svc_dg.c revision 09b0d01c5bc323b8ee7043100e09aded27cc12ab
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2014 Gary Mills
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley
* 4.3 BSD under license from the Regents of the University of
* California.
*/
/*
* svc_dg.c, Server side for connectionless RPC.
*
* Does some caching in the hopes of achieving execute-at-most-once semantics.
*/
#include "mt.h"
#include "rpc_mt.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <rpc/rpc.h>
#include <rpcsvc/svc_dg_priv.h>
#include <errno.h>
#include <syslog.h>
#include <stdlib.h>
#include <string.h>
#include <ucred.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#ifdef RPC_CACHE_DEBUG
#include <netconfig.h>
#include <netdir.h>
#endif
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
static struct xp_ops *svc_dg_ops();
static void cache_set();
static int cache_get();
#define rpc_buffer(xprt) ((xprt)->xp_p1)
/*
* Usage:
* xprt = svc_dg_create(sock, sendsize, recvsize);
* Does other connectionless specific initializations.
* Once *xprt is initialized, it is registered.
* see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
* system defaults are chosen.
* The routines returns NULL if a problem occurred.
*/
static const char svc_dg_str[] = "svc_dg_create: %s";
static const char svc_dg_err1[] = "could not get transport information";
static const char svc_dg_err2[] = " transport does not support data transfer";
static const char svc_dg_err3[] =
"fd > FD_SETSIZE; Use rpc_control(RPC_SVC_USE_POLLFD,...);";
static const char __no_mem_str[] = "out of memory";
/* Structure used to initialize SVC_XP_AUTH(xprt).svc_ah_ops. */
extern struct svc_auth_ops svc_auth_any_ops;
extern int __rpc_get_ltaddr(struct netbuf *, struct netbuf *);
void
svc_dg_xprtfree(SVCXPRT *xprt)
{
/* LINTED pointer alignment */
SVCXPRT_EXT *xt = xprt ? SVCEXT(xprt) : NULL;
/* LINTED pointer alignment */
struct svc_dg_data *su = xprt ? get_svc_dg_data(xprt) : NULL;
if (xprt == NULL)
return;
if (xprt->xp_netid)
free(xprt->xp_netid);
if (xprt->xp_tp)
free(xprt->xp_tp);
if (xt->parent == NULL)
if (xprt->xp_ltaddr.buf)
free(xprt->xp_ltaddr.buf);
if (xprt->xp_rtaddr.buf)
free(xprt->xp_rtaddr.buf);
if (su != NULL) {
XDR_DESTROY(&(su->su_xdrs));
free(su);
}
if (rpc_buffer(xprt))
free(rpc_buffer(xprt));
svc_xprt_free(xprt);
}
SVCXPRT *
svc_dg_create_private(int fd, uint_t sendsize, uint_t recvsize)
{
SVCXPRT *xprt;
struct svc_dg_data *su = NULL;
struct t_info tinfo;
size_t ucred_sz = ucred_size();
if (RPC_FD_NOTIN_FDSET(fd)) {
errno = EBADF;
t_errno = TBADF;
syslog(LOG_ERR, svc_dg_str, svc_dg_err3);
return (NULL);
}
if (t_getinfo(fd, &tinfo) == -1) {
syslog(LOG_ERR, svc_dg_str, svc_dg_err1);
return (NULL);
}
/*
* Find the receive and the send size
*/
sendsize = __rpc_get_t_size((int)sendsize, tinfo.tsdu);
recvsize = __rpc_get_t_size((int)recvsize, tinfo.tsdu);
if ((sendsize == 0) || (recvsize == 0)) {
syslog(LOG_ERR, svc_dg_str, svc_dg_err2);
return (NULL);
}
if ((xprt = svc_xprt_alloc()) == NULL)
goto freedata;
/* LINTED pointer alignment */
svc_flags(xprt) |= SVC_DGRAM;
su = malloc(sizeof (*su) + ucred_sz);
if (su == NULL)
goto freedata;
su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
if ((rpc_buffer(xprt) = malloc(su->su_iosz)) == NULL)
goto freedata;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
XDR_DECODE);
su->su_cache = NULL;
xprt->xp_fd = fd;
xprt->xp_p2 = (caddr_t)su;
xprt->xp_verf.oa_base = su->su_verfbody;
xprt->xp_ops = svc_dg_ops();
su->su_tudata.addr.maxlen = 0; /* Fill in later */
su->su_tudata.udata.buf = (char *)rpc_buffer(xprt);
su->su_tudata.opt.buf = (char *)su->opts;
su->su_tudata.udata.maxlen = su->su_iosz;
su->su_tudata.opt.maxlen = MAX_OPT_WORDS * sizeof (int) + ucred_sz;
/* LINTED pointer alignment */
SVC_XP_AUTH(xprt).svc_ah_ops = svc_auth_any_ops;
/* LINTED pointer alignment */
SVC_XP_AUTH(xprt).svc_ah_private = NULL;
return (xprt);
freedata:
(void) syslog(LOG_ERR, svc_dg_str, __no_mem_str);
if (xprt)
svc_dg_xprtfree(xprt);
return (NULL);
}
SVCXPRT *
svc_dg_create(const int fd, const uint_t sendsize, const uint_t recvsize)
{
SVCXPRT *xprt;
if ((xprt = svc_dg_create_private(fd, sendsize, recvsize)) != NULL)
xprt_register(xprt);
return (xprt);
}
SVCXPRT *
svc_dg_xprtcopy(SVCXPRT *parent)
{
SVCXPRT *xprt;
struct svc_dg_data *su;
size_t ucred_sz = ucred_size();
if ((xprt = svc_xprt_alloc()) == NULL)
return (NULL);
/* LINTED pointer alignment */
SVCEXT(xprt)->parent = parent;
/* LINTED pointer alignment */
SVCEXT(xprt)->flags = SVCEXT(parent)->flags;
xprt->xp_fd = parent->xp_fd;
xprt->xp_port = parent->xp_port;
xprt->xp_ops = svc_dg_ops();
if (parent->xp_tp) {
xprt->xp_tp = (char *)strdup(parent->xp_tp);
if (xprt->xp_tp == NULL) {
syslog(LOG_ERR, "svc_dg_xprtcopy: strdup failed");
svc_dg_xprtfree(xprt);
return (NULL);
}
}
if (parent->xp_netid) {
xprt->xp_netid = (char *)strdup(parent->xp_netid);
if (xprt->xp_netid == NULL) {
syslog(LOG_ERR, "svc_dg_xprtcopy: strdup failed");
if (parent->xp_tp)
free(parent->xp_tp);
svc_dg_xprtfree(xprt);
return (NULL);
}
}
xprt->xp_ltaddr = parent->xp_ltaddr; /* shared with parent */
xprt->xp_rtaddr = parent->xp_rtaddr;
xprt->xp_rtaddr.buf = malloc(xprt->xp_rtaddr.maxlen);
if (xprt->xp_rtaddr.buf == NULL) {
svc_dg_xprtfree(xprt);
return (NULL);
}
(void) memcpy(xprt->xp_rtaddr.buf, parent->xp_rtaddr.buf,
xprt->xp_rtaddr.maxlen);
xprt->xp_type = parent->xp_type;
if ((su = malloc(sizeof (struct svc_dg_data) + ucred_sz)) == NULL) {
svc_dg_xprtfree(xprt);
return (NULL);
}
/* LINTED pointer alignment */
su->su_iosz = get_svc_dg_data(parent)->su_iosz;
if ((rpc_buffer(xprt) = malloc(su->su_iosz)) == NULL) {
svc_dg_xprtfree(xprt);
free(su);
return (NULL);
}
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
XDR_DECODE);
su->su_cache = NULL;
su->su_tudata.addr.maxlen = 0; /* Fill in later */
su->su_tudata.udata.buf = (char *)rpc_buffer(xprt);
su->su_tudata.opt.buf = (char *)su->opts;
su->su_tudata.udata.maxlen = su->su_iosz;
su->su_tudata.opt.maxlen = MAX_OPT_WORDS * sizeof (int) + ucred_sz;
xprt->xp_p2 = (caddr_t)su; /* get_svc_dg_data(xprt) = su */
xprt->xp_verf.oa_base = su->su_verfbody;
return (xprt);
}
/*ARGSUSED*/
static enum xprt_stat
svc_dg_stat(SVCXPRT *xprt)
{
return (XPRT_IDLE);
}
/*
* Find the SCM_UCRED in src and place a pointer to that option alone in dest.
* Note that these two 'netbuf' structures might be the same one, so the code
* has to be careful about referring to src after changing dest.
*/
static void
extract_cred(const struct netbuf *src, struct netbuf *dest)
{
char *cp = src->buf;
unsigned int len = src->len;
const struct T_opthdr *opt;
unsigned int olen;
while (len >= sizeof (*opt)) {
/* LINTED: pointer alignment */
opt = (const struct T_opthdr *)cp;
olen = opt->len;
if (olen > len || olen < sizeof (*opt) ||
!IS_P2ALIGNED(olen, sizeof (t_uscalar_t)))
break;
if (opt->level == SOL_SOCKET && opt->name == SCM_UCRED) {
dest->buf = cp;
dest->len = olen;
return;
}
cp += olen;
len -= olen;
}
dest->len = 0;
}
/*
* This routine extracts the destination IP address of the inbound RPC packet
* and sets that as source IP address for the outbound response.
*/
static void
set_src_addr(SVCXPRT *xprt, struct netbuf *opt)
{
struct netbuf *nbufp, *ltaddr;
struct T_opthdr *opthdr;
in_pktinfo_t *pktinfo;
struct sockaddr_in *sock = (struct sockaddr_in *)NULL;
/* extract dest IP of inbound packet */
/* LINTED pointer alignment */
nbufp = (struct netbuf *)xprt->xp_p2;
ltaddr = &xprt->xp_ltaddr;
if (__rpc_get_ltaddr(nbufp, ltaddr) != 0)
return;
/* do nothing for non-IPv4 packet */
/* LINTED pointer alignment */
sock = (struct sockaddr_in *)ltaddr->buf;
if (sock->sin_family != AF_INET)
return;
/* set desired option header */
opthdr = (struct T_opthdr *)memalign(sizeof (int),
sizeof (struct T_opthdr) + sizeof (in_pktinfo_t));
if (opthdr == NULL)
return;
opthdr->len = sizeof (struct T_opthdr) + sizeof (in_pktinfo_t);
opthdr->level = IPPROTO_IP;
opthdr->name = IP_PKTINFO;
/*
* 1. set source IP of outbound packet
* 2. value '0' for index means IP layer uses this as source address
*/
pktinfo = (in_pktinfo_t *)(opthdr + 1);
(void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
pktinfo->ipi_spec_dst.s_addr = sock->sin_addr.s_addr;
pktinfo->ipi_ifindex = 0;
/* copy data into ancillary buffer */
if (opthdr->len + opt->len <= opt->maxlen) {
(void) memcpy((void *)(opt->buf+opt->len), (const void *)opthdr,
opthdr->len);
opt->len += opthdr->len;
}
free(opthdr);
}
static bool_t
svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
{
/* LINTED pointer alignment */
struct svc_dg_data *su = get_svc_dg_data(xprt);
XDR *xdrs = &(su->su_xdrs);
struct t_unitdata *tu_data = &(su->su_tudata);
int moreflag;
struct netbuf *nbufp;
struct netconfig *nconf;
/* XXX: tudata should have been made a part of the server handle */
if (tu_data->addr.maxlen == 0)
tu_data->addr = xprt->xp_rtaddr;
again:
tu_data->addr.len = 0;
tu_data->opt.len = 0;
tu_data->udata.len = 0;
moreflag = 0;
if (t_rcvudata(xprt->xp_fd, tu_data, &moreflag) == -1) {
#ifdef RPC_DEBUG
syslog(LOG_ERR, "svc_dg_recv: t_rcvudata t_errno=%d errno=%d\n",
t_errno, errno);
#endif
if (t_errno == TLOOK) {
int lookres;
lookres = t_look(xprt->xp_fd);
if ((lookres == T_UDERR) &&
(t_rcvuderr(xprt->xp_fd,
(struct t_uderr *)0) < 0)) {
/*EMPTY*/
#ifdef RPC_DEBUG
syslog(LOG_ERR,
"svc_dg_recv: t_rcvuderr t_errno = %d\n",
t_errno);
#endif
}
if (lookres == T_DATA)
goto again;
} else if ((errno == EINTR) && (t_errno == TSYSERR))
goto again;
else {
return (FALSE);
}
}
if ((moreflag) ||
(tu_data->udata.len < 4 * (uint_t)sizeof (uint32_t))) {
/*
* If moreflag is set, drop that data packet. Something wrong
*/
return (FALSE);
}
su->optbuf = tu_data->opt;
xprt->xp_rtaddr.len = tu_data->addr.len;
xdrs->x_op = XDR_DECODE;
XDR_SETPOS(xdrs, 0);
if (!xdr_callmsg(xdrs, msg))
return (FALSE);
su->su_xid = msg->rm_xid;
if (su->su_cache != NULL) {
char *reply;
uint32_t replylen;
if (cache_get(xprt, msg, &reply, &replylen)) {
/* tu_data.addr is already set */
tu_data->udata.buf = reply;
tu_data->udata.len = (uint_t)replylen;
extract_cred(&tu_data->opt, &tu_data->opt);
set_src_addr(xprt, &tu_data->opt);
(void) t_sndudata(xprt->xp_fd, tu_data);
tu_data->udata.buf = (char *)rpc_buffer(xprt);
tu_data->opt.buf = (char *)su->opts;
return (FALSE);
}
}
/*
* get local ip address
*/
if ((nconf = getnetconfigent(xprt->xp_netid)) != NULL) {
if (strcmp(nconf->nc_protofmly, NC_INET) == 0 ||
strcmp(nconf->nc_protofmly, NC_INET6) == 0) {
if (nconf->nc_semantics == NC_TPI_CLTS) {
/* LINTED pointer cast */
nbufp = (struct netbuf *)(xprt->xp_p2);
if (__rpc_get_ltaddr(nbufp,
&xprt->xp_ltaddr) < 0) {
if (strcmp(nconf->nc_protofmly,
NC_INET) == 0) {
syslog(LOG_ERR,
"svc_dg_recv: ip(udp), "
"t_errno=%d, errno=%d",
t_errno, errno);
}
if (strcmp(nconf->nc_protofmly,
NC_INET6) == 0) {
syslog(LOG_ERR,
"svc_dg_recv: ip (udp6), "
"t_errno=%d, errno=%d",
t_errno, errno);
}
freenetconfigent(nconf);
return (FALSE);
}
}
}
freenetconfigent(nconf);
}
return (TRUE);
}
static bool_t
svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
{
/* LINTED pointer alignment */
struct svc_dg_data *su = get_svc_dg_data(xprt);
XDR *xdrs = &(su->su_xdrs);
bool_t stat = FALSE;
xdrproc_t xdr_results;
caddr_t xdr_location;
bool_t has_args;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
has_args = TRUE;
xdr_results = msg->acpted_rply.ar_results.proc;
xdr_location = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = xdr_void;
msg->acpted_rply.ar_results.where = NULL;
} else
has_args = FALSE;
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
msg->rm_xid = su->su_xid;
if (xdr_replymsg(xdrs, msg) && (!has_args ||
/* LINTED pointer alignment */
SVCAUTH_WRAP(&SVC_XP_AUTH(xprt), xdrs, xdr_results,
xdr_location))) {
int slen;
struct t_unitdata *tu_data = &(su->su_tudata);
slen = (int)XDR_GETPOS(xdrs);
tu_data->udata.len = slen;
extract_cred(&su->optbuf, &tu_data->opt);
set_src_addr(xprt, &tu_data->opt);
try_again:
if (t_sndudata(xprt->xp_fd, tu_data) == 0) {
stat = TRUE;
if (su->su_cache && slen >= 0) {
cache_set(xprt, (uint32_t)slen);
}
} else {
if (errno == EINTR)
goto try_again;
syslog(LOG_ERR,
"svc_dg_reply: t_sndudata error t_errno=%d ",
"errno=%d\n", t_errno, errno);
}
tu_data->opt.buf = (char *)su->opts;
}
return (stat);
}
static bool_t
svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
{
if (svc_mt_mode != RPC_SVC_MT_NONE)
svc_args_done(xprt);
/* LINTED pointer alignment */
return (SVCAUTH_UNWRAP(&SVC_XP_AUTH(xprt),
&(get_svc_dg_data(xprt)->su_xdrs), xdr_args, args_ptr));
}
static bool_t
svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
{
/* LINTED pointer alignment */
XDR *xdrs = &(get_svc_dg_data(xprt)->su_xdrs);
xdrs->x_op = XDR_FREE;
return ((*xdr_args)(xdrs, args_ptr));
}
static void
svc_dg_destroy(SVCXPRT *xprt)
{
(void) mutex_lock(&svc_mutex);
_svc_dg_destroy_private(xprt);
(void) mutex_unlock(&svc_mutex);
}
void
_svc_dg_destroy_private(SVCXPRT *xprt)
{
if (svc_mt_mode != RPC_SVC_MT_NONE) {
/* LINTED pointer alignment */
if (SVCEXT(xprt)->parent)
/* LINTED pointer alignment */
xprt = SVCEXT(xprt)->parent;
/* LINTED pointer alignment */
svc_flags(xprt) |= SVC_DEFUNCT;
/* LINTED pointer alignment */
if (SVCEXT(xprt)->refcnt > 0)
return;
}
xprt_unregister(xprt);
(void) t_close(xprt->xp_fd);
if (svc_mt_mode != RPC_SVC_MT_NONE)
svc_xprt_destroy(xprt);
else
svc_dg_xprtfree(xprt);
}
/*ARGSUSED*/
static bool_t
svc_dg_control(SVCXPRT *xprt, const uint_t rq, void *in)
{
switch (rq) {
case SVCGET_XID:
if (xprt->xp_p2 == NULL)
return (FALSE);
/* LINTED pointer alignment */
*(uint32_t *)in = ((struct svc_dg_data *)(xprt->xp_p2))->su_xid;
return (TRUE);
default:
return (FALSE);
}
}
static struct xp_ops *
svc_dg_ops(void)
{
static struct xp_ops ops;
extern mutex_t ops_lock;
/* VARIABLES PROTECTED BY ops_lock: ops */
(void) mutex_lock(&ops_lock);
if (ops.xp_recv == NULL) {
ops.xp_recv = svc_dg_recv;
ops.xp_stat = svc_dg_stat;
ops.xp_getargs = svc_dg_getargs;
ops.xp_reply = svc_dg_reply;
ops.xp_freeargs = svc_dg_freeargs;
ops.xp_destroy = svc_dg_destroy;
ops.xp_control = svc_dg_control;
}
(void) mutex_unlock(&ops_lock);
return (&ops);
}
/* The CACHING COMPONENT */
/*
* Could have been a separate file, but some part of it depends upon the
* private structure of the client handle.
*
* Fifo cache for cl server
* Copies pointers to reply buffers into fifo cache
* Buffers are sent again if retransmissions are detected.
*/
#define SPARSENESS 4 /* 75% sparse */
/*
* An entry in the cache
*/
typedef struct cache_node *cache_ptr;
struct cache_node {
/*
* Index into cache is xid, proc, vers, prog and address
*/
uint32_t cache_xid;
rpcproc_t cache_proc;
rpcvers_t cache_vers;
rpcprog_t cache_prog;
struct netbuf cache_addr;
/*
* The cached reply and length
*/
char *cache_reply;
uint32_t cache_replylen;
/*
* Next node on the list, if there is a collision
*/
cache_ptr cache_next;
};
/*
* The entire cache
*/
struct cl_cache {
uint32_t uc_size; /* size of cache */
cache_ptr *uc_entries; /* hash table of entries in cache */
cache_ptr *uc_fifo; /* fifo list of entries in cache */
uint32_t uc_nextvictim; /* points to next victim in fifo list */
rpcprog_t uc_prog; /* saved program number */
rpcvers_t uc_vers; /* saved version number */
rpcproc_t uc_proc; /* saved procedure number */
};
/*
* the hashing function
*/
#define CACHE_LOC(transp, xid) \
(xid % (SPARSENESS * ((struct cl_cache *) \
get_svc_dg_data(transp)->su_cache)->uc_size))
extern mutex_t dupreq_lock;
/*
* Enable use of the cache. Returns 1 on success, 0 on failure.
* Note: there is no disable.
*/
static const char cache_enable_str[] = "svc_enablecache: %s %s";
static const char alloc_err[] = "could not allocate cache ";
static const char enable_err[] = "cache already enabled";
int
svc_dg_enablecache(SVCXPRT *xprt, const uint_t size)
{
SVCXPRT *transp;
struct svc_dg_data *su;
struct cl_cache *uc;
/* LINTED pointer alignment */
if (svc_mt_mode != RPC_SVC_MT_NONE && SVCEXT(xprt)->parent != NULL)
/* LINTED pointer alignment */
transp = SVCEXT(xprt)->parent;
else
transp = xprt;
/* LINTED pointer alignment */
su = get_svc_dg_data(transp);
(void) mutex_lock(&dupreq_lock);
if (su->su_cache != NULL) {
(void) syslog(LOG_ERR, cache_enable_str,
enable_err, " ");
(void) mutex_unlock(&dupreq_lock);
return (0);
}
uc = malloc(sizeof (struct cl_cache));
if (uc == NULL) {
(void) syslog(LOG_ERR, cache_enable_str,
alloc_err, " ");
(void) mutex_unlock(&dupreq_lock);
return (0);
}
uc->uc_size = size;
uc->uc_nextvictim = 0;
uc->uc_entries = calloc(size * SPARSENESS, sizeof (cache_ptr));
if (uc->uc_entries == NULL) {
(void) syslog(LOG_ERR, cache_enable_str, alloc_err, "data");
free(uc);
(void) mutex_unlock(&dupreq_lock);
return (0);
}
uc->uc_fifo = calloc(size, sizeof (cache_ptr));
if (uc->uc_fifo == NULL) {
(void) syslog(LOG_ERR, cache_enable_str, alloc_err, "fifo");
free(uc->uc_entries);
free(uc);
(void) mutex_unlock(&dupreq_lock);
return (0);
}
su->su_cache = (char *)uc;
(void) mutex_unlock(&dupreq_lock);
return (1);
}
/*
* Set an entry in the cache. It assumes that the uc entry is set from
* the earlier call to cache_get() for the same procedure. This will always
* happen because cache_get() is calle by svc_dg_recv and cache_set() is called
* by svc_dg_reply(). All this hoopla because the right RPC parameters are
* not available at svc_dg_reply time.
*/
static const char cache_set_str[] = "cache_set: %s";
static const char cache_set_err1[] = "victim not found";
static const char cache_set_err2[] = "victim alloc failed";
static const char cache_set_err3[] = "could not allocate new rpc buffer";
static void
cache_set(SVCXPRT *xprt, uint32_t replylen)
{
SVCXPRT *parent;
cache_ptr victim;
cache_ptr *vicp;
struct svc_dg_data *su;
struct cl_cache *uc;
uint_t loc;
char *newbuf, *newbuf2;
int my_mallocs = 0;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
/* LINTED pointer alignment */
if (svc_mt_mode != RPC_SVC_MT_NONE && SVCEXT(xprt)->parent != NULL)
/* LINTED pointer alignment */
parent = SVCEXT(xprt)->parent;
else
parent = xprt;
/* LINTED pointer alignment */
su = get_svc_dg_data(xprt);
/* LINTED pointer alignment */
uc = (struct cl_cache *)get_svc_dg_data(parent)->su_cache;
(void) mutex_lock(&dupreq_lock);
/*
* Find space for the new entry, either by
* reusing an old entry, or by mallocing a new one
*/
victim = uc->uc_fifo[uc->uc_nextvictim];
if (victim != NULL) {
/* LINTED pointer alignment */
loc = CACHE_LOC(parent, victim->cache_xid);
for (vicp = &uc->uc_entries[loc];
*vicp != NULL && *vicp != victim;
vicp = &(*vicp)->cache_next)
;
if (*vicp == NULL) {
(void) syslog(LOG_ERR, cache_set_str, cache_set_err1);
(void) mutex_unlock(&dupreq_lock);
return;
}
*vicp = victim->cache_next; /* remove from cache */
newbuf = victim->cache_reply;
} else {
victim = malloc(sizeof (struct cache_node));
if (victim == NULL) {
(void) syslog(LOG_ERR, cache_set_str, cache_set_err2);
(void) mutex_unlock(&dupreq_lock);
return;
}
newbuf = malloc(su->su_iosz);
if (newbuf == NULL) {
(void) syslog(LOG_ERR, cache_set_str, cache_set_err3);
free(victim);
(void) mutex_unlock(&dupreq_lock);
return;
}
my_mallocs = 1;
}
/*
* Store it away
*/
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, uc->uc_prog, uc->uc_vers, uc->uc_proc, uaddr);
free(uaddr);
}
#endif
newbuf2 = malloc(sizeof (char) * xprt->xp_rtaddr.len);
if (newbuf2 == NULL) {
syslog(LOG_ERR, "cache_set : out of memory");
if (my_mallocs) {
free(victim);
free(newbuf);
}
(void) mutex_unlock(&dupreq_lock);
return;
}
victim->cache_replylen = replylen;
victim->cache_reply = rpc_buffer(xprt);
rpc_buffer(xprt) = newbuf;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
XDR_ENCODE);
su->su_tudata.udata.buf = (char *)rpc_buffer(xprt);
victim->cache_xid = su->su_xid;
victim->cache_proc = uc->uc_proc;
victim->cache_vers = uc->uc_vers;
victim->cache_prog = uc->uc_prog;
victim->cache_addr = xprt->xp_rtaddr;
victim->cache_addr.buf = newbuf2;
(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
(int)xprt->xp_rtaddr.len);
/* LINTED pointer alignment */
loc = CACHE_LOC(parent, victim->cache_xid);
victim->cache_next = uc->uc_entries[loc];
uc->uc_entries[loc] = victim;
uc->uc_fifo[uc->uc_nextvictim++] = victim;
uc->uc_nextvictim %= uc->uc_size;
(void) mutex_unlock(&dupreq_lock);
}
/*
* Try to get an entry from the cache
* return 1 if found, 0 if not found and set the stage for cache_set()
*/
static int
cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp,
uint32_t *replylenp)
{
SVCXPRT *parent;
uint_t loc;
cache_ptr ent;
struct svc_dg_data *su;
struct cl_cache *uc;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
/* LINTED pointer alignment */
if (svc_mt_mode != RPC_SVC_MT_NONE && SVCEXT(xprt)->parent != NULL)
/* LINTED pointer alignment */
parent = SVCEXT(xprt)->parent;
else
parent = xprt;
/* LINTED pointer alignment */
su = get_svc_dg_data(xprt);
/* LINTED pointer alignment */
uc = (struct cl_cache *)get_svc_dg_data(parent)->su_cache;
(void) mutex_lock(&dupreq_lock);
/* LINTED pointer alignment */
loc = CACHE_LOC(parent, su->su_xid);
for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
if (ent->cache_xid == su->su_xid &&
ent->cache_proc == msg->rm_call.cb_proc &&
ent->cache_vers == msg->rm_call.cb_vers &&
ent->cache_prog == msg->rm_call.cb_prog &&
ent->cache_addr.len == xprt->xp_rtaddr.len &&
(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
xprt->xp_rtaddr.len) == 0)) {
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, msg->rm_call.cb_prog,
msg->rm_call.cb_vers,
msg->rm_call.cb_proc, uaddr);
free(uaddr);
}
#endif
*replyp = ent->cache_reply;
*replylenp = ent->cache_replylen;
(void) mutex_unlock(&dupreq_lock);
return (1);
}
}
/*
* Failed to find entry
* Remember a few things so we can do a set later
*/
uc->uc_proc = msg->rm_call.cb_proc;
uc->uc_vers = msg->rm_call.cb_vers;
uc->uc_prog = msg->rm_call.cb_prog;
(void) mutex_unlock(&dupreq_lock);
return (0);
}