log1pl.c revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifdef __LITTLE_ENDIAN
#define H0(x) *(3 + (int *) &x)
#define H1(x) *(2 + (int *) &x)
#define H2(x) *(1 + (int *) &x)
#define H3(x) *(int *) &x
#else
#define H0(x) *(int *) &x
#define H1(x) *(1 + (int *) &x)
#define H2(x) *(2 + (int *) &x)
#define H3(x) *(3 + (int *) &x)
#endif
/*
* log1pl(x)
* Table look-up algorithm by modifying logl.c
* By K.C. Ng, July 6, 1995
*
* (a). For 1+x in [31/33,33/31], using a special approximation:
* s = x/(2.0+x); ... here |s| <= 0.03125
* z = s*s;
* return x-s*(x-z*(B1+z*(B2+z*(B3+z*(B4+...+z*B9)...))));
* (i.e., x is in [-2/33,2/31])
*
* (b). Otherwise, normalize 1+x = 2^n * 1.f.
* Here we may need a correction term for 1+x rounded.
* Use a 6-bit table look-up: find a 6 bit g that match f to 6.5 bits,
* then
* log(1+x) = n*ln2 + log(1.g) + log(1.f/1.g).
* Here the leading and trailing values of log(1.g) are obtained from
* a size-64 table.
* For log(1.f/1.g), let s = (1.f-1.g)/(1.f+1.g). Note that
* 1.f = 2^-n(1+x)
*
* then
* log(1.f/1.g) = log((1+s)/(1-s)) = 2s + 2/3 s^3 + 2/5 s^5 +...
* Note that |s|<2**-8=0.00390625. We use an odd s-polynomial
* approximation to compute log(1.f/1.g):
* s*(A1+s^2*(A2+s^2*(A3+s^2*(A4+s^2*(A5+s^2*(A6+s^2*A7))))))
* (Precision is 2**-136.91 bits, absolute error)
*
* CAUTION:
* For x>=1, compute 1+x will lost one bit (OK).
* For x in [-0.5,-1), 1+x is exact.
* For x in (-0.5,-2/33]U[2/31,1), up to 4 last bits of x will be lost
* in 1+x. Therefore, to recover the lost bits, one need to compute
* 1.f-1.g accurately.
*
* Let hx = HI(x), m = (hx>>16)-0x3fff (=ilogbl(x)), note that
* -2/33 = -0.0606...= 2^-5 * 1.939...,
* 2/31 = 0.09375 = 2^-4 * 1.500...,
* so for x in (-0.5,-2/33], -5<=m<=-2, n= -1, 1+f=2*(1+x)
* for x in [2/33,1), -4<=m<=-1, n= 0, f=x
*
* In short:
* if x>0, let g: hg= ((hx + (0x200<<(-m)))>>(10-m))<<(10-m)
* then 1.f-1.g = x-g
* if x<0, let g': hg' =((ix-(0x200)<<(-m-1))>>(9-m))<<(9-m)
* (ix=hx&0x7fffffff)
* then 1.f-1.g = 2*(g'+x),
*
* (c). The final result is computed by
* (n*ln2_hi+_TBL_logl_hi[j]) +
* ( (n*ln2_lo+_TBL_logl_lo[j]) + s*(A1+...) )
*
* Note.
* For ln2_hi and _TBL_logl_hi[j], we force their last 32 bit to be zero
* so that n*ln2_hi + _TBL_logl_hi[j] is exact. Here
* _TBL_logl_hi[j] + _TBL_logl_lo[j] match log(1+j*2**-6) to 194 bits
*
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#pragma weak __log1pl = log1pl
#include "libm.h"
extern const long double _TBL_logl_hi[], _TBL_logl_lo[];
static const long double
zero = 0.0L,
one = 1.0L,
two = 2.0L,
ln2hi = 6.931471805599453094172319547495844850203e-0001L,
ln2lo = 1.667085920830552208890449330400379754169e-0025L,
A1 = 2.000000000000000000000000000000000000024e+0000L,
A2 = 6.666666666666666666666666666666091393804e-0001L,
A3 = 4.000000000000000000000000407167070220671e-0001L,
A4 = 2.857142857142857142730077490612903681164e-0001L,
A5 = 2.222222222222242577702836920812882605099e-0001L,
A6 = 1.818181816435493395985912667105885828356e-0001L,
A7 = 1.538537835211839751112067512805496931725e-0001L,
B1 = 6.666666666666666666666666666666961498329e-0001L,
B2 = 3.999999999999999999999999990037655042358e-0001L,
B3 = 2.857142857142857142857273426428347457918e-0001L,
B4 = 2.222222222222222221353229049747910109566e-0001L,
B5 = 1.818181818181821503532559306309070138046e-0001L,
B6 = 1.538461538453809210486356084587356788556e-0001L,
B7 = 1.333333344463358756121456892645178795480e-0001L,
B8 = 1.176460904783899064854645174603360383792e-0001L,
B9 = 1.057293869956598995326368602518056990746e-0001L;
long double
log1pl(long double x) {
long double f, s, z, qn, h, t, y, g;
int i, j, ix, iy, n, hx, m;
hx = H0(x);
ix = hx & 0x7fffffff;
if (ix < 0x3ffaf07c) { /* |x|<2/33 */
if (ix <= 0x3f8d0000) { /* x <= 2**-114, return x */
if ((int) x == 0)
return (x);
}
s = x / (two + x); /* |s|<2**-8 */
z = s * s;
return (x - s * (x - z * (B1 + z * (B2 + z * (B3 + z * (B4 +
z * (B5 + z * (B6 + z * (B7 + z * (B8 + z * B9))))))))));
}
if (ix >= 0x7fff0000) { /* x is +inf or NaN */
return (x + fabsl(x));
}
if (hx < 0 && ix >= 0x3fff0000) {
if (ix > 0x3fff0000 || (H1(x) | H2(x) | H3(x)) != 0)
x = zero;
return (x / zero); /* log1p(x) is NaN if x<-1 */
/* log1p(-1) is -inf */
}
if (ix >= 0x7ffeffff)
y = x; /* avoid spurious overflow */
else
y = one + x;
iy = H0(y);
n = ((iy + 0x200) >> 16) - 0x3fff;
iy = (iy & 0x0000ffff) | 0x3fff0000; /* scale 1+x to [1,2] */
H0(y) = iy;
z = zero;
m = (ix >> 16) - 0x3fff;
/* HI(1+x) = (((hx&0xffff)|0x10000)>>(-m))|0x3fff0000 */
if (n == 0) { /* x in [2/33,1) */
g = zero;
H0(g) = ((hx + (0x200 << (-m))) >> (10 - m)) << (10 - m);
t = x - g;
i = (((((hx & 0xffff) | 0x10000) >> (-m)) | 0x3fff0000) +
0x200) >> 10;
H0(z) = i << 10;
} else if ((1 + n) == 0 && (ix < 0x3ffe0000)) { /* x in (-0.5,-2/33] */
g = zero;
H0(g) = ((ix + (0x200 << (-m - 1))) >> (9 - m)) << (9 - m);
t = g + x;
t = t + t;
/*
* HI(2*(1+x)) =
* ((0x10000-(((hx&0xffff)|0x10000)>>(-m)))<<1)|0x3fff0000
*/
/*
* i =
* ((((0x10000-(((hx&0xffff)|0x10000)>>(-m)))<<1)|0x3fff0000)+
* 0x200)>>10; H0(z)=i<<10;
*/
z = two * (one - g);
i = H0(z) >> 10;
} else {
i = (iy + 0x200) >> 10;
H0(z) = i << 10;
t = y - z;
}
s = t / (y + z);
j = i & 0x3f;
z = s * s;
qn = (long double) n;
t = qn * ln2lo + _TBL_logl_lo[j];
h = qn * ln2hi + _TBL_logl_hi[j];
f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 + z * (A6 +
z * A7))))));
return (h + f);
}