xdr_rec.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* xdr_rec.c, Implements (TCP/IP based) XDR streams with a "record marking"
* layer above connection oriented transport layer (e.g. tcp) (for rpc's use).
*
*
* These routines interface XDRSTREAMS to a (tcp/ip) connection transport.
* There is a record marking layer between the xdr stream
* and the (tcp) cv transport level. A record is composed on one or more
* record fragments. A record fragment is a thirty-two bit header followed
* by n bytes of data, where n is contained in the header. The header
* is represented as a htonl(ulong_t). The order bit encodes
* whether or not the fragment is the last fragment of the record
* (1 => fragment is last, 0 => more fragments to follow.
* The other 31 bits encode the byte length of the fragment.
*/
#include <stdio.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <sys/types.h>
#include <rpc/trace.h>
#include <syslog.h>
#include <memory.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include "rac_private.h"
/*
* A record is composed of one or more record fragments.
* A record fragment is a four-byte header followed by zero to
* 2**32-1 bytes. The header is treated as a long unsigned and is
* encode/decoded to the network via htonl/ntohl. The low order 31 bits
* are a byte count of the fragment. The highest order bit is a boolean:
* 1 => this fragment is the last fragment of the record,
* 0 => this fragment is followed by more fragment(s).
*
* The fragment/record machinery is not general; it is constructed to
* meet the needs of xdr and rpc based on tcp.
*/
#define LAST_FRAG (((uint32_t)1 << 31))
typedef struct rec_strm {
caddr_t tcp_handle;
caddr_t the_buffer;
/*
* out-going bits
*/
int (*writeit)(void *, caddr_t, int);
caddr_t out_base; /* output buffer (points to frag header) */
caddr_t out_finger; /* next output position */
caddr_t out_boundry; /* data cannot up to this address */
uint32_t *frag_header; /* beginning of current fragment */
bool_t frag_sent; /* true if buffer sent in middle of record */
/*
* in-coming bits
*/
int (*readit)(void *, caddr_t, int);
uint_t in_size; /* fixed size of the input buffer */
caddr_t in_base;
caddr_t in_finger; /* location of next byte to be had */
caddr_t in_boundry; /* can read up to this location */
int fbtbc; /* fragment bytes to be consumed */
bool_t last_frag;
uint_t sendsize;
uint_t recvsize;
} RECSTREAM;
static uint_t fix_buf_size(uint_t);
static struct xdr_ops *xdrrec_ops(void);
static bool_t xdrrec_getbytes(XDR *, caddr_t, int);
static bool_t flush_out(RECSTREAM *, bool_t);
static bool_t get_input_bytes(RECSTREAM *, caddr_t, int);
static bool_t set_input_fragment(RECSTREAM *);
static bool_t skip_input_bytes(RECSTREAM *, int);
/*
* Create an xdr handle for xdrrec
* xdrrec_create fills in xdrs. Sendsize and recvsize are
* send and recv buffer sizes (0 => use default).
* vc_handle is an opaque handle that is passed as the first parameter to
* the procedures readit and writeit. Readit and writeit are read and
* write respectively. They are like the system calls expect that they
* take an opaque handle rather than an fd.
*/
static const char mem_err_msg_rec[] = "xdrrec_create: out of memory";
void
xdrrec_create(XDR *xdrs, const uint_t sendsize, const uint_t recvsize,
const caddr_t tcp_handle,
int (*readit)(void *, caddr_t, int), int (*writeit)(void *, caddr_t, int))
{
uint_t ssize, rsize;
register RECSTREAM *rstrm =
(RECSTREAM *)malloc(sizeof (RECSTREAM));
trace3(TR_xdrrec_create, 0, sendsize, recvsize);
if (rstrm == NULL) {
(void) syslog(LOG_ERR, mem_err_msg_rec);
/*
* XXX: This is bad. Should rework xdrrec_create to
* return a handle, and in this case return NULL
*/
trace1(TR_xdrrec_create, 1);
return;
}
/*
* adjust sizes and allocate buffer quad byte aligned
*/
rstrm->sendsize = ssize = fix_buf_size(sendsize);
rstrm->recvsize = rsize = fix_buf_size(recvsize);
rstrm->the_buffer = (caddr_t)malloc(ssize + rsize + BYTES_PER_XDR_UNIT);
if (rstrm->the_buffer == NULL) {
(void) syslog(LOG_ERR, mem_err_msg_rec);
(void) free((char *)rstrm);
trace1(TR_xdrrec_create, 1);
return;
}
for (rstrm->out_base = rstrm->the_buffer;
(uintptr_t)rstrm->out_base % BYTES_PER_XDR_UNIT != 0;
rstrm->out_base++);
rstrm->in_base = rstrm->out_base + ssize;
/*
* now the rest ...
*/
xdrs->x_ops = xdrrec_ops();
xdrs->x_private = (caddr_t)rstrm;
rstrm->tcp_handle = tcp_handle;
rstrm->readit = readit;
rstrm->writeit = writeit;
rstrm->out_finger = rstrm->out_boundry = rstrm->out_base;
rstrm->frag_header = (uint32_t *)rstrm->out_base;
rstrm->out_finger += sizeof (uint_t);
rstrm->out_boundry += ssize;
rstrm->frag_sent = FALSE;
rstrm->in_size = rsize;
rstrm->in_boundry = rstrm->in_base;
rstrm->in_finger = (rstrm->in_boundry += rsize);
rstrm->fbtbc = 0;
rstrm->last_frag = TRUE;
trace1(TR_xdrrec_create, 1);
}
/*
* The routines defined below are the xdr ops which will go into the
* xdr handle filled in by xdrrec_create.
*/
static bool_t
xdrrec_getint32(XDR *xdrs, int32_t *ip)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register int32_t *buflp = (int32_t *)(rstrm->in_finger);
int32_t mylong;
trace1(TR_xdrrec_getint32, 0);
/* first try the inline, fast case */
if ((rstrm->fbtbc >= sizeof (int32_t)) &&
(((intptr_t)rstrm->in_boundry - (intptr_t)buflp) >=
sizeof (int32_t))) {
*ip = (int32_t)ntohl((uint32_t)(*buflp));
rstrm->fbtbc -= (int)sizeof (int32_t);
rstrm->in_finger += sizeof (int32_t);
} else {
if (! xdrrec_getbytes(xdrs, (caddr_t)&mylong,
sizeof (int32_t))) {
trace1(TR_xdrrec_getint32_t, 1);
return (FALSE);
}
*ip = (int32_t)ntohl((uint32_t)mylong);
}
trace1(TR_xdrrec_getint32, 1);
return (TRUE);
}
static bool_t
xdrrec_putint32(XDR *xdrs, int32_t *ip)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register int32_t *dest_lp = ((int32_t *)(rstrm->out_finger));
trace1(TR_xdrrec_putint32, 0);
if ((rstrm->out_finger += sizeof (int32_t)) > rstrm->out_boundry) {
/*
* this case should almost never happen so the code is
* inefficient
*/
rstrm->out_finger -= sizeof (int32_t);
rstrm->frag_sent = TRUE;
if (! flush_out(rstrm, FALSE)) {
trace1(TR_xdrrec_putint32, 1);
return (FALSE);
}
dest_lp = ((int32_t *)(rstrm->out_finger));
rstrm->out_finger += sizeof (int32_t);
}
*dest_lp = (int32_t)htonl((uint32_t)(*ip));
trace1(TR_xdrrec_putint32, 1);
return (TRUE);
}
static bool_t
xdrrec_getlong(XDR *xdrs, long *lp)
{
int32_t i;
bool_t ret;
ret = xdrrec_getint32(xdrs, &i);
*lp = (long)i;
return (ret);
}
static bool_t
xdrrec_putlong(XDR *xdrs, long *lp)
{
int32_t i;
#if defined(_LP64)
if ((*lp > INT32_MAX) || (*lp < INT32_MIN)) {
return (FALSE);
}
#endif
i = (int32_t)*lp;
return (xdrrec_putint32(xdrs, &i));
}
static bool_t /* must manage buffers, fragments, and records */
xdrrec_getbytes(XDR *xdrs, caddr_t addr, int len)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register int current;
trace2(TR_xdrrec_getbytes, 0, len);
while (len > 0) {
current = rstrm->fbtbc;
if (current == 0) {
if (rstrm->last_frag) {
trace1(TR_xdrrec_getbytes, 1);
return (FALSE);
}
if (! set_input_fragment(rstrm)) {
trace1(TR_xdrrec_getbytes, 1);
return (FALSE);
}
continue;
}
current = (len < current) ? len : current;
if (! get_input_bytes(rstrm, addr, current)) {
trace1(TR_xdrrec_getbytes, 1);
return (FALSE);
}
addr += current;
rstrm->fbtbc -= current;
len -= current;
}
trace1(TR_xdrrec_getbytes, 1);
return (TRUE);
}
static bool_t
xdrrec_putbytes(XDR *xdrs, caddr_t addr, int len)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register int current;
trace2(TR_xdrrec_putbytes, 0, len);
while (len > 0) {
current = (uintptr_t)rstrm->out_boundry -
(uintptr_t)rstrm->out_finger;
current = (len < current) ? len : current;
(void) memcpy(rstrm->out_finger, addr, current);
rstrm->out_finger += current;
addr += current;
len -= current;
if (rstrm->out_finger == rstrm->out_boundry) {
rstrm->frag_sent = TRUE;
if (! flush_out(rstrm, FALSE)) {
trace1(TR_xdrrec_putbytes, 1);
return (FALSE);
}
}
}
trace1(TR_xdrrec_putbytes, 1);
return (TRUE);
}
/*
* This is just like the ops vector x_getbytes(), except that
* instead of returning success or failure on getting a certain number
* of bytes, it behaves much more like the read() system call against a
* pipe -- it returns up to the number of bytes requested and a return of
* zero indicates end-of-record. A -1 means something very bad happened.
*/
uint_t /* must manage buffers, fragments, and records */
xdrrec_readbytes(XDR *xdrs, caddr_t addr, uint_t l)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register int current, len;
len = l;
while (len > 0) {
current = rstrm->fbtbc;
if (current == 0) {
if (rstrm->last_frag)
return (l - len);
if (! set_input_fragment(rstrm))
return ((uint_t)-1);
continue;
}
current = (len < current) ? len : current;
if (! get_input_bytes(rstrm, addr, current))
return ((uint_t)-1);
addr += current;
rstrm->fbtbc -= current;
len -= current;
}
return (l - len);
}
static uint_t
xdrrec_getpos(XDR *xdrs)
{
register RECSTREAM *rstrm = (RECSTREAM *)xdrs->x_private;
register int pos;
trace1(TR_xdrrec_getpos, 0);
pos = lseek((int)(intptr_t)rstrm->tcp_handle, 0, 1);
if (pos != -1)
switch (xdrs->x_op) {
case XDR_ENCODE:
pos += rstrm->out_finger - rstrm->out_base;
break;
case XDR_DECODE:
pos -= rstrm->in_boundry - rstrm->in_finger;
break;
default:
pos = (uint_t)-1;
break;
}
trace1(TR_xdrrec_getpos, 1);
return ((uint_t)pos);
}
static bool_t
xdrrec_setpos(XDR *xdrs, uint_t pos)
{
register RECSTREAM *rstrm = (RECSTREAM *)xdrs->x_private;
uint_t currpos = xdrrec_getpos(xdrs);
int delta = currpos - pos;
caddr_t newpos;
trace2(TR_xdrrec_setpos, 0, pos);
if ((int)currpos != -1)
switch (xdrs->x_op) {
case XDR_ENCODE:
newpos = rstrm->out_finger - delta;
if ((newpos > (caddr_t)(rstrm->frag_header)) &&
(newpos < rstrm->out_boundry)) {
rstrm->out_finger = newpos;
trace1(TR_xdrrec_setpos, 1);
return (TRUE);
}
break;
case XDR_DECODE:
newpos = rstrm->in_finger - delta;
if ((delta < (int)(rstrm->fbtbc)) &&
(newpos <= rstrm->in_boundry) &&
(newpos >= rstrm->in_base)) {
rstrm->in_finger = newpos;
rstrm->fbtbc -= delta;
trace1(TR_xdrrec_setpos, 1);
return (TRUE);
}
break;
}
trace1(TR_xdrrec_setpos, 1);
return (FALSE);
}
static rpc_inline_t *
xdrrec_inline(XDR *xdrs, int len)
{
register RECSTREAM *rstrm = (RECSTREAM *)xdrs->x_private;
rpc_inline_t *buf = NULL;
trace2(TR_xdrrec_inline, 0, len);
switch (xdrs->x_op) {
case XDR_ENCODE:
if ((rstrm->out_finger + len) <= rstrm->out_boundry) {
buf = (rpc_inline_t *)rstrm->out_finger;
rstrm->out_finger += len;
}
break;
case XDR_DECODE:
if ((len <= rstrm->fbtbc) &&
((rstrm->in_finger + len) <= rstrm->in_boundry)) {
buf = (rpc_inline_t *)rstrm->in_finger;
rstrm->fbtbc -= len;
rstrm->in_finger += len;
}
break;
}
trace1(TR_xdrrec_inline, 1);
return (buf);
}
static void
xdrrec_destroy(XDR *xdrs)
{
register RECSTREAM *rstrm = (RECSTREAM *)xdrs->x_private;
trace1(TR_xdrrec_destroy, 0);
free(rstrm->the_buffer);
free((caddr_t)rstrm);
trace1(TR_xdrrec_destroy, 1);
}
/*
* Exported routines to manage xdr records
*/
/*
* Before reading (deserializing) from the stream, one should always call
* this procedure to guarantee proper record alignment.
*/
bool_t
xdrrec_skiprecord(XDR *xdrs)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
trace1(TR_xdrrec_skiprecord, 0);
while (rstrm->fbtbc > 0 || (! rstrm->last_frag)) {
if (! skip_input_bytes(rstrm, rstrm->fbtbc)) {
trace1(TR_xdrrec_skiprecord, 1);
return (FALSE);
}
rstrm->fbtbc = 0;
if ((! rstrm->last_frag) && (! set_input_fragment(rstrm))) {
trace1(TR_xdrrec_skiprecord, 1);
return (FALSE);
}
}
rstrm->last_frag = FALSE;
trace1(TR_xdrrec_skiprecord, 1);
return (TRUE);
}
/*
* Look ahead fuction.
* Returns TRUE iff there is no more input in the buffer
* after consuming the rest of the current record.
*/
bool_t
xdrrec_eof(XDR *xdrs)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
trace1(TR_xdrrec_eof, 0);
while (rstrm->fbtbc > 0 || (! rstrm->last_frag)) {
if (! skip_input_bytes(rstrm, rstrm->fbtbc)) {
trace1(TR_xdrrec_eof, 1);
return (TRUE);
}
rstrm->fbtbc = 0;
if ((! rstrm->last_frag) && (! set_input_fragment(rstrm))) {
trace1(TR_xdrrec_eof, 1);
return (TRUE);
}
}
if (rstrm->in_finger == rstrm->in_boundry) {
trace1(TR_xdrrec_eof, 1);
return (TRUE);
}
trace1(TR_xdrrec_eof, 1);
return (FALSE);
}
/*
* The client must tell the package when an end-of-record has occurred.
* The second parameters tells whether the record should be flushed to the
* (output) tcp stream. (This let's the package support batched or
* pipelined procedure calls.) TRUE => immmediate flush to tcp connection.
*/
bool_t
xdrrec_endofrecord(XDR *xdrs, bool_t sendnow)
{
register RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
register uint32_t len; /* fragment length */
bool_t dummy;
trace1(TR_xdrrec_endofrecord, 0);
if (sendnow || rstrm->frag_sent ||
((uintptr_t)rstrm->out_finger + sizeof (uint_t) >=
(uintptr_t)rstrm->out_boundry)) {
rstrm->frag_sent = FALSE;
dummy = flush_out(rstrm, TRUE);
trace1(TR_xdrrec_endofrecord, 1);
return (dummy);
}
len = (uintptr_t)(rstrm->out_finger) - (uintptr_t)(rstrm->frag_header) -
sizeof (uint_t);
*(rstrm->frag_header) = htonl((uint32_t)len | LAST_FRAG);
rstrm->frag_header = (uint32_t *)rstrm->out_finger;
rstrm->out_finger += sizeof (uint_t);
trace1(TR_xdrrec_endofrecord, 1);
return (TRUE);
}
void
xdrrec_resetinput(XDR *xdrs)
{
RECSTREAM *rstrm = (RECSTREAM *)(xdrs->x_private);
rstrm->last_frag = TRUE;
}
/*
* Internal useful routines
*/
static bool_t
flush_out(RECSTREAM *rstrm, bool_t eor)
{
register uint32_t eormask = (eor == TRUE) ? LAST_FRAG : 0;
register uint_t len = (uintptr_t)(rstrm->out_finger) -
(uintptr_t)(rstrm->frag_header) - sizeof (uint_t);
trace1(TR_flush_out, 0);
*(rstrm->frag_header) = htonl(len | eormask);
len = (uintptr_t)(rstrm->out_finger) - (uintptr_t)(rstrm->out_base);
if ((*(rstrm->writeit))(rstrm->tcp_handle, rstrm->out_base, (int)len)
!= (int)len) {
trace1(TR_flush_out, 1);
return (FALSE);
}
rstrm->frag_header = (uint32_t *)rstrm->out_base;
rstrm->out_finger = (caddr_t)rstrm->out_base + sizeof (uint_t);
trace1(TR_flush_out, 1);
return (TRUE);
}
/* knows nothing about records! Only about input buffers */
static bool_t
fill_input_buf(RECSTREAM *rstrm)
{
register caddr_t where;
uint_t i;
register int len;
trace1(TR_fill_input_buf, 0);
where = rstrm->in_base;
i = (uintptr_t)rstrm->in_boundry % BYTES_PER_XDR_UNIT;
where += i;
len = rstrm->in_size - i;
if ((len = (*(rstrm->readit))(rstrm->tcp_handle, where, len)) == -1) {
trace1(TR_fill_input_buf, 1);
return (FALSE);
}
rstrm->in_finger = where;
where += len;
rstrm->in_boundry = where;
trace1(TR_fill_input_buf, 1);
return (TRUE);
}
/* knows nothing about records! Only about input buffers */
static bool_t
get_input_bytes(RECSTREAM *rstrm, caddr_t addr, int len)
{
register int current;
trace2(TR_get_input_bytes, 0, len);
while (len > 0) {
current = (intptr_t)rstrm->in_boundry -
(intptr_t)rstrm->in_finger;
if (current == 0) {
if (! fill_input_buf(rstrm)) {
trace1(TR_get_input_bytes, 1);
return (FALSE);
}
continue;
}
current = (len < current) ? len : current;
(void) memcpy(addr, rstrm->in_finger, current);
rstrm->in_finger += current;
addr += current;
len -= current;
}
trace1(TR_get_input_bytes, 1);
return (TRUE);
}
/* next two bytes of the input stream are treated as a header */
static bool_t
set_input_fragment(RECSTREAM *rstrm)
{
uint_t header;
trace1(TR_set_input_fragment, 0);
if (! get_input_bytes(rstrm, (caddr_t)&header, (int)sizeof (header))) {
trace1(TR_set_input_fragment, 1);
return (FALSE);
}
rstrm->last_frag = ((header & LAST_FRAG) == 0) ? FALSE : TRUE;
rstrm->fbtbc = header & (~LAST_FRAG);
trace1(TR_set_input_fragment, 1);
return (TRUE);
}
/* consumes input bytes; knows nothing about records! */
static bool_t
skip_input_bytes(RECSTREAM *rstrm, int cnt)
{
register int current;
trace2(TR_skip_input_bytes, 0, cnt);
while (cnt > 0) {
current = (intptr_t)rstrm->in_boundry -
(intptr_t)rstrm->in_finger;
if (current == 0) {
if (! fill_input_buf(rstrm)) {
trace1(TR_skip_input_bytes, 1);
return (FALSE);
}
continue;
}
current = (cnt < current) ? cnt : current;
rstrm->in_finger += current;
cnt -= current;
}
trace1(TR_skip_input_bytes, 1);
return (TRUE);
}
static uint_t
fix_buf_size(uint_t s)
{
static uint_t dummy1;
trace2(TR_fix_buf_size, 0, s);
if (s < 100)
s = 4000;
dummy1 = RNDUP(s);
trace1(TR_fix_buf_size, 1);
return (dummy1);
}
static struct xdr_ops *
xdrrec_ops()
{
static struct xdr_ops ops;
trace1(TR_xdrrec_ops, 0);
if (ops.x_getlong == NULL) {
ops.x_getlong = xdrrec_getlong;
ops.x_putlong = xdrrec_putlong;
ops.x_getbytes = xdrrec_getbytes;
ops.x_putbytes = xdrrec_putbytes;
ops.x_getpostn = xdrrec_getpos;
ops.x_setpostn = xdrrec_setpos;
ops.x_inline = xdrrec_inline;
ops.x_destroy = xdrrec_destroy;
#if defined(_LP64)
ops.x_getint32 = xdrrec_getint32;
ops.x_putint32 = xdrrec_putint32;
#endif
}
trace1(TR_xdrrec_ops, 1);
return (&ops);
}