ipsec_util.c revision 510c3f914054fe5a373967f2397b3d61a91c5bb9
/*
*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/sysconf.h>
#include <strings.h>
#include <ctype.h>
#include <errno.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <net/pfkeyv2.h>
#include <net/pfpolicy.h>
#include <libintl.h>
#include <setjmp.h>
#include <libgen.h>
#include <libscf.h>
#include "ipsec_util.h"
#include "ikedoor.h"
/*
* This file contains support functions that are shared by the ipsec
* utilities and daemons including ipseckey(1m), ikeadm(1m) and in.iked(1m).
*/
#define EFD(file) (((file) == stdout) ? stderr : (file))
/* Limits for interactive mode. */
#define MAX_LINE_LEN IBUF_SIZE
#define MAX_CMD_HIST 64000 /* in bytes */
/* Set standard default/initial values for globals... */
boolean_t pflag = B_FALSE; /* paranoid w.r.t. printing keying material */
boolean_t nflag = B_FALSE; /* avoid nameservice? */
boolean_t interactive = B_FALSE; /* util not running on cmdline */
boolean_t readfile = B_FALSE; /* cmds are being read from a file */
uint_t lineno = 0; /* track location if reading cmds from file */
uint_t lines_added = 0;
uint_t lines_parsed = 0;
jmp_buf env; /* for error recovery in interactive/readfile modes */
char *my_fmri = NULL;
FILE *debugfile = stderr;
static GetLine *gl = NULL; /* for interactive mode */
/*
* Print errno and exit if cmdline or readfile, reset state if interactive
* The error string *what should be dgettext()'d before calling bail().
*/
void
bail(char *what)
{
if (errno != 0)
warn(what);
else
warnx(dgettext(TEXT_DOMAIN, "Error: %s"), what);
if (readfile) {
return;
}
if (interactive && !readfile)
longjmp(env, 2);
EXIT_FATAL(NULL);
}
/*
* Print caller-supplied variable-arg error msg, then exit if cmdline or
* readfile, or reset state if interactive.
*/
/*PRINTFLIKE1*/
void
bail_msg(char *fmt, ...)
{
va_list ap;
char msgbuf[BUFSIZ];
va_start(ap, fmt);
(void) vsnprintf(msgbuf, BUFSIZ, fmt, ap);
va_end(ap);
if (readfile)
warnx(dgettext(TEXT_DOMAIN,
"ERROR on line %u:\n%s\n"), lineno, msgbuf);
else
warnx(dgettext(TEXT_DOMAIN, "ERROR: %s\n"), msgbuf);
if (interactive && !readfile)
longjmp(env, 1);
EXIT_FATAL(NULL);
}
/*
* bytecnt2str() wrapper. Zeroes out the input buffer and if the number
* of bytes to be converted is more than 1K, it will produce readable string
* in parentheses, store it in the original buffer and return the pointer to it.
* Maximum length of the returned string is 14 characters (not including
* the terminating zero).
*/
char *
bytecnt2out(uint64_t num, char *buf, size_t bufsiz, int flags)
{
char *str;
(void) memset(buf, '\0', bufsiz);
if (num > 1024) {
/* Return empty string in case of out-of-memory. */
if ((str = malloc(bufsiz)) == NULL)
return (buf);
(void) bytecnt2str(num, str, bufsiz);
/* Detect overflow. */
if (strlen(str) == 0) {
free(str);
return (buf);
}
/* Emit nothing in case of overflow. */
if (snprintf(buf, bufsiz, "%s(%sB)%s",
flags & SPC_BEGIN ? " " : "", str,
flags & SPC_END ? " " : "") >= bufsiz)
(void) memset(buf, '\0', bufsiz);
free(str);
}
return (buf);
}
/*
* Convert 64-bit number to human readable string. Useful mainly for the
* byte lifetime counters. Returns pointer to the user supplied buffer.
* Able to convert up to Exabytes. Maximum length of the string produced
* is 9 characters (not counting the terminating zero).
*/
char *
bytecnt2str(uint64_t num, char *buf, size_t buflen)
{
uint64_t n = num;
char u;
int index = 0;
while (n >= 1024) {
n /= 1024;
index++;
}
/* The field has all units this function can represent. */
u = " KMGTPE"[index];
if (index == 0) {
/* Less than 1K */
if (snprintf(buf, buflen, "%llu ", num) >= buflen)
(void) memset(buf, '\0', buflen);
} else {
/* Otherwise display 2 precision digits. */
if (snprintf(buf, buflen, "%.2f %c",
(double)num / (1ULL << index * 10), u) >= buflen)
(void) memset(buf, '\0', buflen);
}
return (buf);
}
/*
* secs2str() wrapper. Zeroes out the input buffer and if the number of
* seconds to be converted is more than minute, it will produce readable
* string in parentheses, store it in the original buffer and return the
* pointer to it.
*/
char *
secs2out(unsigned int secs, char *buf, int bufsiz, int flags)
{
char *str;
(void) memset(buf, '\0', bufsiz);
if (secs > 60) {
/* Return empty string in case of out-of-memory. */
if ((str = malloc(bufsiz)) == NULL)
return (buf);
(void) secs2str(secs, str, bufsiz);
/* Detect overflow. */
if (strlen(str) == 0) {
free(str);
return (buf);
}
/* Emit nothing in case of overflow. */
if (snprintf(buf, bufsiz, "%s(%s)%s",
flags & SPC_BEGIN ? " " : "", str,
flags & SPC_END ? " " : "") >= bufsiz)
(void) memset(buf, '\0', bufsiz);
free(str);
}
return (buf);
}
/*
* Convert number of seconds to human readable string. Useful mainly for
* the lifetime counters. Returns pointer to the user supplied buffer.
* Able to convert up to days.
*/
char *
secs2str(unsigned int secs, char *buf, int bufsiz)
{
double val = secs;
char *unit = "second";
if (val >= 24*60*60) {
val /= 86400;
unit = "day";
} else if (val >= 60*60) {
val /= 60*60;
unit = "hour";
} else if (val >= 60) {
val /= 60;
unit = "minute";
}
/* Emit nothing in case of overflow. */
if (snprintf(buf, bufsiz, "%.2f %s%s", val, unit,
val >= 2 ? "s" : "") >= bufsiz)
(void) memset(buf, '\0', bufsiz);
return (buf);
}
/*
* dump_XXX functions produce ASCII output from various structures.
*
* Because certain errors need to do this to stderr, dump_XXX functions
* take a FILE pointer.
*
* If an error occured while writing to the specified file, these
* functions return -1, zero otherwise.
*/
int
dump_sockaddr(struct sockaddr *sa, uint8_t prefixlen, boolean_t addr_only,
FILE *where, boolean_t ignore_nss)
{
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
char *printable_addr, *protocol;
uint8_t *addrptr;
/* Add 4 chars to hold '/nnn' for prefixes. */
char storage[INET6_ADDRSTRLEN + 4];
uint16_t port;
boolean_t unspec;
struct hostent *hp;
int getipnode_errno, addrlen;
switch (sa->sa_family) {
case AF_INET:
/* LINTED E_BAD_PTR_CAST_ALIGN */
sin = (struct sockaddr_in *)sa;
addrptr = (uint8_t *)&sin->sin_addr;
port = sin->sin_port;
protocol = "AF_INET";
unspec = (sin->sin_addr.s_addr == 0);
addrlen = sizeof (sin->sin_addr);
break;
case AF_INET6:
/* LINTED E_BAD_PTR_CAST_ALIGN */
sin6 = (struct sockaddr_in6 *)sa;
addrptr = (uint8_t *)&sin6->sin6_addr;
port = sin6->sin6_port;
protocol = "AF_INET6";
unspec = IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr);
addrlen = sizeof (sin6->sin6_addr);
break;
default:
return (0);
}
if (inet_ntop(sa->sa_family, addrptr, storage, INET6_ADDRSTRLEN) ==
NULL) {
printable_addr = dgettext(TEXT_DOMAIN, "Invalid IP address.");
} else {
char prefix[5]; /* "/nnn" with terminator. */
(void) snprintf(prefix, sizeof (prefix), "/%d", prefixlen);
printable_addr = storage;
if (prefixlen != 0) {
(void) strlcat(printable_addr, prefix,
sizeof (storage));
}
}
if (addr_only) {
if (fprintf(where, "%s", printable_addr) < 0)
return (-1);
} else {
if (fprintf(where, dgettext(TEXT_DOMAIN,
"%s: port %d, %s"), protocol,
ntohs(port), printable_addr) < 0)
return (-1);
if (ignore_nss == B_FALSE) {
/*
* Do AF_independent reverse hostname lookup here.
*/
if (unspec) {
if (fprintf(where,
dgettext(TEXT_DOMAIN,
" <unspecified>")) < 0)
return (-1);
} else {
hp = getipnodebyaddr((char *)addrptr, addrlen,
sa->sa_family, &getipnode_errno);
if (hp != NULL) {
if (fprintf(where,
" (%s)", hp->h_name) < 0)
return (-1);
freehostent(hp);
} else {
if (fprintf(where,
dgettext(TEXT_DOMAIN,
" <unknown>")) < 0)
return (-1);
}
}
}
if (fputs(".\n", where) == EOF)
return (-1);
}
return (0);
}
/*
* Dump a key, any salt and bitlen.
* The key is made up of a stream of bits. If the algorithm requires a salt
* value, this will also be part of the dumped key. The last "saltbits" of the
* key string, reading left to right will be the salt value. To make it easier
* to see which bits make up the key, the salt value is enclosed in []'s.
* This function can also be called when ipseckey(1m) -s is run, this "saves"
* the SAs, including the key to a file. When this is the case, the []'s are
* not printed.
*
* The implementation allows the kernel to be told about the length of the salt
* in whole bytes only. If this changes, this function will need to be updated.
*/
int
dump_key(uint8_t *keyp, uint_t bitlen, uint_t saltbits, FILE *where,
boolean_t separate_salt)
{
int numbytes, saltbytes;
numbytes = SADB_1TO8(bitlen);
saltbytes = SADB_1TO8(saltbits);
numbytes += saltbytes;
/* The & 0x7 is to check for leftover bits. */
if ((bitlen & 0x7) != 0)
numbytes++;
while (numbytes-- != 0) {
if (pflag) {
/* Print no keys if paranoid */
if (fprintf(where, "XX") < 0)
return (-1);
} else {
if (fprintf(where, "%02x", *keyp++) < 0)
return (-1);
}
if (separate_salt && saltbytes != 0 &&
numbytes == saltbytes) {
if (fprintf(where, "[") < 0)
return (-1);
}
}
if (separate_salt && saltbits != 0) {
if (fprintf(where, "]/%u+%u", bitlen, saltbits) < 0)
return (-1);
} else {
if (fprintf(where, "/%u", bitlen + saltbits) < 0)
return (-1);
}
return (0);
}
/*
* Print an authentication or encryption algorithm
*/
static int
dump_generic_alg(uint8_t alg_num, int proto_num, FILE *where)
{
struct ipsecalgent *alg;
alg = getipsecalgbynum(alg_num, proto_num, NULL);
if (alg == NULL) {
if (fprintf(where, dgettext(TEXT_DOMAIN,
"<unknown %u>"), alg_num) < 0)
return (-1);
return (0);
}
/*
* Special-case <none> for backward output compat.
* Assume that SADB_AALG_NONE == SADB_EALG_NONE.
*/
if (alg_num == SADB_AALG_NONE) {
if (fputs(dgettext(TEXT_DOMAIN,
"<none>"), where) == EOF)
return (-1);
} else {
if (fputs(alg->a_names[0], where) == EOF)
return (-1);
}
freeipsecalgent(alg);
return (0);
}
int
dump_aalg(uint8_t aalg, FILE *where)
{
return (dump_generic_alg(aalg, IPSEC_PROTO_AH, where));
}
int
dump_ealg(uint8_t ealg, FILE *where)
{
return (dump_generic_alg(ealg, IPSEC_PROTO_ESP, where));
}
/*
* Print an SADB_IDENTTYPE string
*
* Also return TRUE if the actual ident may be printed, FALSE if not.
*
* If rc is not NULL, set its value to -1 if an error occured while writing
* to the specified file, zero otherwise.
*/
boolean_t
dump_sadb_idtype(uint8_t idtype, FILE *where, int *rc)
{
boolean_t canprint = B_TRUE;
int rc_val = 0;
switch (idtype) {
case SADB_IDENTTYPE_PREFIX:
if (fputs(dgettext(TEXT_DOMAIN, "prefix"), where) == EOF)
rc_val = -1;
break;
case SADB_IDENTTYPE_FQDN:
if (fputs(dgettext(TEXT_DOMAIN, "FQDN"), where) == EOF)
rc_val = -1;
break;
case SADB_IDENTTYPE_USER_FQDN:
if (fputs(dgettext(TEXT_DOMAIN,
"user-FQDN (mbox)"), where) == EOF)
rc_val = -1;
break;
case SADB_X_IDENTTYPE_DN:
if (fputs(dgettext(TEXT_DOMAIN, "ASN.1 DER Distinguished Name"),
where) == EOF)
rc_val = -1;
canprint = B_FALSE;
break;
case SADB_X_IDENTTYPE_GN:
if (fputs(dgettext(TEXT_DOMAIN, "ASN.1 DER Generic Name"),
where) == EOF)
rc_val = -1;
canprint = B_FALSE;
break;
case SADB_X_IDENTTYPE_KEY_ID:
if (fputs(dgettext(TEXT_DOMAIN, "Generic key id"),
where) == EOF)
rc_val = -1;
break;
case SADB_X_IDENTTYPE_ADDR_RANGE:
if (fputs(dgettext(TEXT_DOMAIN, "Address range"), where) == EOF)
rc_val = -1;
break;
default:
if (fprintf(where, dgettext(TEXT_DOMAIN,
"<unknown %u>"), idtype) < 0)
rc_val = -1;
break;
}
if (rc != NULL)
*rc = rc_val;
return (canprint);
}
/*
* Slice an argv/argc vector from an interactive line or a read-file line.
*/
static int
create_argv(char *ibuf, int *newargc, char ***thisargv)
{
unsigned int argvlen = START_ARG;
char **current;
boolean_t firstchar = B_TRUE;
boolean_t inquotes = B_FALSE;
*thisargv = malloc(sizeof (char *) * argvlen);
if ((*thisargv) == NULL)
return (MEMORY_ALLOCATION);
current = *thisargv;
*current = NULL;
for (; *ibuf != '\0'; ibuf++) {
if (isspace(*ibuf)) {
if (inquotes) {
continue;
}
if (*current != NULL) {
*ibuf = '\0';
current++;
if (*thisargv + argvlen == current) {
/* Regrow ***thisargv. */
if (argvlen == TOO_MANY_ARGS) {
free(*thisargv);
return (TOO_MANY_TOKENS);
}
/* Double the allocation. */
current = realloc(*thisargv,
sizeof (char *) * (argvlen << 1));
if (current == NULL) {
free(*thisargv);
return (MEMORY_ALLOCATION);
}
*thisargv = current;
current += argvlen;
argvlen <<= 1; /* Double the size. */
}
*current = NULL;
}
} else {
if (firstchar) {
firstchar = B_FALSE;
if (*ibuf == COMMENT_CHAR || *ibuf == '\n') {
free(*thisargv);
return (COMMENT_LINE);
}
}
if (*ibuf == QUOTE_CHAR) {
if (inquotes) {
inquotes = B_FALSE;
*ibuf = '\0';
} else {
inquotes = B_TRUE;
}
continue;
}
if (*current == NULL) {
*current = ibuf;
(*newargc)++;
}
}
}
/*
* Tricky corner case...
* I've parsed _exactly_ the amount of args as I have space. It
* won't return NULL-terminated, and bad things will happen to
* the caller.
*/
if (argvlen == *newargc) {
current = realloc(*thisargv, sizeof (char *) * (argvlen + 1));
if (current == NULL) {
free(*thisargv);
return (MEMORY_ALLOCATION);
}
*thisargv = current;
current[argvlen] = NULL;
}
return (SUCCESS);
}
/*
* init interactive mode if needed and not yet initialized
*/
static void
init_interactive(FILE *infile, CplMatchFn *match_fn)
{
if (infile == stdin) {
if (gl == NULL) {
if ((gl = new_GetLine(MAX_LINE_LEN,
MAX_CMD_HIST)) == NULL)
errx(1, dgettext(TEXT_DOMAIN,
"tecla initialization failed"));
if (gl_customize_completion(gl, NULL,
match_fn) != 0) {
(void) del_GetLine(gl);
errx(1, dgettext(TEXT_DOMAIN,
"tab completion failed to initialize"));
}
/*
* In interactive mode we only want to terminate
* when explicitly requested (e.g. by a command).
*/
(void) sigset(SIGINT, SIG_IGN);
}
} else {
readfile = B_TRUE;
}
}
/*
* free tecla data structure
*/
static void
fini_interactive(void)
{
if (gl != NULL)
(void) del_GetLine(gl);
}
/*
* Get single input line, wrapping around interactive and non-interactive
* mode.
*/
static char *
do_getstr(FILE *infile, char *prompt, char *ibuf, size_t ibuf_size)
{
char *line;
if (infile != stdin)
return (fgets(ibuf, ibuf_size, infile));
/*
* If the user hits ^C then we want to catch it and
* start over. If the user hits EOF then we want to
* bail out.
*/
once_again:
line = gl_get_line(gl, prompt, NULL, -1);
if (gl_return_status(gl) == GLR_SIGNAL) {
gl_abandon_line(gl);
goto once_again;
} else if (gl_return_status(gl) == GLR_ERROR) {
gl_abandon_line(gl);
errx(1, dgettext(TEXT_DOMAIN, "Error reading terminal: %s\n"),
gl_error_message(gl, NULL, 0));
} else {
if (line != NULL) {
if (strlcpy(ibuf, line, ibuf_size) >= ibuf_size)
warnx(dgettext(TEXT_DOMAIN,
"Line too long (max=%d chars)"),
ibuf_size);
line = ibuf;
}
}
return (line);
}
/*
* Enter a mode where commands are read from a file. Treat stdin special.
*/
void
do_interactive(FILE *infile, char *configfile, char *promptstring,
char *my_fmri, parse_cmdln_fn parseit, CplMatchFn *match_fn)
{
char ibuf[IBUF_SIZE], holder[IBUF_SIZE];
char *hptr, **thisargv, *ebuf;
int thisargc;
boolean_t continue_in_progress = B_FALSE;
char *s;
(void) setjmp(env);
ebuf = NULL;
interactive = B_TRUE;
bzero(ibuf, IBUF_SIZE);
/* panics for us */
init_interactive(infile, match_fn);
while ((s = do_getstr(infile, promptstring, ibuf, IBUF_SIZE)) != NULL) {
if (readfile)
lineno++;
thisargc = 0;
thisargv = NULL;
/*
* Check byte IBUF_SIZE - 2, because byte IBUF_SIZE - 1 will
* be null-terminated because of fgets().
*/
if (ibuf[IBUF_SIZE - 2] != '\0') {
if (infile == stdin) {
/* do_getstr() issued a warning already */
bzero(ibuf, IBUF_SIZE);
continue;
} else {
ipsecutil_exit(SERVICE_FATAL, my_fmri,
debugfile, dgettext(TEXT_DOMAIN,
"Line %d too big."), lineno);
}
}
if (!continue_in_progress) {
/* Use -2 because of \n from fgets. */
if (ibuf[strlen(ibuf) - 2] == CONT_CHAR) {
/*
* Can use strcpy here, I've checked the
* length already.
*/
(void) strcpy(holder, ibuf);
hptr = &(holder[strlen(holder)]);
/* Remove the CONT_CHAR from the string. */
hptr[-2] = ' ';
continue_in_progress = B_TRUE;
bzero(ibuf, IBUF_SIZE);
continue;
}
} else {
/* Handle continuations... */
(void) strncpy(hptr, ibuf,
(size_t)(&(holder[IBUF_SIZE]) - hptr));
if (holder[IBUF_SIZE - 1] != '\0') {
ipsecutil_exit(SERVICE_FATAL, my_fmri,
debugfile, dgettext(TEXT_DOMAIN,
"Command buffer overrun."));
}
/* Use - 2 because of \n from fgets. */
if (hptr[strlen(hptr) - 2] == CONT_CHAR) {
bzero(ibuf, IBUF_SIZE);
hptr += strlen(hptr);
/* Remove the CONT_CHAR from the string. */
hptr[-2] = ' ';
continue;
} else {
continue_in_progress = B_FALSE;
/*
* I've already checked the length...
*/
(void) strcpy(ibuf, holder);
}
}
/*
* Just in case the command fails keep a copy of the
* command buffer for diagnostic output.
*/
if (readfile) {
/*
* The error buffer needs to be big enough to
* hold the longest command string, plus
* some extra text, see below.
*/
ebuf = calloc((IBUF_SIZE * 2), sizeof (char));
if (ebuf == NULL) {
ipsecutil_exit(SERVICE_FATAL, my_fmri,
debugfile, dgettext(TEXT_DOMAIN,
"Memory allocation error."));
} else {
(void) snprintf(ebuf, (IBUF_SIZE * 2),
dgettext(TEXT_DOMAIN,
"Config file entry near line %u "
"caused error(s) or warnings:\n\n%s\n\n"),
lineno, ibuf);
}
}
switch (create_argv(ibuf, &thisargc, &thisargv)) {
case TOO_MANY_TOKENS:
ipsecutil_exit(SERVICE_BADCONF, my_fmri, debugfile,
dgettext(TEXT_DOMAIN, "Too many input tokens."));
break;
case MEMORY_ALLOCATION:
ipsecutil_exit(SERVICE_BADCONF, my_fmri, debugfile,
dgettext(TEXT_DOMAIN, "Memory allocation error."));
break;
case COMMENT_LINE:
/* Comment line. */
free(ebuf);
break;
default:
if (thisargc != 0) {
lines_parsed++;
/* ebuf consumed */
parseit(thisargc, thisargv, ebuf, readfile);
} else {
free(ebuf);
}
free(thisargv);
if (infile == stdin) {
(void) printf("%s", promptstring);
(void) fflush(stdout);
}
break;
}
bzero(ibuf, IBUF_SIZE);
}
/*
* The following code is ipseckey specific. This should never be
* used by ikeadm which also calls this function because ikeadm
* only runs interactively. If this ever changes this code block
* sould be revisited.
*/
if (readfile) {
if (lines_parsed != 0 && lines_added == 0) {
ipsecutil_exit(SERVICE_BADCONF, my_fmri, debugfile,
dgettext(TEXT_DOMAIN, "Configuration file did not "
"contain any valid SAs"));
}
/*
* There were errors. Putting the service in maintenance mode.
* When svc.startd(1M) allows services to degrade themselves,
* this should be revisited.
*
* If this function was called from a program running as a
* smf_method(5), print a warning message. Don't spew out the
* errors as these will end up in the smf(5) log file which is
* publically readable, the errors may contain sensitive
* information.
*/
if ((lines_added < lines_parsed) && (configfile != NULL)) {
if (my_fmri != NULL) {
ipsecutil_exit(SERVICE_BADCONF, my_fmri,
debugfile, dgettext(TEXT_DOMAIN,
"The configuration file contained %d "
"errors.\n"
"Manually check the configuration with:\n"
"ipseckey -c %s\n"
"Use svcadm(1M) to clear maintenance "
"condition when errors are resolved.\n"),
lines_parsed - lines_added, configfile);
} else {
EXIT_BADCONFIG(NULL);
}
} else {
if (my_fmri != NULL)
ipsecutil_exit(SERVICE_EXIT_OK, my_fmri,
debugfile, dgettext(TEXT_DOMAIN,
"%d actions successfully processed."),
lines_added);
}
} else {
/* no newline upon Ctrl-D */
if (s != NULL)
(void) putchar('\n');
(void) fflush(stdout);
}
fini_interactive();
EXIT_OK(NULL);
}
/*
* Functions to parse strings that represent a debug or privilege level.
* These functions are copied from main.c and door.c in usr.lib/in.iked/common.
* If this file evolves into a common library that may be used by in.iked
* as well as the usr.sbin utilities, those duplicate functions should be
* deleted.
*
* A privilege level may be represented by a simple keyword, corresponding
* to one of the possible levels. A debug level may be represented by a
* series of keywords, separated by '+' or '-', indicating categories to
* be added or removed from the set of categories in the debug level.
* For example, +all-op corresponds to level 0xfffffffb (all flags except
* for D_OP set); while p1+p2+pfkey corresponds to level 0x38. Note that
* the leading '+' is implicit; the first keyword in the list must be for
* a category that is to be added.
*
* These parsing functions make use of a local version of strtok, strtok_d,
* which includes an additional parameter, char *delim. This param is filled
* in with the character which ends the returned token. In other words,
* this version of strtok, in addition to returning the token, also returns
* the single character delimiter from the original string which marked the
* end of the token.
*/
static char *
strtok_d(char *string, const char *sepset, char *delim)
{
static char *lasts;
char *q, *r;
/* first or subsequent call */
if (string == NULL)
string = lasts;
if (string == 0) /* return if no tokens remaining */
return (NULL);
q = string + strspn(string, sepset); /* skip leading separators */
if (*q == '\0') /* return if no tokens remaining */
return (NULL);
if ((r = strpbrk(q, sepset)) == NULL) { /* move past token */
lasts = 0; /* indicate that this is last token */
} else {
*delim = *r; /* save delimitor */
*r = '\0';
lasts = r + 1;
}
return (q);
}
static keywdtab_t privtab[] = {
{ IKE_PRIV_MINIMUM, "base" },
{ IKE_PRIV_MODKEYS, "modkeys" },
{ IKE_PRIV_KEYMAT, "keymat" },
{ IKE_PRIV_MINIMUM, "0" },
};
int
privstr2num(char *str)
{
keywdtab_t *pp;
char *endp;
int priv;
for (pp = privtab; pp < A_END(privtab); pp++) {
if (strcasecmp(str, pp->kw_str) == 0)
return (pp->kw_tag);
}
priv = strtol(str, &endp, 0);
if (*endp == '\0')
return (priv);
return (-1);
}
static keywdtab_t dbgtab[] = {
{ D_CERT, "cert" },
{ D_KEY, "key" },
{ D_OP, "op" },
{ D_P1, "p1" },
{ D_P1, "phase1" },
{ D_P2, "p2" },
{ D_P2, "phase2" },
{ D_PFKEY, "pfkey" },
{ D_POL, "pol" },
{ D_POL, "policy" },
{ D_PROP, "prop" },
{ D_DOOR, "door" },
{ D_CONFIG, "config" },
{ D_LABEL, "label" },
{ D_ALL, "all" },
{ 0, "0" },
};
int
dbgstr2num(char *str)
{
keywdtab_t *dp;
for (dp = dbgtab; dp < A_END(dbgtab); dp++) {
if (strcasecmp(str, dp->kw_str) == 0)
return (dp->kw_tag);
}
return (D_INVALID);
}
int
parsedbgopts(char *optarg)
{
char *argp, *endp, op, nextop;
int mask = 0, new;
mask = strtol(optarg, &endp, 0);
if (*endp == '\0')
return (mask);
op = optarg[0];
if (op != '-')
op = '+';
argp = strtok_d(optarg, "+-", &nextop);
do {
new = dbgstr2num(argp);
if (new == D_INVALID) {
/* we encountered an invalid keywd */
return (new);
}
if (op == '+') {
mask |= new;
} else {
mask &= ~new;
}
op = nextop;
} while ((argp = strtok_d(NULL, "+-", &nextop)) != NULL);
return (mask);
}
/*
* functions to manipulate the kmcookie-label mapping file
*/
/*
* Open, lockf, fdopen the given file, returning a FILE * on success,
* or NULL on failure.
*/
FILE *
kmc_open_and_lock(char *name)
{
int fd, rtnerr;
FILE *fp;
if ((fd = open(name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR)) < 0) {
return (NULL);
}
if (lockf(fd, F_LOCK, 0) < 0) {
return (NULL);
}
if ((fp = fdopen(fd, "a+")) == NULL) {
return (NULL);
}
if (fseek(fp, 0, SEEK_SET) < 0) {
/* save errno in case fclose changes it */
rtnerr = errno;
(void) fclose(fp);
errno = rtnerr;
return (NULL);
}
return (fp);
}
/*
* Extract an integer cookie and string label from a line from the
* kmcookie-label file. Return -1 on failure, 0 on success.
*/
int
kmc_parse_line(char *line, int *cookie, char **label)
{
char *cookiestr;
*cookie = 0;
*label = NULL;
cookiestr = strtok(line, " \t\n");
if (cookiestr == NULL) {
return (-1);
}
/* Everything that follows, up to the newline, is the label. */
*label = strtok(NULL, "\n");
if (*label == NULL) {
return (-1);
}
*cookie = atoi(cookiestr);
return (0);
}
/*
* Insert a mapping into the file (if it's not already there), given the
* new label. Return the assigned cookie, or -1 on error.
*/
int
kmc_insert_mapping(char *label)
{
FILE *map;
char linebuf[IBUF_SIZE];
char *cur_label;
int max_cookie = 0, cur_cookie, rtn_cookie;
int rtnerr = 0;
boolean_t found = B_FALSE;
/* open and lock the file; will sleep until lock is available */
if ((map = kmc_open_and_lock(KMCFILE)) == NULL) {
/* kmc_open_and_lock() sets errno appropriately */
return (-1);
}
while (fgets(linebuf, sizeof (linebuf), map) != NULL) {
/* Skip blank lines, which often come near EOF. */
if (strlen(linebuf) == 0)
continue;
if (kmc_parse_line(linebuf, &cur_cookie, &cur_label) < 0) {
rtnerr = EINVAL;
goto error;
}
if (cur_cookie > max_cookie)
max_cookie = cur_cookie;
if ((!found) && (strcmp(cur_label, label) == 0)) {
found = B_TRUE;
rtn_cookie = cur_cookie;
}
}
if (!found) {
rtn_cookie = ++max_cookie;
if ((fprintf(map, "%u\t%s\n", rtn_cookie, label) < 0) ||
(fflush(map) < 0)) {
rtnerr = errno;
goto error;
}
}
(void) fclose(map);
return (rtn_cookie);
error:
(void) fclose(map);
errno = rtnerr;
return (-1);
}
/*
* Lookup the given cookie and return its corresponding label. Return
* a pointer to the label on success, NULL on error (or if the label is
* not found). Note that the returned label pointer points to a static
* string, so the label will be overwritten by a subsequent call to the
* function; the function is also not thread-safe as a result.
*/
char *
kmc_lookup_by_cookie(int cookie)
{
FILE *map;
static char linebuf[IBUF_SIZE];
char *cur_label;
int cur_cookie;
if ((map = kmc_open_and_lock(KMCFILE)) == NULL) {
return (NULL);
}
while (fgets(linebuf, sizeof (linebuf), map) != NULL) {
if (kmc_parse_line(linebuf, &cur_cookie, &cur_label) < 0) {
(void) fclose(map);
return (NULL);
}
if (cookie == cur_cookie) {
(void) fclose(map);
return (cur_label);
}
}
(void) fclose(map);
return (NULL);
}
/*
* Parse basic extension headers and return in the passed-in pointer vector.
* Return values include:
*
* KGE_OK Everything's nice and parsed out.
* If there are no extensions, place NULL in extv[0].
* KGE_DUP There is a duplicate extension.
* First instance in appropriate bin. First duplicate in
* extv[0].
* KGE_UNK Unknown extension type encountered. extv[0] contains
* unknown header.
* KGE_LEN Extension length error.
* KGE_CHK High-level reality check failed on specific extension.
*
* My apologies for some of the pointer arithmetic in here. I'm thinking
* like an assembly programmer, yet trying to make the compiler happy.
*/
int
spdsock_get_ext(spd_ext_t *extv[], spd_msg_t *basehdr, uint_t msgsize,
char *diag_buf, uint_t diag_buf_len)
{
int i;
if (diag_buf != NULL)
diag_buf[0] = '\0';
for (i = 1; i <= SPD_EXT_MAX; i++)
extv[i] = NULL;
i = 0;
/* Use extv[0] as the "current working pointer". */
extv[0] = (spd_ext_t *)(basehdr + 1);
msgsize = SPD_64TO8(msgsize);
while ((char *)extv[0] < ((char *)basehdr + msgsize)) {
/* Check for unknown headers. */
i++;
if (extv[0]->spd_ext_type == 0 ||
extv[0]->spd_ext_type > SPD_EXT_MAX) {
if (diag_buf != NULL) {
(void) snprintf(diag_buf, diag_buf_len,
"spdsock ext 0x%X unknown: 0x%X",
i, extv[0]->spd_ext_type);
}
return (KGE_UNK);
}
/*
* Check length. Use uint64_t because extlen is in units
* of 64-bit words. If length goes beyond the msgsize,
* return an error. (Zero length also qualifies here.)
*/
if (extv[0]->spd_ext_len == 0 ||
(uint8_t *)((uint64_t *)extv[0] + extv[0]->spd_ext_len) >
(uint8_t *)((uint8_t *)basehdr + msgsize))
return (KGE_LEN);
/* Check for redundant headers. */
if (extv[extv[0]->spd_ext_type] != NULL)
return (KGE_DUP);
/* If I make it here, assign the appropriate bin. */
extv[extv[0]->spd_ext_type] = extv[0];
/* Advance pointer (See above for uint64_t ptr reasoning.) */
extv[0] = (spd_ext_t *)
((uint64_t *)extv[0] + extv[0]->spd_ext_len);
}
/* Everything's cool. */
/*
* If extv[0] == NULL, then there are no extension headers in this
* message. Ensure that this is the case.
*/
if (extv[0] == (spd_ext_t *)(basehdr + 1))
extv[0] = NULL;
return (KGE_OK);
}
const char *
spdsock_diag(int diagnostic)
{
switch (diagnostic) {
case SPD_DIAGNOSTIC_NONE:
return (dgettext(TEXT_DOMAIN, "no error"));
case SPD_DIAGNOSTIC_UNKNOWN_EXT:
return (dgettext(TEXT_DOMAIN, "unknown extension"));
case SPD_DIAGNOSTIC_BAD_EXTLEN:
return (dgettext(TEXT_DOMAIN, "bad extension length"));
case SPD_DIAGNOSTIC_NO_RULE_EXT:
return (dgettext(TEXT_DOMAIN, "no rule extension"));
case SPD_DIAGNOSTIC_BAD_ADDR_LEN:
return (dgettext(TEXT_DOMAIN, "bad address len"));
case SPD_DIAGNOSTIC_MIXED_AF:
return (dgettext(TEXT_DOMAIN, "mixed address family"));
case SPD_DIAGNOSTIC_ADD_NO_MEM:
return (dgettext(TEXT_DOMAIN, "add: no memory"));
case SPD_DIAGNOSTIC_ADD_WRONG_ACT_COUNT:
return (dgettext(TEXT_DOMAIN, "add: wrong action count"));
case SPD_DIAGNOSTIC_ADD_BAD_TYPE:
return (dgettext(TEXT_DOMAIN, "add: bad type"));
case SPD_DIAGNOSTIC_ADD_BAD_FLAGS:
return (dgettext(TEXT_DOMAIN, "add: bad flags"));
case SPD_DIAGNOSTIC_ADD_INCON_FLAGS:
return (dgettext(TEXT_DOMAIN, "add: inconsistent flags"));
case SPD_DIAGNOSTIC_MALFORMED_LCLPORT:
return (dgettext(TEXT_DOMAIN, "malformed local port"));
case SPD_DIAGNOSTIC_DUPLICATE_LCLPORT:
return (dgettext(TEXT_DOMAIN, "duplicate local port"));
case SPD_DIAGNOSTIC_MALFORMED_REMPORT:
return (dgettext(TEXT_DOMAIN, "malformed remote port"));
case SPD_DIAGNOSTIC_DUPLICATE_REMPORT:
return (dgettext(TEXT_DOMAIN, "duplicate remote port"));
case SPD_DIAGNOSTIC_MALFORMED_PROTO:
return (dgettext(TEXT_DOMAIN, "malformed proto"));
case SPD_DIAGNOSTIC_DUPLICATE_PROTO:
return (dgettext(TEXT_DOMAIN, "duplicate proto"));
case SPD_DIAGNOSTIC_MALFORMED_LCLADDR:
return (dgettext(TEXT_DOMAIN, "malformed local address"));
case SPD_DIAGNOSTIC_DUPLICATE_LCLADDR:
return (dgettext(TEXT_DOMAIN, "duplicate local address"));
case SPD_DIAGNOSTIC_MALFORMED_REMADDR:
return (dgettext(TEXT_DOMAIN, "malformed remote address"));
case SPD_DIAGNOSTIC_DUPLICATE_REMADDR:
return (dgettext(TEXT_DOMAIN, "duplicate remote address"));
case SPD_DIAGNOSTIC_MALFORMED_ACTION:
return (dgettext(TEXT_DOMAIN, "malformed action"));
case SPD_DIAGNOSTIC_DUPLICATE_ACTION:
return (dgettext(TEXT_DOMAIN, "duplicate action"));
case SPD_DIAGNOSTIC_MALFORMED_RULE:
return (dgettext(TEXT_DOMAIN, "malformed rule"));
case SPD_DIAGNOSTIC_DUPLICATE_RULE:
return (dgettext(TEXT_DOMAIN, "duplicate rule"));
case SPD_DIAGNOSTIC_MALFORMED_RULESET:
return (dgettext(TEXT_DOMAIN, "malformed ruleset"));
case SPD_DIAGNOSTIC_DUPLICATE_RULESET:
return (dgettext(TEXT_DOMAIN, "duplicate ruleset"));
case SPD_DIAGNOSTIC_INVALID_RULE_INDEX:
return (dgettext(TEXT_DOMAIN, "invalid rule index"));
case SPD_DIAGNOSTIC_BAD_SPDID:
return (dgettext(TEXT_DOMAIN, "bad spdid"));
case SPD_DIAGNOSTIC_BAD_MSG_TYPE:
return (dgettext(TEXT_DOMAIN, "bad message type"));
case SPD_DIAGNOSTIC_UNSUPP_AH_ALG:
return (dgettext(TEXT_DOMAIN, "unsupported AH algorithm"));
case SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG:
return (dgettext(TEXT_DOMAIN,
"unsupported ESP encryption algorithm"));
case SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG:
return (dgettext(TEXT_DOMAIN,
"unsupported ESP authentication algorithm"));
case SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE:
return (dgettext(TEXT_DOMAIN, "unsupported AH key size"));
case SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE:
return (dgettext(TEXT_DOMAIN,
"unsupported ESP encryption key size"));
case SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE:
return (dgettext(TEXT_DOMAIN,
"unsupported ESP authentication key size"));
case SPD_DIAGNOSTIC_NO_ACTION_EXT:
return (dgettext(TEXT_DOMAIN, "No ACTION extension"));
case SPD_DIAGNOSTIC_ALG_ID_RANGE:
return (dgettext(TEXT_DOMAIN, "invalid algorithm identifer"));
case SPD_DIAGNOSTIC_ALG_NUM_KEY_SIZES:
return (dgettext(TEXT_DOMAIN,
"number of key sizes inconsistent"));
case SPD_DIAGNOSTIC_ALG_NUM_BLOCK_SIZES:
return (dgettext(TEXT_DOMAIN,
"number of block sizes inconsistent"));
case SPD_DIAGNOSTIC_ALG_MECH_NAME_LEN:
return (dgettext(TEXT_DOMAIN, "invalid mechanism name length"));
case SPD_DIAGNOSTIC_NOT_GLOBAL_OP:
return (dgettext(TEXT_DOMAIN,
"operation not applicable to all policies"));
case SPD_DIAGNOSTIC_NO_TUNNEL_SELECTORS:
return (dgettext(TEXT_DOMAIN,
"using selectors on a transport-mode tunnel"));
default:
return (dgettext(TEXT_DOMAIN, "unknown diagnostic"));
}
}
/*
* PF_KEY Diagnostic table.
*
* PF_KEY NOTE: If you change pfkeyv2.h's SADB_X_DIAGNOSTIC_* space, this is
* where you need to add new messages.
*/
const char *
keysock_diag(int diagnostic)
{
switch (diagnostic) {
case SADB_X_DIAGNOSTIC_NONE:
return (dgettext(TEXT_DOMAIN, "No diagnostic"));
case SADB_X_DIAGNOSTIC_UNKNOWN_MSG:
return (dgettext(TEXT_DOMAIN, "Unknown message type"));
case SADB_X_DIAGNOSTIC_UNKNOWN_EXT:
return (dgettext(TEXT_DOMAIN, "Unknown extension type"));
case SADB_X_DIAGNOSTIC_BAD_EXTLEN:
return (dgettext(TEXT_DOMAIN, "Bad extension length"));
case SADB_X_DIAGNOSTIC_UNKNOWN_SATYPE:
return (dgettext(TEXT_DOMAIN,
"Unknown Security Association type"));
case SADB_X_DIAGNOSTIC_SATYPE_NEEDED:
return (dgettext(TEXT_DOMAIN,
"Specific Security Association type needed"));
case SADB_X_DIAGNOSTIC_NO_SADBS:
return (dgettext(TEXT_DOMAIN,
"No Security Association Databases present"));
case SADB_X_DIAGNOSTIC_NO_EXT:
return (dgettext(TEXT_DOMAIN,
"No extensions needed for message"));
case SADB_X_DIAGNOSTIC_BAD_SRC_AF:
return (dgettext(TEXT_DOMAIN, "Bad source address family"));
case SADB_X_DIAGNOSTIC_BAD_DST_AF:
return (dgettext(TEXT_DOMAIN,
"Bad destination address family"));
case SADB_X_DIAGNOSTIC_BAD_PROXY_AF:
return (dgettext(TEXT_DOMAIN,
"Bad inner-source address family"));
case SADB_X_DIAGNOSTIC_AF_MISMATCH:
return (dgettext(TEXT_DOMAIN,
"Source/destination address family mismatch"));
case SADB_X_DIAGNOSTIC_BAD_SRC:
return (dgettext(TEXT_DOMAIN, "Bad source address value"));
case SADB_X_DIAGNOSTIC_BAD_DST:
return (dgettext(TEXT_DOMAIN, "Bad destination address value"));
case SADB_X_DIAGNOSTIC_ALLOC_HSERR:
return (dgettext(TEXT_DOMAIN,
"Soft allocations limit more than hard limit"));
case SADB_X_DIAGNOSTIC_BYTES_HSERR:
return (dgettext(TEXT_DOMAIN,
"Soft bytes limit more than hard limit"));
case SADB_X_DIAGNOSTIC_ADDTIME_HSERR:
return (dgettext(TEXT_DOMAIN, "Soft add expiration time later "
"than hard expiration time"));
case SADB_X_DIAGNOSTIC_USETIME_HSERR:
return (dgettext(TEXT_DOMAIN, "Soft use expiration time later "
"than hard expiration time"));
case SADB_X_DIAGNOSTIC_MISSING_SRC:
return (dgettext(TEXT_DOMAIN, "Missing source address"));
case SADB_X_DIAGNOSTIC_MISSING_DST:
return (dgettext(TEXT_DOMAIN, "Missing destination address"));
case SADB_X_DIAGNOSTIC_MISSING_SA:
return (dgettext(TEXT_DOMAIN, "Missing SA extension"));
case SADB_X_DIAGNOSTIC_MISSING_EKEY:
return (dgettext(TEXT_DOMAIN, "Missing encryption key"));
case SADB_X_DIAGNOSTIC_MISSING_AKEY:
return (dgettext(TEXT_DOMAIN, "Missing authentication key"));
case SADB_X_DIAGNOSTIC_MISSING_RANGE:
return (dgettext(TEXT_DOMAIN, "Missing SPI range"));
case SADB_X_DIAGNOSTIC_DUPLICATE_SRC:
return (dgettext(TEXT_DOMAIN, "Duplicate source address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_DST:
return (dgettext(TEXT_DOMAIN, "Duplicate destination address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_SA:
return (dgettext(TEXT_DOMAIN, "Duplicate SA extension"));
case SADB_X_DIAGNOSTIC_DUPLICATE_EKEY:
return (dgettext(TEXT_DOMAIN, "Duplicate encryption key"));
case SADB_X_DIAGNOSTIC_DUPLICATE_AKEY:
return (dgettext(TEXT_DOMAIN, "Duplicate authentication key"));
case SADB_X_DIAGNOSTIC_DUPLICATE_RANGE:
return (dgettext(TEXT_DOMAIN, "Duplicate SPI range"));
case SADB_X_DIAGNOSTIC_MALFORMED_SRC:
return (dgettext(TEXT_DOMAIN, "Malformed source address"));
case SADB_X_DIAGNOSTIC_MALFORMED_DST:
return (dgettext(TEXT_DOMAIN, "Malformed destination address"));
case SADB_X_DIAGNOSTIC_MALFORMED_SA:
return (dgettext(TEXT_DOMAIN, "Malformed SA extension"));
case SADB_X_DIAGNOSTIC_MALFORMED_EKEY:
return (dgettext(TEXT_DOMAIN, "Malformed encryption key"));
case SADB_X_DIAGNOSTIC_MALFORMED_AKEY:
return (dgettext(TEXT_DOMAIN, "Malformed authentication key"));
case SADB_X_DIAGNOSTIC_MALFORMED_RANGE:
return (dgettext(TEXT_DOMAIN, "Malformed SPI range"));
case SADB_X_DIAGNOSTIC_AKEY_PRESENT:
return (dgettext(TEXT_DOMAIN, "Authentication key not needed"));
case SADB_X_DIAGNOSTIC_EKEY_PRESENT:
return (dgettext(TEXT_DOMAIN, "Encryption key not needed"));
case SADB_X_DIAGNOSTIC_PROP_PRESENT:
return (dgettext(TEXT_DOMAIN, "Proposal extension not needed"));
case SADB_X_DIAGNOSTIC_SUPP_PRESENT:
return (dgettext(TEXT_DOMAIN,
"Supported algorithms extension not needed"));
case SADB_X_DIAGNOSTIC_BAD_AALG:
return (dgettext(TEXT_DOMAIN,
"Unsupported authentication algorithm"));
case SADB_X_DIAGNOSTIC_BAD_EALG:
return (dgettext(TEXT_DOMAIN,
"Unsupported encryption algorithm"));
case SADB_X_DIAGNOSTIC_BAD_SAFLAGS:
return (dgettext(TEXT_DOMAIN, "Invalid SA flags"));
case SADB_X_DIAGNOSTIC_BAD_SASTATE:
return (dgettext(TEXT_DOMAIN, "Invalid SA state"));
case SADB_X_DIAGNOSTIC_BAD_AKEYBITS:
return (dgettext(TEXT_DOMAIN,
"Bad number of authentication bits"));
case SADB_X_DIAGNOSTIC_BAD_EKEYBITS:
return (dgettext(TEXT_DOMAIN,
"Bad number of encryption bits"));
case SADB_X_DIAGNOSTIC_ENCR_NOTSUPP:
return (dgettext(TEXT_DOMAIN,
"Encryption not supported for this SA type"));
case SADB_X_DIAGNOSTIC_WEAK_EKEY:
return (dgettext(TEXT_DOMAIN, "Weak encryption key"));
case SADB_X_DIAGNOSTIC_WEAK_AKEY:
return (dgettext(TEXT_DOMAIN, "Weak authentication key"));
case SADB_X_DIAGNOSTIC_DUPLICATE_KMP:
return (dgettext(TEXT_DOMAIN,
"Duplicate key management protocol"));
case SADB_X_DIAGNOSTIC_DUPLICATE_KMC:
return (dgettext(TEXT_DOMAIN,
"Duplicate key management cookie"));
case SADB_X_DIAGNOSTIC_MISSING_NATT_LOC:
return (dgettext(TEXT_DOMAIN, "Missing NAT-T local address"));
case SADB_X_DIAGNOSTIC_MISSING_NATT_REM:
return (dgettext(TEXT_DOMAIN, "Missing NAT-T remote address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_NATT_LOC:
return (dgettext(TEXT_DOMAIN, "Duplicate NAT-T local address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_NATT_REM:
return (dgettext(TEXT_DOMAIN,
"Duplicate NAT-T remote address"));
case SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC:
return (dgettext(TEXT_DOMAIN, "Malformed NAT-T local address"));
case SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM:
return (dgettext(TEXT_DOMAIN,
"Malformed NAT-T remote address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_NATT_PORTS:
return (dgettext(TEXT_DOMAIN, "Duplicate NAT-T ports"));
case SADB_X_DIAGNOSTIC_MISSING_INNER_SRC:
return (dgettext(TEXT_DOMAIN, "Missing inner source address"));
case SADB_X_DIAGNOSTIC_MISSING_INNER_DST:
return (dgettext(TEXT_DOMAIN,
"Missing inner destination address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_INNER_SRC:
return (dgettext(TEXT_DOMAIN,
"Duplicate inner source address"));
case SADB_X_DIAGNOSTIC_DUPLICATE_INNER_DST:
return (dgettext(TEXT_DOMAIN,
"Duplicate inner destination address"));
case SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC:
return (dgettext(TEXT_DOMAIN,
"Malformed inner source address"));
case SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST:
return (dgettext(TEXT_DOMAIN,
"Malformed inner destination address"));
case SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC:
return (dgettext(TEXT_DOMAIN,
"Invalid inner-source prefix length "));
case SADB_X_DIAGNOSTIC_PREFIX_INNER_DST:
return (dgettext(TEXT_DOMAIN,
"Invalid inner-destination prefix length"));
case SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF:
return (dgettext(TEXT_DOMAIN,
"Bad inner-destination address family"));
case SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH:
return (dgettext(TEXT_DOMAIN,
"Inner source/destination address family mismatch"));
case SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF:
return (dgettext(TEXT_DOMAIN,
"Bad NAT-T remote address family"));
case SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF:
return (dgettext(TEXT_DOMAIN,
"Bad NAT-T local address family"));
case SADB_X_DIAGNOSTIC_PROTO_MISMATCH:
return (dgettext(TEXT_DOMAIN,
"Source/desination protocol mismatch"));
case SADB_X_DIAGNOSTIC_INNER_PROTO_MISMATCH:
return (dgettext(TEXT_DOMAIN,
"Inner source/desination protocol mismatch"));
case SADB_X_DIAGNOSTIC_DUAL_PORT_SETS:
return (dgettext(TEXT_DOMAIN,
"Both inner ports and outer ports are set"));
case SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE:
return (dgettext(TEXT_DOMAIN,
"Pairing failed, target SA unsuitable for pairing"));
case SADB_X_DIAGNOSTIC_PAIR_ADD_MISMATCH:
return (dgettext(TEXT_DOMAIN,
"Source/destination address differs from pair SA"));
case SADB_X_DIAGNOSTIC_PAIR_ALREADY:
return (dgettext(TEXT_DOMAIN,
"Already paired with another security association"));
case SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND:
return (dgettext(TEXT_DOMAIN,
"Command failed, pair security association not found"));
case SADB_X_DIAGNOSTIC_BAD_SA_DIRECTION:
return (dgettext(TEXT_DOMAIN,
"Inappropriate SA direction"));
case SADB_X_DIAGNOSTIC_SA_NOTFOUND:
return (dgettext(TEXT_DOMAIN,
"Security association not found"));
case SADB_X_DIAGNOSTIC_SA_EXPIRED:
return (dgettext(TEXT_DOMAIN,
"Security association is not valid"));
case SADB_X_DIAGNOSTIC_BAD_CTX:
return (dgettext(TEXT_DOMAIN,
"Algorithm invalid or not supported by Crypto Framework"));
case SADB_X_DIAGNOSTIC_INVALID_REPLAY:
return (dgettext(TEXT_DOMAIN,
"Invalid Replay counter"));
case SADB_X_DIAGNOSTIC_MISSING_LIFETIME:
return (dgettext(TEXT_DOMAIN,
"Inappropriate lifetimes"));
default:
return (dgettext(TEXT_DOMAIN, "Unknown diagnostic code"));
}
}
/*
* Convert an IPv6 mask to a prefix len. I assume all IPv6 masks are
* contiguous, so I stop at the first zero bit!
*/
int
in_masktoprefix(uint8_t *mask, boolean_t is_v4mapped)
{
int rc = 0;
uint8_t last;
int limit = IPV6_ABITS;
if (is_v4mapped) {
mask += ((IPV6_ABITS - IP_ABITS)/8);
limit = IP_ABITS;
}
while (*mask == 0xff) {
rc += 8;
if (rc == limit)
return (limit);
mask++;
}
last = *mask;
while (last != 0) {
rc++;
last = (last << 1) & 0xff;
}
return (rc);
}
/*
* Expand the diagnostic code into a message.
*/
void
print_diagnostic(FILE *file, uint16_t diagnostic)
{
/* Use two spaces so above strings can fit on the line. */
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" Diagnostic code %u: %s.\n"),
diagnostic, keysock_diag(diagnostic));
}
/*
* Prints the base PF_KEY message.
*/
void
print_sadb_msg(FILE *file, struct sadb_msg *samsg, time_t wallclock,
boolean_t vflag)
{
if (wallclock != 0)
printsatime(file, wallclock, dgettext(TEXT_DOMAIN,
"%sTimestamp: %s\n"), "", NULL,
vflag);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Base message (version %u) type "),
samsg->sadb_msg_version);
switch (samsg->sadb_msg_type) {
case SADB_RESERVED:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"RESERVED (warning: set to 0)"));
break;
case SADB_GETSPI:
(void) fprintf(file, "GETSPI");
break;
case SADB_UPDATE:
(void) fprintf(file, "UPDATE");
break;
case SADB_X_UPDATEPAIR:
(void) fprintf(file, "UPDATE PAIR");
break;
case SADB_ADD:
(void) fprintf(file, "ADD");
break;
case SADB_DELETE:
(void) fprintf(file, "DELETE");
break;
case SADB_X_DELPAIR:
(void) fprintf(file, "DELETE PAIR");
break;
case SADB_GET:
(void) fprintf(file, "GET");
break;
case SADB_ACQUIRE:
(void) fprintf(file, "ACQUIRE");
break;
case SADB_REGISTER:
(void) fprintf(file, "REGISTER");
break;
case SADB_EXPIRE:
(void) fprintf(file, "EXPIRE");
break;
case SADB_FLUSH:
(void) fprintf(file, "FLUSH");
break;
case SADB_DUMP:
(void) fprintf(file, "DUMP");
break;
case SADB_X_PROMISC:
(void) fprintf(file, "X_PROMISC");
break;
case SADB_X_INVERSE_ACQUIRE:
(void) fprintf(file, "X_INVERSE_ACQUIRE");
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Unknown (%u)"), samsg->sadb_msg_type);
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, ", SA type "));
switch (samsg->sadb_msg_satype) {
case SADB_SATYPE_UNSPEC:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"<unspecified/all>"));
break;
case SADB_SATYPE_AH:
(void) fprintf(file, "AH");
break;
case SADB_SATYPE_ESP:
(void) fprintf(file, "ESP");
break;
case SADB_SATYPE_RSVP:
(void) fprintf(file, "RSVP");
break;
case SADB_SATYPE_OSPFV2:
(void) fprintf(file, "OSPFv2");
break;
case SADB_SATYPE_RIPV2:
(void) fprintf(file, "RIPv2");
break;
case SADB_SATYPE_MIP:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Mobile IP"));
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"<unknown %u>"), samsg->sadb_msg_satype);
break;
}
(void) fprintf(file, ".\n");
if (samsg->sadb_msg_errno != 0) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Error %s from PF_KEY.\n"),
strerror(samsg->sadb_msg_errno));
print_diagnostic(file, samsg->sadb_x_msg_diagnostic);
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Message length %u bytes, seq=%u, pid=%u.\n"),
SADB_64TO8(samsg->sadb_msg_len), samsg->sadb_msg_seq,
samsg->sadb_msg_pid);
}
/*
* Print the SA extension for PF_KEY.
*/
void
print_sa(FILE *file, char *prefix, struct sadb_sa *assoc)
{
if (assoc->sadb_sa_len != SADB_8TO64(sizeof (*assoc))) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: SA info extension length (%u) is bad."),
SADB_64TO8(assoc->sadb_sa_len));
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sSADB_ASSOC spi=0x%x, replay window size=%u, state="),
prefix, ntohl(assoc->sadb_sa_spi), assoc->sadb_sa_replay);
switch (assoc->sadb_sa_state) {
case SADB_SASTATE_LARVAL:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "LARVAL"));
break;
case SADB_SASTATE_MATURE:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "MATURE"));
break;
case SADB_SASTATE_DYING:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "DYING"));
break;
case SADB_SASTATE_DEAD:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "DEAD"));
break;
case SADB_X_SASTATE_ACTIVE_ELSEWHERE:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"ACTIVE_ELSEWHERE"));
break;
case SADB_X_SASTATE_IDLE:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "IDLE"));
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"<unknown %u>"), assoc->sadb_sa_state);
}
if (assoc->sadb_sa_auth != SADB_AALG_NONE) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"\n%sAuthentication algorithm = "),
prefix);
(void) dump_aalg(assoc->sadb_sa_auth, file);
}
if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"\n%sEncryption algorithm = "), prefix);
(void) dump_ealg(assoc->sadb_sa_encrypt, file);
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, "\n%sflags=0x%x < "), prefix,
assoc->sadb_sa_flags);
if (assoc->sadb_sa_flags & SADB_SAFLAGS_PFS)
(void) fprintf(file, "PFS ");
if (assoc->sadb_sa_flags & SADB_SAFLAGS_NOREPLAY)
(void) fprintf(file, "NOREPLAY ");
/* BEGIN Solaris-specific flags. */
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_USED)
(void) fprintf(file, "X_USED ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_PAIRED)
(void) fprintf(file, "X_PAIRED ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_OUTBOUND)
(void) fprintf(file, "X_OUTBOUND ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_INBOUND)
(void) fprintf(file, "X_INBOUND ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_UNIQUE)
(void) fprintf(file, "X_UNIQUE ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_AALG1)
(void) fprintf(file, "X_AALG1 ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_AALG2)
(void) fprintf(file, "X_AALG2 ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_EALG1)
(void) fprintf(file, "X_EALG1 ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_EALG2)
(void) fprintf(file, "X_EALG2 ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC)
(void) fprintf(file, "X_NATT_LOC ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM)
(void) fprintf(file, "X_NATT_REM ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_TUNNEL)
(void) fprintf(file, "X_TUNNEL ");
if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATTED)
(void) fprintf(file, "X_NATTED ");
/* END Solaris-specific flags. */
(void) fprintf(file, ">\n");
}
void
printsatime(FILE *file, int64_t lt, const char *msg, const char *pfx,
const char *pfx2, boolean_t vflag)
{
char tbuf[TBUF_SIZE]; /* For strftime() call. */
const char *tp = tbuf;
time_t t = lt;
struct tm res;
if (t != lt) {
if (lt > 0)
t = LONG_MAX;
else
t = LONG_MIN;
}
if (strftime(tbuf, TBUF_SIZE, NULL, localtime_r(&t, &res)) == 0)
tp = dgettext(TEXT_DOMAIN, "<time conversion failed>");
(void) fprintf(file, msg, pfx, tp);
if (vflag && (pfx2 != NULL))
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s\t(raw time value %" PRIu64 ")\n"), pfx2, lt);
}
/*
* Print the SA lifetime information. (An SADB_EXT_LIFETIME_* extension.)
*/
void
print_lifetimes(FILE *file, time_t wallclock, struct sadb_lifetime *current,
struct sadb_lifetime *hard, struct sadb_lifetime *soft,
struct sadb_lifetime *idle, boolean_t vflag)
{
int64_t scratch;
char *soft_prefix = dgettext(TEXT_DOMAIN, "SLT: ");
char *hard_prefix = dgettext(TEXT_DOMAIN, "HLT: ");
char *current_prefix = dgettext(TEXT_DOMAIN, "CLT: ");
char *idle_prefix = dgettext(TEXT_DOMAIN, "ILT: ");
char byte_str[BYTE_STR_SIZE]; /* byte lifetime string representation */
char secs_str[SECS_STR_SIZE]; /* buffer for seconds representation */
if (current != NULL &&
current->sadb_lifetime_len != SADB_8TO64(sizeof (*current))) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: CURRENT lifetime extension length (%u) is bad."),
SADB_64TO8(current->sadb_lifetime_len));
}
if (hard != NULL &&
hard->sadb_lifetime_len != SADB_8TO64(sizeof (*hard))) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: HARD lifetime extension length (%u) is bad."),
SADB_64TO8(hard->sadb_lifetime_len));
}
if (soft != NULL &&
soft->sadb_lifetime_len != SADB_8TO64(sizeof (*soft))) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: SOFT lifetime extension length (%u) is bad."),
SADB_64TO8(soft->sadb_lifetime_len));
}
if (idle != NULL &&
idle->sadb_lifetime_len != SADB_8TO64(sizeof (*idle))) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: IDLE lifetime extension length (%u) is bad."),
SADB_64TO8(idle->sadb_lifetime_len));
}
(void) fprintf(file, " LT: Lifetime information\n");
if (current != NULL) {
/* Express values as current values. */
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sCurrent lifetime information:\n"),
current_prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " bytes %sprotected, %u allocations "
"used.\n"), current_prefix,
current->sadb_lifetime_bytes,
bytecnt2out(current->sadb_lifetime_bytes, byte_str,
sizeof (byte_str), SPC_END),
current->sadb_lifetime_allocations);
printsatime(file, current->sadb_lifetime_addtime,
dgettext(TEXT_DOMAIN, "%sSA added at time: %s\n"),
current_prefix, current_prefix, vflag);
if (current->sadb_lifetime_usetime != 0) {
printsatime(file, current->sadb_lifetime_usetime,
dgettext(TEXT_DOMAIN,
"%sSA first used at time %s\n"),
current_prefix, current_prefix, vflag);
}
printsatime(file, wallclock, dgettext(TEXT_DOMAIN,
"%sTime now is %s\n"), current_prefix, current_prefix,
vflag);
}
if (soft != NULL) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sSoft lifetime information:\n"),
soft_prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " bytes %sof lifetime, %u allocations.\n"),
soft_prefix,
soft->sadb_lifetime_bytes,
bytecnt2out(soft->sadb_lifetime_bytes, byte_str,
sizeof (byte_str), SPC_END),
soft->sadb_lifetime_allocations);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-add lifetime.\n"),
soft_prefix, soft->sadb_lifetime_addtime,
secs2out(soft->sadb_lifetime_addtime, secs_str,
sizeof (secs_str), SPC_END));
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-use lifetime.\n"),
soft_prefix, soft->sadb_lifetime_usetime,
secs2out(soft->sadb_lifetime_usetime, secs_str,
sizeof (secs_str), SPC_END));
/* If possible, express values as time remaining. */
if (current != NULL) {
if (soft->sadb_lifetime_bytes != 0)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%s"
"%" PRIu64 " bytes %smore can be "
"protected.\n"), soft_prefix,
(soft->sadb_lifetime_bytes >
current->sadb_lifetime_bytes) ?
soft->sadb_lifetime_bytes -
current->sadb_lifetime_bytes : 0,
(soft->sadb_lifetime_bytes >
current->sadb_lifetime_bytes) ?
bytecnt2out(soft->sadb_lifetime_bytes -
current->sadb_lifetime_bytes, byte_str,
sizeof (byte_str), SPC_END) : "");
if (soft->sadb_lifetime_addtime != 0 ||
(soft->sadb_lifetime_usetime != 0 &&
current->sadb_lifetime_usetime != 0)) {
int64_t adddelta, usedelta;
if (soft->sadb_lifetime_addtime != 0) {
adddelta =
current->sadb_lifetime_addtime +
soft->sadb_lifetime_addtime -
wallclock;
} else {
adddelta = TIME_MAX;
}
if (soft->sadb_lifetime_usetime != 0 &&
current->sadb_lifetime_usetime != 0) {
usedelta =
current->sadb_lifetime_usetime +
soft->sadb_lifetime_usetime -
wallclock;
} else {
usedelta = TIME_MAX;
}
(void) fprintf(file, "%s", soft_prefix);
scratch = MIN(adddelta, usedelta);
if (scratch >= 0) {
(void) fprintf(file,
dgettext(TEXT_DOMAIN,
"Soft expiration occurs in %"
PRId64 " seconds%s\n"), scratch,
secs2out(scratch, secs_str,
sizeof (secs_str), SPC_BEGIN));
} else {
(void) fprintf(file,
dgettext(TEXT_DOMAIN,
"Soft expiration occurred\n"));
}
scratch += wallclock;
printsatime(file, scratch, dgettext(TEXT_DOMAIN,
"%sTime of expiration: %s.\n"),
soft_prefix, soft_prefix, vflag);
}
}
}
if (hard != NULL) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sHard lifetime information:\n"), hard_prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " bytes %sof lifetime, %u allocations.\n"),
hard_prefix,
hard->sadb_lifetime_bytes,
bytecnt2out(hard->sadb_lifetime_bytes, byte_str,
sizeof (byte_str), SPC_END),
hard->sadb_lifetime_allocations);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-add lifetime.\n"),
hard_prefix, hard->sadb_lifetime_addtime,
secs2out(hard->sadb_lifetime_addtime, secs_str,
sizeof (secs_str), SPC_END));
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-use lifetime.\n"),
hard_prefix, hard->sadb_lifetime_usetime,
secs2out(hard->sadb_lifetime_usetime, secs_str,
sizeof (secs_str), SPC_END));
/* If possible, express values as time remaining. */
if (current != NULL) {
if (hard->sadb_lifetime_bytes != 0)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%s"
"%" PRIu64 " bytes %smore can be "
"protected.\n"), hard_prefix,
(hard->sadb_lifetime_bytes >
current->sadb_lifetime_bytes) ?
hard->sadb_lifetime_bytes -
current->sadb_lifetime_bytes : 0,
(hard->sadb_lifetime_bytes >
current->sadb_lifetime_bytes) ?
bytecnt2out(hard->sadb_lifetime_bytes -
current->sadb_lifetime_bytes, byte_str,
sizeof (byte_str), SPC_END) : "");
if (hard->sadb_lifetime_addtime != 0 ||
(hard->sadb_lifetime_usetime != 0 &&
current->sadb_lifetime_usetime != 0)) {
int64_t adddelta, usedelta;
if (hard->sadb_lifetime_addtime != 0) {
adddelta =
current->sadb_lifetime_addtime +
hard->sadb_lifetime_addtime -
wallclock;
} else {
adddelta = TIME_MAX;
}
if (hard->sadb_lifetime_usetime != 0 &&
current->sadb_lifetime_usetime != 0) {
usedelta =
current->sadb_lifetime_usetime +
hard->sadb_lifetime_usetime -
wallclock;
} else {
usedelta = TIME_MAX;
}
(void) fprintf(file, "%s", hard_prefix);
scratch = MIN(adddelta, usedelta);
if (scratch >= 0) {
(void) fprintf(file,
dgettext(TEXT_DOMAIN,
"Hard expiration occurs in %"
PRId64 " seconds%s\n"), scratch,
secs2out(scratch, secs_str,
sizeof (secs_str), SPC_BEGIN));
} else {
(void) fprintf(file,
dgettext(TEXT_DOMAIN,
"Hard expiration occurred\n"));
}
scratch += wallclock;
printsatime(file, scratch, dgettext(TEXT_DOMAIN,
"%sTime of expiration: %s.\n"),
hard_prefix, hard_prefix, vflag);
}
}
}
if (idle != NULL) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sIdle lifetime information:\n"), idle_prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-add lifetime.\n"),
idle_prefix, idle->sadb_lifetime_addtime,
secs2out(idle->sadb_lifetime_addtime, secs_str,
sizeof (secs_str), SPC_END));
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%" PRIu64 " seconds %sof post-use lifetime.\n"),
idle_prefix, idle->sadb_lifetime_usetime,
secs2out(idle->sadb_lifetime_usetime, secs_str,
sizeof (secs_str), SPC_END));
}
}
/*
* Print an SADB_EXT_ADDRESS_* extension.
*/
void
print_address(FILE *file, char *prefix, struct sadb_address *addr,
boolean_t ignore_nss)
{
struct protoent *pe;
(void) fprintf(file, "%s", prefix);
switch (addr->sadb_address_exttype) {
case SADB_EXT_ADDRESS_SRC:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Source address "));
break;
case SADB_X_EXT_ADDRESS_INNER_SRC:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Inner source address "));
break;
case SADB_EXT_ADDRESS_DST:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Destination address "));
break;
case SADB_X_EXT_ADDRESS_INNER_DST:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Inner destination address "));
break;
case SADB_X_EXT_ADDRESS_NATT_LOC:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"NAT-T local address "));
break;
case SADB_X_EXT_ADDRESS_NATT_REM:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"NAT-T remote address "));
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"(proto=%d"), addr->sadb_address_proto);
if (ignore_nss == B_FALSE) {
if (addr->sadb_address_proto == 0) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"/<unspecified>"));
} else if ((pe = getprotobynumber(addr->sadb_address_proto))
!= NULL) {
(void) fprintf(file, "/%s", pe->p_name);
} else {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"/<unknown>"));
}
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, ")\n%s"), prefix);
(void) dump_sockaddr((struct sockaddr *)(addr + 1),
addr->sadb_address_prefixlen, B_FALSE, file, ignore_nss);
}
/*
* Print an SADB_EXT_KEY extension.
*/
void
print_key(FILE *file, char *prefix, struct sadb_key *key)
{
(void) fprintf(file, "%s", prefix);
switch (key->sadb_key_exttype) {
case SADB_EXT_KEY_AUTH:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Authentication"));
break;
case SADB_EXT_KEY_ENCRYPT:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Encryption"));
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, " key.\n%s"), prefix);
(void) dump_key((uint8_t *)(key + 1), key->sadb_key_bits,
key->sadb_key_reserved, file, B_TRUE);
(void) fprintf(file, "\n");
}
/*
* Print an SADB_EXT_IDENTITY_* extension.
*/
void
print_ident(FILE *file, char *prefix, struct sadb_ident *id)
{
boolean_t canprint = B_TRUE;
(void) fprintf(file, "%s", prefix);
switch (id->sadb_ident_exttype) {
case SADB_EXT_IDENTITY_SRC:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Source"));
break;
case SADB_EXT_IDENTITY_DST:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "Destination"));
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" identity, uid=%d, type "), id->sadb_ident_id);
canprint = dump_sadb_idtype(id->sadb_ident_type, file, NULL);
(void) fprintf(file, "\n%s", prefix);
if (canprint) {
(void) fprintf(file, "%s\n", (char *)(id + 1));
} else {
print_asn1_name(file, (const unsigned char *)(id + 1),
SADB_64TO8(id->sadb_ident_len) - sizeof (sadb_ident_t));
}
}
/*
* Convert sadb_sens extension into binary security label.
*/
#include <tsol/label.h>
#include <sys/tsol/tndb.h>
#include <sys/tsol/label_macro.h>
void
ipsec_convert_sens_to_bslabel(const struct sadb_sens *sens, bslabel_t *sl)
{
uint64_t *bitmap = (uint64_t *)(sens + 1);
int bitmap_len = SADB_64TO8(sens->sadb_sens_sens_len);
bsllow(sl);
LCLASS_SET((_bslabel_impl_t *)sl, sens->sadb_sens_sens_level);
bcopy(bitmap, &((_bslabel_impl_t *)sl)->compartments,
bitmap_len);
}
void
ipsec_convert_bslabel_to_string(bslabel_t *sl, char **plabel)
{
if (label_to_str(sl, plabel, M_LABEL, DEF_NAMES) != 0) {
*plabel = strdup(dgettext(TEXT_DOMAIN,
"** Label conversion failed **"));
}
}
void
ipsec_convert_bslabel_to_hex(bslabel_t *sl, char **plabel)
{
if (label_to_str(sl, plabel, M_INTERNAL, DEF_NAMES) != 0) {
*plabel = strdup(dgettext(TEXT_DOMAIN,
"** Label conversion failed **"));
}
}
int
ipsec_convert_sl_to_sens(int doi, bslabel_t *sl, sadb_sens_t *sens)
{
uint8_t *bitmap;
int sens_len = sizeof (sadb_sens_t) + _C_LEN * 4;
if (sens == NULL)
return (sens_len);
(void) memset(sens, 0, sens_len);
sens->sadb_sens_exttype = SADB_EXT_SENSITIVITY;
sens->sadb_sens_len = SADB_8TO64(sens_len);
sens->sadb_sens_dpd = doi;
sens->sadb_sens_sens_level = LCLASS(sl);
sens->sadb_sens_integ_level = 0;
sens->sadb_sens_sens_len = _C_LEN >> 1;
sens->sadb_sens_integ_len = 0;
sens->sadb_x_sens_flags = 0;
bitmap = (uint8_t *)(sens + 1);
bcopy(&(((_bslabel_impl_t *)sl)->compartments), bitmap, _C_LEN * 4);
return (sens_len);
}
/*
* Print an SADB_SENSITIVITY extension.
*/
void
print_sens(FILE *file, char *prefix, const struct sadb_sens *sens,
boolean_t ignore_nss)
{
char *plabel;
char *hlabel;
uint64_t *bitmap = (uint64_t *)(sens + 1);
bslabel_t sl;
int i;
int sens_len = sens->sadb_sens_sens_len;
int integ_len = sens->sadb_sens_integ_len;
boolean_t inner = (sens->sadb_sens_exttype == SADB_EXT_SENSITIVITY);
const char *sensname = inner ?
dgettext(TEXT_DOMAIN, "Plaintext Sensitivity") :
dgettext(TEXT_DOMAIN, "Ciphertext Sensitivity");
ipsec_convert_sens_to_bslabel(sens, &sl);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s%s DPD %d, sens level=%d, integ level=%d, flags=%x\n"),
prefix, sensname, sens->sadb_sens_dpd, sens->sadb_sens_sens_level,
sens->sadb_sens_integ_level, sens->sadb_x_sens_flags);
ipsec_convert_bslabel_to_hex(&sl, &hlabel);
if (ignore_nss) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s %s Label: %s\n"), prefix, sensname, hlabel);
for (i = 0; i < sens_len; i++, bitmap++)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s %s BM extended word %d 0x%" PRIx64 "\n"),
prefix, sensname, i, *bitmap);
} else {
ipsec_convert_bslabel_to_string(&sl, &plabel);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s %s Label: %s (%s)\n"),
prefix, sensname, plabel, hlabel);
free(plabel);
}
free(hlabel);
bitmap = (uint64_t *)(sens + 1 + sens_len);
for (i = 0; i < integ_len; i++, bitmap++)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s Integrity BM extended word %d 0x%" PRIx64 "\n"),
prefix, i, *bitmap);
}
/*
* Print an SADB_EXT_PROPOSAL extension.
*/
void
print_prop(FILE *file, char *prefix, struct sadb_prop *prop)
{
struct sadb_comb *combs;
int i, numcombs;
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sProposal, replay counter = %u.\n"), prefix,
prop->sadb_prop_replay);
numcombs = prop->sadb_prop_len - SADB_8TO64(sizeof (*prop));
numcombs /= SADB_8TO64(sizeof (*combs));
combs = (struct sadb_comb *)(prop + 1);
for (i = 0; i < numcombs; i++) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s Combination #%u "), prefix, i + 1);
if (combs[i].sadb_comb_auth != SADB_AALG_NONE) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Authentication = "));
(void) dump_aalg(combs[i].sadb_comb_auth, file);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" minbits=%u, maxbits=%u.\n%s "),
combs[i].sadb_comb_auth_minbits,
combs[i].sadb_comb_auth_maxbits, prefix);
}
if (combs[i].sadb_comb_encrypt != SADB_EALG_NONE) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Encryption = "));
(void) dump_ealg(combs[i].sadb_comb_encrypt, file);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" minbits=%u, maxbits=%u.\n%s "),
combs[i].sadb_comb_encrypt_minbits,
combs[i].sadb_comb_encrypt_maxbits, prefix);
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, "HARD: "));
if (combs[i].sadb_comb_hard_allocations)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "alloc=%u "),
combs[i].sadb_comb_hard_allocations);
if (combs[i].sadb_comb_hard_bytes)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "bytes=%"
PRIu64 " "), combs[i].sadb_comb_hard_bytes);
if (combs[i].sadb_comb_hard_addtime)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"post-add secs=%" PRIu64 " "),
combs[i].sadb_comb_hard_addtime);
if (combs[i].sadb_comb_hard_usetime)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"post-use secs=%" PRIu64 ""),
combs[i].sadb_comb_hard_usetime);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "\n%s SOFT: "),
prefix);
if (combs[i].sadb_comb_soft_allocations)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "alloc=%u "),
combs[i].sadb_comb_soft_allocations);
if (combs[i].sadb_comb_soft_bytes)
(void) fprintf(file, dgettext(TEXT_DOMAIN, "bytes=%"
PRIu64 " "), combs[i].sadb_comb_soft_bytes);
if (combs[i].sadb_comb_soft_addtime)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"post-add secs=%" PRIu64 " "),
combs[i].sadb_comb_soft_addtime);
if (combs[i].sadb_comb_soft_usetime)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"post-use secs=%" PRIu64 ""),
combs[i].sadb_comb_soft_usetime);
(void) fprintf(file, "\n");
}
}
/*
* Print an extended proposal (SADB_X_EXT_EPROP).
*/
void
print_eprop(FILE *file, char *prefix, struct sadb_prop *eprop)
{
uint64_t *sofar;
struct sadb_x_ecomb *ecomb;
struct sadb_x_algdesc *algdesc;
int i, j;
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sExtended Proposal, replay counter = %u, "), prefix,
eprop->sadb_prop_replay);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"number of combinations = %u.\n"), eprop->sadb_x_prop_numecombs);
sofar = (uint64_t *)(eprop + 1);
ecomb = (struct sadb_x_ecomb *)sofar;
for (i = 0; i < eprop->sadb_x_prop_numecombs; ) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s Extended combination #%u:\n"), prefix, ++i);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%s HARD: "),
prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "alloc=%u, "),
ecomb->sadb_x_ecomb_hard_allocations);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "bytes=%" PRIu64
", "), ecomb->sadb_x_ecomb_hard_bytes);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "post-add secs=%"
PRIu64 ", "), ecomb->sadb_x_ecomb_hard_addtime);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "post-use secs=%"
PRIu64 "\n"), ecomb->sadb_x_ecomb_hard_usetime);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%s SOFT: "),
prefix);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "alloc=%u, "),
ecomb->sadb_x_ecomb_soft_allocations);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"bytes=%" PRIu64 ", "), ecomb->sadb_x_ecomb_soft_bytes);
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"post-add secs=%" PRIu64 ", "),
ecomb->sadb_x_ecomb_soft_addtime);
(void) fprintf(file, dgettext(TEXT_DOMAIN, "post-use secs=%"
PRIu64 "\n"), ecomb->sadb_x_ecomb_soft_usetime);
sofar = (uint64_t *)(ecomb + 1);
algdesc = (struct sadb_x_algdesc *)sofar;
for (j = 0; j < ecomb->sadb_x_ecomb_numalgs; ) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%s Alg #%u "), prefix, ++j);
switch (algdesc->sadb_x_algdesc_satype) {
case SADB_SATYPE_ESP:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"for ESP "));
break;
case SADB_SATYPE_AH:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"for AH "));
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"for satype=%d "),
algdesc->sadb_x_algdesc_satype);
}
switch (algdesc->sadb_x_algdesc_algtype) {
case SADB_X_ALGTYPE_CRYPT:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Encryption = "));
(void) dump_ealg(algdesc->sadb_x_algdesc_alg,
file);
break;
case SADB_X_ALGTYPE_AUTH:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"Authentication = "));
(void) dump_aalg(algdesc->sadb_x_algdesc_alg,
file);
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"algtype(%d) = alg(%d)"),
algdesc->sadb_x_algdesc_algtype,
algdesc->sadb_x_algdesc_alg);
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" minbits=%u, maxbits=%u, saltbits=%u\n"),
algdesc->sadb_x_algdesc_minbits,
algdesc->sadb_x_algdesc_maxbits,
algdesc->sadb_x_algdesc_reserved);
sofar = (uint64_t *)(++algdesc);
}
ecomb = (struct sadb_x_ecomb *)sofar;
}
}
/*
* Print an SADB_EXT_SUPPORTED extension.
*/
void
print_supp(FILE *file, char *prefix, struct sadb_supported *supp)
{
struct sadb_alg *algs;
int i, numalgs;
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%sSupported "), prefix);
switch (supp->sadb_supported_exttype) {
case SADB_EXT_SUPPORTED_AUTH:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "authentication"));
break;
case SADB_EXT_SUPPORTED_ENCRYPT:
(void) fprintf(file, dgettext(TEXT_DOMAIN, "encryption"));
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN, " algorithms.\n"));
algs = (struct sadb_alg *)(supp + 1);
numalgs = supp->sadb_supported_len - SADB_8TO64(sizeof (*supp));
numalgs /= SADB_8TO64(sizeof (*algs));
for (i = 0; i < numalgs; i++) {
uint16_t exttype = supp->sadb_supported_exttype;
(void) fprintf(file, "%s", prefix);
switch (exttype) {
case SADB_EXT_SUPPORTED_AUTH:
(void) dump_aalg(algs[i].sadb_alg_id, file);
break;
case SADB_EXT_SUPPORTED_ENCRYPT:
(void) dump_ealg(algs[i].sadb_alg_id, file);
break;
}
(void) fprintf(file, dgettext(TEXT_DOMAIN,
" minbits=%u, maxbits=%u, ivlen=%u, saltbits=%u"),
algs[i].sadb_alg_minbits, algs[i].sadb_alg_maxbits,
algs[i].sadb_alg_ivlen, algs[i].sadb_x_alg_saltbits);
if (exttype == SADB_EXT_SUPPORTED_ENCRYPT)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
", increment=%u"), algs[i].sadb_x_alg_increment);
(void) fprintf(file, dgettext(TEXT_DOMAIN, ".\n"));
}
}
/*
* Print an SADB_EXT_SPIRANGE extension.
*/
void
print_spirange(FILE *file, char *prefix, struct sadb_spirange *range)
{
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sSPI Range, min=0x%x, max=0x%x\n"), prefix,
htonl(range->sadb_spirange_min),
htonl(range->sadb_spirange_max));
}
/*
* Print an SADB_X_EXT_KM_COOKIE extension.
*/
void
print_kmc(FILE *file, char *prefix, struct sadb_x_kmc *kmc)
{
char *cookie_label;
if ((cookie_label = kmc_lookup_by_cookie(kmc->sadb_x_kmc_cookie)) ==
NULL)
cookie_label = dgettext(TEXT_DOMAIN, "<Label not found.>");
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sProtocol %u, cookie=\"%s\" (%u)\n"), prefix,
kmc->sadb_x_kmc_proto, cookie_label, kmc->sadb_x_kmc_cookie);
}
/*
* Print an SADB_X_EXT_REPLAY_CTR extension.
*/
void
print_replay(FILE *file, char *prefix, sadb_x_replay_ctr_t *repl)
{
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"%sReplay Value "), prefix);
if ((repl->sadb_x_rc_replay32 == 0) &&
(repl->sadb_x_rc_replay64 == 0)) {
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"<Value not found.>"));
}
/*
* We currently do not support a 64-bit replay value.
* RFC 4301 will require one, however, and we have a field
* in place when 4301 is built.
*/
(void) fprintf(file, "% " PRIu64 "\n",
((repl->sadb_x_rc_replay32 == 0) ?
repl->sadb_x_rc_replay64 : repl->sadb_x_rc_replay32));
}
/*
* Print an SADB_X_EXT_PAIR extension.
*/
static void
print_pair(FILE *file, char *prefix, struct sadb_x_pair *pair)
{
(void) fprintf(file, dgettext(TEXT_DOMAIN, "%sPaired with spi=0x%x\n"),
prefix, ntohl(pair->sadb_x_pair_spi));
}
/*
* Take a PF_KEY message pointed to buffer and print it. Useful for DUMP
* and GET.
*/
void
print_samsg(FILE *file, uint64_t *buffer, boolean_t want_timestamp,
boolean_t vflag, boolean_t ignore_nss)
{
uint64_t *current;
struct sadb_msg *samsg = (struct sadb_msg *)buffer;
struct sadb_ext *ext;
struct sadb_lifetime *currentlt = NULL, *hardlt = NULL, *softlt = NULL;
struct sadb_lifetime *idlelt = NULL;
int i;
time_t wallclock;
(void) time(&wallclock);
print_sadb_msg(file, samsg, want_timestamp ? wallclock : 0, vflag);
current = (uint64_t *)(samsg + 1);
while (current - buffer < samsg->sadb_msg_len) {
int lenbytes;
ext = (struct sadb_ext *)current;
lenbytes = SADB_64TO8(ext->sadb_ext_len);
switch (ext->sadb_ext_type) {
case SADB_EXT_SA:
print_sa(file, dgettext(TEXT_DOMAIN,
"SA: "), (struct sadb_sa *)current);
break;
/*
* Pluck out lifetimes and print them at the end. This is
* to show relative lifetimes.
*/
case SADB_EXT_LIFETIME_CURRENT:
currentlt = (struct sadb_lifetime *)current;
break;
case SADB_EXT_LIFETIME_HARD:
hardlt = (struct sadb_lifetime *)current;
break;
case SADB_EXT_LIFETIME_SOFT:
softlt = (struct sadb_lifetime *)current;
break;
case SADB_X_EXT_LIFETIME_IDLE:
idlelt = (struct sadb_lifetime *)current;
break;
case SADB_EXT_ADDRESS_SRC:
print_address(file, dgettext(TEXT_DOMAIN, "SRC: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_X_EXT_ADDRESS_INNER_SRC:
print_address(file, dgettext(TEXT_DOMAIN, "INS: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_EXT_ADDRESS_DST:
print_address(file, dgettext(TEXT_DOMAIN, "DST: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_X_EXT_ADDRESS_INNER_DST:
print_address(file, dgettext(TEXT_DOMAIN, "IND: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_EXT_KEY_AUTH:
print_key(file, dgettext(TEXT_DOMAIN,
"AKY: "), (struct sadb_key *)current);
break;
case SADB_EXT_KEY_ENCRYPT:
print_key(file, dgettext(TEXT_DOMAIN,
"EKY: "), (struct sadb_key *)current);
break;
case SADB_EXT_IDENTITY_SRC:
print_ident(file, dgettext(TEXT_DOMAIN, "SID: "),
(struct sadb_ident *)current);
break;
case SADB_EXT_IDENTITY_DST:
print_ident(file, dgettext(TEXT_DOMAIN, "DID: "),
(struct sadb_ident *)current);
break;
case SADB_EXT_SENSITIVITY:
print_sens(file, dgettext(TEXT_DOMAIN, "SNS: "),
(struct sadb_sens *)current, ignore_nss);
break;
case SADB_EXT_PROPOSAL:
print_prop(file, dgettext(TEXT_DOMAIN, "PRP: "),
(struct sadb_prop *)current);
break;
case SADB_EXT_SUPPORTED_AUTH:
print_supp(file, dgettext(TEXT_DOMAIN, "SUA: "),
(struct sadb_supported *)current);
break;
case SADB_EXT_SUPPORTED_ENCRYPT:
print_supp(file, dgettext(TEXT_DOMAIN, "SUE: "),
(struct sadb_supported *)current);
break;
case SADB_EXT_SPIRANGE:
print_spirange(file, dgettext(TEXT_DOMAIN, "SPR: "),
(struct sadb_spirange *)current);
break;
case SADB_X_EXT_EPROP:
print_eprop(file, dgettext(TEXT_DOMAIN, "EPR: "),
(struct sadb_prop *)current);
break;
case SADB_X_EXT_KM_COOKIE:
print_kmc(file, dgettext(TEXT_DOMAIN, "KMC: "),
(struct sadb_x_kmc *)current);
break;
case SADB_X_EXT_ADDRESS_NATT_REM:
print_address(file, dgettext(TEXT_DOMAIN, "NRM: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_X_EXT_ADDRESS_NATT_LOC:
print_address(file, dgettext(TEXT_DOMAIN, "NLC: "),
(struct sadb_address *)current, ignore_nss);
break;
case SADB_X_EXT_PAIR:
print_pair(file, dgettext(TEXT_DOMAIN, "OTH: "),
(struct sadb_x_pair *)current);
break;
case SADB_X_EXT_OUTER_SENS:
print_sens(file, dgettext(TEXT_DOMAIN, "OSN: "),
(struct sadb_sens *)current, ignore_nss);
break;
case SADB_X_EXT_REPLAY_VALUE:
(void) print_replay(file, dgettext(TEXT_DOMAIN,
"RPL: "), (sadb_x_replay_ctr_t *)current);
break;
default:
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"UNK: Unknown ext. %d, len %d.\n"),
ext->sadb_ext_type, lenbytes);
for (i = 0; i < ext->sadb_ext_len; i++)
(void) fprintf(file, dgettext(TEXT_DOMAIN,
"UNK: 0x%" PRIx64 "\n"),
((uint64_t *)ext)[i]);
break;
}
current += (lenbytes == 0) ?
SADB_8TO64(sizeof (struct sadb_ext)) : ext->sadb_ext_len;
}
/*
* Print lifetimes NOW.
*/
if (currentlt != NULL || hardlt != NULL || softlt != NULL ||
idlelt != NULL)
print_lifetimes(file, wallclock, currentlt, hardlt,
softlt, idlelt, vflag);
if (current - buffer != samsg->sadb_msg_len) {
warnxfp(EFD(file), dgettext(TEXT_DOMAIN,
"WARNING: insufficient buffer space or corrupt message."));
}
(void) fflush(file); /* Make sure our message is out there. */
}
/*
* save_XXX functions are used when "saving" the SA tables to either a
* file or standard output. They use the dump_XXX functions where needed,
* but mostly they use the rparseXXX functions.
*/
/*
* Print save information for a lifetime extension.
*
* NOTE : It saves the lifetime in absolute terms. For example, if you
* had a hard_usetime of 60 seconds, you'll save it as 60 seconds, even though
* there may have been 59 seconds burned off the clock.
*/
boolean_t
save_lifetime(struct sadb_lifetime *lifetime, FILE *ofile)
{
char *prefix;
switch (lifetime->sadb_lifetime_exttype) {
case SADB_EXT_LIFETIME_HARD:
prefix = "hard";
break;
case SADB_EXT_LIFETIME_SOFT:
prefix = "soft";
break;
case SADB_X_EXT_LIFETIME_IDLE:
prefix = "idle";
break;
}
if (putc('\t', ofile) == EOF)
return (B_FALSE);
if (lifetime->sadb_lifetime_allocations != 0 && fprintf(ofile,
"%s_alloc %u ", prefix, lifetime->sadb_lifetime_allocations) < 0)
return (B_FALSE);
if (lifetime->sadb_lifetime_bytes != 0 && fprintf(ofile,
"%s_bytes %" PRIu64 " ", prefix, lifetime->sadb_lifetime_bytes) < 0)
return (B_FALSE);
if (lifetime->sadb_lifetime_addtime != 0 && fprintf(ofile,
"%s_addtime %" PRIu64 " ", prefix,
lifetime->sadb_lifetime_addtime) < 0)
return (B_FALSE);
if (lifetime->sadb_lifetime_usetime != 0 && fprintf(ofile,
"%s_usetime %" PRIu64 " ", prefix,
lifetime->sadb_lifetime_usetime) < 0)
return (B_FALSE);
return (B_TRUE);
}
/*
* Print save information for an address extension.
*/
boolean_t
save_address(struct sadb_address *addr, FILE *ofile)
{
char *printable_addr, buf[INET6_ADDRSTRLEN];
const char *prefix, *pprefix;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)(addr + 1);
struct sockaddr_in *sin = (struct sockaddr_in *)sin6;
int af = sin->sin_family;
/*
* Address-family reality check.
*/
if (af != AF_INET6 && af != AF_INET)
return (B_FALSE);
switch (addr->sadb_address_exttype) {
case SADB_EXT_ADDRESS_SRC:
prefix = "src";
pprefix = "sport";
break;
case SADB_X_EXT_ADDRESS_INNER_SRC:
prefix = "isrc";
pprefix = "isport";
break;
case SADB_EXT_ADDRESS_DST:
prefix = "dst";
pprefix = "dport";
break;
case SADB_X_EXT_ADDRESS_INNER_DST:
prefix = "idst";
pprefix = "idport";
break;
case SADB_X_EXT_ADDRESS_NATT_LOC:
prefix = "nat_loc ";
pprefix = "nat_lport";
break;
case SADB_X_EXT_ADDRESS_NATT_REM:
prefix = "nat_rem ";
pprefix = "nat_rport";
break;
}
if (fprintf(ofile, " %s ", prefix) < 0)
return (B_FALSE);
/*
* Do not do address-to-name translation, given that we live in
* an age of names that explode into many addresses.
*/
printable_addr = (char *)inet_ntop(af,
(af == AF_INET) ? (char *)&sin->sin_addr : (char *)&sin6->sin6_addr,
buf, sizeof (buf));
if (printable_addr == NULL)
printable_addr = "Invalid IP address.";
if (fprintf(ofile, "%s", printable_addr) < 0)
return (B_FALSE);
if (addr->sadb_address_prefixlen != 0 &&
!((addr->sadb_address_prefixlen == 32 && af == AF_INET) ||
(addr->sadb_address_prefixlen == 128 && af == AF_INET6))) {
if (fprintf(ofile, "/%d", addr->sadb_address_prefixlen) < 0)
return (B_FALSE);
}
/*
* The port is in the same position for struct sockaddr_in and
* struct sockaddr_in6. We exploit that property here.
*/
if ((pprefix != NULL) && (sin->sin_port != 0))
(void) fprintf(ofile, " %s %d", pprefix, ntohs(sin->sin_port));
return (B_TRUE);
}
/*
* Print save information for a key extension. Returns whether writing
* to the specified output file was successful or not.
*/
boolean_t
save_key(struct sadb_key *key, FILE *ofile)
{
char *prefix;
if (putc('\t', ofile) == EOF)
return (B_FALSE);
prefix = (key->sadb_key_exttype == SADB_EXT_KEY_AUTH) ? "auth" : "encr";
if (fprintf(ofile, "%skey ", prefix) < 0)
return (B_FALSE);
if (dump_key((uint8_t *)(key + 1), key->sadb_key_bits,
key->sadb_key_reserved, ofile, B_FALSE) == -1)
return (B_FALSE);
return (B_TRUE);
}
/*
* Print save information for an identity extension.
*/
boolean_t
save_ident(struct sadb_ident *ident, FILE *ofile)
{
char *prefix;
if (putc('\t', ofile) == EOF)
return (B_FALSE);
prefix = (ident->sadb_ident_exttype == SADB_EXT_IDENTITY_SRC) ? "src" :
"dst";
if (fprintf(ofile, "%sidtype %s ", prefix,
rparseidtype(ident->sadb_ident_type)) < 0)
return (B_FALSE);
if (ident->sadb_ident_type == SADB_X_IDENTTYPE_DN ||
ident->sadb_ident_type == SADB_X_IDENTTYPE_GN) {
if (fprintf(ofile, dgettext(TEXT_DOMAIN,
"<can-not-print>")) < 0)
return (B_FALSE);
} else {
if (fprintf(ofile, "%s", (char *)(ident + 1)) < 0)
return (B_FALSE);
}
return (B_TRUE);
}
boolean_t
save_sens(struct sadb_sens *sens, FILE *ofile)
{
char *prefix;
char *hlabel;
bslabel_t sl;
if (putc('\t', ofile) == EOF)
return (B_FALSE);
if (sens->sadb_sens_exttype == SADB_EXT_SENSITIVITY)
prefix = "label";
else if ((sens->sadb_x_sens_flags & SADB_X_SENS_IMPLICIT) == 0)
prefix = "outer-label";
else
prefix = "implicit-label";
ipsec_convert_sens_to_bslabel(sens, &sl);
ipsec_convert_bslabel_to_hex(&sl, &hlabel);
if (fprintf(ofile, "%s %s ", prefix, hlabel) < 0) {
free(hlabel);
return (B_FALSE);
}
free(hlabel);
return (B_TRUE);
}
/*
* "Save" a security association to an output file.
*
* NOTE the lack of calls to dgettext() because I'm outputting parseable stuff.
* ALSO NOTE that if you change keywords (see parsecmd()), you'll have to
* change them here as well.
*/
void
save_assoc(uint64_t *buffer, FILE *ofile)
{
int terrno;
boolean_t seen_proto = B_FALSE, seen_iproto = B_FALSE;
uint64_t *current;
struct sadb_address *addr;
struct sadb_x_replay_ctr *repl;
struct sadb_msg *samsg = (struct sadb_msg *)buffer;
struct sadb_ext *ext;
#define tidyup() \
terrno = errno; (void) fclose(ofile); errno = terrno; \
interactive = B_FALSE
#define savenl() if (fputs(" \\\n", ofile) == EOF) \
{ bail(dgettext(TEXT_DOMAIN, "savenl")); }
if (fputs("# begin assoc\n", ofile) == EOF)
bail(dgettext(TEXT_DOMAIN,
"save_assoc: Opening comment of SA"));
if (fprintf(ofile, "add %s ", rparsesatype(samsg->sadb_msg_satype)) < 0)
bail(dgettext(TEXT_DOMAIN, "save_assoc: First line of SA"));
savenl();
current = (uint64_t *)(samsg + 1);
while (current - buffer < samsg->sadb_msg_len) {
struct sadb_sa *assoc;
ext = (struct sadb_ext *)current;
addr = (struct sadb_address *)ext; /* Just in case... */
switch (ext->sadb_ext_type) {
case SADB_EXT_SA:
assoc = (struct sadb_sa *)ext;
if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
if (fprintf(ofile, "# WARNING: SA was dying "
"or dead.\n") < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf not mature"));
}
}
if (fprintf(ofile, " spi 0x%x ",
ntohl(assoc->sadb_sa_spi)) < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf spi"));
}
if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) {
if (fprintf(ofile, "encr_alg %s ",
rparsealg(assoc->sadb_sa_encrypt,
IPSEC_PROTO_ESP)) < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf encrypt"));
}
}
if (assoc->sadb_sa_auth != SADB_AALG_NONE) {
if (fprintf(ofile, "auth_alg %s ",
rparsealg(assoc->sadb_sa_auth,
IPSEC_PROTO_AH)) < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf auth"));
}
}
if (fprintf(ofile, "replay %d ",
assoc->sadb_sa_replay) < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf replay"));
}
if (assoc->sadb_sa_flags & (SADB_X_SAFLAGS_NATT_LOC |
SADB_X_SAFLAGS_NATT_REM)) {
if (fprintf(ofile, "encap udp") < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf encap"));
}
}
savenl();
break;
case SADB_EXT_LIFETIME_HARD:
case SADB_EXT_LIFETIME_SOFT:
case SADB_X_EXT_LIFETIME_IDLE:
if (!save_lifetime((struct sadb_lifetime *)ext,
ofile)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_lifetime"));
}
savenl();
break;
case SADB_X_EXT_ADDRESS_INNER_SRC:
case SADB_X_EXT_ADDRESS_INNER_DST:
if (!seen_iproto && addr->sadb_address_proto) {
(void) fprintf(ofile, " iproto %d",
addr->sadb_address_proto);
savenl();
seen_iproto = B_TRUE;
}
goto skip_srcdst; /* Hack to avoid cases below... */
/* FALLTHRU */
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
if (!seen_proto && addr->sadb_address_proto) {
(void) fprintf(ofile, " proto %d",
addr->sadb_address_proto);
savenl();
seen_proto = B_TRUE;
}
/* FALLTHRU */
case SADB_X_EXT_ADDRESS_NATT_REM:
case SADB_X_EXT_ADDRESS_NATT_LOC:
skip_srcdst:
if (!save_address(addr, ofile)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_address"));
}
savenl();
break;
case SADB_EXT_KEY_AUTH:
case SADB_EXT_KEY_ENCRYPT:
if (!save_key((struct sadb_key *)ext, ofile)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_address"));
}
savenl();
break;
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
if (!save_ident((struct sadb_ident *)ext, ofile)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_address"));
}
savenl();
break;
case SADB_X_EXT_REPLAY_VALUE:
repl = (sadb_x_replay_ctr_t *)ext;
if ((repl->sadb_x_rc_replay32 == 0) &&
(repl->sadb_x_rc_replay64 == 0)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "Replay Value"));
}
if (fprintf(ofile, "replay_value %" PRIu64 "",
(repl->sadb_x_rc_replay32 == 0 ?
repl->sadb_x_rc_replay64 :
repl->sadb_x_rc_replay32)) < 0) {
tidyup();
bail(dgettext(TEXT_DOMAIN,
"save_assoc: fprintf replay value"));
}
savenl();
break;
case SADB_EXT_SENSITIVITY:
case SADB_X_EXT_OUTER_SENS:
if (!save_sens((struct sadb_sens *)ext, ofile)) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_sens"));
}
savenl();
break;
default:
/* Skip over irrelevant extensions. */
break;
}
current += ext->sadb_ext_len;
}
if (fputs(dgettext(TEXT_DOMAIN, "\n# end assoc\n\n"), ofile) == EOF) {
tidyup();
bail(dgettext(TEXT_DOMAIN, "save_assoc: last fputs"));
}
}
/*
* Open the output file for the "save" command.
*/
FILE *
opensavefile(char *filename)
{
int fd;
FILE *retval;
struct stat buf;
/*
* If the user specifies "-" or doesn't give a filename, then
* dump to stdout. Make sure to document the dangers of files
* that are NFS, directing your output to strange places, etc.
*/
if (filename == NULL || strcmp("-", filename) == 0)
return (stdout);
/*
* open the file with the create bits set. Since I check for
* real UID == root in main(), I won't worry about the ownership
* problem.
*/
fd = open(filename, O_WRONLY | O_EXCL | O_CREAT | O_TRUNC, S_IRUSR);
if (fd == -1) {
if (errno != EEXIST)
bail_msg("%s %s: %s", filename, dgettext(TEXT_DOMAIN,
"open error"),
strerror(errno));
fd = open(filename, O_WRONLY | O_TRUNC, 0);
if (fd == -1)
bail_msg("%s %s: %s", filename, dgettext(TEXT_DOMAIN,
"open error"), strerror(errno));
if (fstat(fd, &buf) == -1) {
(void) close(fd);
bail_msg("%s fstat: %s", filename, strerror(errno));
}
if (S_ISREG(buf.st_mode) &&
((buf.st_mode & S_IAMB) != S_IRUSR)) {
warnx(dgettext(TEXT_DOMAIN,
"WARNING: Save file already exists with "
"permission %o."), buf.st_mode & S_IAMB);
warnx(dgettext(TEXT_DOMAIN,
"Normal users may be able to read IPsec "
"keying material."));
}
}
/* Okay, we have an FD. Assign it to a stdio FILE pointer. */
retval = fdopen(fd, "w");
if (retval == NULL) {
(void) close(fd);
bail_msg("%s %s: %s", filename, dgettext(TEXT_DOMAIN,
"fdopen error"), strerror(errno));
}
return (retval);
}
const char *
do_inet_ntop(const void *addr, char *cp, size_t size)
{
boolean_t isv4;
struct in6_addr *inaddr6 = (struct in6_addr *)addr;
struct in_addr inaddr;
if ((isv4 = IN6_IS_ADDR_V4MAPPED(inaddr6)) == B_TRUE) {
IN6_V4MAPPED_TO_INADDR(inaddr6, &inaddr);
}
return (inet_ntop(isv4 ? AF_INET : AF_INET6,
isv4 ? (void *)&inaddr : inaddr6, cp, size));
}
char numprint[NBUF_SIZE];
/*
* Parse and reverse parse a specific SA type (AH, ESP, etc.).
*/
static struct typetable {
char *type;
int token;
} type_table[] = {
{"all", SADB_SATYPE_UNSPEC},
{"ah", SADB_SATYPE_AH},
{"esp", SADB_SATYPE_ESP},
/* PF_KEY NOTE: More to come if net/pfkeyv2.h gets updated. */
{NULL, 0} /* Token value is irrelevant for this entry. */
};
char *
rparsesatype(int type)
{
struct typetable *tt = type_table;
while (tt->type != NULL && type != tt->token)
tt++;
if (tt->type == NULL) {
(void) snprintf(numprint, NBUF_SIZE, "%d", type);
} else {
return (tt->type);
}
return (numprint);
}
/*
* Return a string containing the name of the specified numerical algorithm
* identifier.
*/
char *
rparsealg(uint8_t alg, int proto_num)
{
static struct ipsecalgent *holder = NULL; /* we're single-threaded */
if (holder != NULL)
freeipsecalgent(holder);
holder = getipsecalgbynum(alg, proto_num, NULL);
if (holder == NULL) {
(void) snprintf(numprint, NBUF_SIZE, "%d", alg);
return (numprint);
}
return (*(holder->a_names));
}
/*
* Parse and reverse parse out a source/destination ID type.
*/
static struct idtypes {
char *idtype;
uint8_t retval;
} idtypes[] = {
{"prefix", SADB_IDENTTYPE_PREFIX},
{"fqdn", SADB_IDENTTYPE_FQDN},
{"domain", SADB_IDENTTYPE_FQDN},
{"domainname", SADB_IDENTTYPE_FQDN},
{"user_fqdn", SADB_IDENTTYPE_USER_FQDN},
{"mailbox", SADB_IDENTTYPE_USER_FQDN},
{"der_dn", SADB_X_IDENTTYPE_DN},
{"der_gn", SADB_X_IDENTTYPE_GN},
{NULL, 0}
};
char *
rparseidtype(uint16_t type)
{
struct idtypes *idp;
for (idp = idtypes; idp->idtype != NULL; idp++) {
if (type == idp->retval)
return (idp->idtype);
}
(void) snprintf(numprint, NBUF_SIZE, "%d", type);
return (numprint);
}
/*
* This is a general purpose exit function, calling functions can specify an
* error type. If the command calling this function was started by smf(5) the
* error type could be used as a hint to the restarter. In the future this
* function could be used to do something more intelligent with a process that
* encounters an error. If exit() is called with an error code other than those
* defined by smf(5), the program will just get restarted. Unless restarting
* is likely to resolve the error condition, its probably sensible to just
* log the error and keep running.
*
* The SERVICE_* exit_types mean nothing if the command was run from the
* command line, just exit(). There are two special cases:
*
* SERVICE_DEGRADE - Not implemented in smf(5), one day it could hint that
* the service is not running as well is it could. For
* now, don't do anything, just record the error.
* DEBUG_FATAL - Something happened, if the command was being run in debug
* mode, exit() as you really want to know something happened,
* otherwise just keep running. This is ignored when running
* under smf(5).
*
* The function will handle an optional variable args error message, this
* will be written to the error stream, typically a log file or stderr.
*/
void
ipsecutil_exit(exit_type_t type, char *fmri, FILE *fp, const char *fmt, ...)
{
int exit_status;
va_list args;
if (fp == NULL)
fp = stderr;
if (fmt != NULL) {
va_start(args, fmt);
vwarnxfp(fp, fmt, args);
va_end(args);
}
if (fmri == NULL) {
/* Command being run directly from a shell. */
switch (type) {
case SERVICE_EXIT_OK:
exit_status = 0;
break;
case SERVICE_DEGRADE:
return;
break;
case SERVICE_BADPERM:
case SERVICE_BADCONF:
case SERVICE_MAINTAIN:
case SERVICE_DISABLE:
case SERVICE_FATAL:
case SERVICE_RESTART:
case DEBUG_FATAL:
warnxfp(fp, "Fatal error - exiting.");
exit_status = 1;
break;
}
} else {
/* Command being run as a smf(5) method. */
switch (type) {
case SERVICE_EXIT_OK:
exit_status = SMF_EXIT_OK;
break;
case SERVICE_DEGRADE: /* Not implemented yet. */
case DEBUG_FATAL:
/* Keep running, don't exit(). */
return;
break;
case SERVICE_BADPERM:
warnxfp(fp, dgettext(TEXT_DOMAIN,
"Permission error with %s."), fmri);
exit_status = SMF_EXIT_ERR_PERM;
break;
case SERVICE_BADCONF:
warnxfp(fp, dgettext(TEXT_DOMAIN,
"Bad configuration of service %s."), fmri);
exit_status = SMF_EXIT_ERR_FATAL;
break;
case SERVICE_MAINTAIN:
warnxfp(fp, dgettext(TEXT_DOMAIN,
"Service %s needs maintenance."), fmri);
exit_status = SMF_EXIT_ERR_FATAL;
break;
case SERVICE_DISABLE:
exit_status = SMF_EXIT_ERR_FATAL;
break;
case SERVICE_FATAL:
warnxfp(fp, dgettext(TEXT_DOMAIN,
"Service %s fatal error."), fmri);
exit_status = SMF_EXIT_ERR_FATAL;
break;
case SERVICE_RESTART:
exit_status = 1;
break;
}
}
(void) fflush(fp);
(void) fclose(fp);
exit(exit_status);
}