 || sockets[sock_id].inq == NULL) {
flags |= TH_ACK_NEEDED;
tcp->tcp_rack_cnt = 0;
}
tcp->tcp_rnxt += seg_len;
U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
/* Update SACK list */
if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
&(tcp->tcp_num_sack_blk));
}
if (tcp->tcp_listener) {
/*
* Side queue inbound data until the accept happens.
* tcp_accept/tcp_rput drains this when the accept happens.
*/
tcp_rcv_enqueue(tcp, mp, seg_len);
} else {
/* Just queue the data until the app calls read. */
tcp_rcv_enqueue(tcp, mp, seg_len);
/*
* Make sure the timer is running if we have data waiting
* for a push bit. This provides resiliency against
* implementations that do not correctly generate push bits.
*/
if (tcp->tcp_rcv_list != NULL)
flags |= TH_TIMER_NEEDED;
}
xmit_check:
/* Is there anything left to do? */
if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_TIMER_NEEDED)) == 0)
return;
/* Any transmit work to do and a non-zero window? */
if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
if (flags & TH_REXMIT_NEEDED) {
uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
if (snd_size > mss)
snd_size = mss;
if (snd_size > tcp->tcp_swnd)
snd_size = tcp->tcp_swnd;
mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
B_TRUE);
if (mp1 != NULL) {
tcp->tcp_xmit_head->b_prev =
(mblk_t *)prom_gettime();
tcp->tcp_csuna = tcp->tcp_snxt;
BUMP_MIB(tcp_mib.tcpRetransSegs);
UPDATE_MIB(tcp_mib.tcpRetransBytes, snd_size);
(void) ipv4_tcp_output(sock_id, mp1);
freeb(mp1);
}
}
if (flags & TH_NEED_SACK_REXMIT) {
if (tcp_sack_rxmit(tcp, sock_id) != 0) {
flags |= TH_XMIT_NEEDED;
}
}
/*
* For TH_LIMIT_XMIT, tcp_wput_data() is called to send
* out new segment. Note that tcp_rexmit should not be
* set, otherwise TH_LIMIT_XMIT should not be set.
*/
if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
if (!tcp->tcp_rexmit) {
tcp_wput_data(tcp, NULL, sock_id);
} else {
tcp_ss_rexmit(tcp, sock_id);
}
/*
* The TCP could be closed in tcp_state_wait via
* tcp_wput_data (tcp_ss_rexmit could call
* tcp_wput_data as well).
*/
if (sockets[sock_id].pcb == NULL)
return;
}
/*
* Adjust tcp_cwnd back to normal value after sending
* new data segments.
*/
if (flags & TH_LIMIT_XMIT) {
tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
}
/* Anything more to do? */
if ((flags & (TH_ACK_NEEDED|TH_TIMER_NEEDED)) == 0)
return;
}
ack_check:
if (flags & TH_ACK_NEEDED) {
/*
* Time to send an ack for some reason.
*/
if ((mp1 = tcp_ack_mp(tcp)) != NULL) {
TCP_DUMP_PACKET("tcp_rput_data: ack mp", mp1);
(void) ipv4_tcp_output(sock_id, mp1);
BUMP_MIB(tcp_mib.tcpOutAck);
freeb(mp1);
}
}
}
/*
* tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
* retransmission after a timeout.
*
* To limit the number of duplicate segments, we limit the number of segment
* to be sent in one time to tcp_snd_burst, the burst variable.
*/
static void
tcp_ss_rexmit(tcp_t *tcp, int sock_id)
{
uint32_t snxt;
uint32_t smax;
int32_t win;
int32_t mss;
int32_t off;
int32_t burst = tcp->tcp_snd_burst;
mblk_t *snxt_mp;
/*
* Note that tcp_rexmit can be set even though TCP has retransmitted
* all unack'ed segments.
*/
if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
smax = tcp->tcp_rexmit_max;
snxt = tcp->tcp_rexmit_nxt;
if (SEQ_LT(snxt, tcp->tcp_suna)) {
snxt = tcp->tcp_suna;
}
win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
win -= snxt - tcp->tcp_suna;
mss = tcp->tcp_mss;
snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
while (SEQ_LT(snxt, smax) && (win > 0) &&
(burst > 0) && (snxt_mp != NULL)) {
mblk_t *xmit_mp;
mblk_t *old_snxt_mp = snxt_mp;
uint32_t cnt = mss;
if (win < cnt) {
cnt = win;
}
if (SEQ_GT(snxt + cnt, smax)) {
cnt = smax - snxt;
}
xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
&snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
if (xmit_mp == NULL)
return;
(void) ipv4_tcp_output(sock_id, xmit_mp);
freeb(xmit_mp);
snxt += cnt;
win -= cnt;
/*
* Update the send timestamp to avoid false
* retransmission.
*/
old_snxt_mp->b_prev = (mblk_t *)prom_gettime();
BUMP_MIB(tcp_mib.tcpRetransSegs);
UPDATE_MIB(tcp_mib.tcpRetransBytes, cnt);
tcp->tcp_rexmit_nxt = snxt;
burst--;
}
/*
* If we have transmitted all we have at the time
* we started the retranmission, we can leave
* the rest of the job to tcp_wput_data(). But we
* need to check the send window first. If the
* win is not 0, go on with tcp_wput_data().
*/
if (SEQ_LT(snxt, smax) || win == 0) {
return;
}
}
/* Only call tcp_wput_data() if there is data to be sent. */
if (tcp->tcp_unsent) {
tcp_wput_data(tcp, NULL, sock_id);
}
}
/*
* tcp_timer is the timer service routine. It handles all timer events for
* a tcp instance except keepalives. It figures out from the state of the
* tcp instance what kind of action needs to be done at the time it is called.
*/
static void
tcp_timer(tcp_t *tcp, int sock_id)
{
mblk_t *mp;
uint32_t first_threshold;
uint32_t second_threshold;
uint32_t ms;
uint32_t mss;
first_threshold = tcp->tcp_first_timer_threshold;
second_threshold = tcp->tcp_second_timer_threshold;
switch (tcp->tcp_state) {
case TCPS_IDLE:
case TCPS_BOUND:
case TCPS_LISTEN:
return;
case TCPS_SYN_RCVD:
case TCPS_SYN_SENT:
first_threshold = tcp->tcp_first_ctimer_threshold;
second_threshold = tcp->tcp_second_ctimer_threshold;
break;
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_CLOSING:
case TCPS_CLOSE_WAIT:
case TCPS_LAST_ACK:
/* If we have data to rexmit */
if (tcp->tcp_suna != tcp->tcp_snxt) {
int32_t time_to_wait;
BUMP_MIB(tcp_mib.tcpTimRetrans);
if (tcp->tcp_xmit_head == NULL)
break;
time_to_wait = (int32_t)(prom_gettime() -
(uint32_t)tcp->tcp_xmit_head->b_prev);
time_to_wait = tcp->tcp_rto - time_to_wait;
if (time_to_wait > 0) {
/*
* Timer fired too early, so restart it.
*/
TCP_TIMER_RESTART(tcp, time_to_wait);
return;
}
/*
* When we probe zero windows, we force the swnd open.
* If our peer acks with a closed window swnd will be
* set to zero by tcp_rput(). As long as we are
* receiving acks tcp_rput will
* reset 'tcp_ms_we_have_waited' so as not to trip the
* first and second interval actions. NOTE: the timer
* interval is allowed to continue its exponential
* backoff.
*/
if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
DEBUG_1("tcp_timer (%d): zero win", sock_id);
break;
} else {
/*
* After retransmission, we need to do
* slow start. Set the ssthresh to one
* half of current effective window and
* cwnd to one MSS. Also reset
* tcp_cwnd_cnt.
*
* Note that if tcp_ssthresh is reduced because
* of ECN, do not reduce it again unless it is
* already one window of data away (tcp_cwr
* should then be cleared) or this is a
* timeout for a retransmitted segment.
*/
uint32_t npkt;
if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
npkt = (MIN((tcp->tcp_timer_backoff ?
tcp->tcp_cwnd_ssthresh :
tcp->tcp_cwnd),
tcp->tcp_swnd) >> 1) /
tcp->tcp_mss;
if (npkt < 2)
npkt = 2;
tcp->tcp_cwnd_ssthresh = npkt *
tcp->tcp_mss;
}
tcp->tcp_cwnd = tcp->tcp_mss;
tcp->tcp_cwnd_cnt = 0;
if (tcp->tcp_ecn_ok) {
tcp->tcp_cwr = B_TRUE;
tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
tcp->tcp_ecn_cwr_sent = B_FALSE;
}
}
break;
}
/*
* We have something to send yet we cannot send. The
* reason can be:
*
* 1. Zero send window: we need to do zero window probe.
* 2. Zero cwnd: because of ECN, we need to "clock out
* segments.
* 3. SWS avoidance: receiver may have shrunk window,
* reset our knowledge.
*
* Note that condition 2 can happen with either 1 or
* 3. But 1 and 3 are exclusive.
*/
if (tcp->tcp_unsent != 0) {
if (tcp->tcp_cwnd == 0) {
/*
* Set tcp_cwnd to 1 MSS so that a
* new segment can be sent out. We
* are "clocking out" new data when
* the network is really congested.
*/
assert(tcp->tcp_ecn_ok);
tcp->tcp_cwnd = tcp->tcp_mss;
}
if (tcp->tcp_swnd == 0) {
/* Extend window for zero window probe */
tcp->tcp_swnd++;
tcp->tcp_zero_win_probe = B_TRUE;
BUMP_MIB(tcp_mib.tcpOutWinProbe);
} else {
/*
* Handle timeout from sender SWS avoidance.
* Reset our knowledge of the max send window
* since the receiver might have reduced its
* receive buffer. Avoid setting tcp_max_swnd
* to one since that will essentially disable
* the SWS checks.
*
* Note that since we don't have a SWS
* state variable, if the timeout is set
* for ECN but not for SWS, this
* code will also be executed. This is
* fine as tcp_max_swnd is updated
* constantly and it will not affect
* anything.
*/
tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
}
tcp_wput_data(tcp, NULL, sock_id);
return;
}
/* Is there a FIN that needs to be to re retransmitted? */
if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
!tcp->tcp_fin_acked)
break;
/* Nothing to do, return without restarting timer. */
return;
case TCPS_FIN_WAIT_2:
/*
* User closed the TCP endpoint and peer ACK'ed our FIN.
* We waited some time for for peer's FIN, but it hasn't
* arrived. We flush the connection now to avoid
* case where the peer has rebooted.
*/
/* FALLTHRU */
case TCPS_TIME_WAIT:
(void) tcp_clean_death(sock_id, tcp, 0);
return;
default:
DEBUG_3("tcp_timer (%d): strange state (%d) %s", sock_id,
tcp->tcp_state, tcp_display(tcp, NULL,
DISP_PORT_ONLY));
return;
}
if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
/*
* For zero window probe, we need to send indefinitely,
* unless we have not heard from the other side for some
* time...
*/
if ((tcp->tcp_zero_win_probe == 0) ||
((prom_gettime() - tcp->tcp_last_recv_time) >
second_threshold)) {
BUMP_MIB(tcp_mib.tcpTimRetransDrop);
/*
* If TCP is in SYN_RCVD state, send back a
* RST|ACK as BSD does. Note that tcp_zero_win_probe
* should be zero in TCPS_SYN_RCVD state.
*/
if (tcp->tcp_state == TCPS_SYN_RCVD) {
tcp_xmit_ctl("tcp_timer: RST sent on timeout "
"in SYN_RCVD",
tcp, NULL, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_RST | TH_ACK, 0, sock_id);
}
(void) tcp_clean_death(sock_id, tcp,
tcp->tcp_client_errno ?
tcp->tcp_client_errno : ETIMEDOUT);
return;
} else {
/*
* Set tcp_ms_we_have_waited to second_threshold
* so that in next timeout, we will do the above
* check (lbolt - tcp_last_recv_time). This is
* also to avoid overflow.
*
* We don't need to decrement tcp_timer_backoff
* to avoid overflow because it will be decremented
* later if new timeout value is greater than
* tcp_rexmit_interval_max. In the case when
* tcp_rexmit_interval_max is greater than
* second_threshold, it means that we will wait
* longer than second_threshold to send the next
* window probe.
*/
tcp->tcp_ms_we_have_waited = second_threshold;
}
} else if (ms > first_threshold && tcp->tcp_rtt_sa != 0) {
/*
* We have been retransmitting for too long... The RTT
* we calculated is probably incorrect. Reinitialize it.
* Need to compensate for 0 tcp_rtt_sa. Reset
* tcp_rtt_update so that we won't accidentally cache a
* bad value. But only do this if this is not a zero
* window probe.
*/
if (tcp->tcp_zero_win_probe == 0) {
tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
(tcp->tcp_rtt_sa >> 5);
tcp->tcp_rtt_sa = 0;
tcp->tcp_rtt_update = 0;
}
}
tcp->tcp_timer_backoff++;
if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
tcp_rexmit_interval_min) {
/*
* This means the original RTO is tcp_rexmit_interval_min.
* So we will use tcp_rexmit_interval_min as the RTO value
* and do the backoff.
*/
ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
} else {
ms <<= tcp->tcp_timer_backoff;
}
if (ms > tcp_rexmit_interval_max) {
ms = tcp_rexmit_interval_max;
/*
* ms is at max, decrement tcp_timer_backoff to avoid
* overflow.
*/
tcp->tcp_timer_backoff--;
}
tcp->tcp_ms_we_have_waited += ms;
if (tcp->tcp_zero_win_probe == 0) {
tcp->tcp_rto = ms;
}
TCP_TIMER_RESTART(tcp, ms);
/*
* This is after a timeout and tcp_rto is backed off. Set
* tcp_set_timer to 1 so that next time RTO is updated, we will
* restart the timer with a correct value.
*/
tcp->tcp_set_timer = 1;
mss = tcp->tcp_snxt - tcp->tcp_suna;
if (mss > tcp->tcp_mss)
mss = tcp->tcp_mss;
if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
mss = tcp->tcp_swnd;
if ((mp = tcp->tcp_xmit_head) != NULL)
mp->b_prev = (mblk_t *)prom_gettime();
mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
B_TRUE);
if (mp == NULL)
return;
tcp->tcp_csuna = tcp->tcp_snxt;
BUMP_MIB(tcp_mib.tcpRetransSegs);
UPDATE_MIB(tcp_mib.tcpRetransBytes, mss);
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_timer", mp);
(void) ipv4_tcp_output(sock_id, mp);
freeb(mp);
/*
* When slow start after retransmission begins, start with
* this seq no. tcp_rexmit_max marks the end of special slow
* start phase. tcp_snd_burst controls how many segments
* can be sent because of an ack.
*/
tcp->tcp_rexmit_nxt = tcp->tcp_suna;
tcp->tcp_snd_burst = TCP_CWND_SS;
if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
(tcp->tcp_unsent == 0)) {
tcp->tcp_rexmit_max = tcp->tcp_fss;
} else {
tcp->tcp_rexmit_max = tcp->tcp_snxt;
}
tcp->tcp_rexmit = B_TRUE;
tcp->tcp_dupack_cnt = 0;
/*
* Remove all rexmit SACK blk to start from fresh.
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
tcp->tcp_num_notsack_blk = 0;
tcp->tcp_cnt_notsack_list = 0;
}
}
/*
* The TCP normal data output path.
* NOTE: the logic of the fast path is duplicated from this function.
*/
static void
tcp_wput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
{
int len;
mblk_t *local_time;
mblk_t *mp1;
uchar_t *rptr;
uint32_t snxt;
int tail_unsent;
int tcpstate;
int usable = 0;
mblk_t *xmit_tail;
int32_t num_burst_seg;
int32_t mss;
int32_t num_sack_blk = 0;
int32_t tcp_hdr_len;
ipaddr_t *dst;
ipaddr_t *src;
#ifdef DEBUG
printf("tcp_wput_data(%d) ##############################\n", sock_id);
#endif
tcpstate = tcp->tcp_state;
if (mp == NULL) {
/* Really tacky... but we need this for detached closes. */
len = tcp->tcp_unsent;
goto data_null;
}
/*
* Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
* or before a connection attempt has begun.
*
* The following should not happen in inetboot....
*/
if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
(tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
printf("tcp_wput_data: data after ordrel, %s\n",
tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
}
freemsg(mp);
return;
}
/* Strip empties */
for (;;) {
assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
(uintptr_t)INT_MAX);
len = (int)(mp->b_wptr - mp->b_rptr);
if (len > 0)
break;
mp1 = mp;
mp = mp->b_cont;
freeb(mp1);
if (mp == NULL) {
return;
}
}
/* If we are the first on the list ... */
if (tcp->tcp_xmit_head == NULL) {
tcp->tcp_xmit_head = mp;
tcp->tcp_xmit_tail = mp;
tcp->tcp_xmit_tail_unsent = len;
} else {
tcp->tcp_xmit_last->b_cont = mp;
len += tcp->tcp_unsent;
}
/* Tack on however many more positive length mblks we have */
if ((mp1 = mp->b_cont) != NULL) {
do {
int tlen;
assert((uintptr_t)(mp1->b_wptr -
mp1->b_rptr) <= (uintptr_t)INT_MAX);
tlen = (int)(mp1->b_wptr - mp1->b_rptr);
if (tlen <= 0) {
mp->b_cont = mp1->b_cont;
freeb(mp1);
} else {
len += tlen;
mp = mp1;
}
} while ((mp1 = mp->b_cont) != NULL);
}
tcp->tcp_xmit_last = mp;
tcp->tcp_unsent = len;
data_null:
snxt = tcp->tcp_snxt;
xmit_tail = tcp->tcp_xmit_tail;
tail_unsent = tcp->tcp_xmit_tail_unsent;
/*
* Note that tcp_mss has been adjusted to take into account the
* timestamp option if applicable. Because SACK options do not
* appear in every TCP segments and they are of variable lengths,
* they cannot be included in tcp_mss. Thus we need to calculate
* the actual segment length when we need to send a segment which
* includes SACK options.
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
int32_t opt_len;
num_sack_blk = MIN(tcp->tcp_max_sack_blk,
tcp->tcp_num_sack_blk);
opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
2 + TCPOPT_HEADER_LEN;
mss = tcp->tcp_mss - opt_len;
tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
} else {
mss = tcp->tcp_mss;
tcp_hdr_len = tcp->tcp_hdr_len;
}
if ((tcp->tcp_suna == snxt) &&
(prom_gettime() - tcp->tcp_last_recv_time) >= tcp->tcp_rto) {
tcp->tcp_cwnd = MIN(tcp_slow_start_after_idle * mss,
MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
}
if (tcpstate == TCPS_SYN_RCVD) {
/*
* The three-way connection establishment handshake is not
* complete yet. We want to queue the data for transmission
* after entering ESTABLISHED state (RFC793). Setting usable to
* zero cause a jump to "done" label effectively leaving data
* on the queue.
*/
usable = 0;
} else {
int usable_r = tcp->tcp_swnd;
/*
* In the special case when cwnd is zero, which can only
* happen if the connection is ECN capable, return now.
* New segments is sent using tcp_timer(). The timer
* is set in tcp_rput_data().
*/
if (tcp->tcp_cwnd == 0) {
/*
* Note that tcp_cwnd is 0 before 3-way handshake is
* finished.
*/
assert(tcp->tcp_ecn_ok ||
tcp->tcp_state < TCPS_ESTABLISHED);
return;
}
/* usable = MIN(swnd, cwnd) - unacked_bytes */
if (usable_r > tcp->tcp_cwnd)
usable_r = tcp->tcp_cwnd;
/* NOTE: trouble if xmitting while SYN not acked? */
usable_r -= snxt;
usable_r += tcp->tcp_suna;
/* usable = MIN(usable, unsent) */
if (usable_r > len)
usable_r = len;
/* usable = MAX(usable, {1 for urgent, 0 for data}) */
if (usable_r != 0)
usable = usable_r;
}
local_time = (mblk_t *)prom_gettime();
/*
* "Our" Nagle Algorithm. This is not the same as in the old
* BSD. This is more in line with the true intent of Nagle.
*
* The conditions are:
* 1. The amount of unsent data (or amount of data which can be
* sent, whichever is smaller) is less than Nagle limit.
* 2. The last sent size is also less than Nagle limit.
* 3. There is unack'ed data.
* 4. Urgent pointer is not set. Send urgent data ignoring the
* Nagle algorithm. This reduces the probability that urgent
* bytes get "merged" together.
* 5. The app has not closed the connection. This eliminates the
* wait time of the receiving side waiting for the last piece of
* (small) data.
*
* If all are satisified, exit without sending anything. Note
* that Nagle limit can be smaller than 1 MSS. Nagle limit is
* the smaller of 1 MSS and global tcp_naglim_def (default to be
* 4095).
*/
if (usable < (int)tcp->tcp_naglim &&
tcp->tcp_naglim > tcp->tcp_last_sent_len &&
snxt != tcp->tcp_suna &&
!(tcp->tcp_valid_bits & TCP_URG_VALID))
goto done;
num_burst_seg = tcp->tcp_snd_burst;
for (;;) {
tcph_t *tcph;
mblk_t *new_mp;
if (num_burst_seg-- == 0)
goto done;
len = mss;
if (len > usable) {
len = usable;
if (len <= 0) {
/* Terminate the loop */
goto done;
}
/*
* Sender silly-window avoidance.
* Ignore this if we are going to send a
* zero window probe out.
*
* TODO: force data into microscopic window ??
* ==> (!pushed || (unsent > usable))
*/
if (len < (tcp->tcp_max_swnd >> 1) &&
(tcp->tcp_unsent - (snxt - tcp->tcp_snxt)) > len &&
!((tcp->tcp_valid_bits & TCP_URG_VALID) &&
len == 1) && (! tcp->tcp_zero_win_probe)) {
/*
* If the retransmit timer is not running
* we start it so that we will retransmit
* in the case when the the receiver has
* decremented the window.
*/
if (snxt == tcp->tcp_snxt &&
snxt == tcp->tcp_suna) {
/*
* We are not supposed to send
* anything. So let's wait a little
* bit longer before breaking SWS
* avoidance.
*
* What should the value be?
* Suggestion: MAX(init rexmit time,
* tcp->tcp_rto)
*/
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
}
goto done;
}
}
tcph = tcp->tcp_tcph;
usable -= len; /* Approximate - can be adjusted later */
if (usable > 0)
tcph->th_flags[0] = TH_ACK;
else
tcph->th_flags[0] = (TH_ACK | TH_PUSH);
U32_TO_ABE32(snxt, tcph->th_seq);
if (tcp->tcp_valid_bits) {
uchar_t *prev_rptr = xmit_tail->b_rptr;
uint32_t prev_snxt = tcp->tcp_snxt;
if (tail_unsent == 0) {
assert(xmit_tail->b_cont != NULL);
xmit_tail = xmit_tail->b_cont;
prev_rptr = xmit_tail->b_rptr;
tail_unsent = (int)(xmit_tail->b_wptr -
xmit_tail->b_rptr);
} else {
xmit_tail->b_rptr = xmit_tail->b_wptr -
tail_unsent;
}
mp = tcp_xmit_mp(tcp, xmit_tail, len, NULL, NULL,
snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
/* Restore tcp_snxt so we get amount sent right. */
tcp->tcp_snxt = prev_snxt;
if (prev_rptr == xmit_tail->b_rptr)
xmit_tail->b_prev = local_time;
else
xmit_tail->b_rptr = prev_rptr;
if (mp == NULL)
break;
mp1 = mp->b_cont;
snxt += len;
tcp->tcp_last_sent_len = (ushort_t)len;
while (mp1->b_cont) {
xmit_tail = xmit_tail->b_cont;
xmit_tail->b_prev = local_time;
mp1 = mp1->b_cont;
}
tail_unsent = xmit_tail->b_wptr - mp1->b_wptr;
BUMP_MIB(tcp_mib.tcpOutDataSegs);
UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_wput_data (valid bits)", mp);
(void) ipv4_tcp_output(sock_id, mp);
freeb(mp);
continue;
}
snxt += len; /* Adjust later if we don't send all of len */
BUMP_MIB(tcp_mib.tcpOutDataSegs);
UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
if (tail_unsent) {
/* Are the bytes above us in flight? */
rptr = xmit_tail->b_wptr - tail_unsent;
if (rptr != xmit_tail->b_rptr) {
tail_unsent -= len;
len += tcp_hdr_len;
tcp->tcp_ipha->ip_len = htons(len);
mp = dupb(xmit_tail);
if (!mp)
break;
mp->b_rptr = rptr;
goto must_alloc;
}
} else {
xmit_tail = xmit_tail->b_cont;
assert((uintptr_t)(xmit_tail->b_wptr -
xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
tail_unsent = (int)(xmit_tail->b_wptr -
xmit_tail->b_rptr);
}
tail_unsent -= len;
tcp->tcp_last_sent_len = (ushort_t)len;
len += tcp_hdr_len;
if (tcp->tcp_ipversion == IPV4_VERSION)
tcp->tcp_ipha->ip_len = htons(len);
xmit_tail->b_prev = local_time;
mp = dupb(xmit_tail);
if (mp == NULL)
goto out_of_mem;
len = tcp_hdr_len;
/*
* There are four reasons to allocate a new hdr mblk:
* 1) The bytes above us are in use by another packet
* 2) We don't have good alignment
* 3) The mblk is being shared
* 4) We don't have enough room for a header
*/
rptr = mp->b_rptr - len;
if (!OK_32PTR(rptr) ||
rptr < mp->b_datap) {
/* NOTE: we assume allocb returns an OK_32PTR */
must_alloc:;
mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
tcp_wroff_xtra, 0);
if (mp1 == NULL) {
freemsg(mp);
goto out_of_mem;
}
mp1->b_cont = mp;
mp = mp1;
/* Leave room for Link Level header */
len = tcp_hdr_len;
rptr = &mp->b_rptr[tcp_wroff_xtra];
mp->b_wptr = &rptr[len];
}
if (tcp->tcp_snd_ts_ok) {
U32_TO_BE32((uint32_t)local_time,
(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
U32_TO_BE32(tcp->tcp_ts_recent,
(char *)tcph+TCP_MIN_HEADER_LENGTH+8);
} else {
assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
}
mp->b_rptr = rptr;
/* Copy the template header. */
dst = (ipaddr_t *)rptr;
src = (ipaddr_t *)tcp->tcp_iphc;
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
len = tcp->tcp_hdr_len;
if (len -= 40) {
len >>= 2;
dst += 10;
src += 10;
do {
*dst++ = *src++;
} while (--len);
}
/*
* Set tcph to point to the header of the outgoing packet,
* not to the template header.
*/
tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
/*
* Set the ECN info in the TCP header if it is not a zero
* window probe. Zero window probe is only sent in
* tcp_wput_data() and tcp_timer().
*/
if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
SET_ECT(tcp, rptr);
if (tcp->tcp_ecn_echo_on)
tcph->th_flags[0] |= TH_ECE;
if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
tcph->th_flags[0] |= TH_CWR;
tcp->tcp_ecn_cwr_sent = B_TRUE;
}
}
/* Fill in SACK options */
if (num_sack_blk > 0) {
uchar_t *wptr = rptr + tcp->tcp_hdr_len;
sack_blk_t *tmp;
int32_t i;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_SACK;
wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
sizeof (sack_blk_t);
wptr += TCPOPT_REAL_SACK_LEN;
tmp = tcp->tcp_sack_list;
for (i = 0; i < num_sack_blk; i++) {
U32_TO_BE32(tmp[i].begin, wptr);
wptr += sizeof (tcp_seq);
U32_TO_BE32(tmp[i].end, wptr);
wptr += sizeof (tcp_seq);
}
tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
<< 4);
}
if (tail_unsent) {
mp1 = mp->b_cont;
if (mp1 == NULL)
mp1 = mp;
/*
* If we're a little short, tack on more mblks
* as long as we don't need to split an mblk.
*/
while (tail_unsent < 0 &&
tail_unsent + (int)(xmit_tail->b_cont->b_wptr -
xmit_tail->b_cont->b_rptr) <= 0) {
xmit_tail = xmit_tail->b_cont;
/* Stash for rtt use later */
xmit_tail->b_prev = local_time;
mp1->b_cont = dupb(xmit_tail);
mp1 = mp1->b_cont;
assert((uintptr_t)(xmit_tail->b_wptr -
xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
tail_unsent += (int)(xmit_tail->b_wptr -
xmit_tail->b_rptr);
if (mp1 == NULL) {
freemsg(mp);
goto out_of_mem;
}
}
/* Trim back any surplus on the last mblk */
if (tail_unsent > 0)
mp1->b_wptr -= tail_unsent;
if (tail_unsent < 0) {
uint32_t ip_len;
/*
* We did not send everything we could in
* order to preserve mblk boundaries.
*/
usable -= tail_unsent;
snxt += tail_unsent;
tcp->tcp_last_sent_len += tail_unsent;
UPDATE_MIB(tcp_mib.tcpOutDataBytes,
tail_unsent);
/* Adjust the IP length field. */
ip_len = ntohs(((struct ip *)rptr)->ip_len) +
tail_unsent;
((struct ip *)rptr)->ip_len = htons(ip_len);
tail_unsent = 0;
}
}
if (mp == NULL)
goto out_of_mem;
/*
* Performance hit! We need to pullup the whole message
* in order to do checksum and for the MAC output routine.
*/
if (mp->b_cont != NULL) {
int mp_size;
#ifdef DEBUG
printf("Multiple mblk %d\n", msgdsize(mp));
#endif
new_mp = allocb(msgdsize(mp) + tcp_wroff_xtra, 0);
new_mp->b_rptr += tcp_wroff_xtra;
new_mp->b_wptr = new_mp->b_rptr;
while (mp != NULL) {
mp_size = mp->b_wptr - mp->b_rptr;
bcopy(mp->b_rptr, new_mp->b_wptr, mp_size);
new_mp->b_wptr += mp_size;
mp = mp->b_cont;
}
freemsg(mp);
mp = new_mp;
}
tcp_set_cksum(mp);
((struct ip *)mp->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
TCP_DUMP_PACKET("tcp_wput_data", mp);
(void) ipv4_tcp_output(sock_id, mp);
freemsg(mp);
}
out_of_mem:;
/* Pretend that all we were trying to send really got sent */
if (tail_unsent < 0) {
do {
xmit_tail = xmit_tail->b_cont;
xmit_tail->b_prev = local_time;
assert((uintptr_t)(xmit_tail->b_wptr -
xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
tail_unsent += (int)(xmit_tail->b_wptr -
xmit_tail->b_rptr);
} while (tail_unsent < 0);
}
done:;
tcp->tcp_xmit_tail = xmit_tail;
tcp->tcp_xmit_tail_unsent = tail_unsent;
len = tcp->tcp_snxt - snxt;
if (len) {
/*
* If new data was sent, need to update the notsack
* list, which is, afterall, data blocks that have
* not been sack'ed by the receiver. New data is
* not sack'ed.
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
/* len is a negative value. */
tcp->tcp_pipe -= len;
tcp_notsack_update(&(tcp->tcp_notsack_list),
tcp->tcp_snxt, snxt,
&(tcp->tcp_num_notsack_blk),
&(tcp->tcp_cnt_notsack_list));
}
tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
tcp->tcp_rack = tcp->tcp_rnxt;
tcp->tcp_rack_cnt = 0;
if ((snxt + len) == tcp->tcp_suna) {
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
}
/*
* Note that len is the amount we just sent but with a negative
* sign. We update tcp_unsent here since we may come back to
* tcp_wput_data from tcp_state_wait.
*/
len += tcp->tcp_unsent;
tcp->tcp_unsent = len;
/*
* Let's wait till all the segments have been acked, since we
* don't have a timer.
*/
(void) tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED);
return;
} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
/*
* Didn't send anything. Make sure the timer is running
* so that we will probe a zero window.
*/
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
}
/* Note that len is the amount we just sent but with a negative sign */
len += tcp->tcp_unsent;
tcp->tcp_unsent = len;
}
static void
tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcph_t *tcph,
int sock_id)
{
int32_t bytes_acked;
int32_t gap;
int32_t rgap;
tcp_opt_t tcpopt;
uint_t flags;
uint32_t new_swnd = 0;
#ifdef DEBUG
printf("Time wait processing called ###############3\n");
#endif
/* Just make sure we send the right sock_id to tcp_clean_death */
if ((sockets[sock_id].pcb == NULL) || (sockets[sock_id].pcb != tcp))
sock_id = -1;
flags = (unsigned int)tcph->th_flags[0] & 0xFF;
new_swnd = BE16_TO_U16(tcph->th_win) <<
((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
if (tcp->tcp_snd_ts_ok) {
if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
freemsg(mp);
tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_ACK, 0, -1);
return;
}
}
gap = seg_seq - tcp->tcp_rnxt;
rgap = tcp->tcp_rwnd - (gap + seg_len);
if (gap < 0) {
BUMP_MIB(tcp_mib.tcpInDataDupSegs);
UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
(seg_len > -gap ? -gap : seg_len));
seg_len += gap;
if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
if (flags & TH_RST) {
freemsg(mp);
return;
}
if ((flags & TH_FIN) && seg_len == -1) {
/*
* When TCP receives a duplicate FIN in
* TIME_WAIT state, restart the 2 MSL timer.
* See page 73 in RFC 793. Make sure this TCP
* is already on the TIME_WAIT list. If not,
* just restart the timer.
*/
tcp_time_wait_remove(tcp);
tcp_time_wait_append(tcp);
TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_ACK, 0, -1);
freemsg(mp);
return;
}
flags |= TH_ACK_NEEDED;
seg_len = 0;
goto process_ack;
}
/* Fix seg_seq, and chew the gap off the front. */
seg_seq = tcp->tcp_rnxt;
}
if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
/*
* Make sure that when we accept the connection, pick
* an ISS greater than (tcp_snxt + ISS_INCR/2) for the
* old connection.
*
* The next ISS generated is equal to tcp_iss_incr_extra
* + ISS_INCR/2 + other components depending on the
* value of tcp_strong_iss. We pre-calculate the new
* ISS here and compare with tcp_snxt to determine if
* we need to make adjustment to tcp_iss_incr_extra.
*
* Note that since we are now in the global queue
* perimeter and need to do a lateral_put() to the
* listener queue, there can be other connection requests/
* attempts while the lateral_put() is going on. That
* means what we calculate here may not be correct. This
* is extremely difficult to solve unless TCP and IP
* modules are merged and there is no perimeter, but just
* locks. The above calculation is ugly and is a
* waste of CPU cycles...
*/
uint32_t new_iss = tcp_iss_incr_extra;
int32_t adj;
/* Add time component and min random (i.e. 1). */
new_iss += (prom_gettime() >> ISS_NSEC_SHT) + 1;
if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
/*
* New ISS not guaranteed to be ISS_INCR/2
* ahead of the current tcp_snxt, so add the
* difference to tcp_iss_incr_extra.
*/
tcp_iss_incr_extra += adj;
}
tcp_clean_death(sock_id, tcp, 0);
/*
* This is a passive open. Right now we do not
* do anything...
*/
freemsg(mp);
return;
}
/*
* rgap is the amount of stuff received out of window. A negative
* value is the amount out of window.
*/
if (rgap < 0) {
BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
/* Fix seg_len and make sure there is something left. */
seg_len += rgap;
if (seg_len <= 0) {
if (flags & TH_RST) {
freemsg(mp);
return;
}
flags |= TH_ACK_NEEDED;
seg_len = 0;
goto process_ack;
}
}
/*
* Check whether we can update tcp_ts_recent. This test is
* NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP
* Extensions for High Performance: An Update", Internet Draft.
*/
if (tcp->tcp_snd_ts_ok &&
TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
tcp->tcp_last_rcv_lbolt = prom_gettime();
}
if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
/* Always ack out of order packets */
flags |= TH_ACK_NEEDED;
seg_len = 0;
} else if (seg_len > 0) {
BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
}
if (flags & TH_RST) {
freemsg(mp);
(void) tcp_clean_death(sock_id, tcp, 0);
return;
}
if (flags & TH_SYN) {
freemsg(mp);
tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack, seg_seq + 1,
TH_RST|TH_ACK, 0, -1);
/*
* Do not delete the TCP structure if it is in
* TIME_WAIT state. Refer to RFC 1122, 4.2.2.13.
*/
return;
}
process_ack:
if (flags & TH_ACK) {
bytes_acked = (int)(seg_ack - tcp->tcp_suna);
if (bytes_acked <= 0) {
if (bytes_acked == 0 && seg_len == 0 &&
new_swnd == tcp->tcp_swnd)
BUMP_MIB(tcp_mib.tcpInDupAck);
} else {
/* Acks something not sent */
flags |= TH_ACK_NEEDED;
}
}
freemsg(mp);
if (flags & TH_ACK_NEEDED) {
/*
* Time to send an ack for some reason.
*/
tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_ACK, 0, -1);
}
}
static int
tcp_init_values(tcp_t *tcp, struct inetboot_socket *isp)
{
int err;
tcp->tcp_family = AF_INET;
tcp->tcp_ipversion = IPV4_VERSION;
/*
* Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
* will be close to tcp_rexmit_interval_initial. By doing this, we
* allow the algorithm to adjust slowly to large fluctuations of RTT
* during first few transmissions of a connection as seen in slow
* links.
*/
tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
tcp_conn_grace_period;
if (tcp->tcp_rto < tcp_rexmit_interval_min)
tcp->tcp_rto = tcp_rexmit_interval_min;
tcp->tcp_timer_backoff = 0;
tcp->tcp_ms_we_have_waited = 0;
tcp->tcp_last_recv_time = prom_gettime();
tcp->tcp_cwnd_max = tcp_cwnd_max_;
tcp->tcp_snd_burst = TCP_CWND_INFINITE;
tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
/* For Ethernet, the mtu returned is actually 1550... */
if (mac_get_type() == IFT_ETHER) {
tcp->tcp_if_mtu = mac_get_mtu() - 50;
} else {
tcp->tcp_if_mtu = mac_get_mtu();
}
tcp->tcp_mss = tcp->tcp_if_mtu;
tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
/*
* Fix it to tcp_ip_abort_linterval later if it turns out to be a
* passive open.
*/
tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
tcp->tcp_naglim = tcp_naglim_def;
/* NOTE: ISS is now set in tcp_adapt_ire(). */
/* Initialize the header template */
if (tcp->tcp_ipversion == IPV4_VERSION) {
err = tcp_header_init_ipv4(tcp);
}
if (err)
return (err);
/*
* Init the window scale to the max so tcp_rwnd_set() won't pare
* down tcp_rwnd. tcp_adapt_ire() will set the right value later.
*/
tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
tcp->tcp_xmit_lowater = tcp_xmit_lowat;
if (isp != NULL) {
tcp->tcp_xmit_hiwater = isp->so_sndbuf;
tcp->tcp_rwnd = isp->so_rcvbuf;
tcp->tcp_rwnd_max = isp->so_rcvbuf;
}
tcp->tcp_state = TCPS_IDLE;
return (0);
}
/*
* Initialize the IPv4 header. Loses any record of any IP options.
*/
static int
tcp_header_init_ipv4(tcp_t *tcp)
{
tcph_t *tcph;
/*
* This is a simple initialization. If there's
* already a template, it should never be too small,
* so reuse it. Otherwise, allocate space for the new one.
*/
if (tcp->tcp_iphc != NULL) {
assert(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
} else {
tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
tcp->tcp_iphc = bkmem_zalloc(tcp->tcp_iphc_len);
if (tcp->tcp_iphc == NULL) {
tcp->tcp_iphc_len = 0;
return (ENOMEM);
}
}
tcp->tcp_ipha = (struct ip *)tcp->tcp_iphc;
tcp->tcp_ipversion = IPV4_VERSION;
/*
* Note that it does not include TCP options yet. It will
* after the connection is established.
*/
tcp->tcp_hdr_len = sizeof (struct ip) + sizeof (tcph_t);
tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
tcp->tcp_ip_hdr_len = sizeof (struct ip);
tcp->tcp_ipha->ip_v = IP_VERSION;
/* We don't support IP options... */
tcp->tcp_ipha->ip_hl = IP_SIMPLE_HDR_LENGTH_IN_WORDS;
tcp->tcp_ipha->ip_p = IPPROTO_TCP;
/* We are not supposed to do PMTU discovery... */
tcp->tcp_ipha->ip_sum = 0;
tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (struct ip));
tcp->tcp_tcph = tcph;
tcph->th_offset_and_rsrvd[0] = (5 << 4);
return (0);
}
/*
* Send out a control packet on the tcp connection specified. This routine
* is typically called where we need a simple ACK or RST generated.
*
* This function is called with or without a mp.
*/
static void
tcp_xmit_ctl(char *str, tcp_t *tcp, mblk_t *mp, uint32_t seq,
uint32_t ack, int ctl, uint_t ip_hdr_len, int sock_id)
{
uchar_t *rptr;
tcph_t *tcph;
struct ip *iph = NULL;
int tcp_hdr_len;
int tcp_ip_hdr_len;
tcp_hdr_len = tcp->tcp_hdr_len;
tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
if (mp) {
assert(ip_hdr_len != 0);
rptr = mp->b_rptr;
tcph = (tcph_t *)(rptr + ip_hdr_len);
/* Don't reply to a RST segment. */
if (tcph->th_flags[0] & TH_RST) {
freeb(mp);
return;
}
freemsg(mp);
rptr = NULL;
} else {
assert(ip_hdr_len == 0);
}
/* If a text string is passed in with the request, print it out. */
if (str != NULL) {
dprintf("tcp_xmit_ctl(%d): '%s', seq 0x%x, ack 0x%x, "
"ctl 0x%x\n", sock_id, str, seq, ack, ctl);
}
mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0);
if (mp == NULL) {
dprintf("tcp_xmit_ctl(%d): Cannot allocate memory\n", sock_id);
return;
}
rptr = &mp->b_rptr[tcp_wroff_xtra];
mp->b_rptr = rptr;
mp->b_wptr = &rptr[tcp_hdr_len];
bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
iph = (struct ip *)rptr;
iph->ip_len = htons(tcp_hdr_len);
tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
tcph->th_flags[0] = (uint8_t)ctl;
if (ctl & TH_RST) {
BUMP_MIB(tcp_mib.tcpOutRsts);
BUMP_MIB(tcp_mib.tcpOutControl);
/*
* Don't send TSopt w/ TH_RST packets per RFC 1323.
*/
if (tcp->tcp_snd_ts_ok && tcp->tcp_state > TCPS_SYN_SENT) {
mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
*(mp->b_wptr) = TCPOPT_EOL;
iph->ip_len = htons(tcp_hdr_len -
TCPOPT_REAL_TS_LEN);
tcph->th_offset_and_rsrvd[0] -= (3 << 4);
}
}
if (ctl & TH_ACK) {
uint32_t now = prom_gettime();
if (tcp->tcp_snd_ts_ok) {
U32_TO_BE32(now,
(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
U32_TO_BE32(tcp->tcp_ts_recent,
(char *)tcph+TCP_MIN_HEADER_LENGTH+8);
}
tcp->tcp_rack = ack;
tcp->tcp_rack_cnt = 0;
BUMP_MIB(tcp_mib.tcpOutAck);
}
BUMP_MIB(tcp_mib.tcpOutSegs);
U32_TO_BE32(seq, tcph->th_seq);
U32_TO_BE32(ack, tcph->th_ack);
tcp_set_cksum(mp);
iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
TCP_DUMP_PACKET("tcp_xmit_ctl", mp);
(void) ipv4_tcp_output(sock_id, mp);
freeb(mp);
}
/* Generate an ACK-only (no data) segment for a TCP endpoint */
static mblk_t *
tcp_ack_mp(tcp_t *tcp)
{
if (tcp->tcp_valid_bits) {
/*
* For the complex case where we have to send some
* controls (FIN or SYN), let tcp_xmit_mp do it.
* When sending an ACK-only segment (no data)
* into a zero window, always set the seq number to
* suna, since snxt will be extended past the window.
* If we used snxt, the receiver might consider the ACK
* unacceptable.
*/
return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
(tcp->tcp_zero_win_probe) ?
tcp->tcp_suna :
tcp->tcp_snxt, B_FALSE, NULL, B_FALSE));
} else {
/* Generate a simple ACK */
uchar_t *rptr;
tcph_t *tcph;
mblk_t *mp1;
int32_t tcp_hdr_len;
int32_t num_sack_blk = 0;
int32_t sack_opt_len;
/*
* Allocate space for TCP + IP headers
* and link-level header
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
num_sack_blk = MIN(tcp->tcp_max_sack_blk,
tcp->tcp_num_sack_blk);
sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
} else {
tcp_hdr_len = tcp->tcp_hdr_len;
}
mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, 0);
if (mp1 == NULL)
return (NULL);
/* copy in prototype TCP + IP header */
rptr = mp1->b_rptr + tcp_wroff_xtra;
mp1->b_rptr = rptr;
mp1->b_wptr = rptr + tcp_hdr_len;
bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
/*
* Set the TCP sequence number.
* When sending an ACK-only segment (no data)
* into a zero window, always set the seq number to
* suna, since snxt will be extended past the window.
* If we used snxt, the receiver might consider the ACK
* unacceptable.
*/
U32_TO_ABE32((tcp->tcp_zero_win_probe) ?
tcp->tcp_suna : tcp->tcp_snxt, tcph->th_seq);
/* Set up the TCP flag field. */
tcph->th_flags[0] = (uchar_t)TH_ACK;
if (tcp->tcp_ecn_echo_on)
tcph->th_flags[0] |= TH_ECE;
tcp->tcp_rack = tcp->tcp_rnxt;
tcp->tcp_rack_cnt = 0;
/* fill in timestamp option if in use */
if (tcp->tcp_snd_ts_ok) {
uint32_t llbolt = (uint32_t)prom_gettime();
U32_TO_BE32(llbolt,
(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
U32_TO_BE32(tcp->tcp_ts_recent,
(char *)tcph+TCP_MIN_HEADER_LENGTH+8);
}
/* Fill in SACK options */
if (num_sack_blk > 0) {
uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
sack_blk_t *tmp;
int32_t i;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_SACK;
wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
sizeof (sack_blk_t);
wptr += TCPOPT_REAL_SACK_LEN;
tmp = tcp->tcp_sack_list;
for (i = 0; i < num_sack_blk; i++) {
U32_TO_BE32(tmp[i].begin, wptr);
wptr += sizeof (tcp_seq);
U32_TO_BE32(tmp[i].end, wptr);
wptr += sizeof (tcp_seq);
}
tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
<< 4);
}
((struct ip *)rptr)->ip_len = htons(tcp_hdr_len);
tcp_set_cksum(mp1);
((struct ip *)rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
return (mp1);
}
}
/*
* tcp_xmit_mp is called to return a pointer to an mblk chain complete with
* ip and tcp header ready to pass down to IP. If the mp passed in is
* non-NULL, then up to max_to_send bytes of data will be dup'ed off that
* mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
* otherwise it will dup partial mblks.)
* Otherwise, an appropriate ACK packet will be generated. This
* routine is not usually called to send new data for the first time. It
* is mostly called out of the timer for retransmits, and to generate ACKs.
*
* If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
* be adjusted by *offset. And after dupb(), the offset and the ending mblk
* of the original mblk chain will be returned in *offset and *end_mp.
*/
static mblk_t *
tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
boolean_t rexmit)
{
int data_length;
int32_t off = 0;
uint_t flags;
mblk_t *mp1;
mblk_t *mp2;
mblk_t *new_mp;
uchar_t *rptr;
tcph_t *tcph;
int32_t num_sack_blk = 0;
int32_t sack_opt_len = 0;
/* Allocate for our maximum TCP header + link-level */
mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
tcp_wroff_xtra, 0);
if (mp1 == NULL)
return (NULL);
data_length = 0;
/*
* Note that tcp_mss has been adjusted to take into account the
* timestamp option if applicable. Because SACK options do not
* appear in every TCP segments and they are of variable lengths,
* they cannot be included in tcp_mss. Thus we need to calculate
* the actual segment length when we need to send a segment which
* includes SACK options.
*/
if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
num_sack_blk = MIN(tcp->tcp_max_sack_blk,
tcp->tcp_num_sack_blk);
sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
if (max_to_send + sack_opt_len > tcp->tcp_mss)
max_to_send -= sack_opt_len;
}
if (offset != NULL) {
off = *offset;
/* We use offset as an indicator that end_mp is not NULL. */
*end_mp = NULL;
}
for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
/* This could be faster with cooperation from downstream */
if (mp2 != mp1 && !sendall &&
data_length + (int)(mp->b_wptr - mp->b_rptr) >
max_to_send)
/*
* Don't send the next mblk since the whole mblk
* does not fit.
*/
break;
mp2->b_cont = dupb(mp);
mp2 = mp2->b_cont;
if (mp2 == NULL) {
freemsg(mp1);
return (NULL);
}
mp2->b_rptr += off;
assert((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
(uintptr_t)INT_MAX);
data_length += (int)(mp2->b_wptr - mp2->b_rptr);
if (data_length > max_to_send) {
mp2->b_wptr -= data_length - max_to_send;
data_length = max_to_send;
off = mp2->b_wptr - mp->b_rptr;
break;
} else {
off = 0;
}
}
if (offset != NULL) {
*offset = off;
*end_mp = mp;
}
if (seg_len != NULL) {
*seg_len = data_length;
}
rptr = mp1->b_rptr + tcp_wroff_xtra;
mp1->b_rptr = rptr;
mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
U32_TO_ABE32(seq, tcph->th_seq);
/*
* Use tcp_unsent to determine if the PUSH bit should be used assumes
* that this function was called from tcp_wput_data. Thus, when called
* to retransmit data the setting of the PUSH bit may appear some
* what random in that it might get set when it should not. This
* should not pose any performance issues.
*/
if (data_length != 0 && (tcp->tcp_unsent == 0 ||
tcp->tcp_unsent == data_length)) {
flags = TH_ACK | TH_PUSH;
} else {
flags = TH_ACK;
}
if (tcp->tcp_ecn_ok) {
if (tcp->tcp_ecn_echo_on)
flags |= TH_ECE;
/*
* Only set ECT bit and ECN_CWR if a segment contains new data.
* There is no TCP flow control for non-data segments, and
* only data segment is transmitted reliably.
*/
if (data_length > 0 && !rexmit) {
SET_ECT(tcp, rptr);
if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
flags |= TH_CWR;
tcp->tcp_ecn_cwr_sent = B_TRUE;
}
}
}
if (tcp->tcp_valid_bits) {
uint32_t u1;
if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
seq == tcp->tcp_iss) {
uchar_t *wptr;
/*
* Tack on the MSS option. It is always needed
* for both active and passive open.
*/
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_MAXSEG;
wptr[1] = TCPOPT_MAXSEG_LEN;
wptr += 2;
/*
* MSS option value should be interface MTU - MIN
* TCP/IP header.
*/
u1 = tcp->tcp_if_mtu - IP_SIMPLE_HDR_LENGTH -
TCP_MIN_HEADER_LENGTH;
U16_TO_BE16(u1, wptr);
mp1->b_wptr = wptr + 2;
/* Update the offset to cover the additional word */
tcph->th_offset_and_rsrvd[0] += (1 << 4);
/*
* Note that the following way of filling in
* TCP options are not optimal. Some NOPs can
* be saved. But there is no need at this time
* to optimize it. When it is needed, we will
* do it.
*/
switch (tcp->tcp_state) {
case TCPS_SYN_SENT:
flags = TH_SYN;
if (tcp->tcp_snd_ws_ok) {
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_WSCALE;
wptr[2] = TCPOPT_WS_LEN;
wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
mp1->b_wptr += TCPOPT_REAL_WS_LEN;
tcph->th_offset_and_rsrvd[0] +=
(1 << 4);
}
if (tcp->tcp_snd_ts_ok) {
uint32_t llbolt;
llbolt = prom_gettime();
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_TSTAMP;
wptr[3] = TCPOPT_TSTAMP_LEN;
wptr += 4;
U32_TO_BE32(llbolt, wptr);
wptr += 4;
assert(tcp->tcp_ts_recent == 0);
U32_TO_BE32(0L, wptr);
mp1->b_wptr += TCPOPT_REAL_TS_LEN;
tcph->th_offset_and_rsrvd[0] +=
(3 << 4);
}
if (tcp->tcp_snd_sack_ok) {
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_SACK_PERMITTED;
wptr[3] = TCPOPT_SACK_OK_LEN;
mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
tcph->th_offset_and_rsrvd[0] +=
(1 << 4);
}
/*
* Set up all the bits to tell other side
* we are ECN capable.
*/
if (tcp->tcp_ecn_ok) {
flags |= (TH_ECE | TH_CWR);
}
break;
case TCPS_SYN_RCVD:
flags |= TH_SYN;
if (tcp->tcp_snd_ws_ok) {
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_WSCALE;
wptr[2] = TCPOPT_WS_LEN;
wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
mp1->b_wptr += TCPOPT_REAL_WS_LEN;
tcph->th_offset_and_rsrvd[0] += (1 << 4);
}
if (tcp->tcp_snd_sack_ok) {
wptr = mp1->b_wptr;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_SACK_PERMITTED;
wptr[3] = TCPOPT_SACK_OK_LEN;
mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
tcph->th_offset_and_rsrvd[0] +=
(1 << 4);
}
/*
* If the other side is ECN capable, reply
* that we are also ECN capable.
*/
if (tcp->tcp_ecn_ok) {
flags |= TH_ECE;
}
break;
default:
break;
}
/* allocb() of adequate mblk assures space */
assert((uintptr_t)(mp1->b_wptr -
mp1->b_rptr) <= (uintptr_t)INT_MAX);
if (flags & TH_SYN)
BUMP_MIB(tcp_mib.tcpOutControl);
}
if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
(seq + data_length) == tcp->tcp_fss) {
if (!tcp->tcp_fin_acked) {
flags |= TH_FIN;
BUMP_MIB(tcp_mib.tcpOutControl);
}
if (!tcp->tcp_fin_sent) {
tcp->tcp_fin_sent = B_TRUE;
switch (tcp->tcp_state) {
case TCPS_SYN_RCVD:
case TCPS_ESTABLISHED:
tcp->tcp_state = TCPS_FIN_WAIT_1;
break;
case TCPS_CLOSE_WAIT:
tcp->tcp_state = TCPS_LAST_ACK;
break;
}
if (tcp->tcp_suna == tcp->tcp_snxt)
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
tcp->tcp_snxt = tcp->tcp_fss + 1;
}
}
}
tcph->th_flags[0] = (uchar_t)flags;
tcp->tcp_rack = tcp->tcp_rnxt;
tcp->tcp_rack_cnt = 0;
if (tcp->tcp_snd_ts_ok) {
if (tcp->tcp_state != TCPS_SYN_SENT) {
uint32_t llbolt = prom_gettime();
U32_TO_BE32(llbolt,
(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
U32_TO_BE32(tcp->tcp_ts_recent,
(char *)tcph+TCP_MIN_HEADER_LENGTH+8);
}
}
if (num_sack_blk > 0) {
uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
sack_blk_t *tmp;
int32_t i;
wptr[0] = TCPOPT_NOP;
wptr[1] = TCPOPT_NOP;
wptr[2] = TCPOPT_SACK;
wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
sizeof (sack_blk_t);
wptr += TCPOPT_REAL_SACK_LEN;
tmp = tcp->tcp_sack_list;
for (i = 0; i < num_sack_blk; i++) {
U32_TO_BE32(tmp[i].begin, wptr);
wptr += sizeof (tcp_seq);
U32_TO_BE32(tmp[i].end, wptr);
wptr += sizeof (tcp_seq);
}
tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
}
assert((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
data_length += (int)(mp1->b_wptr - rptr);
if (tcp->tcp_ipversion == IPV4_VERSION)
((struct ip *)rptr)->ip_len = htons(data_length);
/*
* Performance hit! We need to pullup the whole message
* in order to do checksum and for the MAC output routine.
*/
if (mp1->b_cont != NULL) {
int mp_size;
#ifdef DEBUG
printf("Multiple mblk %d\n", msgdsize(mp1));
#endif
new_mp = allocb(msgdsize(mp1) + tcp_wroff_xtra, 0);
new_mp->b_rptr += tcp_wroff_xtra;
new_mp->b_wptr = new_mp->b_rptr;
while (mp1 != NULL) {
mp_size = mp1->b_wptr - mp1->b_rptr;
bcopy(mp1->b_rptr, new_mp->b_wptr, mp_size);
new_mp->b_wptr += mp_size;
mp1 = mp1->b_cont;
}
freemsg(mp1);
mp1 = new_mp;
}
tcp_set_cksum(mp1);
/* Fill in the TTL field as it is 0 in the header template. */
((struct ip *)mp1->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
return (mp1);
}
/*
* Generate a "no listener here" reset in response to the
* connection request contained within 'mp'
*/
static void
tcp_xmit_listeners_reset(int sock_id, mblk_t *mp, uint_t ip_hdr_len)
{
uchar_t *rptr;
uint32_t seg_len;
tcph_t *tcph;
uint32_t seg_seq;
uint32_t seg_ack;
uint_t flags;
rptr = mp->b_rptr;
tcph = (tcph_t *)&rptr[ip_hdr_len];
seg_seq = BE32_TO_U32(tcph->th_seq);
seg_ack = BE32_TO_U32(tcph->th_ack);
flags = tcph->th_flags[0];
seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
if (flags & TH_RST) {
freeb(mp);
} else if (flags & TH_ACK) {
tcp_xmit_early_reset("no tcp, reset",
sock_id, mp, seg_ack, 0, TH_RST, ip_hdr_len);
} else {
if (flags & TH_SYN)
seg_len++;
tcp_xmit_early_reset("no tcp, reset/ack", sock_id,
mp, 0, seg_seq + seg_len,
TH_RST | TH_ACK, ip_hdr_len);
}
}
/* Non overlapping byte exchanger */
static void
tcp_xchg(uchar_t *a, uchar_t *b, int len)
{
uchar_t uch;
while (len-- > 0) {
uch = a[len];
a[len] = b[len];
b[len] = uch;
}
}
/*
* Generate a reset based on an inbound packet for which there is no active
* tcp state that we can find.
*/
static void
tcp_xmit_early_reset(char *str, int sock_id, mblk_t *mp, uint32_t seq,
uint32_t ack, int ctl, uint_t ip_hdr_len)
{
struct ip *iph = NULL;
ushort_t len;
tcph_t *tcph;
int i;
ipaddr_t addr;
mblk_t *new_mp;
if (str != NULL) {
dprintf("tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
"flags 0x%x\n", str, seq, ack, ctl);
}
/*
* We skip reversing source route here.
* (for now we replace all IP options with EOL)
*/
iph = (struct ip *)mp->b_rptr;
for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
mp->b_rptr[i] = IPOPT_EOL;
/*
* Make sure that src address is not a limited broadcast
* address. Not all broadcast address checking for the
* src address is possible, since we don't know the
* netmask of the src addr.
* No check for destination address is done, since
* IP will not pass up a packet with a broadcast dest address
* to TCP.
*/
if (iph->ip_src.s_addr == INADDR_ANY ||
iph->ip_src.s_addr == INADDR_BROADCAST) {
freemsg(mp);
return;
}
tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
if (tcph->th_flags[0] & TH_RST) {
freemsg(mp);
return;
}
/*
* Now copy the original header to a new buffer. The reason
* for doing this is that we need to put extra room before
* the header for the MAC layer address. The original mblk
* does not have this extra head room.
*/
len = ip_hdr_len + sizeof (tcph_t);
if ((new_mp = allocb(len + tcp_wroff_xtra, 0)) == NULL) {
freemsg(mp);
return;
}
new_mp->b_rptr += tcp_wroff_xtra;
bcopy(mp->b_rptr, new_mp->b_rptr, len);
new_mp->b_wptr = new_mp->b_rptr + len;
freemsg(mp);
mp = new_mp;
iph = (struct ip *)mp->b_rptr;
tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
tcph->th_offset_and_rsrvd[0] = (5 << 4);
tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
U32_TO_BE32(ack, tcph->th_ack);
U32_TO_BE32(seq, tcph->th_seq);
U16_TO_BE16(0, tcph->th_win);
bzero(tcph->th_sum, sizeof (int16_t));
tcph->th_flags[0] = (uint8_t)ctl;
if (ctl & TH_RST) {
BUMP_MIB(tcp_mib.tcpOutRsts);
BUMP_MIB(tcp_mib.tcpOutControl);
}
iph->ip_len = htons(len);
/* Swap addresses */
addr = iph->ip_src.s_addr;
iph->ip_src = iph->ip_dst;
iph->ip_dst.s_addr = addr;
iph->ip_id = 0;
iph->ip_ttl = 0;
tcp_set_cksum(mp);
iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_xmit_early_reset", mp);
(void) ipv4_tcp_output(sock_id, mp);
freemsg(mp);
}
static void
tcp_set_cksum(mblk_t *mp)
{
struct ip *iph;
tcpha_t *tcph;
int len;
iph = (struct ip *)mp->b_rptr;
tcph = (tcpha_t *)(iph + 1);
len = ntohs(iph->ip_len);
/*
* Calculate the TCP checksum. Need to include the psuedo header,
* which is similar to the real IP header starting at the TTL field.
*/
iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
tcph->tha_sum = 0;
tcph->tha_sum = tcp_cksum((uint16_t *)&(iph->ip_ttl),
len - IP_SIMPLE_HDR_LENGTH + 12);
iph->ip_sum = 0;
}
static uint16_t
tcp_cksum(uint16_t *buf, uint32_t len)
{
/*
* Compute Internet Checksum for "count" bytes
* beginning at location "addr".
*/
int32_t sum = 0;
while (len > 1) {
/* This is the inner loop */
sum += *buf++;
len -= 2;
}
/* Add left-over byte, if any */
if (len > 0)
sum += *(unsigned char *)buf * 256;
/* Fold 32-bit sum to 16 bits */
while (sum >> 16)
sum = (sum & 0xffff) + (sum >> 16);
return ((uint16_t)~sum);
}
/*
* Type three generator adapted from the random() function in 4.4 BSD:
*/
/*
* Copyright (c) 1983, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Type 3 -- x**31 + x**3 + 1 */
#define DEG_3 31
#define SEP_3 3
/* Protected by tcp_random_lock */
static int tcp_randtbl[DEG_3 + 1];
static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
static int *tcp_random_rptr = &tcp_randtbl[1];
static int *tcp_random_state = &tcp_randtbl[1];
static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
static void
tcp_random_init(void)
{
int i;
uint32_t hrt;
uint32_t wallclock;
uint32_t result;
/*
*
* XXX We don't have high resolution time in standalone... The
* following is just some approximation on the comment below.
*
* Use high-res timer and current time for seed. Gethrtime() returns
* a longlong, which may contain resolution down to nanoseconds.
* The current time will either be a 32-bit or a 64-bit quantity.
* XOR the two together in a 64-bit result variable.
* Convert the result to a 32-bit value by multiplying the high-order
* 32-bits by the low-order 32-bits.
*
* XXX We don't have gethrtime() in prom and the wallclock....
*/
hrt = prom_gettime();
wallclock = (uint32_t)time(NULL);
result = wallclock ^ hrt;
tcp_random_state[0] = result;
for (i = 1; i < DEG_3; i++)
tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
+ 12345;
tcp_random_fptr = &tcp_random_state[SEP_3];
tcp_random_rptr = &tcp_random_state[0];
for (i = 0; i < 10 * DEG_3; i++)
(void) tcp_random();
}
/*
* tcp_random: Return a random number in the range [1 - (128K + 1)].
* This range is selected to be approximately centered on TCP_ISS / 2,
* and easy to compute. We get this value by generating a 32-bit random
* number, selecting out the high-order 17 bits, and then adding one so
* that we never return zero.
*/
static int
tcp_random(void)
{
int i;
*tcp_random_fptr += *tcp_random_rptr;
/*
* The high-order bits are more random than the low-order bits,
* so we select out the high-order 17 bits and add one so that
* we never return zero.
*/
i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
if (++tcp_random_fptr >= tcp_random_end_ptr) {
tcp_random_fptr = tcp_random_state;
++tcp_random_rptr;
} else if (++tcp_random_rptr >= tcp_random_end_ptr)
tcp_random_rptr = tcp_random_state;
return (i);
}
/*
* Generate ISS, taking into account NDD changes may happen halfway through.
* (If the iss is not zero, set it.)
*/
static void
tcp_iss_init(tcp_t *tcp)
{
tcp_iss_incr_extra += (ISS_INCR >> 1);
tcp->tcp_iss = tcp_iss_incr_extra;
tcp->tcp_iss += (prom_gettime() >> ISS_NSEC_SHT) + tcp_random();
tcp->tcp_valid_bits = TCP_ISS_VALID;
tcp->tcp_fss = tcp->tcp_iss - 1;
tcp->tcp_suna = tcp->tcp_iss;
tcp->tcp_snxt = tcp->tcp_iss + 1;
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
tcp->tcp_csuna = tcp->tcp_snxt;
}
/*
* Diagnostic routine used to return a string associated with the tcp state.
* Note that if the caller does not supply a buffer, it will use an internal
* static string. This means that if multiple threads call this function at
* the same time, output can be corrupted... Note also that this function
* does not check the size of the supplied buffer. The caller has to make
* sure that it is big enough.
*/
static char *
tcp_display(tcp_t *tcp, char *sup_buf, char format)
{
char buf1[30];
static char priv_buf[INET_ADDRSTRLEN * 2 + 80];
char *buf;
char *cp;
char local_addrbuf[INET_ADDRSTRLEN];
char remote_addrbuf[INET_ADDRSTRLEN];
struct in_addr addr;
if (sup_buf != NULL)
buf = sup_buf;
else
buf = priv_buf;
if (tcp == NULL)
return ("NULL_TCP");
switch (tcp->tcp_state) {
case TCPS_CLOSED:
cp = "TCP_CLOSED";
break;
case TCPS_IDLE:
cp = "TCP_IDLE";
break;
case TCPS_BOUND:
cp = "TCP_BOUND";
break;
case TCPS_LISTEN:
cp = "TCP_LISTEN";
break;
case TCPS_SYN_SENT:
cp = "TCP_SYN_SENT";
break;
case TCPS_SYN_RCVD:
cp = "TCP_SYN_RCVD";
break;
case TCPS_ESTABLISHED:
cp = "TCP_ESTABLISHED";
break;
case TCPS_CLOSE_WAIT:
cp = "TCP_CLOSE_WAIT";
break;
case TCPS_FIN_WAIT_1:
cp = "TCP_FIN_WAIT_1";
break;
case TCPS_CLOSING:
cp = "TCP_CLOSING";
break;
case TCPS_LAST_ACK:
cp = "TCP_LAST_ACK";
break;
case TCPS_FIN_WAIT_2:
cp = "TCP_FIN_WAIT_2";
break;
case TCPS_TIME_WAIT:
cp = "TCP_TIME_WAIT";
break;
default:
(void) sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
cp = buf1;
break;
}
switch (format) {
case DISP_ADDR_AND_PORT:
/*
* Note that we use the remote address in the tcp_b
* structure. This means that it will print out
* the real destination address, not the next hop's
* address if source routing is used.
*/
addr.s_addr = tcp->tcp_bound_source;
bcopy(inet_ntoa(addr), local_addrbuf, sizeof (local_addrbuf));
addr.s_addr = tcp->tcp_remote;
bcopy(inet_ntoa(addr), remote_addrbuf, sizeof (remote_addrbuf));
(void) snprintf(buf, sizeof (priv_buf), "[%s.%u, %s.%u] %s",
local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
ntohs(tcp->tcp_fport), cp);
break;
case DISP_PORT_ONLY:
default:
(void) snprintf(buf, sizeof (priv_buf), "[%u, %u] %s",
ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
break;
}
return (buf);
}
/*
* Add a new piece to the tcp reassembly queue. If the gap at the beginning
* is filled, return as much as we can. The message passed in may be
* multi-part, chained using b_cont. "start" is the starting sequence
* number for this piece.
*/
static mblk_t *
tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
{
uint32_t end;
mblk_t *mp1;
mblk_t *mp2;
mblk_t *next_mp;
uint32_t u1;
/* Walk through all the new pieces. */
do {
assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
(uintptr_t)INT_MAX);
end = start + (int)(mp->b_wptr - mp->b_rptr);
next_mp = mp->b_cont;
if (start == end) {
/* Empty. Blast it. */
freeb(mp);
continue;
}
mp->b_cont = NULL;
TCP_REASS_SET_SEQ(mp, start);
TCP_REASS_SET_END(mp, end);
mp1 = tcp->tcp_reass_tail;
if (!mp1) {
tcp->tcp_reass_tail = mp;
tcp->tcp_reass_head = mp;
BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
continue;
}
/* New stuff completely beyond tail? */
if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
/* Link it on end. */
mp1->b_cont = mp;
tcp->tcp_reass_tail = mp;
BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
continue;
}
mp1 = tcp->tcp_reass_head;
u1 = TCP_REASS_SEQ(mp1);
/* New stuff at the front? */
if (SEQ_LT(start, u1)) {
/* Yes... Check for overlap. */
mp->b_cont = mp1;
tcp->tcp_reass_head = mp;
tcp_reass_elim_overlap(tcp, mp);
continue;
}
/*
* The new piece fits somewhere between the head and tail.
* We find our slot, where mp1 precedes us and mp2 trails.
*/
for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
u1 = TCP_REASS_SEQ(mp2);
if (SEQ_LEQ(start, u1))
break;
}
/* Link ourselves in */
mp->b_cont = mp2;
mp1->b_cont = mp;
/* Trim overlap with following mblk(s) first */
tcp_reass_elim_overlap(tcp, mp);
/* Trim overlap with preceding mblk */
tcp_reass_elim_overlap(tcp, mp1);
} while (start = end, mp = next_mp);
mp1 = tcp->tcp_reass_head;
/* Anything ready to go? */
if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
return (NULL);
/* Eat what we can off the queue */
for (;;) {
mp = mp1->b_cont;
end = TCP_REASS_END(mp1);
TCP_REASS_SET_SEQ(mp1, 0);
TCP_REASS_SET_END(mp1, 0);
if (!mp) {
tcp->tcp_reass_tail = NULL;
break;
}
if (end != TCP_REASS_SEQ(mp)) {
mp1->b_cont = NULL;
break;
}
mp1 = mp;
}
mp1 = tcp->tcp_reass_head;
tcp->tcp_reass_head = mp;
return (mp1);
}
/* Eliminate any overlap that mp may have over later mblks */
static void
tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
{
uint32_t end;
mblk_t *mp1;
uint32_t u1;
end = TCP_REASS_END(mp);
while ((mp1 = mp->b_cont) != NULL) {
u1 = TCP_REASS_SEQ(mp1);
if (!SEQ_GT(end, u1))
break;
if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
mp->b_wptr -= end - u1;
TCP_REASS_SET_END(mp, u1);
BUMP_MIB(tcp_mib.tcpInDataPartDupSegs);
UPDATE_MIB(tcp_mib.tcpInDataPartDupBytes, end - u1);
break;
}
mp->b_cont = mp1->b_cont;
freeb(mp1);
BUMP_MIB(tcp_mib.tcpInDataDupSegs);
UPDATE_MIB(tcp_mib.tcpInDataDupBytes, end - u1);
}
if (!mp1)
tcp->tcp_reass_tail = mp;
}
/*
* Remove a connection from the list of detached TIME_WAIT connections.
*/
static void
tcp_time_wait_remove(tcp_t *tcp)
{
if (tcp->tcp_time_wait_expire == 0) {
assert(tcp->tcp_time_wait_next == NULL);
assert(tcp->tcp_time_wait_prev == NULL);
return;
}
assert(tcp->tcp_state == TCPS_TIME_WAIT);
if (tcp == tcp_time_wait_head) {
assert(tcp->tcp_time_wait_prev == NULL);
tcp_time_wait_head = tcp->tcp_time_wait_next;
if (tcp_time_wait_head != NULL) {
tcp_time_wait_head->tcp_time_wait_prev = NULL;
} else {
tcp_time_wait_tail = NULL;
}
} else if (tcp == tcp_time_wait_tail) {
assert(tcp != tcp_time_wait_head);
assert(tcp->tcp_time_wait_next == NULL);
tcp_time_wait_tail = tcp->tcp_time_wait_prev;
assert(tcp_time_wait_tail != NULL);
tcp_time_wait_tail->tcp_time_wait_next = NULL;
} else {
assert(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
assert(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
tcp->tcp_time_wait_prev->tcp_time_wait_next =
tcp->tcp_time_wait_next;
tcp->tcp_time_wait_next->tcp_time_wait_prev =
tcp->tcp_time_wait_prev;
}
tcp->tcp_time_wait_next = NULL;
tcp->tcp_time_wait_prev = NULL;
tcp->tcp_time_wait_expire = 0;
}
/*
* Add a connection to the list of detached TIME_WAIT connections
* and set its time to expire ...
*/
static void
tcp_time_wait_append(tcp_t *tcp)
{
tcp->tcp_time_wait_expire = prom_gettime() + tcp_time_wait_interval;
if (tcp->tcp_time_wait_expire == 0)
tcp->tcp_time_wait_expire = 1;
if (tcp_time_wait_head == NULL) {
assert(tcp_time_wait_tail == NULL);
tcp_time_wait_head = tcp;
} else {
assert(tcp_time_wait_tail != NULL);
assert(tcp_time_wait_tail->tcp_state == TCPS_TIME_WAIT);
tcp_time_wait_tail->tcp_time_wait_next = tcp;
tcp->tcp_time_wait_prev = tcp_time_wait_tail;
}
tcp_time_wait_tail = tcp;
/* for ndd stats about compression */
tcp_cum_timewait++;
}
/*
* Periodic qtimeout routine run on the default queue.
* Performs 2 functions.
* 1. Does TIME_WAIT compression on all recently added tcps. List
* traversal is done backwards from the tail.
* 2. Blows away all tcps whose TIME_WAIT has expired. List traversal
* is done forwards from the head.
*/
void
tcp_time_wait_collector(void)
{
tcp_t *tcp;
uint32_t now;
/*
* In order to reap time waits reliably, we should use a
* source of time that is not adjustable by the user
*/
now = prom_gettime();
while ((tcp = tcp_time_wait_head) != NULL) {
/*
* Compare times using modular arithmetic, since
* lbolt can wrapover.
*/
if ((int32_t)(now - tcp->tcp_time_wait_expire) < 0) {
break;
}
/*
* Note that the err must be 0 as there is no socket
* associated with this TCP...
*/
(void) tcp_clean_death(-1, tcp, 0);
}
/* Schedule next run time. */
tcp_time_wait_runtime = prom_gettime() + 10000;
}
void
tcp_time_wait_report(void)
{
tcp_t *tcp;
printf("Current time %u\n", prom_gettime());
for (tcp = tcp_time_wait_head; tcp != NULL;
tcp = tcp->tcp_time_wait_next) {
printf("%s expires at %u\n", tcp_display(tcp, NULL,
DISP_ADDR_AND_PORT), tcp->tcp_time_wait_expire);
}
}
/*
* Send up all messages queued on tcp_rcv_list.
* Have to set tcp_co_norm since we use putnext.
*/
static void
tcp_rcv_drain(int sock_id, tcp_t *tcp)
{
mblk_t *mp;
struct inetgram *in_gram;
mblk_t *in_mp;
int len;
/* Don't drain if the app has not finished reading all the data. */
if (sockets[sock_id].so_rcvbuf <= 0)
return;
/* We might have come here just to updated the rwnd */
if (tcp->tcp_rcv_list == NULL)
goto win_update;
if ((in_gram = (struct inetgram *)bkmem_zalloc(
sizeof (struct inetgram))) == NULL) {
return;
}
if ((in_mp = allocb(tcp->tcp_rcv_cnt, 0)) == NULL) {
bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
return;
}
in_gram->igm_level = APP_LVL;
in_gram->igm_mp = in_mp;
in_gram->igm_id = 0;
while ((mp = tcp->tcp_rcv_list) != NULL) {
tcp->tcp_rcv_list = mp->b_cont;
len = mp->b_wptr - mp->b_rptr;
bcopy(mp->b_rptr, in_mp->b_wptr, len);
in_mp->b_wptr += len;
freeb(mp);
}
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
add_grams(&sockets[sock_id].inq, in_gram);
/* This means that so_rcvbuf can be less than 0. */
sockets[sock_id].so_rcvbuf -= in_mp->b_wptr - in_mp->b_rptr;
win_update:
/*
* Increase the receive window to max. But we need to do receiver
* SWS avoidance. This means that we need to check the increase of
* of receive window is at least 1 MSS.
*/
if (sockets[sock_id].so_rcvbuf > 0 &&
(tcp->tcp_rwnd_max - tcp->tcp_rwnd >= tcp->tcp_mss)) {
tcp->tcp_rwnd = tcp->tcp_rwnd_max;
U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
tcp->tcp_tcph->th_win);
}
}
/*
* Wrapper for recvfrom to call
*/
void
tcp_rcv_drain_sock(int sock_id)
{
tcp_t *tcp;
if ((tcp = sockets[sock_id].pcb) == NULL)
return;
tcp_rcv_drain(sock_id, tcp);
}
/*
* If the inq == NULL and the tcp_rcv_list != NULL, we have data that
* recvfrom could read. Place a magic message in the inq to let recvfrom
* know that it needs to call tcp_rcv_drain_sock to pullup the data.
*/
static void
tcp_drain_needed(int sock_id, tcp_t *tcp)
{
struct inetgram *in_gram;
#ifdef DEBUG
printf("tcp_drain_needed: inq %x, tcp_rcv_list %x\n",
sockets[sock_id].inq, tcp->tcp_rcv_list);
#endif
if ((sockets[sock_id].inq != NULL) ||
(tcp->tcp_rcv_list == NULL))
return;
if ((in_gram = (struct inetgram *)bkmem_zalloc(
sizeof (struct inetgram))) == NULL)
return;
in_gram->igm_level = APP_LVL;
in_gram->igm_mp = NULL;
in_gram->igm_id = TCP_CALLB_MAGIC_ID;
add_grams(&sockets[sock_id].inq, in_gram);
}
/*
* Queue data on tcp_rcv_list which is a b_next chain.
* Each element of the chain is a b_cont chain.
*
* M_DATA messages are added to the current element.
* Other messages are added as new (b_next) elements.
*/
static void
tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
{
assert(seg_len == msgdsize(mp));
if (tcp->tcp_rcv_list == NULL) {
tcp->tcp_rcv_list = mp;
} else {
tcp->tcp_rcv_last_tail->b_cont = mp;
}
while (mp->b_cont)
mp = mp->b_cont;
tcp->tcp_rcv_last_tail = mp;
tcp->tcp_rcv_cnt += seg_len;
tcp->tcp_rwnd -= seg_len;
#ifdef DEBUG
printf("tcp_rcv_enqueue rwnd %d\n", tcp->tcp_rwnd);
#endif
U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
}
/* The minimum of smoothed mean deviation in RTO calculation. */
#define TCP_SD_MIN 400
/*
* Set RTO for this connection. The formula is from Jacobson and Karels'
* "Congestion Avoidance and Control" in SIGCOMM '88. The variable names
* are the same as those in Appendix A.2 of that paper.
*
* m = new measurement
* sa = smoothed RTT average (8 * average estimates).
* sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
*/
static void
tcp_set_rto(tcp_t *tcp, int32_t rtt)
{
int32_t m = rtt;
uint32_t sa = tcp->tcp_rtt_sa;
uint32_t sv = tcp->tcp_rtt_sd;
uint32_t rto;
BUMP_MIB(tcp_mib.tcpRttUpdate);
tcp->tcp_rtt_update++;
/* tcp_rtt_sa is not 0 means this is a new sample. */
if (sa != 0) {
/*
* Update average estimator:
* new rtt = 7/8 old rtt + 1/8 Error
*/
/* m is now Error in estimate. */
m -= sa >> 3;
if ((int32_t)(sa += m) <= 0) {
/*
* Don't allow the smoothed average to be negative.
* We use 0 to denote reinitialization of the
* variables.
*/
sa = 1;
}
/*
* Update deviation estimator:
* new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
*/
if (m < 0)
m = -m;
m -= sv >> 2;
sv += m;
} else {
/*
* This follows BSD's implementation. So the reinitialized
* RTO is 3 * m. We cannot go less than 2 because if the
* link is bandwidth dominated, doubling the window size
* during slow start means doubling the RTT. We want to be
* more conservative when we reinitialize our estimates. 3
* is just a convenient number.
*/
sa = m << 3;
sv = m << 1;
}
if (sv < TCP_SD_MIN) {
/*
* We do not know that if sa captures the delay ACK
* effect as in a long train of segments, a receiver
* does not delay its ACKs. So set the minimum of sv
* to be TCP_SD_MIN, which is default to 400 ms, twice
* of BSD DATO. That means the minimum of mean
* deviation is 100 ms.
*
*/
sv = TCP_SD_MIN;
}
tcp->tcp_rtt_sa = sa;
tcp->tcp_rtt_sd = sv;
/*
* RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
*
* Add tcp_rexmit_interval extra in case of extreme environment
* where the algorithm fails to work. The default value of
* tcp_rexmit_interval_extra should be 0.
*
* As we use a finer grained clock than BSD and update
* RTO for every ACKs, add in another .25 of RTT to the
* deviation of RTO to accomodate burstiness of 1/4 of
* window size.
*/
rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
if (rto > tcp_rexmit_interval_max) {
tcp->tcp_rto = tcp_rexmit_interval_max;
} else if (rto < tcp_rexmit_interval_min) {
tcp->tcp_rto = tcp_rexmit_interval_min;
} else {
tcp->tcp_rto = rto;
}
/* Now, we can reset tcp_timer_backoff to use the new RTO... */
tcp->tcp_timer_backoff = 0;
}
/*
* Initiate closedown sequence on an active connection.
* Return value zero for OK return, non-zero for error return.
*/
static int
tcp_xmit_end(tcp_t *tcp, int sock_id)
{
mblk_t *mp;
if (tcp->tcp_state < TCPS_SYN_RCVD ||
tcp->tcp_state > TCPS_CLOSE_WAIT) {
/*
* Invalid state, only states TCPS_SYN_RCVD,
* TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
*/
return (-1);
}
tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
tcp->tcp_valid_bits |= TCP_FSS_VALID;
/*
* If there is nothing more unsent, send the FIN now.
* Otherwise, it will go out with the last segment.
*/
if (tcp->tcp_unsent == 0) {
mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
if (mp != NULL) {
/* Dump the packet when debugging. */
TCP_DUMP_PACKET("tcp_xmit_end", mp);
(void) ipv4_tcp_output(sock_id, mp);
freeb(mp);
} else {
/*
* Couldn't allocate msg. Pretend we got it out.
* Wait for rexmit timeout.
*/
tcp->tcp_snxt = tcp->tcp_fss + 1;
TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
}
/*
* If needed, update tcp_rexmit_snxt as tcp_snxt is
* changed.
*/
if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
}
} else {
tcp_wput_data(tcp, NULL, B_FALSE);
}
return (0);
}
int
tcp_opt_set(tcp_t *tcp, int level, int option, const void *optval,
socklen_t optlen)
{
switch (level) {
case SOL_SOCKET: {
switch (option) {
case SO_RCVBUF:
if (optlen == sizeof (int)) {
int val = *(int *)optval;
if (val > tcp_max_buf) {
errno = ENOBUFS;
break;
}
/* Silently ignore zero */
if (val != 0) {
val = MSS_ROUNDUP(val, tcp->tcp_mss);
(void) tcp_rwnd_set(tcp, val);
}
} else {
errno = EINVAL;
}
break;
case SO_SNDBUF:
if (optlen == sizeof (int)) {
tcp->tcp_xmit_hiwater = *(int *)optval;
if (tcp->tcp_xmit_hiwater > tcp_max_buf)
tcp->tcp_xmit_hiwater = tcp_max_buf;
} else {
errno = EINVAL;
}
break;
case SO_LINGER:
if (optlen == sizeof (struct linger)) {
struct linger *lgr = (struct linger *)optval;
if (lgr->l_onoff) {
tcp->tcp_linger = 1;
tcp->tcp_lingertime = lgr->l_linger;
} else {
tcp->tcp_linger = 0;
tcp->tcp_lingertime = 0;
}
} else {
errno = EINVAL;
}
break;
default:
errno = ENOPROTOOPT;
break;
}
break;
} /* case SOL_SOCKET */
case IPPROTO_TCP: {
switch (option) {
default:
errno = ENOPROTOOPT;
break;
}
break;
} /* case IPPROTO_TCP */
case IPPROTO_IP: {
switch (option) {
default:
errno = ENOPROTOOPT;
break;
}
break;
} /* case IPPROTO_IP */
default:
errno = ENOPROTOOPT;
break;
} /* switch (level) */
if (errno != 0)
return (-1);
else
return (0);
}