kmsEncrypt.c revision 4f14b0f29aa144cc03efdde5508ae126ae197acf
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <string.h>
#include <strings.h>
#include <security/cryptoki.h>
#include "kmsGlobal.h"
#include "kmsCrypt.h"
static CK_RV
kms_encrypt_init(kms_session_t *session_p, CK_MECHANISM_PTR pMechanism,
kms_object_t *key_p)
{
CK_RV rv = CKR_OK;
kms_aes_ctx_t *kms_aes_ctx;
if (pMechanism->mechanism != CKM_AES_CBC &&
pMechanism->mechanism != CKM_AES_CBC_PAD)
return (CKR_MECHANISM_INVALID);
if (key_p->key_type != CKK_AES) {
return (CKR_KEY_TYPE_INCONSISTENT);
}
if ((pMechanism->pParameter == NULL) ||
(pMechanism->ulParameterLen != AES_BLOCK_LEN)) {
return (CKR_MECHANISM_PARAM_INVALID);
}
rv = kms_aes_crypt_init_common(session_p, pMechanism,
key_p, B_TRUE);
if (rv != CKR_OK)
return (rv);
(void) pthread_mutex_lock(&session_p->session_mutex);
kms_aes_ctx = (kms_aes_ctx_t *)session_p->encrypt.context;
/* Copy Initialization Vector (IV) into the context. */
(void) memcpy(kms_aes_ctx->ivec, pMechanism->pParameter,
AES_BLOCK_LEN);
/* Allocate a context for AES cipher-block chaining. */
kms_aes_ctx->aes_cbc = (void *)aes_cbc_ctx_init(
kms_aes_ctx->key_sched, kms_aes_ctx->keysched_len,
kms_aes_ctx->ivec);
if (kms_aes_ctx->aes_cbc == NULL) {
bzero(kms_aes_ctx->key_sched,
kms_aes_ctx->keysched_len);
free(kms_aes_ctx->key_sched);
free(session_p->encrypt.context);
session_p->encrypt.context = NULL;
rv = CKR_HOST_MEMORY;
}
(void) pthread_mutex_unlock(&session_p->session_mutex);
return (rv);
}
void
kms_crypt_cleanup(kms_session_t *session_p, boolean_t encrypt,
boolean_t lock_held)
{
kms_active_op_t *active_op;
boolean_t lock_true = B_TRUE;
kms_aes_ctx_t *kms_aes_ctx;
aes_ctx_t *aes_ctx;
if (!lock_held)
(void) pthread_mutex_lock(&session_p->session_mutex);
active_op = (encrypt) ? &(session_p->encrypt) : &(session_p->decrypt);
if (active_op->mech.mechanism != CKM_AES_CBC &&
active_op->mech.mechanism != CKM_AES_CBC_PAD)
return;
kms_aes_ctx = (kms_aes_ctx_t *)active_op->context;
if (kms_aes_ctx != NULL) {
aes_ctx = (aes_ctx_t *)kms_aes_ctx->aes_cbc;
if (aes_ctx != NULL) {
bzero(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len);
free(kms_aes_ctx->aes_cbc);
bzero(kms_aes_ctx->key_sched,
kms_aes_ctx->keysched_len);
free(kms_aes_ctx->key_sched);
}
}
if (active_op->context != NULL) {
free(active_op->context);
active_op->context = NULL;
}
active_op->flags = 0;
if (!lock_held)
REFRELE(session_p, lock_true);
}
CK_RV
C_EncryptInit(CK_SESSION_HANDLE hSession, CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey)
{
CK_RV rv;
kms_session_t *session_p;
kms_object_t *key_p;
boolean_t lock_held = B_FALSE;
if (!kms_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pMechanism == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
if (pMechanism->mechanism != CKM_AES_CBC &&
pMechanism->mechanism != CKM_AES_CBC_PAD)
return (CKR_MECHANISM_INVALID);
/* Obtain the object pointer. */
HANDLE2OBJECT(hKey, key_p, rv);
if (rv != CKR_OK)
goto clean_exit;
/* Check to see if key object allows for encryption. */
if (!(key_p->bool_attr_mask & ENCRYPT_BOOL_ON)) {
rv = CKR_KEY_FUNCTION_NOT_PERMITTED;
goto clean_exit1;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
lock_held = B_TRUE;
/* Check to see if encrypt operation is already active. */
if (session_p->encrypt.flags & CRYPTO_OPERATION_ACTIVE) {
/* free the memory to avoid memory leak */
kms_crypt_cleanup(session_p, B_TRUE, lock_held);
}
/*
* This active flag will remain ON until application calls either
* C_Encrypt or C_EncryptFinal to actually obtain the final piece
* of ciphertext.
*/
session_p->encrypt.flags = CRYPTO_OPERATION_ACTIVE;
(void) pthread_mutex_unlock(&session_p->session_mutex);
lock_held = B_FALSE;
rv = kms_encrypt_init(session_p, pMechanism, key_p);
if (rv != CKR_OK) {
(void) pthread_mutex_lock(&session_p->session_mutex);
session_p->encrypt.flags &= ~CRYPTO_OPERATION_ACTIVE;
lock_held = B_TRUE;
}
clean_exit1:
OBJ_REFRELE(key_p);
clean_exit:
REFRELE(session_p, lock_held);
return (rv);
}
CK_RV
C_Encrypt(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pData, CK_ULONG ulDataLen,
CK_BYTE_PTR pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen)
{
CK_RV rv;
kms_session_t *session_p;
boolean_t lock_held = B_FALSE;
if (!kms_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
/*
* Only check if input buffer is null. How to handle zero input
* length depends on the mechanism in use. For secret key mechanisms,
* unpadded ones yield zero length output, but padded ones always
* result in greater than zero length output.
*/
if (pData == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
/*
* Only check if pulEncryptedDataLen is NULL.
* No need to check if pEncryptedData is NULL because
* application might just ask for the length of buffer to hold
* the ciphertext.
*/
if (pulEncryptedDataLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
lock_held = B_TRUE;
/* Application must call C_EncryptInit before calling C_Encrypt. */
if (!(session_p->encrypt.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
/*
* C_Encrypt must be called without intervening C_EncryptUpdate
* calls.
*/
if (session_p->encrypt.flags & CRYPTO_OPERATION_UPDATE) {
/*
* C_Encrypt can not be used to terminate a multi-part
* operation, so we'll leave the active encrypt operation
* flag on and let the application continue with the
* encrypt update operation.
*/
REFRELE(session_p, lock_held);
return (CKR_FUNCTION_FAILED);
}
(void) pthread_mutex_unlock(&session_p->session_mutex);
lock_held = B_FALSE;
rv = kms_aes_encrypt_common(session_p, pData, ulDataLen, pEncryptedData,
pulEncryptedDataLen, 0);
if ((rv == CKR_BUFFER_TOO_SMALL) ||
(pEncryptedData == NULL && rv == CKR_OK)) {
/*
* We will not terminate the active encrypt operation flag,
* when the application-supplied buffer is too small, or
* the application asks for the length of buffer to hold
* the ciphertext.
*/
REFRELE(session_p, lock_held);
return (rv);
}
clean_exit:
/* Clear context, free key, and release session counter */
kms_crypt_cleanup(session_p, B_TRUE, B_FALSE);
return (rv);
}
CK_RV
C_EncryptUpdate(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pPart,
CK_ULONG ulPartLen, CK_BYTE_PTR pEncryptedPart,
CK_ULONG_PTR pulEncryptedPartLen)
{
CK_RV rv;
kms_session_t *session_p;
boolean_t lock_held = B_FALSE;
if (!kms_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
/*
* Only check if input buffer is null. How to handle zero input
* length depends on the mechanism in use. For secret key mechanisms,
* unpadded ones yeild zero length output, but padded ones always
* result in greater than zero length output.
*/
if (pPart == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
/*
* Only check if pulEncryptedPartLen is NULL.
* No need to check if pEncryptedPart is NULL because
* application might just ask for the length of buffer to hold
* the ciphertext.
*/
if (pulEncryptedPartLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
lock_held = B_TRUE;
/*
* Application must call C_EncryptInit before calling
* C_EncryptUpdate.
*/
if (!(session_p->encrypt.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
session_p->encrypt.flags |= CRYPTO_OPERATION_UPDATE;
(void) pthread_mutex_unlock(&session_p->session_mutex);
lock_held = B_FALSE;
rv = kms_aes_encrypt_common(session_p, pPart, ulPartLen,
pEncryptedPart, pulEncryptedPartLen, B_TRUE);
/*
* If CKR_OK or CKR_BUFFER_TOO_SMALL, don't terminate the
* current encryption operation.
*/
if ((rv == CKR_OK) || (rv == CKR_BUFFER_TOO_SMALL)) {
REFRELE(session_p, lock_held);
return (rv);
}
clean_exit:
/*
* After an error occurred, terminate the current encrypt
* operation by resetting the active and update flags.
*/
kms_crypt_cleanup(session_p, B_TRUE, lock_held);
return (rv);
}
CK_RV
C_EncryptFinal(CK_SESSION_HANDLE hSession, CK_BYTE_PTR pLastEncryptedPart,
CK_ULONG_PTR pulLastEncryptedPartLen)
{
CK_RV rv;
kms_session_t *session_p;
boolean_t lock_held = B_FALSE;
if (!kms_initialized)
return (CKR_CRYPTOKI_NOT_INITIALIZED);
/* Obtain the session pointer. */
rv = handle2session(hSession, &session_p);
if (rv != CKR_OK)
return (rv);
if (pulLastEncryptedPartLen == NULL) {
rv = CKR_ARGUMENTS_BAD;
goto clean_exit;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
lock_held = B_TRUE;
/*
* Application must call C_EncryptInit before calling
* C_EncryptFinal.
*/
if (!(session_p->encrypt.flags & CRYPTO_OPERATION_ACTIVE)) {
REFRELE(session_p, lock_held);
return (CKR_OPERATION_NOT_INITIALIZED);
}
(void) pthread_mutex_unlock(&session_p->session_mutex);
lock_held = B_FALSE;
rv = kms_aes_encrypt_final(session_p, pLastEncryptedPart,
pulLastEncryptedPartLen);
if ((rv == CKR_BUFFER_TOO_SMALL) ||
(pLastEncryptedPart == NULL && rv == CKR_OK)) {
/*
* We will not terminate the active encrypt operation flag,
* when the application-supplied buffer is too small, or
* the application asks for the length of buffer to hold
* the ciphertext.
*/
REFRELE(session_p, lock_held);
return (rv);
}
/* Terminates the active encrypt operation. */
(void) pthread_mutex_lock(&session_p->session_mutex);
session_p->encrypt.flags = 0;
lock_held = B_TRUE;
REFRELE(session_p, lock_held);
return (rv);
clean_exit:
/* Terminates the active encrypt operation. */
kms_crypt_cleanup(session_p, B_TRUE, lock_held);
return (rv);
}