snowbird.c revision 03831d35f7499c87d51205817c93e9a8d42c4bae
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This program prints the diagnostics of Sanibel system. It
* also prints other miscellaneous information about watchdog, temperature
* of CPU sensor, firmware versions of SMC and, micro controller role
* etc. The basic sources of output is PICL, and SMC.
*/
/* includes */
#include <stdio.h>
#include <strings.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
#include <dirent.h>
#include <sys/param.h>
#include <picl.h>
#include <libintl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/systeminfo.h>
#include <sys/openpromio.h>
#include <fcntl.h>
#include <smc_if.h>
#include <stropts.h>
#include <alloca.h>
#include <errno.h>
#include <poll.h>
#include <stdlib.h>
#include <unistd.h>
#include <kstat.h>
#include <sys/utsname.h>
#include <stddef.h>
#include <pdevinfo.h>
#include <display_sun4u.h>
#include <libprtdiag.h>
#include <smclib.h>
#include <smc_commands.h>
#include <picldefs.h>
/* #defines for the PICL library API usage and local static variables */
#define PD_CPCI_SLOT_TYPE "cpci"
#define PD_PCI_SLOT_TYPE "pci"
#define PD_PRESENT 1
#define PD_BLANK " "
#define PD_ENABLED 1
#define PD_DISABLED 0
#define SNOWBIRD "SUNW,Netra-CP2300"
#define CHASSIS_NODE_NAME "chassis"
/* #defines for the SMC and IPMI commands */
#define POLL_TIMEOUT 10000
#define DEFAULT_SEQN 0xff
/* SMC driver */
#define PD_SMC_DRV_PATH "/dev/ctsmc"
/* Constants */
#define OBP_PROP_BANNER_NAME "banner-name"
#define OBP_PROP_CLOCK_FREQ "clock-frequency"
/* #defines for local usage */
#define PD_SUCCESS 0
#define PD_FAILURE 1
#define PD_INTERNAL_FAILURE 2
#define PD_ERROR -1
/* static global variables */
static int pd_print_option;
static uint8_t pd_smc_glbl_enabl_rsp[2];
static boolean_t pd_hdr_prt = B_TRUE;
static int pd_smc_fd = 0;
/* function declarations used in this program */
static uint32_t pd_check_for_snowbird();
static uint32_t pd_prt_snowbird_diag();
static uint32_t pd_check_cpu_health();
static uint32_t pd_check_tty_debug_mode();
static uint32_t pd_query_SMC_firmware_version();
static uint32_t pd_check_slots();
int32_t pd_prt_slot_info(picl_nodehdl_t, void *);
int do_prominfo(int syserrlog, char *pname, int log_flag, int prt_flag);
static uint32_t pd_query_watchdog_state();
int pd_check_wd_state(picl_nodehdl_t, void *);
static uint32_t pd_print_fruinfo_hdr();
static uint32_t pd_print_device_info(int);
static uint32_t pd_get_role_information();
static uint32_t pd_get_message_flags();
static uint32_t pd_get_reset_mode();
static uint32_t pd_get_sensor_reading();
static uint32_t pd_get_sensor_threshold();
static uint32_t pd_prt_cpci_condition(picl_nodehdl_t nodeh);
static uint32_t pd_check_location_parent(picl_nodehdl_t nodeh);
static uint64_t
picldiag_get_uint_propval(picl_nodehdl_t modh, char *prop_name, int *ret);
static int picldiag_get_clock_freq(picl_nodehdl_t modh, uint32_t *freq);
static int display_system_clock(picl_nodehdl_t plafh);
/*
* return the value of the uint prop
*/
static uint64_t
picldiag_get_uint_propval(picl_nodehdl_t modh, char *prop_name, int *ret)
{
int err;
picl_prophdl_t proph;
picl_propinfo_t pinfo;
uint8_t uint8v;
uint16_t uint16v;
uint32_t uint32v;
uint64_t uint64v;
err = picl_get_propinfo_by_name(modh, prop_name, &pinfo, &proph);
if (err != PICL_SUCCESS) {
*ret = err;
return (0);
}
/*
* If it is not an int or uint prop, return failure
*/
if ((pinfo.type != PICL_PTYPE_INT) &&
(pinfo.type != PICL_PTYPE_UNSIGNED_INT)) {
*ret = PICL_FAILURE;
return (0);
}
/* uint prop */
switch (pinfo.size) {
case sizeof (uint8_t):
err = picl_get_propval(proph, &uint8v, sizeof (uint8v));
*ret = err;
return (uint8v);
case sizeof (uint16_t):
err = picl_get_propval(proph, &uint16v, sizeof (uint16v));
*ret = err;
return (uint16v);
case sizeof (uint32_t):
err = picl_get_propval(proph, &uint32v, sizeof (uint32v));
*ret = err;
return (uint32v);
case sizeof (uint64_t):
err = picl_get_propval(proph, &uint64v, sizeof (uint64v));
*ret = err;
return (uint64v);
default: /* not supported size */
*ret = PICL_FAILURE;
return (0);
}
}
/*
* get the clock frequency
*/
static int
picldiag_get_clock_freq(picl_nodehdl_t modh, uint32_t *freq)
{
#define ROUND_TO_MHZ(x) (((x) + 500000)/ 1000000)
int err;
uint64_t clk_freq;
clk_freq = picldiag_get_uint_propval(modh, OBP_PROP_CLOCK_FREQ, &err);
if (err != PICL_SUCCESS)
return (err);
*freq = ROUND_TO_MHZ(clk_freq);
return (PICL_SUCCESS);
}
/*
* display the clock frequency
*/
static int
display_system_clock(picl_nodehdl_t plafh)
{
uint32_t system_clk;
int err;
err = picldiag_get_clock_freq(plafh, &system_clk);
if (err != PICL_SUCCESS)
return (err);
log_printf(dgettext(TEXT_DOMAIN,
"System clock frequency: %d MHZ\n"), system_clk);
return (PICL_SUCCESS);
}
/*
* get the value by the property name of the string prop
* Caller must free the outbuf
*/
static int
picldiag_get_string_propval(picl_nodehdl_t modh, char *prop_name, char **outbuf)
{
int err;
picl_prophdl_t proph;
picl_propinfo_t pinfo;
char *prop_value;
err = picl_get_propinfo_by_name(modh, prop_name, &pinfo, &proph);
if (err != PICL_SUCCESS)
return (err);
/*
* If it is not a string prop, return NULL
*/
if (pinfo.type != PICL_PTYPE_CHARSTRING)
return (PICL_FAILURE);
prop_value = malloc(pinfo.size);
if (prop_value == NULL)
return (PICL_FAILURE);
err = picl_get_propval(proph, prop_value, pinfo.size);
if (err != PICL_SUCCESS) {
free(prop_value);
return (err);
}
*outbuf = prop_value;
return (PICL_SUCCESS);
}
/*
* display platform banner
*/
static int
display_platform_banner(picl_nodehdl_t plafh)
{
char *platform;
char *banner_name;
int err;
/*
* get PICL_PROP_MACHINE and PICL_PROP_BANNER_NAME
*/
log_printf(dgettext(TEXT_DOMAIN,
"System Configuration: Sun Microsystems "), 0);
err = picldiag_get_string_propval(plafh, PICL_PROP_MACHINE,
&platform);
if (err != PICL_SUCCESS)
return (err);
log_printf(" %s", platform, 0);
free(platform);
err = picldiag_get_string_propval(plafh, OBP_PROP_BANNER_NAME,
&banner_name);
if (err != PICL_SUCCESS)
return (err);
log_printf(" %s", banner_name, 0);
free(banner_name);
log_printf("\n", 0);
return (PICL_SUCCESS);
}
/*
* search children to get the node by the nodename
*/
static int
picldiag_get_node_by_name(picl_nodehdl_t rooth, char *name,
picl_nodehdl_t *nodeh)
{
picl_nodehdl_t childh;
int err;
char *nodename;
nodename = alloca(strlen(name) + 1);
if (nodename == NULL)
return (PICL_FAILURE);
err = picl_get_propval_by_name(rooth, PICL_PROP_CHILD, &childh,
sizeof (picl_nodehdl_t));
while (err == PICL_SUCCESS) {
err = picl_get_propval_by_name(childh, PICL_PROP_NAME,
nodename, (strlen(name) + 1));
if (err != PICL_SUCCESS) {
err = picl_get_propval_by_name(childh, PICL_PROP_PEER,
&childh, sizeof (picl_nodehdl_t));
continue;
}
if (strcmp(nodename, name) == 0) {
*nodeh = childh;
return (PICL_SUCCESS);
}
err = picl_get_propval_by_name(childh, PICL_PROP_PEER,
&childh, sizeof (picl_nodehdl_t));
}
return (err);
}
/*
* This routine is invoked when prtdiag starts execution. It prints
* system configuration, memory size, initializes PICL and acts as
* a driver routine for prtdiag output for Snowbird.
*/
/* ARGSUSED */
int
do_prominfo(int syserrlog, char *pname, int log_flag, int prt_flag)
{
struct mem_total memory_total; /* total memory in system */
struct grp_info grps;
uint8_t status = PD_SUCCESS;
picl_nodehdl_t rooth;
picl_nodehdl_t plafh;
struct system_kstat_data *kstats = NULL;
Sys_tree *tree = NULL;
sys_clk = -1;
pd_print_option = syserrlog;
if ((status = picl_initialize()) != PICL_SUCCESS) {
log_printf("prtdiag: failed to initialize the PICL\n", 0);
exit(1);
}
if ((status = picl_get_root(&rooth)) != PICL_SUCCESS) {
log_printf("prtdiag: failed\n", 0);
exit(1);
}
status = picldiag_get_node_by_name(rooth, PICL_NODE_PLATFORM, &plafh);
if (status != PICL_SUCCESS)
return (status);
if (!log_flag) {
status = display_platform_banner(plafh);
if (status != PICL_SUCCESS)
return (status);
status = display_system_clock(plafh);
if (status != PICL_SUCCESS)
return (status);
/* display the memory Size */
display_memorysize(tree, kstats, &grps, &memory_total);
}
if ((pd_smc_fd = open(PD_SMC_DRV_PATH, O_RDWR)) == -1)
return (PD_FAILURE);
if ((status = pd_check_for_snowbird()) != PD_SUCCESS)
return (status);
if ((status = pd_prt_snowbird_diag()) != PD_SUCCESS)
return (status);
(void) close(pd_smc_fd);
if (picl_shutdown() != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
return (PD_SUCCESS);
}
/*
* This routine prints out the platform name.
*/
static uint32_t
pd_check_for_snowbird()
{
char si_platform[30];
if (sysinfo(SI_PLATFORM, si_platform, sizeof (si_platform)) == -1) {
return (PD_FAILURE);
}
/* is it a Snowbird? */
if (strcmp(si_platform, SNOWBIRD) != 0)
return (PD_FAILURE);
log_printf("platform Type : %s\n", si_platform, 0);
return (PD_SUCCESS);
}
/*
* Driver routine for satellite specific output. This is also used by
* host driver routine as all satellite information is printed by host.
* It also prints some host specific information for formatting purposes
*/
static uint32_t
pd_prt_snowbird_diag()
{
uint8_t status = PD_SUCCESS;
if ((status = pd_check_cpu_health()) != PD_SUCCESS) {
return (status);
}
if (pd_print_option) {
log_printf(
"\n %11s Other Miscellaneous Information \n",
PD_BLANK, 0);
log_printf(
"%12s ------------------------------- \n",
PD_BLANK, 0);
if ((status = pd_get_role_information()) != PD_SUCCESS) {
return (status);
}
if (pd_smc_glbl_enabl_rsp[1] & 0x10) {
log_printf(
"IPMI Response Notification\t\tEnabled\n", 0);
} else {
log_printf(
"IPMI Response Notification\t\tDisabled\n", 0);
}
if ((status = pd_query_SMC_firmware_version()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_check_tty_debug_mode()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_get_reset_mode()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_get_message_flags()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_query_watchdog_state()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_get_sensor_reading()) != PD_SUCCESS) {
return (status);
}
if ((status = pd_get_sensor_threshold()) != PD_SUCCESS) {
return (status);
}
}
return (status);
}
/*
* This routine prints the mode in which SMC is running. It uses the
* response from SMC global enables to determine the mode
*/
static uint32_t
pd_check_tty_debug_mode()
{
if (pd_smc_glbl_enabl_rsp[1] & 0x20) {
log_printf("SMC verbose mode\t\t\tON\n", 0);
} else {
log_printf("SMC verbose mode\t\t\tOFF\n", 0);
}
return (PD_SUCCESS);
}
/* This routine prints SMC f/w version */
static uint32_t
pd_query_SMC_firmware_version()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
uint8_t ver, rev, bldrev;
smc_init_smc_msg(&req_pkt, SMC_QUERY_FIRMWARE_VERSION,
DEFAULT_SEQN, 0);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
ver = (rsp_pkt.data[0] & 0xf0) >> 4;
rev = rsp_pkt.data[0] & 0x0f;
bldrev = rsp_pkt.data[2] & 0x3f;
log_printf("SMC f/w version is\t\t\t%d.%d.%d\n", ver, rev, bldrev, 0);
return (PD_SUCCESS);
}
/*
* This routine checks CPU's health by using SMC self test results command
* It acts as driver routine for printing cPCI slot information
*/
static uint32_t
pd_check_cpu_health()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
uint8_t dev_id = 0x1f;
#ifdef DEBUG
uint8_t i2c_chk = 0x40;
#endif
uint8_t mem_test = 0x20;
smc_init_smc_msg(&req_pkt, SMC_GET_SMC_SELF_TEST_RESULT,
DEFAULT_SEQN, 0);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
dev_id = rsp_pkt.data[0] & dev_id;
#ifdef DEBUG
if (rsp_pkt.data[0] & i2c_chk) {
pd_print_device_info(dev_id);
}
#endif
if (rsp_pkt.data[0] & mem_test) {
pd_print_device_info(dev_id);
}
return (pd_check_slots());
}
/*
* This routine decodes error message for CPU failures and prints details
* of the failure
*/
static uint32_t
pd_print_device_info(int dev_id)
{
switch (dev_id) {
case 1:
log_printf("Mux Philip 9540\n", 0);
break;
case 2:
log_printf("cpu temp max1617\n", 0);
break;
case 3:
log_printf("pmc temp max 1617\n", 0);
break;
case 4:
log_printf("MB HS temp max 1617\n", 0);
break;
case 5:
log_printf("MB mem temp max1617\n", 0);
break;
case 6:
log_printf("MB gpio Philip8574\n", 0);
break;
case 7:
log_printf("MB Fru ID ID i2c eep\n", 0);
break;
case 8:
log_printf("MB enet ID ID i2d eep\n", 0);
break;
case 9:
log_printf("MB gpio Philip8574A\n", 0);
break;
case 10:
log_printf("SDRAM mod1 temp max1617\n", 0);
break;
case 11:
log_printf("SDRAM mod ID ID i2c eep\n", 0);
break;
case 12:
log_printf("SDRAM mod2 temp max1617\n", 0);
break;
case 13:
log_printf("SDRAM mod ID ID i2c eep\n", 0);
break;
case 14:
log_printf("Power mod temp ds1721\n", 0);
break;
case 15:
log_printf("Power mod gpio Philip 8574\n", 0);
break;
case 16:
log_printf("Power mod ID eep ST M24C01\n", 0);
break;
case 17:
log_printf("SMC ID i2c eep\n", 0);
break;
default:
log_printf("device id unknown\n", 0);
break;
}
return (PD_SUCCESS);
}
/*
* This routine walks PICL tree by "Location" class and calls prt_slot_info
* routine to print the slot information
*/
/*ARGSUSED*/
static uint32_t
pd_check_slots()
{
picl_nodehdl_t nodeh;
char *c_args = NULL;
if (picl_get_root(&nodeh) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
if (picl_walk_tree_by_class(nodeh, PICL_CLASS_LOCATION,
(void *)c_args, pd_prt_slot_info) != PICL_SUCCESS) {
return (PD_INTERNAL_FAILURE);
}
return (PD_SUCCESS);
}
/*ARGSUSED*/
int32_t
pd_prt_slot_info(picl_nodehdl_t nodeh, void *c_args)
{
char *valbuf;
char label_txt[30];
int unit_no = -1, ctr = 0;
picl_nodehdl_t childh;
picl_propinfo_t propinfo;
picl_prophdl_t proph;
/* if not immediate child of "chassis" node, ignore it */
if (pd_check_location_parent(nodeh) != PD_SUCCESS)
return (PD_INTERNAL_FAILURE);
/* get the label on the location */
if (picl_get_prop_by_name(nodeh, PICL_PROP_LABEL,
&proph) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
if (picl_get_propinfo(proph, &propinfo) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
valbuf = (char *) malloc(sizeof (char) * (propinfo.size));
if (valbuf == NULL)
return (PD_INTERNAL_FAILURE);
if (picl_get_propval(proph, (void *)valbuf, propinfo.size)
!= PICL_SUCCESS) {
free(valbuf);
return (PD_INTERNAL_FAILURE);
}
while (valbuf[ctr] != ' ' && valbuf[ctr] != NULL) {
label_txt[ctr] = valbuf[ctr];
++ctr;
}
label_txt[ctr++] = '\0';
if (valbuf[ctr] != NULL) {
unit_no = atoi(valbuf+ctr);
}
free(valbuf);
/* get the slot type for the location */
if (picl_get_prop_by_name(nodeh, PICL_PROP_SLOT_TYPE,
&proph) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
if (picl_get_propinfo(proph, & propinfo) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
valbuf = (char *) malloc(sizeof (char) * (propinfo.size));
if (valbuf == NULL)
return (PD_INTERNAL_FAILURE);
if (picl_get_propval(proph, (void *)valbuf,
propinfo.size) != PICL_SUCCESS) {
free(valbuf);
return (PD_INTERNAL_FAILURE);
}
if ((strcmp(valbuf, PD_CPCI_SLOT_TYPE) == 0) ||
(strcmp(valbuf, PD_PCI_SLOT_TYPE) == 0)) {
(void) pd_print_fruinfo_hdr();
log_printf("\n%s ", label_txt, 0);
/* For Snowbird no unit number is present on the label */
unit_no = 1;
log_printf(" %d Yes cPSB IO Slot\n", unit_no, 0);
if (picl_get_propval_by_name(nodeh, PICL_PROP_CHILD,
&childh, sizeof (childh)) == PICL_SUCCESS) {
pd_prt_cpci_condition(childh);
}
/* For Snowbird auto configuration is always enabled */
log_printf("%29s Properties:\n", PD_BLANK, 0);
log_printf("%31s auto-config = enabled\n", PD_BLANK, 0);
}
free(valbuf);
return (PD_SUCCESS);
}
static uint32_t
pd_print_fruinfo_hdr()
{
log_printf(
"\n %19s FRU Information \n",
PD_BLANK, 0);
log_printf(
"%11s ------------------------------------------------\n",
PD_BLANK, 0);
log_printf(dgettext(TEXT_DOMAIN,
"FRU FRU FRU Miscellaneous\n"), 0);
log_printf(dgettext(TEXT_DOMAIN,
"Type Unit# Present Information\n"), 0);
log_printf("---- ----- -------", 0);
log_printf(" --------------------------------\n", 0);
return (PD_SUCCESS);
}
static uint32_t
pd_check_location_parent(picl_nodehdl_t nodeh)
{
picl_nodehdl_t parenth;
char *prop_name;
if (picl_get_propval_by_name(nodeh, PICL_PROP_PARENT,
&parenth, sizeof (parenth)) != PICL_SUCCESS) {
return (PD_FAILURE);
}
prop_name = (char *) malloc(sizeof (char) * PICL_PROPNAMELEN_MAX);
if (prop_name == NULL) {
return (PD_FAILURE);
}
if (picl_get_propval_by_name(parenth, PICL_PROP_NAME, (void *)prop_name,
PICL_PROPNAMELEN_MAX) != PICL_SUCCESS) {
free(prop_name);
return (PD_FAILURE);
}
if (strcmp(prop_name, CHASSIS_NODE_NAME) == 0) {
free(prop_name);
return (PD_SUCCESS);
} else {
free(prop_name);
return (PD_FAILURE);
}
}
/*ARGSUSED*/
static uint32_t
pd_query_watchdog_state()
{
picl_nodehdl_t nodehandle;
char *c_args = NULL;
if (picl_get_root(&nodehandle) != PICL_SUCCESS) {
return (PD_INTERNAL_FAILURE);
}
if (picl_walk_tree_by_class(nodehandle, PICL_CLASS_WATCHDOG_TIMER,
(void *)c_args, pd_check_wd_state) != PICL_SUCCESS)
return (PD_INTERNAL_FAILURE);
return (PD_SUCCESS);
}
/*ARGSUSED*/
int
pd_check_wd_state(picl_nodehdl_t nodeh, void *c_args)
{
char *prop_name, *valbuf;
picl_propinfo_t propinfo;
picl_prophdl_t proph;
prop_name = (char *) malloc(sizeof (char) * PICL_PROPNAMELEN_MAX);
if (prop_name == NULL) {
return (PICL_WALK_TERMINATE);
}
if (picl_get_propval_by_name(nodeh, PICL_PROP_NAME,
(void *)prop_name, PICL_PROPNAMELEN_MAX) != PICL_SUCCESS) {
free(prop_name);
return (PICL_WALK_TERMINATE);
}
if ((picl_get_prop_by_name(nodeh, PICL_PROP_STATE,
&proph)) != PICL_SUCCESS) {
free(prop_name);
return (PICL_WALK_TERMINATE);
}
if ((picl_get_propinfo(proph, &propinfo)) != PICL_SUCCESS) {
free(prop_name);
return (PICL_WALK_TERMINATE);
}
valbuf = (char *) malloc(sizeof (char) * (propinfo.size));
if (valbuf == NULL) {
free(prop_name);
return (PICL_WALK_TERMINATE);
}
if ((picl_get_propval(proph, (void *)valbuf,
propinfo.size)) != PICL_SUCCESS) {
free(valbuf);
free(prop_name);
return (PICL_WALK_TERMINATE);
}
if (pd_hdr_prt) {
log_printf("\n Watch Dog Status \n", 0);
log_printf(" ---------------- \n", 0);
log_printf("Node Status\n", 0);
log_printf("---- ------\n", 0);
pd_hdr_prt = B_FALSE;
}
log_printf("%s ", prop_name, 0);
log_printf("%s\n", valbuf, 0);
free(prop_name);
free(valbuf);
return (PICL_WALK_CONTINUE);
}
static uint32_t
pd_get_role_information()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
uint8_t usparc_role;
smc_init_smc_msg(&req_pkt, SMC_GET_ROLE_INFO,
DEFAULT_SEQN, 0);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
usparc_role = rsp_pkt.data[1];
log_printf(dgettext(TEXT_DOMAIN,
"UltraSPARC Host Role\t\t\t"), 0);
if (usparc_role & 0x80) {
log_printf(
dgettext(TEXT_DOMAIN,
"System Board Computer (SBC)\n"), 0);
}
if (usparc_role & 0x40) {
log_printf(dgettext(TEXT_DOMAIN,
"Standby System Board Computer (Standby SBC)\n"), 0);
}
if (usparc_role & 0x20) {
log_printf(dgettext(TEXT_DOMAIN,
"Alternate System Board Computer (Alternate SBC)\n"), 0);
}
if (usparc_role & 0x10) {
log_printf(dgettext(TEXT_DOMAIN,
"Satellite Board Computer (SAT)\n"), 0);
}
return (PD_SUCCESS);
}
static uint32_t
pd_get_message_flags()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
smc_init_smc_msg(&req_pkt, SMC_GET_MESSAGE_FLAGS,
DEFAULT_SEQN, 0);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
if (rsp_pkt.data[0] & 0x01) {
log_printf("Messages Available in queue Recieving\n", 0);
} else {
log_printf("No messages in queue for Recieving\n", 0);
}
return (PD_SUCCESS);
}
static uint32_t
pd_get_reset_mode()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
smc_init_smc_msg(&req_pkt, SMC_GET_CONFIG_BLOCK,
DEFAULT_SEQN, 0);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
log_printf("Reset Mode\t\t\t\t%x \n", rsp_pkt.data[2], 0);
return (PD_SUCCESS);
}
static uint32_t
pd_get_sensor_reading()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
req_pkt.data[0] = 0x0e;
smc_init_smc_msg(&req_pkt, SMC_SENSOR_READING_GET,
DEFAULT_SEQN, 1);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
log_printf("\nCPU Node Temperature Information\n", PD_BLANK, 0);
log_printf("--------------------------------\n", PD_BLANK, 0);
log_printf("Temperature Reading: %d\n\n", rsp_pkt.data[0], 0);
return (PD_SUCCESS);
}
static uint32_t
pd_get_sensor_threshold()
{
sc_reqmsg_t req_pkt;
sc_rspmsg_t rsp_pkt;
uint8_t thres_mask;
req_pkt.data[0] = 0x0e;
smc_init_smc_msg(&req_pkt, SMC_SENSOR_THRESHOLD_GET,
DEFAULT_SEQN, 1);
smc_send_msg(-1, &req_pkt, &rsp_pkt, POLL_TIMEOUT);
log_printf("Critical Threshold Information\n", 0);
log_printf("------------------------------\n", 0);
thres_mask = rsp_pkt.data[0];
if (thres_mask & 0x20) {
log_printf("High Power-Off Threshold %9s", PD_BLANK, 0);
if (rsp_pkt.data[6] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[6] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[6], 0);
}
}
if (thres_mask & 0x10) {
log_printf("High Shutdown Threshold %10s", PD_BLANK, 0);
if (rsp_pkt.data[5] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[5] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[5], 0);
}
}
if (thres_mask & 0x08) {
log_printf("High Warning Threshold %11s", PD_BLANK, 0);
if (rsp_pkt.data[4] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[4] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[4], 0);
}
}
if (thres_mask & 0x04) {
log_printf("Low Power Off Threshold %10s", PD_BLANK, 0);
if (rsp_pkt.data[3] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[3] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[3], 0);
}
}
if (thres_mask & 0x02) {
log_printf("Low Shutdown Threshold %11s", PD_BLANK, 0);
if (rsp_pkt.data[2] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[2] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[2], 0);
}
}
if (thres_mask & 0x01) {
log_printf("Low Warning Threshold %12s", PD_BLANK, 0);
if (rsp_pkt.data[1] & 0x80) {
log_printf("-%d\n",
(int)((uint8_t)~rsp_pkt.data[1] + 1), 0);
} else {
log_printf(" %d\n", rsp_pkt.data[1], 0);
}
}
return (PD_SUCCESS);
}
static uint32_t
pd_prt_cpci_condition(picl_nodehdl_t nodeh)
{
picl_propinfo_t propinfo;
picl_prophdl_t proph;
char *valbuf;
if (picl_get_prop_by_name(nodeh, PICL_PROP_CONDITION,
&proph) != PICL_SUCCESS) {
return (PD_FAILURE);
}
if (picl_get_propinfo(proph, &propinfo) != PICL_SUCCESS) {
return (PD_FAILURE);
}
valbuf = (char *) malloc(sizeof (char) * (propinfo.size));
if (valbuf == NULL) {
return (PD_FAILURE);
}
if (picl_get_propval(proph, (void *)valbuf,
propinfo.size) != PICL_SUCCESS) {
free(valbuf);
return (PD_FAILURE);
}
log_printf("%29s Condition : %s\n", PD_BLANK, valbuf, 0);
free(valbuf);
return (PD_SUCCESS);
}