Pisadep.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/stack.h>
#include <sys/regset.h>
#include <sys/frame.h>
#include <sys/sysmacros.h>
#include <sys/trap.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include "Pcontrol.h"
#include "Pstack.h"
#define M_PLT_NRSV 1 /* reserved PLT entries */
#define M_PLT_ENTSIZE 16 /* size of each PLT entry */
static uchar_t int_syscall_instr[] = { 0xCD, T_SYSCALLINT };
const char *
Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr)
{
map_info_t *mp = Paddr2mptr(P, pltaddr);
uintptr_t r_addr;
file_info_t *fp;
Elf32_Rel r;
size_t i;
if (mp == NULL || (fp = mp->map_file) == NULL ||
fp->file_plt_base == 0 ||
pltaddr - fp->file_plt_base >= fp->file_plt_size) {
errno = EINVAL;
return (NULL);
}
i = (pltaddr - fp->file_plt_base) / M_PLT_ENTSIZE - M_PLT_NRSV;
r_addr = fp->file_jmp_rel + i * sizeof (r);
if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
(i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
Elf_Data *data = fp->file_dynsym.sym_data;
Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]);
return (fp->file_dynsym.sym_strs + symp->st_name);
}
return (NULL);
}
int
Pissyscall(struct ps_prochandle *P, uintptr_t addr)
{
uchar_t instr[16];
if (Pread(P, instr, sizeof (int_syscall_instr), addr) !=
sizeof (int_syscall_instr))
return (0);
if (memcmp(instr, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
return (1);
return (0);
}
int
Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst)
{
int ret;
if (ret = Pissyscall(P, addr - sizeof (int_syscall_instr))) {
if (dst)
*dst = addr - sizeof (int_syscall_instr);
return (ret);
}
return (0);
}
/* ARGSUSED */
int
Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen)
{
if (buflen < sizeof (int_syscall_instr))
return (0);
if (memcmp(buf, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
return (1);
return (0);
}
#define TR_ARG_MAX 6 /* Max args to print, same as SPARC */
/*
* Given a return address, determine the likely number of arguments
* that were pushed on the stack prior to its execution. We do this by
* expecting that a typical call sequence consists of pushing arguments on
* the stack, executing a call instruction, and then performing an add
* on %esp to restore it to the value prior to pushing the arguments for
* the call. We attempt to detect such an add, and divide the addend
* by the size of a word to determine the number of pushed arguments.
*
* If we do not find such an add, this does not necessarily imply that the
* function took no arguments. It is not possible to reliably detect such a
* void function because hand-coded assembler does not always perform an add
* to %esp immediately after the "call" instruction (eg. _sys_call()).
* Because of this, we default to returning MIN(sz, TR_ARG_MAX) instead of 0
* in the absence of an add to %esp.
*/
static ulong_t
argcount(struct ps_prochandle *P, long pc, ssize_t sz)
{
uchar_t instr[6];
ulong_t count, max;
max = MIN(sz / sizeof (long), TR_ARG_MAX);
/*
* Read the instruction at the return location.
*/
if (Pread(P, instr, sizeof (instr), pc) != sizeof (instr) ||
instr[1] != 0xc4)
return (max);
switch (instr[0]) {
case 0x81: /* count is a longword */
count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24);
break;
case 0x83: /* count is a byte */
count = instr[2];
break;
default:
return (max);
}
count /= sizeof (long);
return (MIN(count, max));
}
static void
ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst)
{
(void) memcpy(dst, src->uc_mcontext.gregs, sizeof (gregset_t));
}
int
Pstack_iter(struct ps_prochandle *P, const prgregset_t regs,
proc_stack_f *func, void *arg)
{
prgreg_t *prevfp = NULL;
uint_t pfpsize = 0;
int nfp = 0;
struct {
long fp;
long pc;
long args[32];
} frame;
uint_t argc;
ssize_t sz;
prgregset_t gregs;
prgreg_t fp, pfp;
prgreg_t pc;
int rv;
/*
* Type definition for a structure corresponding to an IA32
* signal frame. Refer to the comments in Pstack.c for more info
*/
typedef struct {
long fp;
long pc;
int signo;
ucontext_t *ucp;
siginfo_t *sip;
} sf_t;
uclist_t ucl;
ucontext_t uc;
uintptr_t uc_addr;
init_uclist(&ucl, P);
(void) memcpy(gregs, regs, sizeof (gregs));
fp = regs[R_FP];
pc = regs[R_PC];
while (fp != 0 || pc != 0) {
if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
break;
if (fp != 0 &&
(sz = Pread(P, &frame, sizeof (frame), (uintptr_t)fp)
>= (ssize_t)(2* sizeof (long)))) {
/*
* One more trick for signal frames: the kernel sets
* the return pc of the signal frame to 0xffffffff on
* Intel IA32, so argcount won't work.
*/
if (frame.pc != -1L) {
sz -= 2* sizeof (long);
argc = argcount(P, (long)frame.pc, sz);
} else
argc = 3; /* sighandler(signo, sip, ucp) */
} else {
(void) memset(&frame, 0, sizeof (frame));
argc = 0;
}
gregs[R_FP] = fp;
gregs[R_PC] = pc;
if ((rv = func(arg, gregs, argc, frame.args)) != 0)
break;
/*
* In order to allow iteration over java frames (which can have
* their own frame pointers), we allow the iterator to change
* the contents of gregs. If we detect a change, then we assume
* that the new values point to the next frame.
*/
if (gregs[R_FP] != fp || gregs[R_PC] != pc) {
fp = gregs[R_FP];
pc = gregs[R_PC];
continue;
}
pfp = fp;
fp = frame.fp;
pc = frame.pc;
if (find_uclink(&ucl, pfp + sizeof (sf_t)))
uc_addr = pfp + sizeof (sf_t);
else
uc_addr = NULL;
if (uc_addr != NULL &&
Pread(P, &uc, sizeof (uc), uc_addr) == sizeof (uc)) {
ucontext_n_to_prgregs(&uc, gregs);
fp = gregs[R_FP];
pc = gregs[R_PC];
}
}
if (prevfp)
free(prevfp);
free_uclist(&ucl);
return (rv);
}
uintptr_t
Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp)
{
sp -= sizeof (int) * (nargs+2); /* space for arg list + CALL parms */
P->status.pr_lwp.pr_reg[EAX] = sysindex;
P->status.pr_lwp.pr_reg[R_SP] = sp;
P->status.pr_lwp.pr_reg[R_PC] = P->sysaddr;
return (sp);
}
int
Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
uintptr_t ap)
{
int32_t arglist[MAXARGS+2];
int i;
argdes_t *adp;
for (i = 0, adp = argp; i < nargs; i++, adp++)
arglist[1 + i] = (int32_t)adp->arg_value;
arglist[0] = P->status.pr_lwp.pr_reg[R_PC];
if (Pwrite(P, &arglist[0], sizeof (int) * (nargs+1),
(uintptr_t)ap) != sizeof (int) * (nargs+1))
return (-1);
return (0);
}
int
Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
uintptr_t ap)
{
uint32_t arglist[MAXARGS + 2];
int i;
argdes_t *adp;
if (Pread(P, &arglist[0], sizeof (int) * (nargs+1), (uintptr_t)ap)
!= sizeof (int) * (nargs+1))
return (-1);
for (i = 0, adp = argp; i < nargs; i++, adp++)
adp->arg_value = arglist[i];
return (0);
}