cabs.c revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma weak cabs = __cabs
#include "libm_synonyms.h"
#include <math.h>
#include "complex_wrapper.h"
/*
* If C were the only standard we cared about, cabs could just call
* hypot. Unfortunately, various other standards say that hypot must
* call matherr and/or set errno to ERANGE when the result overflows.
* Since cabs should do neither of these things, we have to either
* make hypot a wrapper on another internal function or duplicate
* the hypot implementation here. I've chosen to do the latter.
*/
static const double
zero = 0.0,
onep1u = 1.00000000000000022204e+00, /* 0x3ff00000 1 = 1+2**-52 */
twom53 = 1.11022302462515654042e-16, /* 0x3ca00000 0 = 2**-53 */
twom768 = 6.441148769597133308e-232, /* 2^-768 */
two768 = 1.552518092300708935e+231; /* 2^768 */
double
cabs(dcomplex z)
{
double x, y, xh, yh, w, ax, ay;
int i, j, nx, ny, ix, iy, iscale = 0;
unsigned lx, ly;
x = D_RE(z);
y = D_IM(z);
ix = ((int *)&x)[HIWORD] & ~0x80000000;
lx = ((int *)&x)[LOWORD];
iy = ((int *)&y)[HIWORD] & ~0x80000000;
ly = ((int *)&y)[LOWORD];
/* force ax = |x| ~>~ ay = |y| */
if (iy > ix) {
ax = fabs(y);
ay = fabs(x);
i = ix;
ix = iy;
iy = i;
i = lx;
lx = ly;
ly = i;
} else {
ax = fabs(x);
ay = fabs(y);
}
nx = ix >> 20;
ny = iy >> 20;
j = nx - ny;
if (nx >= 0x5f3) {
/* x >= 2^500 (x*x or y*y may overflow) */
if (nx == 0x7ff) {
/* inf or NaN, signal of sNaN */
if (((ix - 0x7ff00000) | lx) == 0)
return ((ax == ay)? ay : ax);
else if (((iy - 0x7ff00000) | ly) == 0)
return ((ay == ax)? ax : ay);
else
return (ax * ay);
} else if (j > 32) {
/* x >> y */
if (j <= 53)
ay *= twom53;
ax += ay;
return (ax);
}
ax *= twom768;
ay *= twom768;
iscale = 2;
ix -= 768 << 20;
iy -= 768 << 20;
} else if (ny < 0x23d) {
/* y < 2^-450 (x*x or y*y may underflow) */
if ((ix | lx) == 0)
return (ay);
if ((iy | ly) == 0)
return (ax);
if (j > 53) /* x >> y */
return (ax + ay);
iscale = 1;
ax *= two768;
ay *= two768;
if (nx == 0) {
if (ax == zero) /* guard subnormal flush to zero */
return (ax);
ix = ((int *)&ax)[HIWORD];
} else {
ix += 768 << 20;
}
if (ny == 0) {
if (ay == zero) /* guard subnormal flush to zero */
return (ax * twom768);
iy = ((int *)&ay)[HIWORD];
} else {
iy += 768 << 20;
}
j = (ix >> 20) - (iy >> 20);
if (j > 32) {
/* x >> y */
if (j <= 53)
ay *= twom53;
return ((ax + ay) * twom768);
}
} else if (j > 32) {
/* x >> y */
if (j <= 53)
ay *= twom53;
return (ax + ay);
}
/*
* Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32.
* First check rounding mode by comparing onep1u*onep1u with onep1u
* + twom53. Make sure the computation is done at run-time.
*/
if (((lx | ly) << 5) == 0) {
ay = ay * ay;
ax += ay / (ax + sqrt(ax * ax + ay));
} else if (onep1u * onep1u != onep1u + twom53) {
/* round-to-zero, positive, negative mode */
/* magic formula with less than an ulp error */
w = sqrt(ax * ax + ay * ay);
ax += ay / ((ax + w) / ay);
} else {
/* round-to-nearest mode */
w = ax - ay;
if (w > ay) {
((int *)&xh)[HIWORD] = ix;
((int *)&xh)[LOWORD] = 0;
ay = ay * ay + (ax - xh) * (ax + xh);
ax = sqrt(xh * xh + ay);
} else {
ax = ax + ax;
((int *)&xh)[HIWORD] = ix + 0x00100000;
((int *)&xh)[LOWORD] = 0;
((int *)&yh)[HIWORD] = iy;
((int *)&yh)[LOWORD] = 0;
ay = w * w + ((ax - xh) * yh + (ay - yh) * ax);
ax = sqrt(xh * yh + ay);
}
}
if (iscale > 0) {
if (iscale == 1)
ax *= twom768;
else
ax *= two768; /* must generate side effect here */
}
return (ax);
}