dt_cg.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/isa_defs.h>
#include <strings.h>
#include <stdlib.h>
#include <setjmp.h>
#include <assert.h>
#include <errno.h>
#include <dt_impl.h>
#include <dt_grammar.h>
#include <dt_parser.h>
#include <dt_provider.h>
static void dt_cg_node(dt_node_t *, dt_irlist_t *, dt_regset_t *);
static dt_irnode_t *
dt_cg_node_alloc(uint_t label, dif_instr_t instr)
{
dt_irnode_t *dip = malloc(sizeof (dt_irnode_t));
if (dip == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
dip->di_label = label;
dip->di_instr = instr;
dip->di_ident = NULL;
dip->di_next = NULL;
return (dip);
}
/*
* Code generator wrapper function for ctf_member_info. If we are given a
* reference to a forward declaration tag, search the entire type space for
* the actual definition and then call ctf_member_info on the result.
*/
static ctf_file_t *
dt_cg_membinfo(ctf_file_t *fp, ctf_id_t type, const char *s, ctf_membinfo_t *mp)
{
while (ctf_type_kind(fp, type) == CTF_K_FORWARD) {
char n[DT_TYPE_NAMELEN];
dtrace_typeinfo_t dtt;
if (ctf_type_name(fp, type, n, sizeof (n)) == NULL ||
dt_type_lookup(n, &dtt) == -1 || (
dtt.dtt_ctfp == fp && dtt.dtt_type == type))
break; /* unable to improve our position */
fp = dtt.dtt_ctfp;
type = ctf_type_resolve(fp, dtt.dtt_type);
}
if (ctf_member_info(fp, type, s, mp) == CTF_ERR)
return (NULL); /* ctf_errno is set for us */
return (fp);
}
static void
dt_cg_xsetx(dt_irlist_t *dlp, dt_ident_t *idp, uint_t lbl, int reg, uint64_t x)
{
int flag = idp != NULL ? DT_INT_PRIVATE : DT_INT_SHARED;
int intoff = dt_inttab_insert(yypcb->pcb_inttab, x, flag);
dif_instr_t instr = DIF_INSTR_SETX((uint_t)intoff, reg);
if (intoff == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
if (intoff > DIF_INTOFF_MAX)
longjmp(yypcb->pcb_jmpbuf, EDT_INT2BIG);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl, instr));
if (idp != NULL)
dlp->dl_last->di_ident = idp;
}
static void
dt_cg_setx(dt_irlist_t *dlp, int reg, uint64_t x)
{
dt_cg_xsetx(dlp, NULL, DT_LBL_NONE, reg, x);
}
/*
* When loading bit-fields, we want to convert a byte count in the range
* 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
* is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.
*/
static size_t
clp2(size_t x)
{
x--;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return (x + 1);
}
/*
* Lookup the correct load opcode to use for the specified node and CTF type.
* We determine the size and convert it to a 3-bit index. Our lookup table
* is constructed to use a 5-bit index, consisting of the 3-bit size 0-7, a
* bit for the sign, and a bit for userland address. For example, a 4-byte
* signed load from userland would be at the following table index:
* user=1 sign=1 size=4 => binary index 11011 = decimal index 27
*/
static uint_t
dt_cg_load(dt_node_t *dnp, ctf_file_t *ctfp, ctf_id_t type)
{
static const uint_t ops[] = {
DIF_OP_LDUB, DIF_OP_LDUH, 0, DIF_OP_LDUW,
0, 0, 0, DIF_OP_LDX,
DIF_OP_LDSB, DIF_OP_LDSH, 0, DIF_OP_LDSW,
0, 0, 0, DIF_OP_LDX,
DIF_OP_ULDUB, DIF_OP_ULDUH, 0, DIF_OP_ULDUW,
0, 0, 0, DIF_OP_ULDX,
DIF_OP_ULDSB, DIF_OP_ULDSH, 0, DIF_OP_ULDSW,
0, 0, 0, DIF_OP_ULDX,
};
ctf_encoding_t e;
ssize_t size;
/*
* If we're loading a bit-field, the size of our load is found by
* rounding cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above).
*/
if ((dnp->dn_flags & DT_NF_BITFIELD) &&
ctf_type_encoding(ctfp, type, &e) != CTF_ERR)
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
else
size = ctf_type_size(ctfp, type);
if (size < 1 || size > 8 || (size & (size - 1)) != 0) {
xyerror(D_UNKNOWN, "internal error -- cg cannot load "
"size %ld when passed by value\n", (long)size);
}
size--; /* convert size to 3-bit index */
if (dnp->dn_flags & DT_NF_SIGNED)
size |= 0x08;
if (dnp->dn_flags & DT_NF_USERLAND)
size |= 0x10;
return (ops[size]);
}
static void
dt_cg_ptrsize(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
uint_t op, int dreg)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_arinfo_t r;
dif_instr_t instr;
ctf_id_t type;
uint_t kind;
ssize_t size;
int sreg;
if ((sreg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
type = ctf_type_resolve(ctfp, dnp->dn_type);
kind = ctf_type_kind(ctfp, type);
assert(kind == CTF_K_POINTER || kind == CTF_K_ARRAY);
if (kind == CTF_K_ARRAY) {
if (ctf_array_info(ctfp, type, &r) != 0) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ctfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
type = r.ctr_contents;
} else
type = ctf_type_reference(ctfp, type);
if ((size = ctf_type_size(ctfp, type)) == 1)
return; /* multiply or divide by one can be omitted */
dt_cg_setx(dlp, sreg, size);
instr = DIF_INSTR_FMT(op, dreg, sreg, dreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, sreg);
}
/*
* If the result of a "." or "->" operation is a bit-field, we use this routine
* to generate an epilogue to the load instruction that extracts the value. In
* the diagrams below the "ld??" is the load instruction that is generated to
* load the containing word that is generating prior to calling this function.
*
* Epilogue for unsigned fields: Epilogue for signed fields:
*
* ldu? [r1], r1 lds? [r1], r1
* setx USHIFT, r2 setx 64 - SSHIFT, r2
* srl r1, r2, r1 sll r1, r2, r1
* setx (1 << bits) - 1, r2 setx 64 - bits, r2
* and r1, r2, r1 sra r1, r2, r1
*
* The *SHIFT constants above changes value depending on the endian-ness of our
* target architecture. Refer to the comments below for more details.
*/
static void
dt_cg_field_get(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
ctf_file_t *fp, const ctf_membinfo_t *mp)
{
ctf_encoding_t e;
dif_instr_t instr;
uint64_t shift;
int r1, r2;
if (ctf_type_encoding(fp, mp->ctm_type, &e) != 0 || e.cte_bits > 64) {
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
"bits %u\n", mp->ctm_offset, mp->ctm_type, e.cte_bits);
}
assert(dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT);
r1 = dnp->dn_left->dn_reg;
if ((r2 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* On little-endian architectures, ctm_offset counts from the right so
* ctm_offset % NBBY itself is the amount we want to shift right to
* move the value bits to the little end of the register to mask them.
* On big-endian architectures, ctm_offset counts from the left so we
* must subtract (ctm_offset % NBBY + cte_bits) from the size in bits
* we used for the load. The size of our load in turn is found by
* rounding cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above). These
* properties are used to compute shift as USHIFT or SSHIFT, below.
*/
if (dnp->dn_flags & DT_NF_SIGNED) {
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
mp->ctm_offset % NBBY;
#else
shift = mp->ctm_offset % NBBY + e.cte_bits;
#endif
dt_cg_setx(dlp, r2, 64 - shift);
instr = DIF_INSTR_FMT(DIF_OP_SLL, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, 64 - e.cte_bits);
instr = DIF_INSTR_FMT(DIF_OP_SRA, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
(mp->ctm_offset % NBBY + e.cte_bits);
#else
shift = mp->ctm_offset % NBBY;
#endif
dt_cg_setx(dlp, r2, shift);
instr = DIF_INSTR_FMT(DIF_OP_SRL, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, (1ULL << e.cte_bits) - 1);
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
}
dt_regset_free(drp, r2);
}
/*
* If the destination of a store operation is a bit-field, we use this routine
* to generate a prologue to the store instruction that loads the surrounding
* bits, clears the destination field, and ORs in the new value of the field.
* In the diagram below the "st?" is the store instruction that is generated to
* store the containing word that is generating after calling this function.
*
* ld [dst->dn_reg], r1
* setx ~(((1 << cte_bits) - 1) << (ctm_offset % NBBY)), r2
* and r1, r2, r1
*
* setx (1 << cte_bits) - 1, r2
* and src->dn_reg, r2, r2
* setx ctm_offset % NBBY, r3
* sll r2, r3, r2
*
* or r1, r2, r1
* st? r1, [dst->dn_reg]
*
* This routine allocates a new register to hold the value to be stored and
* returns it. The caller is responsible for freeing this register later.
*/
static int
dt_cg_field_set(dt_node_t *src, dt_irlist_t *dlp,
dt_regset_t *drp, dt_node_t *dst)
{
uint64_t cmask, fmask, shift;
dif_instr_t instr;
int r1, r2, r3;
ctf_membinfo_t m;
ctf_encoding_t e;
ctf_file_t *fp, *ofp;
ctf_id_t type;
assert(dst->dn_op == DT_TOK_PTR || dst->dn_op == DT_TOK_DOT);
assert(dst->dn_right->dn_kind == DT_NODE_IDENT);
fp = dst->dn_left->dn_ctfp;
type = ctf_type_resolve(fp, dst->dn_left->dn_type);
if (dst->dn_op == DT_TOK_PTR) {
type = ctf_type_reference(fp, type);
type = ctf_type_resolve(fp, type);
}
if ((fp = dt_cg_membinfo(ofp = fp, type,
dst->dn_right->dn_string, &m)) == NULL) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ofp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
if (ctf_type_encoding(fp, m.ctm_type, &e) != 0 || e.cte_bits > 64) {
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
"bits %u\n", m.ctm_offset, m.ctm_type, e.cte_bits);
}
if ((r1 = dt_regset_alloc(drp)) == -1 ||
(r2 = dt_regset_alloc(drp)) == -1 ||
(r3 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* Compute shifts and masks. We need to compute "shift" as the amount
* we need to shift left to position our field in the containing word.
* Refer to the comments in dt_cg_field_get(), above, for more info.
* We then compute fmask as the mask that truncates the value in the
* input register to width cte_bits, and cmask as the mask used to
* pass through the containing bits and zero the field bits.
*/
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
(m.ctm_offset % NBBY + e.cte_bits);
#else
shift = m.ctm_offset % NBBY;
#endif
fmask = (1ULL << e.cte_bits) - 1;
cmask = ~(fmask << shift);
instr = DIF_INSTR_LOAD(
dt_cg_load(dst, fp, m.ctm_type), dst->dn_reg, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, cmask);
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, fmask);
instr = DIF_INSTR_FMT(DIF_OP_AND, src->dn_reg, r2, r2);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r3, shift);
instr = DIF_INSTR_FMT(DIF_OP_SLL, r2, r3, r2);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT(DIF_OP_OR, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, r3);
dt_regset_free(drp, r2);
return (r1);
}
static void
dt_cg_store(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst)
{
ctf_encoding_t e;
dif_instr_t instr;
size_t size;
int reg;
/*
* If we're loading a bit-field, the size of our store is found by
* rounding dst's cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above).
*/
if ((dst->dn_flags & DT_NF_BITFIELD) &&
ctf_type_encoding(dst->dn_ctfp, dst->dn_type, &e) != CTF_ERR)
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
else
size = dt_node_type_size(src);
if (src->dn_flags & DT_NF_REF) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, size);
instr = DIF_INSTR_COPYS(src->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
} else {
if (dst->dn_flags & DT_NF_BITFIELD)
reg = dt_cg_field_set(src, dlp, drp, dst);
else
reg = src->dn_reg;
switch (size) {
case 1:
instr = DIF_INSTR_STORE(DIF_OP_STB, reg, dst->dn_reg);
break;
case 2:
instr = DIF_INSTR_STORE(DIF_OP_STH, reg, dst->dn_reg);
break;
case 4:
instr = DIF_INSTR_STORE(DIF_OP_STW, reg, dst->dn_reg);
break;
case 8:
instr = DIF_INSTR_STORE(DIF_OP_STX, reg, dst->dn_reg);
break;
default:
xyerror(D_UNKNOWN, "internal error -- cg cannot store "
"size %lu when passed by value\n", (ulong_t)size);
}
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
if (dst->dn_flags & DT_NF_BITFIELD)
dt_regset_free(drp, reg);
}
}
/*
* Generate code for a typecast or for argument promotion from the type of the
* actual to the type of the formal. We need to generate code for casts when
* a scalar type is being narrowed or changing signed-ness. We first shift the
* desired bits high (losing excess bits if narrowing) and then shift them down
* using logical shift (unsigned result) or arithmetic shift (signed result).
*/
static void
dt_cg_typecast(const dt_node_t *src, const dt_node_t *dst,
dt_irlist_t *dlp, dt_regset_t *drp)
{
size_t srcsize = dt_node_type_size(src);
size_t dstsize = dt_node_type_size(dst);
dif_instr_t instr;
int reg, n;
if (dt_node_is_scalar(dst) && (dstsize < srcsize ||
(src->dn_flags & DT_NF_SIGNED) ^ (dst->dn_flags & DT_NF_SIGNED))) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dstsize < srcsize)
n = sizeof (uint64_t) * NBBY - dstsize * NBBY;
else
n = sizeof (uint64_t) * NBBY - srcsize * NBBY;
dt_cg_setx(dlp, reg, n);
instr = DIF_INSTR_FMT(DIF_OP_SLL,
src->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT((dst->dn_flags & DT_NF_SIGNED) ?
DIF_OP_SRA : DIF_OP_SRL, dst->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
}
/*
* Generate code to push the specified argument list on to the tuple stack.
* We use this routine for handling subroutine calls and associative arrays.
* We must first generate code for all subexpressions before loading the stack
* because any subexpression could itself require the use of the tuple stack.
* This holds a number of registers equal to the number of arguments, but this
* is not a huge problem because the number of arguments can't exceed the
* number of tuple register stack elements anyway. At most one extra register
* is required (either by dt_cg_typecast() or for dtdt_size, below). This
* implies that a DIF implementation should offer a number of general purpose
* registers at least one greater than the number of tuple registers.
*/
static void
dt_cg_arglist(dt_ident_t *idp, dt_node_t *args,
dt_irlist_t *dlp, dt_regset_t *drp)
{
const dt_idsig_t *isp = idp->di_data;
dt_node_t *dnp;
int i = 0;
for (dnp = args; dnp != NULL; dnp = dnp->dn_list)
dt_cg_node(dnp, dlp, drp);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
for (dnp = args; dnp != NULL; dnp = dnp->dn_list, i++) {
dtrace_diftype_t t;
dif_instr_t instr;
uint_t op;
int reg;
dt_node_diftype(dnp, &t);
isp->dis_args[i].dn_reg = dnp->dn_reg; /* re-use register */
dt_cg_typecast(dnp, &isp->dis_args[i], dlp, drp);
isp->dis_args[i].dn_reg = -1;
if (t.dtdt_flags & DIF_TF_BYREF)
op = DIF_OP_PUSHTR;
else
op = DIF_OP_PUSHTV;
if (t.dtdt_size != 0) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, t.dtdt_size);
} else
reg = DIF_REG_R0;
instr = DIF_INSTR_PUSHTS(op, t.dtdt_kind, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_reg);
if (reg != DIF_REG_R0)
dt_regset_free(drp, reg);
}
if (i > yypcb->pcb_hdl->dt_conf.dtc_diftupregs)
longjmp(yypcb->pcb_jmpbuf, EDT_NOTUPREG);
}
static void
dt_cg_arithmetic_op(dt_node_t *dnp, dt_irlist_t *dlp,
dt_regset_t *drp, uint_t op)
{
int is_ptr_op = (dnp->dn_op == DT_TOK_ADD || dnp->dn_op == DT_TOK_SUB ||
dnp->dn_op == DT_TOK_ADD_EQ || dnp->dn_op == DT_TOK_SUB_EQ);
int lp_is_ptr = dt_node_is_pointer(dnp->dn_left);
int rp_is_ptr = dt_node_is_pointer(dnp->dn_right);
dif_instr_t instr;
if (lp_is_ptr && rp_is_ptr) {
assert(dnp->dn_op == DT_TOK_SUB);
is_ptr_op = 0;
}
dt_cg_node(dnp->dn_left, dlp, drp);
if (is_ptr_op && rp_is_ptr)
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_left->dn_reg);
dt_cg_node(dnp->dn_right, dlp, drp);
if (is_ptr_op && lp_is_ptr)
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_right->dn_reg);
instr = DIF_INSTR_FMT(op, dnp->dn_left->dn_reg,
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
if (lp_is_ptr && rp_is_ptr)
dt_cg_ptrsize(dnp->dn_right,
dlp, drp, DIF_OP_UDIV, dnp->dn_reg);
}
static uint_t
dt_cg_stvar(const dt_ident_t *idp)
{
static const uint_t aops[] = { DIF_OP_STGAA, DIF_OP_STTAA, DIF_OP_NOP };
static const uint_t sops[] = { DIF_OP_STGS, DIF_OP_STTS, DIF_OP_STLS };
uint_t i = (((idp->di_flags & DT_IDFLG_LOCAL) != 0) << 1) |
((idp->di_flags & DT_IDFLG_TLS) != 0);
return (idp->di_kind == DT_IDENT_ARRAY ? aops[i] : sops[i]);
}
static void
dt_cg_prearith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
dif_instr_t instr;
ctf_id_t type;
ssize_t size = 1;
int reg;
if (dt_node_is_pointer(dnp)) {
type = ctf_type_resolve(ctfp, dnp->dn_type);
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
}
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, size);
instr = DIF_INSTR_FMT(op, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
/*
* If we are modifying a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we store the value in dnp->dn_reg (the new value).
*/
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
idp->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
dt_regset_free(drp, dnp->dn_child->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
}
static void
dt_cg_postarith_op(dt_node_t *dnp, dt_irlist_t *dlp,
dt_regset_t *drp, uint_t op)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
dif_instr_t instr;
ctf_id_t type;
ssize_t size = 1;
int nreg;
if (dt_node_is_pointer(dnp)) {
type = ctf_type_resolve(ctfp, dnp->dn_type);
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
}
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if ((nreg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, nreg, size);
instr = DIF_INSTR_FMT(op, dnp->dn_reg, nreg, nreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If we are modifying a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we store the value from 'nreg' (the new value).
*/
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, nreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
int oreg = dnp->dn_reg;
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = nreg;
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
dnp->dn_reg = oreg;
dt_regset_free(drp, dnp->dn_child->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
dt_regset_free(drp, nreg);
}
/*
* Determine if we should perform signed or unsigned comparison for an OP2.
* If both operands are of arithmetic type, perform the usual arithmetic
* conversions to determine the common real type for comparison [ISOC 6.5.8.3].
*/
static int
dt_cg_compare_signed(dt_node_t *dnp)
{
dt_node_t dn;
if (dt_node_is_string(dnp->dn_left) ||
dt_node_is_string(dnp->dn_right))
return (1); /* strings always compare signed */
else if (!dt_node_is_arith(dnp->dn_left) ||
!dt_node_is_arith(dnp->dn_right))
return (0); /* non-arithmetic types always compare unsigned */
bzero(&dn, sizeof (dn));
dt_node_promote(dnp->dn_left, dnp->dn_right, &dn);
return (dn.dn_flags & DT_NF_SIGNED);
}
static void
dt_cg_compare_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
{
uint_t lbl_true = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
uint_t opc;
dt_cg_node(dnp->dn_left, dlp, drp);
dt_cg_node(dnp->dn_right, dlp, drp);
if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right))
opc = DIF_OP_SCMP;
else
opc = DIF_OP_CMP;
instr = DIF_INSTR_CMP(opc, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
instr = DIF_INSTR_BRANCH(op, lbl_true);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
/*
* Code generation for the ternary op requires some trickery with the assembler
* in order to conserve registers. We generate code for dn_expr and dn_left
* and free their registers so they do not have be consumed across codegen for
* dn_right. We insert a dummy MOV at the end of dn_left into the destination
* register, which is not yet known because we haven't done dn_right yet, and
* save the pointer to this instruction node. We then generate code for
* dn_right and use its register as our output. Finally, we reach back and
* patch the instruction for dn_left to move its output into this register.
*/
static void
dt_cg_ternary_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_irnode_t *dip;
dt_cg_node(dnp->dn_expr, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_expr->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_expr->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, DIF_REG_R0);
dip = dt_cg_node_alloc(DT_LBL_NONE, instr); /* save dip for below */
dt_irlist_append(dlp, dip);
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, DIF_INSTR_NOP));
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
/*
* Now that dn_reg is assigned, reach back and patch the correct MOV
* instruction into the tail of dn_left. We know dn_reg was unused
* at that point because otherwise dn_right couldn't have allocated it.
*/
dip->di_instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_and(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_reg = dnp->dn_right->dn_reg;
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_reg, 1);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_xor(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_next = dt_irlist_label(dlp);
uint_t lbl_tail = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_next);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_left->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_next, DIF_INSTR_NOP));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_tail);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_right->dn_reg, 1);
instr = DIF_INSTR_FMT(DIF_OP_XOR, dnp->dn_left->dn_reg,
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_tail, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
}
static void
dt_cg_logical_or(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_true = dt_irlist_label(dlp);
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, lbl_true);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_reg = dnp->dn_right->dn_reg;
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_neg(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_zero = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_TST(dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_zero);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_zero, dnp->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_asgn_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dif_instr_t instr;
dt_ident_t *idp;
/*
* If we are performing a structure assignment of a translated type,
* we must instantiate all members and create a snapshot of the object
* in scratch space. We allocs a chunk of memory, generate code for
* each member, and then set dnp->dn_reg to the scratch object address.
*/
if ((idp = dt_node_resolve(dnp->dn_right, DT_IDENT_XLSOU)) != NULL) {
ctf_membinfo_t ctm;
dt_xlator_t *dxp = idp->di_data;
dt_node_t *mnp, dn, mn;
int r1, r2;
/*
* Create two fake dt_node_t's representing operator "." and a
* right-hand identifier child node. These will be repeatedly
* modified according to each instantiated member so that we
* can pass them to dt_cg_store() and effect a member store.
*/
bzero(&dn, sizeof (dt_node_t));
dn.dn_kind = DT_NODE_OP2;
dn.dn_op = DT_TOK_DOT;
dn.dn_left = dnp;
dn.dn_right = &mn;
bzero(&mn, sizeof (dt_node_t));
mn.dn_kind = DT_NODE_IDENT;
mn.dn_op = DT_TOK_IDENT;
/*
* Allocate a register for our scratch data pointer. First we
* set it to the size of our data structure, and then replace
* it with the result of an allocs of the specified size.
*/
if ((r1 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, r1,
ctf_type_size(dxp->dx_dst_ctfp, dxp->dx_dst_base));
instr = DIF_INSTR_ALLOCS(r1, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* When dt_cg_asgn_op() is called, we have already generated
* code for dnp->dn_right, which is the translator input. We
* now associate this register with the translator's input
* identifier so it can be referenced during our member loop.
*/
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
dxp->dx_ident->di_id = dnp->dn_right->dn_reg;
for (mnp = dxp->dx_members; mnp != NULL; mnp = mnp->dn_list) {
/*
* Generate code for the translator member expression,
* and then cast the result to the member type.
*/
dt_cg_node(mnp->dn_membexpr, dlp, drp);
mnp->dn_reg = mnp->dn_membexpr->dn_reg;
dt_cg_typecast(mnp->dn_membexpr, mnp, dlp, drp);
/*
* Ask CTF for the offset of the member so we can store
* to the appropriate offset. This call has already
* been done once by the parser, so it should succeed.
*/
if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_base,
mnp->dn_membname, &ctm) == CTF_ERR) {
yypcb->pcb_hdl->dt_ctferr =
ctf_errno(dxp->dx_dst_ctfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
/*
* If the destination member is at offset 0, store the
* result directly to r1 (the scratch buffer address).
* Otherwise allocate another temporary for the offset
* and add r1 to it before storing the result.
*/
if (ctm.ctm_offset != 0) {
if ((r2 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* Add the member offset rounded down to the
* nearest byte. If the offset was not aligned
* on a byte boundary, this member is a bit-
* field and dt_cg_store() will handle masking.
*/
dt_cg_setx(dlp, r2, ctm.ctm_offset / NBBY);
instr = DIF_INSTR_FMT(DIF_OP_ADD, r1, r2, r2);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_node_type_propagate(mnp, &dn);
dn.dn_right->dn_string = mnp->dn_membname;
dn.dn_reg = r2;
dt_cg_store(mnp, dlp, drp, &dn);
dt_regset_free(drp, r2);
} else {
dt_node_type_propagate(mnp, &dn);
dn.dn_right->dn_string = mnp->dn_membname;
dn.dn_reg = r1;
dt_cg_store(mnp, dlp, drp, &dn);
}
dt_regset_free(drp, mnp->dn_reg);
}
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
dxp->dx_ident->di_id = 0;
assert(dnp->dn_reg == dnp->dn_right->dn_reg);
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = r1;
}
/*
* If we are storing to a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we assume dnp->dn_reg already has the new value.
*/
if (dnp->dn_left->dn_kind == DT_NODE_VAR) {
idp = dt_ident_resolve(dnp->dn_left->dn_ident);
if (idp->di_kind == DT_IDENT_ARRAY)
dt_cg_arglist(idp, dnp->dn_left->dn_args, dlp, drp);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
idp->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_left->dn_flags & DT_NF_REF;
assert(dnp->dn_left->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_left->dn_flags & DT_NF_LVALUE);
dnp->dn_left->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_left, dlp, drp);
dt_cg_store(dnp, dlp, drp, dnp->dn_left);
dt_regset_free(drp, dnp->dn_left->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
}
static void
dt_cg_assoc_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dif_instr_t instr;
uint_t op;
assert(dnp->dn_kind == DT_NODE_VAR);
assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL));
assert(dnp->dn_args != NULL);
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTAA;
else
op = DIF_OP_LDGAA;
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If the associative array is a pass-by-reference type, then we are
* loading its value as a pointer to either load or store through it.
* The array element in question may not have been faulted in yet, in
* which case DIF_OP_LD*AA will return zero. We append an epilogue
* of instructions similar to the following:
*
* ld?aa id, %r1 ! base ld?aa instruction above
* tst %r1 ! start of epilogue
* +--- bne label
* | setx size, %r1
* | allocs %r1, %r1
* | st?aa id, %r1
* | ld?aa id, %r1
* v
* label: < rest of code >
*
* The idea is that we allocs a zero-filled chunk of scratch space and
* do a DIF_OP_ST*AA to fault in and initialize the array element, and
* then reload it to get the faulted-in address of the new variable
* storage. This isn't cheap, but pass-by-ref associative array values
* are (thus far) uncommon and the allocs cost only occurs once. If
* this path becomes important to DTrace users, we can improve things
* by adding a new DIF opcode to fault in associative array elements.
*/
if (dnp->dn_flags & DT_NF_REF) {
uint_t stvop = op == DIF_OP_LDTAA ? DIF_OP_STTAA : DIF_OP_STGAA;
uint_t label = dt_irlist_label(dlp);
instr = DIF_INSTR_TST(dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, label);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_reg, dt_node_type_size(dnp));
instr = DIF_INSTR_ALLOCS(dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_ident->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(stvop, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(label, DIF_INSTR_NOP));
}
}
static void
dt_cg_array_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dt_probe_t *prp = yypcb->pcb_probe;
uintmax_t saved = dnp->dn_args->dn_value;
dif_instr_t instr;
uint_t op;
size_t size;
int reg, n;
assert(dnp->dn_kind == DT_NODE_VAR);
assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL));
assert(dnp->dn_args->dn_kind == DT_NODE_INT);
assert(dnp->dn_args->dn_list == NULL);
/*
* If this is a reference in the args[] array, temporarily modify the
* array index according to the static argument mapping (if any).
*/
if (dnp->dn_ident->di_id == DIF_VAR_ARGS)
dnp->dn_args->dn_value = prp->pr_mapping[saved];
dt_cg_node(dnp->dn_args, dlp, drp);
dnp->dn_args->dn_value = saved;
dnp->dn_reg = dnp->dn_args->dn_reg;
if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTA;
else
op = DIF_OP_LDGA;
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDA(op, dnp->dn_ident->di_id,
dnp->dn_args->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If this is a reference to the args[] array, we need to take the
* additional step of explicitly eliminating any bits larger than the
* type size: the DIF interpreter in the kernel will always give us
* the raw (64-bit) argument value, and any bits larger than the type
* size may be junk. As a practical matter, this arises only on 64-bit
* architectures and only when the argument index is larger than the
* number of arguments passed directly to DTrace: if a 8-, 16- or
* 32-bit argument must be retrieved from the stack, it is possible
* (and it some cases, likely) that the upper bits will be garbage.
*/
if (dnp->dn_ident->di_id != DIF_VAR_ARGS || !dt_node_is_scalar(dnp))
return;
if ((size = dt_node_type_size(dnp)) == sizeof (uint64_t))
return;
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(size < sizeof (uint64_t));
n = sizeof (uint64_t) * NBBY - size * NBBY;
dt_cg_setx(dlp, reg, n);
instr = DIF_INSTR_FMT(DIF_OP_SLL, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT((dnp->dn_flags & DT_NF_SIGNED) ?
DIF_OP_SRA : DIF_OP_SRL, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
/*
* Generate code for an inlined variable reference. Inlines can be used to
* define either scalar or associative array substitutions. For scalars, we
* simply generate code for the parse tree saved in the identifier's din_root,
* and then cast the resulting expression to the inline's declaration type.
* For arrays, we take the input parameter subtrees from dnp->dn_args and
* temporarily store them in the din_root of each din_argv[i] identifier,
* which are themselves inlines and were set up for us by the parser. The
* result is that any reference to the inlined parameter inside the top-level
* din_root will turn into a recursive call to dt_cg_inline() for a scalar
* inline whose din_root will refer to the subtree pointed to by the argument.
*/
static void
dt_cg_inline(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dt_ident_t *idp = dnp->dn_ident;
dt_idnode_t *inp = idp->di_iarg;
dt_idnode_t *pinp;
dt_node_t *pnp;
int i;
assert(idp->di_flags & DT_IDFLG_INLINE);
assert(idp->di_ops == &dt_idops_inline);
if (idp->di_kind == DT_IDENT_ARRAY) {
for (i = 0, pnp = dnp->dn_args;
pnp != NULL; pnp = pnp->dn_list, i++) {
if (inp->din_argv[i] != NULL) {
pinp = inp->din_argv[i]->di_iarg;
pinp->din_root = pnp;
}
}
}
dt_cg_node(inp->din_root, dlp, drp);
dnp->dn_reg = inp->din_root->dn_reg;
dt_cg_typecast(inp->din_root, dnp, dlp, drp);
if (idp->di_kind == DT_IDENT_ARRAY) {
for (i = 0; i < inp->din_argc; i++) {
pinp = inp->din_argv[i]->di_iarg;
pinp->din_root = NULL;
}
}
}
static void
dt_cg_node(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_file_t *octfp;
ctf_membinfo_t m;
ctf_id_t type;
dif_instr_t instr;
dt_ident_t *idp;
ssize_t stroff;
uint_t op;
int reg;
switch (dnp->dn_op) {
case DT_TOK_COMMA:
dt_cg_node(dnp->dn_left, dlp, drp);
dt_regset_free(drp, dnp->dn_left->dn_reg);
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
break;
case DT_TOK_ASGN:
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_ADD_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_SUB_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_MUL_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_DIV_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_MOD_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_AND_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_XOR_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_OR_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_LSH_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_RSH_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_QUESTION:
dt_cg_ternary_op(dnp, dlp, drp);
break;
case DT_TOK_LOR:
dt_cg_logical_or(dnp, dlp, drp);
break;
case DT_TOK_LXOR:
dt_cg_logical_xor(dnp, dlp, drp);
break;
case DT_TOK_LAND:
dt_cg_logical_and(dnp, dlp, drp);
break;
case DT_TOK_BOR:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
break;
case DT_TOK_XOR:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
break;
case DT_TOK_BAND:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
break;
case DT_TOK_EQU:
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BE);
break;
case DT_TOK_NEQ:
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BNE);
break;
case DT_TOK_LT:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BL : DIF_OP_BLU);
break;
case DT_TOK_LE:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BLE : DIF_OP_BLEU);
break;
case DT_TOK_GT:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BG : DIF_OP_BGU);
break;
case DT_TOK_GE:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BGE : DIF_OP_BGEU);
break;
case DT_TOK_LSH:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
break;
case DT_TOK_RSH:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
break;
case DT_TOK_ADD:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_SUB:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_MUL:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
break;
case DT_TOK_DIV:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
break;
case DT_TOK_MOD:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
break;
case DT_TOK_LNEG:
dt_cg_logical_neg(dnp, dlp, drp);
break;
case DT_TOK_BNEG:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_NOT(dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_PREINC:
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_POSTINC:
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_PREDEC:
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_POSTDEC:
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_IPOS:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
break;
case DT_TOK_INEG:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_FMT(DIF_OP_SUB, DIF_REG_R0,
dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_DEREF:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if (!(dnp->dn_flags & DT_NF_REF)) {
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
/*
* Save and restore DT_NF_USERLAND across dt_cg_load():
* we need the sign bit from dnp and the user bit from
* dnp->dn_child in order to get the proper opcode.
*/
dnp->dn_flags |=
(dnp->dn_child->dn_flags & DT_NF_USERLAND);
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
dnp->dn_flags &= ~DT_NF_USERLAND;
dnp->dn_flags |= ubit;
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
}
break;
case DT_TOK_ADDROF: {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
dnp->dn_child->dn_flags &= ~DT_NF_REF;
dnp->dn_child->dn_flags |= rbit;
break;
}
case DT_TOK_SIZEOF: {
size_t size = dt_node_sizeof(dnp->dn_child);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(size != 0);
dt_cg_setx(dlp, dnp->dn_reg, size);
break;
}
case DT_TOK_STRINGOF:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
break;
case DT_TOK_XLATE:
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
break;
case DT_TOK_LPAR:
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
dt_cg_typecast(dnp->dn_right, dnp, dlp, drp);
break;
case DT_TOK_PTR:
case DT_TOK_DOT:
assert(dnp->dn_right->dn_kind == DT_NODE_IDENT);
dt_cg_node(dnp->dn_left, dlp, drp);
/*
* If the left-hand side of PTR or DOT is a dynamic variable,
* we expect it to be the output of a D translator. In this
* case, we look up the parse tree corresponding to the member
* that is being accessed and run the code generator over it.
* We then cast the result as if by the assignment operator.
*/
if ((idp = dt_node_resolve(
dnp->dn_left, DT_IDENT_XLSOU)) != NULL ||
(idp = dt_node_resolve(
dnp->dn_left, DT_IDENT_XLPTR)) != NULL) {
dt_xlator_t *dxp;
dt_node_t *mnp;
dxp = idp->di_data;
mnp = dt_xlator_member(dxp, dnp->dn_right->dn_string);
assert(mnp != NULL);
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
dxp->dx_ident->di_id = dnp->dn_left->dn_reg;
dt_cg_node(mnp->dn_membexpr, dlp, drp);
dnp->dn_reg = mnp->dn_membexpr->dn_reg;
dt_cg_typecast(mnp->dn_membexpr, dnp, dlp, drp);
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
dxp->dx_ident->di_id = 0;
dt_regset_free(drp, dnp->dn_left->dn_reg);
break;
}
ctfp = dnp->dn_left->dn_ctfp;
type = ctf_type_resolve(ctfp, dnp->dn_left->dn_type);
if (dnp->dn_op == DT_TOK_PTR) {
type = ctf_type_reference(ctfp, type);
type = ctf_type_resolve(ctfp, type);
}
if ((ctfp = dt_cg_membinfo(octfp = ctfp, type,
dnp->dn_right->dn_string, &m)) == NULL) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(octfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
if (m.ctm_offset != 0) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* If the offset is not aligned on a byte boundary, it
* is a bit-field member and we will extract the value
* bits below after we generate the appropriate load.
*/
dt_cg_setx(dlp, reg, m.ctm_offset / NBBY);
instr = DIF_INSTR_FMT(DIF_OP_ADD,
dnp->dn_left->dn_reg, reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
if (!(dnp->dn_flags & DT_NF_REF)) {
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
/*
* Save and restore DT_NF_USERLAND across dt_cg_load():
* we need the sign bit from dnp and the user bit from
* dnp->dn_left in order to get the proper opcode.
*/
dnp->dn_flags |=
(dnp->dn_left->dn_flags & DT_NF_USERLAND);
instr = DIF_INSTR_LOAD(dt_cg_load(dnp,
ctfp, m.ctm_type), dnp->dn_left->dn_reg,
dnp->dn_left->dn_reg);
dnp->dn_flags &= ~DT_NF_USERLAND;
dnp->dn_flags |= ubit;
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
if (dnp->dn_flags & DT_NF_BITFIELD)
dt_cg_field_get(dnp, dlp, drp, ctfp, &m);
}
dnp->dn_reg = dnp->dn_left->dn_reg;
break;
case DT_TOK_STRING:
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(dnp->dn_kind == DT_NODE_STRING);
stroff = dt_strtab_insert(yypcb->pcb_strtab, dnp->dn_string);
if (stroff == -1L)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
if (stroff > DIF_STROFF_MAX)
longjmp(yypcb->pcb_jmpbuf, EDT_STR2BIG);
instr = DIF_INSTR_SETS((ulong_t)stroff, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_IDENT:
/*
* If the specified identifier is a variable on which we have
* set the code generator register flag, then this variable
* has already had code generated for it and saved in di_id.
* Allocate a new register and copy the existing value to it.
*/
if (dnp->dn_kind == DT_NODE_VAR &&
(dnp->dn_ident->di_flags & DT_IDFLG_CGREG)) {
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
instr = DIF_INSTR_MOV(dnp->dn_ident->di_id,
dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
}
/*
* Identifiers can represent function calls, variable refs, or
* symbols. First we check for inlined variables, and handle
* them by generating code for the inline parse tree.
*/
if (dnp->dn_kind == DT_NODE_VAR &&
(dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) {
dt_cg_inline(dnp, dlp, drp);
break;
}
switch (dnp->dn_kind) {
case DT_NODE_FUNC:
if ((idp = dnp->dn_ident)->di_kind != DT_IDENT_FUNC) {
dnerror(dnp, D_CG_EXPR, "%s %s( ) may not be "
"called from a D expression (D program "
"context required)\n",
dt_idkind_name(idp->di_kind), idp->di_name);
}
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
instr = DIF_INSTR_CALL(
dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_NODE_VAR:
if (dnp->dn_ident->di_kind == DT_IDENT_XLSOU ||
dnp->dn_ident->di_kind == DT_IDENT_XLPTR) {
/*
* This can only happen if we have translated
* args[]. See dt_idcook_args() for details.
*/
assert(dnp->dn_ident->di_id == DIF_VAR_ARGS);
dt_cg_array_op(dnp, dlp, drp);
break;
}
if (dnp->dn_ident->di_kind == DT_IDENT_ARRAY) {
if (dnp->dn_ident->di_id > DIF_VAR_ARRAY_MAX)
dt_cg_assoc_op(dnp, dlp, drp);
else
dt_cg_array_op(dnp, dlp, drp);
break;
}
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL)
op = DIF_OP_LDLS;
else if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTS;
else
op = DIF_OP_LDGS;
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDV(op,
dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_NODE_SYM: {
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dtrace_syminfo_t *sip = dnp->dn_ident->di_data;
GElf_Sym sym;
if (dtrace_lookup_by_name(dtp,
sip->dts_object, sip->dts_name, &sym, NULL) == -1) {
xyerror(D_UNKNOWN, "cg failed for symbol %s`%s:"
" %s\n", sip->dts_object, sip->dts_name,
dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_xsetx(dlp, dnp->dn_ident,
DT_LBL_NONE, dnp->dn_reg, sym.st_value);
if (!(dnp->dn_flags & DT_NF_REF)) {
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
}
break;
}
default:
xyerror(D_UNKNOWN, "internal error -- node type %u is "
"not valid for an identifier\n", dnp->dn_kind);
}
break;
case DT_TOK_INT:
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, dnp->dn_reg, dnp->dn_value);
break;
default:
xyerror(D_UNKNOWN, "internal error -- token type %u is not a "
"valid D compilation token\n", dnp->dn_op);
}
}
void
dt_cg(dt_pcb_t *pcb, dt_node_t *dnp)
{
dif_instr_t instr;
if (pcb->pcb_regs == NULL && (pcb->pcb_regs =
dt_regset_create(pcb->pcb_hdl->dt_conf.dtc_difintregs)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
dt_regset_reset(pcb->pcb_regs);
(void) dt_regset_alloc(pcb->pcb_regs); /* allocate %r0 */
if (pcb->pcb_inttab != NULL)
dt_inttab_destroy(pcb->pcb_inttab);
if ((pcb->pcb_inttab = dt_inttab_create(yypcb->pcb_hdl)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
if (pcb->pcb_strtab != NULL)
dt_strtab_destroy(pcb->pcb_strtab);
if ((pcb->pcb_strtab = dt_strtab_create(BUFSIZ)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
dt_irlist_destroy(&pcb->pcb_ir);
dt_irlist_create(&pcb->pcb_ir);
assert(pcb->pcb_dret == NULL);
pcb->pcb_dret = dnp;
if (dt_node_is_dynamic(dnp)) {
dnerror(dnp, D_CG_DYN, "expression cannot evaluate to result "
"of dynamic type\n");
}
dt_cg_node(dnp, &pcb->pcb_ir, pcb->pcb_regs);
instr = DIF_INSTR_RET(dnp->dn_reg);
dt_regset_free(pcb->pcb_regs, dnp->dn_reg);
dt_irlist_append(&pcb->pcb_ir, dt_cg_node_alloc(DT_LBL_NONE, instr));
}