dt_cc.c revision e5803b76927480e8f9b67b22201c484ccf4c2bcf
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, Joyent Inc. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
*/
/*
* DTrace D Language Compiler
*
* The code in this source file implements the main engine for the D language
* compiler. The driver routine for the compiler is dt_compile(), below. The
* compiler operates on either stdio FILEs or in-memory strings as its input
* and can produce either dtrace_prog_t structures from a D program or a single
* dtrace_difo_t structure from a D expression. Multiple entry points are
* provided as wrappers around dt_compile() for the various input/output pairs.
* The compiler itself is implemented across the following source files:
*
* dt_lex.l - lex scanner
* dt_grammar.y - yacc grammar
* dt_parser.c - parse tree creation and semantic checking
* dt_decl.c - declaration stack processing
* dt_xlator.c - D translator lookup and creation
* dt_ident.c - identifier and symbol table routines
* dt_pragma.c - #pragma processing and D pragmas
* dt_printf.c - D printf() and printa() argument checking and processing
* dt_cc.c - compiler driver and dtrace_prog_t construction
* dt_cg.c - DIF code generator
* dt_as.c - DIF assembler
* dt_dof.c - dtrace_prog_t -> DOF conversion
*
* Several other source files provide collections of utility routines used by
* these major files. The compiler itself is implemented in multiple passes:
*
* (1) The input program is scanned and parsed by dt_lex.l and dt_grammar.y
* and parse tree nodes are constructed using the routines in dt_parser.c.
* This node construction pass is described further in dt_parser.c.
*
* (2) The parse tree is "cooked" by assigning each clause a context (see the
* routine dt_setcontext(), below) based on its probe description and then
* recursively descending the tree performing semantic checking. The cook
* routines are also implemented in dt_parser.c and described there.
*
* (3) For actions that are DIF expression statements, the DIF code generator
* and assembler are invoked to create a finished DIFO for the statement.
*
* (4) The dtrace_prog_t data structures for the program clauses and actions
* are built, containing pointers to any DIFOs created in step (3).
*
* (5) The caller invokes a routine in dt_dof.c to convert the finished program
* into DOF format for use in anonymous tracing or enabling in the kernel.
*
* In the implementation, steps 2-4 are intertwined in that they are performed
* in order for each clause as part of a loop that executes over the clauses.
*
* The D compiler currently implements nearly no optimization. The compiler
* implements integer constant folding as part of pass (1), and a set of very
* simple peephole optimizations as part of pass (3). As with any C compiler,
* a large number of optimizations are possible on both the intermediate data
* structures and the generated DIF code. These possibilities should be
* investigated in the context of whether they will have any substantive effect
* on the overall DTrace probe effect before they are undertaken.
*/
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/sysmacros.h>
#include <assert.h>
#include <strings.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <ucontext.h>
#include <limits.h>
#include <ctype.h>
#include <dirent.h>
#include <dt_module.h>
#include <dt_program.h>
#include <dt_provider.h>
#include <dt_printf.h>
#include <dt_pid.h>
#include <dt_grammar.h>
#include <dt_ident.h>
#include <dt_string.h>
#include <dt_impl.h>
static const dtrace_diftype_t dt_void_rtype = {
DIF_TYPE_CTF, CTF_K_INTEGER, 0, 0, 0
};
static const dtrace_diftype_t dt_int_rtype = {
DIF_TYPE_CTF, CTF_K_INTEGER, 0, 0, sizeof (uint64_t)
};
static void *dt_compile(dtrace_hdl_t *, int, dtrace_probespec_t, void *,
uint_t, int, char *const[], FILE *, const char *);
/*ARGSUSED*/
static int
dt_idreset(dt_idhash_t *dhp, dt_ident_t *idp, void *ignored)
{
idp->di_flags &= ~(DT_IDFLG_REF | DT_IDFLG_MOD |
DT_IDFLG_DIFR | DT_IDFLG_DIFW);
return (0);
}
/*ARGSUSED*/
static int
dt_idpragma(dt_idhash_t *dhp, dt_ident_t *idp, void *ignored)
{
yylineno = idp->di_lineno;
xyerror(D_PRAGMA_UNUSED, "unused #pragma %s\n", (char *)idp->di_iarg);
return (0);
}
static dtrace_stmtdesc_t *
dt_stmt_create(dtrace_hdl_t *dtp, dtrace_ecbdesc_t *edp,
dtrace_attribute_t descattr, dtrace_attribute_t stmtattr)
{
dtrace_stmtdesc_t *sdp = dtrace_stmt_create(dtp, edp);
if (sdp == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
assert(yypcb->pcb_stmt == NULL);
yypcb->pcb_stmt = sdp;
sdp->dtsd_descattr = descattr;
sdp->dtsd_stmtattr = stmtattr;
return (sdp);
}
static dtrace_actdesc_t *
dt_stmt_action(dtrace_hdl_t *dtp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *new;
if ((new = dtrace_stmt_action(dtp, sdp)) == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
return (new);
}
/*
* Utility function to determine if a given action description is destructive.
* The dtdo_destructive bit is set for us by the DIF assembler (see dt_as.c).
*/
static int
dt_action_destructive(const dtrace_actdesc_t *ap)
{
return (DTRACEACT_ISDESTRUCTIVE(ap->dtad_kind) || (ap->dtad_kind ==
DTRACEACT_DIFEXPR && ap->dtad_difo->dtdo_destructive));
}
static void
dt_stmt_append(dtrace_stmtdesc_t *sdp, const dt_node_t *dnp)
{
dtrace_ecbdesc_t *edp = sdp->dtsd_ecbdesc;
dtrace_actdesc_t *ap, *tap;
int commit = 0;
int speculate = 0;
int datarec = 0;
/*
* Make sure that the new statement jibes with the rest of the ECB.
*/
for (ap = edp->dted_action; ap != NULL; ap = ap->dtad_next) {
if (ap->dtad_kind == DTRACEACT_COMMIT) {
if (commit) {
dnerror(dnp, D_COMM_COMM, "commit( ) may "
"not follow commit( )\n");
}
if (datarec) {
dnerror(dnp, D_COMM_DREC, "commit( ) may "
"not follow data-recording action(s)\n");
}
for (tap = ap; tap != NULL; tap = tap->dtad_next) {
if (!DTRACEACT_ISAGG(tap->dtad_kind))
continue;
dnerror(dnp, D_AGG_COMM, "aggregating actions "
"may not follow commit( )\n");
}
commit = 1;
continue;
}
if (ap->dtad_kind == DTRACEACT_SPECULATE) {
if (speculate) {
dnerror(dnp, D_SPEC_SPEC, "speculate( ) may "
"not follow speculate( )\n");
}
if (commit) {
dnerror(dnp, D_SPEC_COMM, "speculate( ) may "
"not follow commit( )\n");
}
if (datarec) {
dnerror(dnp, D_SPEC_DREC, "speculate( ) may "
"not follow data-recording action(s)\n");
}
speculate = 1;
continue;
}
if (DTRACEACT_ISAGG(ap->dtad_kind)) {
if (speculate) {
dnerror(dnp, D_AGG_SPEC, "aggregating actions "
"may not follow speculate( )\n");
}
datarec = 1;
continue;
}
if (speculate) {
if (dt_action_destructive(ap)) {
dnerror(dnp, D_ACT_SPEC, "destructive actions "
"may not follow speculate( )\n");
}
if (ap->dtad_kind == DTRACEACT_EXIT) {
dnerror(dnp, D_EXIT_SPEC, "exit( ) may not "
"follow speculate( )\n");
}
}
/*
* Exclude all non data-recording actions.
*/
if (dt_action_destructive(ap) ||
ap->dtad_kind == DTRACEACT_DISCARD)
continue;
if (ap->dtad_kind == DTRACEACT_DIFEXPR &&
ap->dtad_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_CTF &&
ap->dtad_difo->dtdo_rtype.dtdt_size == 0)
continue;
if (commit) {
dnerror(dnp, D_DREC_COMM, "data-recording actions "
"may not follow commit( )\n");
}
if (!speculate)
datarec = 1;
}
if (dtrace_stmt_add(yypcb->pcb_hdl, yypcb->pcb_prog, sdp) != 0)
longjmp(yypcb->pcb_jmpbuf, dtrace_errno(yypcb->pcb_hdl));
if (yypcb->pcb_stmt == sdp)
yypcb->pcb_stmt = NULL;
}
/*
* For the first element of an aggregation tuple or for printa(), we create a
* simple DIF program that simply returns the immediate value that is the ID
* of the aggregation itself. This could be optimized in the future by
* creating a new in-kernel dtad_kind that just returns an integer.
*/
static void
dt_action_difconst(dtrace_actdesc_t *ap, uint_t id, dtrace_actkind_t kind)
{
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dtrace_difo_t *dp = dt_zalloc(dtp, sizeof (dtrace_difo_t));
if (dp == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
dp->dtdo_buf = dt_alloc(dtp, sizeof (dif_instr_t) * 2);
dp->dtdo_inttab = dt_alloc(dtp, sizeof (uint64_t));
if (dp->dtdo_buf == NULL || dp->dtdo_inttab == NULL) {
dt_difo_free(dtp, dp);
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
}
dp->dtdo_buf[0] = DIF_INSTR_SETX(0, 1); /* setx DIF_INTEGER[0], %r1 */
dp->dtdo_buf[1] = DIF_INSTR_RET(1); /* ret %r1 */
dp->dtdo_len = 2;
dp->dtdo_inttab[0] = id;
dp->dtdo_intlen = 1;
dp->dtdo_rtype = dt_int_rtype;
ap->dtad_difo = dp;
ap->dtad_kind = kind;
}
static void
dt_action_clear(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dt_ident_t *aid;
dtrace_actdesc_t *ap;
dt_node_t *anp;
char n[DT_TYPE_NAMELEN];
int argc = 0;
for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list)
argc++; /* count up arguments for error messages below */
if (argc != 1) {
dnerror(dnp, D_CLEAR_PROTO,
"%s( ) prototype mismatch: %d args passed, 1 expected\n",
dnp->dn_ident->di_name, argc);
}
anp = dnp->dn_args;
assert(anp != NULL);
if (anp->dn_kind != DT_NODE_AGG) {
dnerror(dnp, D_CLEAR_AGGARG,
"%s( ) argument #1 is incompatible with prototype:\n"
"\tprototype: aggregation\n\t argument: %s\n",
dnp->dn_ident->di_name,
dt_node_type_name(anp, n, sizeof (n)));
}
aid = anp->dn_ident;
if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) {
dnerror(dnp, D_CLEAR_AGGBAD,
"undefined aggregation: @%s\n", aid->di_name);
}
ap = dt_stmt_action(dtp, sdp);
dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT);
ap->dtad_arg = DT_ACT_CLEAR;
}
static void
dt_action_normalize(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dt_ident_t *aid;
dtrace_actdesc_t *ap;
dt_node_t *anp, *normal;
int denormal = (strcmp(dnp->dn_ident->di_name, "denormalize") == 0);
char n[DT_TYPE_NAMELEN];
int argc = 0;
for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list)
argc++; /* count up arguments for error messages below */
if ((denormal && argc != 1) || (!denormal && argc != 2)) {
dnerror(dnp, D_NORMALIZE_PROTO,
"%s( ) prototype mismatch: %d args passed, %d expected\n",
dnp->dn_ident->di_name, argc, denormal ? 1 : 2);
}
anp = dnp->dn_args;
assert(anp != NULL);
if (anp->dn_kind != DT_NODE_AGG) {
dnerror(dnp, D_NORMALIZE_AGGARG,
"%s( ) argument #1 is incompatible with prototype:\n"
"\tprototype: aggregation\n\t argument: %s\n",
dnp->dn_ident->di_name,
dt_node_type_name(anp, n, sizeof (n)));
}
if ((normal = anp->dn_list) != NULL && !dt_node_is_scalar(normal)) {
dnerror(dnp, D_NORMALIZE_SCALAR,
"%s( ) argument #2 must be of scalar type\n",
dnp->dn_ident->di_name);
}
aid = anp->dn_ident;
if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) {
dnerror(dnp, D_NORMALIZE_AGGBAD,
"undefined aggregation: @%s\n", aid->di_name);
}
ap = dt_stmt_action(dtp, sdp);
dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT);
if (denormal) {
ap->dtad_arg = DT_ACT_DENORMALIZE;
return;
}
ap->dtad_arg = DT_ACT_NORMALIZE;
assert(normal != NULL);
ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, normal);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_LIBACT;
ap->dtad_arg = DT_ACT_NORMALIZE;
}
static void
dt_action_trunc(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dt_ident_t *aid;
dtrace_actdesc_t *ap;
dt_node_t *anp, *trunc;
char n[DT_TYPE_NAMELEN];
int argc = 0;
for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list)
argc++; /* count up arguments for error messages below */
if (argc > 2 || argc < 1) {
dnerror(dnp, D_TRUNC_PROTO,
"%s( ) prototype mismatch: %d args passed, %s expected\n",
dnp->dn_ident->di_name, argc,
argc < 1 ? "at least 1" : "no more than 2");
}
anp = dnp->dn_args;
assert(anp != NULL);
trunc = anp->dn_list;
if (anp->dn_kind != DT_NODE_AGG) {
dnerror(dnp, D_TRUNC_AGGARG,
"%s( ) argument #1 is incompatible with prototype:\n"
"\tprototype: aggregation\n\t argument: %s\n",
dnp->dn_ident->di_name,
dt_node_type_name(anp, n, sizeof (n)));
}
if (argc == 2) {
assert(trunc != NULL);
if (!dt_node_is_scalar(trunc)) {
dnerror(dnp, D_TRUNC_SCALAR,
"%s( ) argument #2 must be of scalar type\n",
dnp->dn_ident->di_name);
}
}
aid = anp->dn_ident;
if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) {
dnerror(dnp, D_TRUNC_AGGBAD,
"undefined aggregation: @%s\n", aid->di_name);
}
ap = dt_stmt_action(dtp, sdp);
dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT);
ap->dtad_arg = DT_ACT_TRUNC;
ap = dt_stmt_action(dtp, sdp);
if (argc == 1) {
dt_action_difconst(ap, 0, DTRACEACT_LIBACT);
} else {
assert(trunc != NULL);
dt_cg(yypcb, trunc);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_LIBACT;
}
ap->dtad_arg = DT_ACT_TRUNC;
}
static void
dt_action_printa(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dt_ident_t *aid, *fid;
dtrace_actdesc_t *ap;
const char *format;
dt_node_t *anp, *proto = NULL;
char n[DT_TYPE_NAMELEN];
int argc = 0, argr = 0;
for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list)
argc++; /* count up arguments for error messages below */
switch (dnp->dn_args->dn_kind) {
case DT_NODE_STRING:
format = dnp->dn_args->dn_string;
anp = dnp->dn_args->dn_list;
argr = 2;
break;
case DT_NODE_AGG:
format = NULL;
anp = dnp->dn_args;
argr = 1;
break;
default:
format = NULL;
anp = dnp->dn_args;
argr = 1;
}
if (argc < argr) {
dnerror(dnp, D_PRINTA_PROTO,
"%s( ) prototype mismatch: %d args passed, %d expected\n",
dnp->dn_ident->di_name, argc, argr);
}
assert(anp != NULL);
while (anp != NULL) {
if (anp->dn_kind != DT_NODE_AGG) {
dnerror(dnp, D_PRINTA_AGGARG,
"%s( ) argument #%d is incompatible with "
"prototype:\n\tprototype: aggregation\n"
"\t argument: %s\n", dnp->dn_ident->di_name, argr,
dt_node_type_name(anp, n, sizeof (n)));
}
aid = anp->dn_ident;
fid = aid->di_iarg;
if (aid->di_gen == dtp->dt_gen &&
!(aid->di_flags & DT_IDFLG_MOD)) {
dnerror(dnp, D_PRINTA_AGGBAD,
"undefined aggregation: @%s\n", aid->di_name);
}
/*
* If we have multiple aggregations, we must be sure that
* their key signatures match.
*/
if (proto != NULL) {
dt_printa_validate(proto, anp);
} else {
proto = anp;
}
if (format != NULL) {
yylineno = dnp->dn_line;
sdp->dtsd_fmtdata =
dt_printf_create(yypcb->pcb_hdl, format);
dt_printf_validate(sdp->dtsd_fmtdata,
DT_PRINTF_AGGREGATION, dnp->dn_ident, 1,
fid->di_id, ((dt_idsig_t *)aid->di_data)->dis_args);
format = NULL;
}
ap = dt_stmt_action(dtp, sdp);
dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_PRINTA);
anp = anp->dn_list;
argr++;
}
}
static void
dt_action_printflike(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp,
dtrace_actkind_t kind)
{
dt_node_t *anp, *arg1;
dtrace_actdesc_t *ap = NULL;
char n[DT_TYPE_NAMELEN], *str;
assert(DTRACEACT_ISPRINTFLIKE(kind));
if (dnp->dn_args->dn_kind != DT_NODE_STRING) {
dnerror(dnp, D_PRINTF_ARG_FMT,
"%s( ) argument #1 is incompatible with prototype:\n"
"\tprototype: string constant\n\t argument: %s\n",
dnp->dn_ident->di_name,
dt_node_type_name(dnp->dn_args, n, sizeof (n)));
}
arg1 = dnp->dn_args->dn_list;
yylineno = dnp->dn_line;
str = dnp->dn_args->dn_string;
/*
* If this is an freopen(), we use an empty string to denote that
* stdout should be restored. For other printf()-like actions, an
* empty format string is illegal: an empty format string would
* result in malformed DOF, and the compiler thus flags an empty
* format string as a compile-time error. To avoid propagating the
* freopen() special case throughout the system, we simply transpose
* an empty string into a sentinel string (DT_FREOPEN_RESTORE) that
* denotes that stdout should be restored.
*/
if (kind == DTRACEACT_FREOPEN) {
if (strcmp(str, DT_FREOPEN_RESTORE) == 0) {
/*
* Our sentinel is always an invalid argument to
* freopen(), but if it's been manually specified, we
* must fail now instead of when the freopen() is
* actually evaluated.
*/
dnerror(dnp, D_FREOPEN_INVALID,
"%s( ) argument #1 cannot be \"%s\"\n",
dnp->dn_ident->di_name, DT_FREOPEN_RESTORE);
}
if (str[0] == '\0')
str = DT_FREOPEN_RESTORE;
}
sdp->dtsd_fmtdata = dt_printf_create(dtp, str);
dt_printf_validate(sdp->dtsd_fmtdata, DT_PRINTF_EXACTLEN,
dnp->dn_ident, 1, DTRACEACT_AGGREGATION, arg1);
if (arg1 == NULL) {
dif_instr_t *dbuf;
dtrace_difo_t *dp;
if ((dbuf = dt_alloc(dtp, sizeof (dif_instr_t))) == NULL ||
(dp = dt_zalloc(dtp, sizeof (dtrace_difo_t))) == NULL) {
dt_free(dtp, dbuf);
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
}
dbuf[0] = DIF_INSTR_RET(DIF_REG_R0); /* ret %r0 */
dp->dtdo_buf = dbuf;
dp->dtdo_len = 1;
dp->dtdo_rtype = dt_int_rtype;
ap = dt_stmt_action(dtp, sdp);
ap->dtad_difo = dp;
ap->dtad_kind = kind;
return;
}
for (anp = arg1; anp != NULL; anp = anp->dn_list) {
ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, anp);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = kind;
}
}
static void
dt_action_trace(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
boolean_t istrace = (dnp->dn_ident->di_id == DT_ACT_TRACE);
const char *act = istrace ? "trace" : "print";
if (dt_node_is_void(dnp->dn_args)) {
dnerror(dnp->dn_args, istrace ? D_TRACE_VOID : D_PRINT_VOID,
"%s( ) may not be applied to a void expression\n", act);
}
if (dt_node_resolve(dnp->dn_args, DT_IDENT_XLPTR) != NULL) {
dnerror(dnp->dn_args, istrace ? D_TRACE_DYN : D_PRINT_DYN,
"%s( ) may not be applied to a translated pointer\n", act);
}
dt_cg(yypcb, dnp->dn_args);
/*
* The print() action behaves identically to trace(), except that it
* stores the CTF type of the argument (if present) within the DOF for
* the DIFEXPR action. To do this, we set the 'dtsd_strdata' to point
* to the fully-qualified CTF type ID for the result of the DIF
* action. We use the ID instead of the name to handles complex types
* like arrays and function pointers that can't be resolved by
* ctf_type_lookup(). This is later processed by dtrace_dof_create()
* and turned into a reference into the string table so that we can
* get the type information when we process the data after the fact.
*/
if (dnp->dn_ident->di_id == DT_ACT_PRINT) {
dt_node_t *dret;
size_t n;
dt_module_t *dmp;
dret = yypcb->pcb_dret;
dmp = dt_module_lookup_by_ctf(dtp, dret->dn_ctfp);
n = snprintf(NULL, 0, "%s`%d", dmp->dm_name, dret->dn_type) + 1;
sdp->dtsd_strdata = dt_alloc(dtp, n);
if (sdp->dtsd_strdata == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
(void) snprintf(sdp->dtsd_strdata, n, "%s`%d", dmp->dm_name,
dret->dn_type);
}
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_DIFEXPR;
}
static void
dt_action_tracemem(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_node_t *addr = dnp->dn_args;
dt_node_t *max = dnp->dn_args->dn_list;
dt_node_t *size;
char n[DT_TYPE_NAMELEN];
if (dt_node_is_integer(addr) == 0 && dt_node_is_pointer(addr) == 0) {
dnerror(addr, D_TRACEMEM_ADDR,
"tracemem( ) argument #1 is incompatible with "
"prototype:\n\tprototype: pointer or integer\n"
"\t argument: %s\n",
dt_node_type_name(addr, n, sizeof (n)));
}
if (dt_node_is_posconst(max) == 0) {
dnerror(max, D_TRACEMEM_SIZE, "tracemem( ) argument #2 must "
"be a non-zero positive integral constant expression\n");
}
if ((size = max->dn_list) != NULL) {
if (size->dn_list != NULL) {
dnerror(size, D_TRACEMEM_ARGS, "tracemem ( ) prototype "
"mismatch: expected at most 3 args\n");
}
if (!dt_node_is_scalar(size)) {
dnerror(size, D_TRACEMEM_DYNSIZE, "tracemem ( ) "
"dynamic size (argument #3) must be of "
"scalar type\n");
}
dt_cg(yypcb, size);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_difo->dtdo_rtype = dt_int_rtype;
ap->dtad_kind = DTRACEACT_TRACEMEM_DYNSIZE;
ap = dt_stmt_action(dtp, sdp);
}
dt_cg(yypcb, addr);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_TRACEMEM;
ap->dtad_difo->dtdo_rtype.dtdt_flags |= DIF_TF_BYREF;
ap->dtad_difo->dtdo_rtype.dtdt_size = max->dn_value;
}
static void
dt_action_stack_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap, dt_node_t *arg0)
{
ap->dtad_kind = DTRACEACT_STACK;
if (dtp->dt_options[DTRACEOPT_STACKFRAMES] != DTRACEOPT_UNSET) {
ap->dtad_arg = dtp->dt_options[DTRACEOPT_STACKFRAMES];
} else {
ap->dtad_arg = 0;
}
if (arg0 != NULL) {
if (arg0->dn_list != NULL) {
dnerror(arg0, D_STACK_PROTO, "stack( ) prototype "
"mismatch: too many arguments\n");
}
if (dt_node_is_posconst(arg0) == 0) {
dnerror(arg0, D_STACK_SIZE, "stack( ) size must be a "
"non-zero positive integral constant expression\n");
}
ap->dtad_arg = arg0->dn_value;
}
}
static void
dt_action_stack(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_action_stack_args(dtp, ap, dnp->dn_args);
}
static void
dt_action_ustack_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap, dt_node_t *dnp)
{
uint32_t nframes = 0;
uint32_t strsize = 0; /* default string table size */
dt_node_t *arg0 = dnp->dn_args;
dt_node_t *arg1 = arg0 != NULL ? arg0->dn_list : NULL;
assert(dnp->dn_ident->di_id == DT_ACT_JSTACK ||
dnp->dn_ident->di_id == DT_ACT_USTACK);
if (dnp->dn_ident->di_id == DT_ACT_JSTACK) {
if (dtp->dt_options[DTRACEOPT_JSTACKFRAMES] != DTRACEOPT_UNSET)
nframes = dtp->dt_options[DTRACEOPT_JSTACKFRAMES];
if (dtp->dt_options[DTRACEOPT_JSTACKSTRSIZE] != DTRACEOPT_UNSET)
strsize = dtp->dt_options[DTRACEOPT_JSTACKSTRSIZE];
ap->dtad_kind = DTRACEACT_JSTACK;
} else {
assert(dnp->dn_ident->di_id == DT_ACT_USTACK);
if (dtp->dt_options[DTRACEOPT_USTACKFRAMES] != DTRACEOPT_UNSET)
nframes = dtp->dt_options[DTRACEOPT_USTACKFRAMES];
ap->dtad_kind = DTRACEACT_USTACK;
}
if (arg0 != NULL) {
if (!dt_node_is_posconst(arg0)) {
dnerror(arg0, D_USTACK_FRAMES, "ustack( ) argument #1 "
"must be a non-zero positive integer constant\n");
}
nframes = (uint32_t)arg0->dn_value;
}
if (arg1 != NULL) {
if (arg1->dn_kind != DT_NODE_INT ||
((arg1->dn_flags & DT_NF_SIGNED) &&
(int64_t)arg1->dn_value < 0)) {
dnerror(arg1, D_USTACK_STRSIZE, "ustack( ) argument #2 "
"must be a positive integer constant\n");
}
if (arg1->dn_list != NULL) {
dnerror(arg1, D_USTACK_PROTO, "ustack( ) prototype "
"mismatch: too many arguments\n");
}
strsize = (uint32_t)arg1->dn_value;
}
ap->dtad_arg = DTRACE_USTACK_ARG(nframes, strsize);
}
static void
dt_action_ustack(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_action_ustack_args(dtp, ap, dnp);
}
static void
dt_action_setopt(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap;
dt_node_t *arg0, *arg1;
/*
* The prototype guarantees that we are called with either one or
* two arguments, and that any arguments that are present are strings.
*/
arg0 = dnp->dn_args;
arg1 = arg0->dn_list;
ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, arg0);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_LIBACT;
ap->dtad_arg = DT_ACT_SETOPT;
ap = dt_stmt_action(dtp, sdp);
if (arg1 == NULL) {
dt_action_difconst(ap, 0, DTRACEACT_LIBACT);
} else {
dt_cg(yypcb, arg1);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_LIBACT;
}
ap->dtad_arg = DT_ACT_SETOPT;
}
/*ARGSUSED*/
static void
dt_action_symmod_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap,
dt_node_t *dnp, dtrace_actkind_t kind)
{
assert(kind == DTRACEACT_SYM || kind == DTRACEACT_MOD ||
kind == DTRACEACT_USYM || kind == DTRACEACT_UMOD ||
kind == DTRACEACT_UADDR);
dt_cg(yypcb, dnp);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = kind;
ap->dtad_difo->dtdo_rtype.dtdt_size = sizeof (uint64_t);
}
static void
dt_action_symmod(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp,
dtrace_actkind_t kind)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_action_symmod_args(dtp, ap, dnp->dn_args, kind);
}
/*ARGSUSED*/
static void
dt_action_ftruncate(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
/*
* Library actions need a DIFO that serves as an argument. As
* ftruncate() doesn't take an argument, we generate the constant 0
* in a DIFO; this constant will be ignored when the ftruncate() is
* processed.
*/
dt_action_difconst(ap, 0, DTRACEACT_LIBACT);
ap->dtad_arg = DT_ACT_FTRUNCATE;
}
/*ARGSUSED*/
static void
dt_action_stop(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
ap->dtad_kind = DTRACEACT_STOP;
ap->dtad_arg = 0;
}
/*ARGSUSED*/
static void
dt_action_breakpoint(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
ap->dtad_kind = DTRACEACT_BREAKPOINT;
ap->dtad_arg = 0;
}
/*ARGSUSED*/
static void
dt_action_panic(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
ap->dtad_kind = DTRACEACT_PANIC;
ap->dtad_arg = 0;
}
static void
dt_action_chill(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_CHILL;
}
static void
dt_action_raise(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_RAISE;
}
static void
dt_action_exit(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_EXIT;
ap->dtad_difo->dtdo_rtype.dtdt_size = sizeof (int);
}
static void
dt_action_speculate(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_SPECULATE;
}
static void
dt_action_commit(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_COMMIT;
}
static void
dt_action_discard(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_args);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_DISCARD;
}
static void
dt_compile_fun(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
switch (dnp->dn_expr->dn_ident->di_id) {
case DT_ACT_BREAKPOINT:
dt_action_breakpoint(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_CHILL:
dt_action_chill(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_CLEAR:
dt_action_clear(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_COMMIT:
dt_action_commit(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_DENORMALIZE:
dt_action_normalize(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_DISCARD:
dt_action_discard(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_EXIT:
dt_action_exit(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_FREOPEN:
dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_FREOPEN);
break;
case DT_ACT_FTRUNCATE:
dt_action_ftruncate(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_MOD:
dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_MOD);
break;
case DT_ACT_NORMALIZE:
dt_action_normalize(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_PANIC:
dt_action_panic(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_PRINT:
dt_action_trace(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_PRINTA:
dt_action_printa(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_PRINTF:
dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_PRINTF);
break;
case DT_ACT_RAISE:
dt_action_raise(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_SETOPT:
dt_action_setopt(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_SPECULATE:
dt_action_speculate(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_STACK:
dt_action_stack(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_STOP:
dt_action_stop(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_SYM:
dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_SYM);
break;
case DT_ACT_SYSTEM:
dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_SYSTEM);
break;
case DT_ACT_TRACE:
dt_action_trace(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_TRACEMEM:
dt_action_tracemem(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_TRUNC:
dt_action_trunc(dtp, dnp->dn_expr, sdp);
break;
case DT_ACT_UADDR:
dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_UADDR);
break;
case DT_ACT_UMOD:
dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_UMOD);
break;
case DT_ACT_USYM:
dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_USYM);
break;
case DT_ACT_USTACK:
case DT_ACT_JSTACK:
dt_action_ustack(dtp, dnp->dn_expr, sdp);
break;
default:
dnerror(dnp->dn_expr, D_UNKNOWN, "tracing function %s( ) is "
"not yet supported\n", dnp->dn_expr->dn_ident->di_name);
}
}
static void
dt_compile_exp(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);
dt_cg(yypcb, dnp->dn_expr);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_difo->dtdo_rtype = dt_void_rtype;
ap->dtad_kind = DTRACEACT_DIFEXPR;
}
static void
dt_compile_agg(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
{
dt_ident_t *aid, *fid;
dt_node_t *anp, *incr = NULL;
dtrace_actdesc_t *ap;
uint_t n = 1, argmax;
uint64_t arg = 0;
/*
* If the aggregation has no aggregating function applied to it, then
* this statement has no effect. Flag this as a programming error.
*/
if (dnp->dn_aggfun == NULL) {
dnerror(dnp, D_AGG_NULL, "expression has null effect: @%s\n",
dnp->dn_ident->di_name);
}
aid = dnp->dn_ident;
fid = dnp->dn_aggfun->dn_ident;
if (dnp->dn_aggfun->dn_args != NULL &&
dt_node_is_scalar(dnp->dn_aggfun->dn_args) == 0) {
dnerror(dnp->dn_aggfun, D_AGG_SCALAR, "%s( ) argument #1 must "
"be of scalar type\n", fid->di_name);
}
/*
* The ID of the aggregation itself is implicitly recorded as the first
* member of each aggregation tuple so we can distinguish them later.
*/
ap = dt_stmt_action(dtp, sdp);
dt_action_difconst(ap, aid->di_id, DTRACEACT_DIFEXPR);
for (anp = dnp->dn_aggtup; anp != NULL; anp = anp->dn_list) {
ap = dt_stmt_action(dtp, sdp);
n++;
if (anp->dn_kind == DT_NODE_FUNC) {
if (anp->dn_ident->di_id == DT_ACT_STACK) {
dt_action_stack_args(dtp, ap, anp->dn_args);
continue;
}
if (anp->dn_ident->di_id == DT_ACT_USTACK ||
anp->dn_ident->di_id == DT_ACT_JSTACK) {
dt_action_ustack_args(dtp, ap, anp);
continue;
}
switch (anp->dn_ident->di_id) {
case DT_ACT_UADDR:
dt_action_symmod_args(dtp, ap,
anp->dn_args, DTRACEACT_UADDR);
continue;
case DT_ACT_USYM:
dt_action_symmod_args(dtp, ap,
anp->dn_args, DTRACEACT_USYM);
continue;
case DT_ACT_UMOD:
dt_action_symmod_args(dtp, ap,
anp->dn_args, DTRACEACT_UMOD);
continue;
case DT_ACT_SYM:
dt_action_symmod_args(dtp, ap,
anp->dn_args, DTRACEACT_SYM);
continue;
case DT_ACT_MOD:
dt_action_symmod_args(dtp, ap,
anp->dn_args, DTRACEACT_MOD);
continue;
default:
break;
}
}
dt_cg(yypcb, anp);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_kind = DTRACEACT_DIFEXPR;
}
if (fid->di_id == DTRACEAGG_LQUANTIZE) {
/*
* For linear quantization, we have between two and four
* arguments in addition to the expression:
*
* arg1 => Base value
* arg2 => Limit value
* arg3 => Quantization level step size (defaults to 1)
* arg4 => Quantization increment value (defaults to 1)
*/
dt_node_t *arg1 = dnp->dn_aggfun->dn_args->dn_list;
dt_node_t *arg2 = arg1->dn_list;
dt_node_t *arg3 = arg2->dn_list;
dt_idsig_t *isp;
uint64_t nlevels, step = 1, oarg;
int64_t baseval, limitval;
if (arg1->dn_kind != DT_NODE_INT) {
dnerror(arg1, D_LQUANT_BASETYPE, "lquantize( ) "
"argument #1 must be an integer constant\n");
}
baseval = (int64_t)arg1->dn_value;
if (baseval < INT32_MIN || baseval > INT32_MAX) {
dnerror(arg1, D_LQUANT_BASEVAL, "lquantize( ) "
"argument #1 must be a 32-bit quantity\n");
}
if (arg2->dn_kind != DT_NODE_INT) {
dnerror(arg2, D_LQUANT_LIMTYPE, "lquantize( ) "
"argument #2 must be an integer constant\n");
}
limitval = (int64_t)arg2->dn_value;
if (limitval < INT32_MIN || limitval > INT32_MAX) {
dnerror(arg2, D_LQUANT_LIMVAL, "lquantize( ) "
"argument #2 must be a 32-bit quantity\n");
}
if (limitval < baseval) {
dnerror(dnp, D_LQUANT_MISMATCH,
"lquantize( ) base (argument #1) must be less "
"than limit (argument #2)\n");
}
if (arg3 != NULL) {
if (!dt_node_is_posconst(arg3)) {
dnerror(arg3, D_LQUANT_STEPTYPE, "lquantize( ) "
"argument #3 must be a non-zero positive "
"integer constant\n");
}
if ((step = arg3->dn_value) > UINT16_MAX) {
dnerror(arg3, D_LQUANT_STEPVAL, "lquantize( ) "
"argument #3 must be a 16-bit quantity\n");
}
}
nlevels = (limitval - baseval) / step;
if (nlevels == 0) {
dnerror(dnp, D_LQUANT_STEPLARGE,
"lquantize( ) step (argument #3) too large: must "
"have at least one quantization level\n");
}
if (nlevels > UINT16_MAX) {
dnerror(dnp, D_LQUANT_STEPSMALL, "lquantize( ) step "
"(argument #3) too small: number of quantization "
"levels must be a 16-bit quantity\n");
}
arg = (step << DTRACE_LQUANTIZE_STEPSHIFT) |
(nlevels << DTRACE_LQUANTIZE_LEVELSHIFT) |
((baseval << DTRACE_LQUANTIZE_BASESHIFT) &
DTRACE_LQUANTIZE_BASEMASK);
assert(arg != 0);
isp = (dt_idsig_t *)aid->di_data;
if (isp->dis_auxinfo == 0) {
/*
* This is the first time we've seen an lquantize()
* for this aggregation; we'll store our argument
* as the auxiliary signature information.
*/
isp->dis_auxinfo = arg;
} else if ((oarg = isp->dis_auxinfo) != arg) {
/*
* If we have seen this lquantize() before and the
* argument doesn't match the original argument, pick
* the original argument apart to concisely report the
* mismatch.
*/
int obaseval = DTRACE_LQUANTIZE_BASE(oarg);
int onlevels = DTRACE_LQUANTIZE_LEVELS(oarg);
int ostep = DTRACE_LQUANTIZE_STEP(oarg);
if (obaseval != baseval) {
dnerror(dnp, D_LQUANT_MATCHBASE, "lquantize( ) "
"base (argument #1) doesn't match previous "
"declaration: expected %d, found %d\n",
obaseval, (int)baseval);
}
if (onlevels * ostep != nlevels * step) {
dnerror(dnp, D_LQUANT_MATCHLIM, "lquantize( ) "
"limit (argument #2) doesn't match previous"
" declaration: expected %d, found %d\n",
obaseval + onlevels * ostep,
(int)baseval + (int)nlevels * (int)step);
}
if (ostep != step) {
dnerror(dnp, D_LQUANT_MATCHSTEP, "lquantize( ) "
"step (argument #3) doesn't match previous "
"declaration: expected %d, found %d\n",
ostep, (int)step);
}
/*
* We shouldn't be able to get here -- one of the
* parameters must be mismatched if the arguments
* didn't match.
*/
assert(0);
}
incr = arg3 != NULL ? arg3->dn_list : NULL;
argmax = 5;
}
if (fid->di_id == DTRACEAGG_LLQUANTIZE) {
/*
* For log/linear quantizations, we have between one and five
* arguments in addition to the expression:
*
* arg1 => Factor
* arg2 => Low magnitude
* arg3 => High magnitude
* arg4 => Number of steps per magnitude
* arg5 => Quantization increment value (defaults to 1)
*/
dt_node_t *llarg = dnp->dn_aggfun->dn_args->dn_list;
uint64_t oarg, order, v;
dt_idsig_t *isp;
int i;
struct {
char *str; /* string identifier */
int badtype; /* error on bad type */
int badval; /* error on bad value */
int mismatch; /* error on bad match */
int shift; /* shift value */
uint16_t value; /* value itself */
} args[] = {
{ "factor", D_LLQUANT_FACTORTYPE,
D_LLQUANT_FACTORVAL, D_LLQUANT_FACTORMATCH,
DTRACE_LLQUANTIZE_FACTORSHIFT },
{ "low magnitude", D_LLQUANT_LOWTYPE,
D_LLQUANT_LOWVAL, D_LLQUANT_LOWMATCH,
DTRACE_LLQUANTIZE_LOWSHIFT },
{ "high magnitude", D_LLQUANT_HIGHTYPE,
D_LLQUANT_HIGHVAL, D_LLQUANT_HIGHMATCH,
DTRACE_LLQUANTIZE_HIGHSHIFT },
{ "linear steps per magnitude", D_LLQUANT_NSTEPTYPE,
D_LLQUANT_NSTEPVAL, D_LLQUANT_NSTEPMATCH,
DTRACE_LLQUANTIZE_NSTEPSHIFT },
{ NULL }
};
assert(arg == 0);
for (i = 0; args[i].str != NULL; i++) {
if (llarg->dn_kind != DT_NODE_INT) {
dnerror(llarg, args[i].badtype, "llquantize( ) "
"argument #%d (%s) must be an "
"integer constant\n", i + 1, args[i].str);
}
if ((uint64_t)llarg->dn_value > UINT16_MAX) {
dnerror(llarg, args[i].badval, "llquantize( ) "
"argument #%d (%s) must be an unsigned "
"16-bit quantity\n", i + 1, args[i].str);
}
args[i].value = (uint16_t)llarg->dn_value;
assert(!(arg & (UINT16_MAX << args[i].shift)));
arg |= ((uint64_t)args[i].value << args[i].shift);
llarg = llarg->dn_list;
}
assert(arg != 0);
if (args[0].value < 2) {
dnerror(dnp, D_LLQUANT_FACTORSMALL, "llquantize( ) "
"factor (argument #1) must be two or more\n");
}
if (args[1].value >= args[2].value) {
dnerror(dnp, D_LLQUANT_MAGRANGE, "llquantize( ) "
"high magnitude (argument #3) must be greater "
"than low magnitude (argument #2)\n");
}
if (args[3].value < args[0].value) {
dnerror(dnp, D_LLQUANT_FACTORNSTEPS, "llquantize( ) "
"factor (argument #1) must be less than or "
"equal to the number of linear steps per "
"magnitude (argument #4)\n");
}
for (v = args[0].value; v < args[3].value; v *= args[0].value)
continue;
if ((args[3].value % args[0].value) || (v % args[3].value)) {
dnerror(dnp, D_LLQUANT_FACTOREVEN, "llquantize( ) "
"factor (argument #1) must evenly divide the "
"number of steps per magnitude (argument #4), "
"and the number of steps per magnitude must evenly "
"divide a power of the factor\n");
}
for (i = 0, order = 1; i < args[2].value; i++) {
if (order * args[0].value > order) {
order *= args[0].value;
continue;
}
dnerror(dnp, D_LLQUANT_MAGTOOBIG, "llquantize( ) "
"factor (%d) raised to power of high magnitude "
"(%d) overflows 64-bits\n", args[0].value,
args[2].value);
}
isp = (dt_idsig_t *)aid->di_data;
if (isp->dis_auxinfo == 0) {
/*
* This is the first time we've seen an llquantize()
* for this aggregation; we'll store our argument
* as the auxiliary signature information.
*/
isp->dis_auxinfo = arg;
} else if ((oarg = isp->dis_auxinfo) != arg) {
/*
* If we have seen this llquantize() before and the
* argument doesn't match the original argument, pick
* the original argument apart to concisely report the
* mismatch.
*/
int expected = 0, found = 0;
for (i = 0; expected == found; i++) {
assert(args[i].str != NULL);
expected = (oarg >> args[i].shift) & UINT16_MAX;
found = (arg >> args[i].shift) & UINT16_MAX;
}
dnerror(dnp, args[i - 1].mismatch, "llquantize( ) "
"%s (argument #%d) doesn't match previous "
"declaration: expected %d, found %d\n",
args[i - 1].str, i, expected, found);
}
incr = llarg;
argmax = 6;
}
if (fid->di_id == DTRACEAGG_QUANTIZE) {
incr = dnp->dn_aggfun->dn_args->dn_list;
argmax = 2;
}
if (incr != NULL) {
if (!dt_node_is_scalar(incr)) {
dnerror(dnp, D_PROTO_ARG, "%s( ) increment value "
"(argument #%d) must be of scalar type\n",
fid->di_name, argmax);
}
if ((anp = incr->dn_list) != NULL) {
int argc = argmax;
for (; anp != NULL; anp = anp->dn_list)
argc++;
dnerror(incr, D_PROTO_LEN, "%s( ) prototype "
"mismatch: %d args passed, at most %d expected",
fid->di_name, argc, argmax);
}
ap = dt_stmt_action(dtp, sdp);
n++;
dt_cg(yypcb, incr);
ap->dtad_difo = dt_as(yypcb);
ap->dtad_difo->dtdo_rtype = dt_void_rtype;
ap->dtad_kind = DTRACEACT_DIFEXPR;
}
assert(sdp->dtsd_aggdata == NULL);
sdp->dtsd_aggdata = aid;
ap = dt_stmt_action(dtp, sdp);
assert(fid->di_kind == DT_IDENT_AGGFUNC);
assert(DTRACEACT_ISAGG(fid->di_id));
ap->dtad_kind = fid->di_id;
ap->dtad_ntuple = n;
ap->dtad_arg = arg;
if (dnp->dn_aggfun->dn_args != NULL) {
dt_cg(yypcb, dnp->dn_aggfun->dn_args);
ap->dtad_difo = dt_as(yypcb);
}
}
static void
dt_compile_one_clause(dtrace_hdl_t *dtp, dt_node_t *cnp, dt_node_t *pnp)
{
dtrace_ecbdesc_t *edp;
dtrace_stmtdesc_t *sdp;
dt_node_t *dnp;
yylineno = pnp->dn_line;
dt_setcontext(dtp, pnp->dn_desc);
(void) dt_node_cook(cnp, DT_IDFLG_REF);
if (DT_TREEDUMP_PASS(dtp, 2))
dt_node_printr(cnp, stderr, 0);
if ((edp = dt_ecbdesc_create(dtp, pnp->dn_desc)) == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
assert(yypcb->pcb_ecbdesc == NULL);
yypcb->pcb_ecbdesc = edp;
if (cnp->dn_pred != NULL) {
dt_cg(yypcb, cnp->dn_pred);
edp->dted_pred.dtpdd_difo = dt_as(yypcb);
}
if (cnp->dn_acts == NULL) {
dt_stmt_append(dt_stmt_create(dtp, edp,
cnp->dn_ctxattr, _dtrace_defattr), cnp);
}
for (dnp = cnp->dn_acts; dnp != NULL; dnp = dnp->dn_list) {
assert(yypcb->pcb_stmt == NULL);
sdp = dt_stmt_create(dtp, edp, cnp->dn_ctxattr, cnp->dn_attr);
switch (dnp->dn_kind) {
case DT_NODE_DEXPR:
if (dnp->dn_expr->dn_kind == DT_NODE_AGG)
dt_compile_agg(dtp, dnp->dn_expr, sdp);
else
dt_compile_exp(dtp, dnp, sdp);
break;
case DT_NODE_DFUNC:
dt_compile_fun(dtp, dnp, sdp);
break;
case DT_NODE_AGG:
dt_compile_agg(dtp, dnp, sdp);
break;
default:
dnerror(dnp, D_UNKNOWN, "internal error -- node kind "
"%u is not a valid statement\n", dnp->dn_kind);
}
assert(yypcb->pcb_stmt == sdp);
dt_stmt_append(sdp, dnp);
}
assert(yypcb->pcb_ecbdesc == edp);
dt_ecbdesc_release(dtp, edp);
dt_endcontext(dtp);
yypcb->pcb_ecbdesc = NULL;
}
static void
dt_compile_clause(dtrace_hdl_t *dtp, dt_node_t *cnp)
{
dt_node_t *pnp;
for (pnp = cnp->dn_pdescs; pnp != NULL; pnp = pnp->dn_list)
dt_compile_one_clause(dtp, cnp, pnp);
}
static void
dt_compile_xlator(dt_node_t *dnp)
{
dt_xlator_t *dxp = dnp->dn_xlator;
dt_node_t *mnp;
for (mnp = dnp->dn_members; mnp != NULL; mnp = mnp->dn_list) {
assert(dxp->dx_membdif[mnp->dn_membid] == NULL);
dt_cg(yypcb, mnp);
dxp->dx_membdif[mnp->dn_membid] = dt_as(yypcb);
}
}
void
dt_setcontext(dtrace_hdl_t *dtp, dtrace_probedesc_t *pdp)
{
const dtrace_pattr_t *pap;
dt_probe_t *prp;
dt_provider_t *pvp;
dt_ident_t *idp;
char attrstr[8];
int err;
/*
* Both kernel and pid based providers are allowed to have names
* ending with what could be interpreted as a number. We assume it's
* a pid and that we may need to dynamically create probes for
* that process if:
*
* (1) The provider doesn't exist, or,
* (2) The provider exists and has DTRACE_PRIV_PROC privilege.
*
* On an error, dt_pid_create_probes() will set the error message
* and tag -- we just have to longjmp() out of here.
*/
if (isdigit(pdp->dtpd_provider[strlen(pdp->dtpd_provider) - 1]) &&
((pvp = dt_provider_lookup(dtp, pdp->dtpd_provider)) == NULL ||
pvp->pv_desc.dtvd_priv.dtpp_flags & DTRACE_PRIV_PROC) &&
dt_pid_create_probes(pdp, dtp, yypcb) != 0) {
longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
}
/*
* Call dt_probe_info() to get the probe arguments and attributes. If
* a representative probe is found, set 'pap' to the probe provider's
* attributes. Otherwise set 'pap' to default Unstable attributes.
*/
if ((prp = dt_probe_info(dtp, pdp, &yypcb->pcb_pinfo)) == NULL) {
pap = &_dtrace_prvdesc;
err = dtrace_errno(dtp);
bzero(&yypcb->pcb_pinfo, sizeof (dtrace_probeinfo_t));
yypcb->pcb_pinfo.dtp_attr = pap->dtpa_provider;
yypcb->pcb_pinfo.dtp_arga = pap->dtpa_args;
} else {
pap = &prp->pr_pvp->pv_desc.dtvd_attr;
err = 0;
}
if (err == EDT_NOPROBE && !(yypcb->pcb_cflags & DTRACE_C_ZDEFS)) {
xyerror(D_PDESC_ZERO, "probe description %s:%s:%s:%s does not "
"match any probes\n", pdp->dtpd_provider, pdp->dtpd_mod,
pdp->dtpd_func, pdp->dtpd_name);
}
if (err != EDT_NOPROBE && err != EDT_UNSTABLE && err != 0)
xyerror(D_PDESC_INVAL, "%s\n", dtrace_errmsg(dtp, err));
dt_dprintf("set context to %s:%s:%s:%s [%u] prp=%p attr=%s argc=%d\n",
pdp->dtpd_provider, pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name,
pdp->dtpd_id, (void *)prp, dt_attr_str(yypcb->pcb_pinfo.dtp_attr,
attrstr, sizeof (attrstr)), yypcb->pcb_pinfo.dtp_argc);
/*
* Reset the stability attributes of D global variables that vary
* based on the attributes of the provider and context itself.
*/
if ((idp = dt_idhash_lookup(dtp->dt_globals, "probeprov")) != NULL)
idp->di_attr = pap->dtpa_provider;
if ((idp = dt_idhash_lookup(dtp->dt_globals, "probemod")) != NULL)
idp->di_attr = pap->dtpa_mod;
if ((idp = dt_idhash_lookup(dtp->dt_globals, "probefunc")) != NULL)
idp->di_attr = pap->dtpa_func;
if ((idp = dt_idhash_lookup(dtp->dt_globals, "probename")) != NULL)
idp->di_attr = pap->dtpa_name;
if ((idp = dt_idhash_lookup(dtp->dt_globals, "args")) != NULL)
idp->di_attr = pap->dtpa_args;
yypcb->pcb_pdesc = pdp;
yypcb->pcb_probe = prp;
}
/*
* Reset context-dependent variables and state at the end of cooking a D probe
* definition clause. This ensures that external declarations between clauses
* do not reference any stale context-dependent data from the previous clause.
*/
void
dt_endcontext(dtrace_hdl_t *dtp)
{
static const char *const cvars[] = {
"probeprov", "probemod", "probefunc", "probename", "args", NULL
};
dt_ident_t *idp;
int i;
for (i = 0; cvars[i] != NULL; i++) {
if ((idp = dt_idhash_lookup(dtp->dt_globals, cvars[i])) != NULL)
idp->di_attr = _dtrace_defattr;
}
yypcb->pcb_pdesc = NULL;
yypcb->pcb_probe = NULL;
}
static int
dt_reduceid(dt_idhash_t *dhp, dt_ident_t *idp, dtrace_hdl_t *dtp)
{
if (idp->di_vers != 0 && idp->di_vers > dtp->dt_vmax)
dt_idhash_delete(dhp, idp);
return (0);
}
/*
* When dtrace_setopt() is called for "version", it calls dt_reduce() to remove
* any identifiers or translators that have been previously defined as bound to
* a version greater than the specified version. Therefore, in our current
* version implementation, establishing a binding is a one-way transformation.
* In addition, no versioning is currently provided for types as our .d library
* files do not define any types and we reserve prefixes DTRACE_ and dtrace_
* for our exclusive use. If required, type versioning will require more work.
*/
int
dt_reduce(dtrace_hdl_t *dtp, dt_version_t v)
{
char s[DT_VERSION_STRMAX];
dt_xlator_t *dxp, *nxp;
if (v > dtp->dt_vmax)
return (dt_set_errno(dtp, EDT_VERSREDUCED));
else if (v == dtp->dt_vmax)
return (0); /* no reduction necessary */
dt_dprintf("reducing api version to %s\n",
dt_version_num2str(v, s, sizeof (s)));
dtp->dt_vmax = v;
for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL; dxp = nxp) {
nxp = dt_list_next(dxp);
if ((dxp->dx_souid.di_vers != 0 && dxp->dx_souid.di_vers > v) ||
(dxp->dx_ptrid.di_vers != 0 && dxp->dx_ptrid.di_vers > v))
dt_list_delete(&dtp->dt_xlators, dxp);
}
(void) dt_idhash_iter(dtp->dt_macros, (dt_idhash_f *)dt_reduceid, dtp);
(void) dt_idhash_iter(dtp->dt_aggs, (dt_idhash_f *)dt_reduceid, dtp);
(void) dt_idhash_iter(dtp->dt_globals, (dt_idhash_f *)dt_reduceid, dtp);
(void) dt_idhash_iter(dtp->dt_tls, (dt_idhash_f *)dt_reduceid, dtp);
return (0);
}
/*
* Fork and exec the cpp(1) preprocessor to run over the specified input file,
* and return a FILE handle for the cpp output. We use the /dev/fd filesystem
* here to simplify the code by leveraging file descriptor inheritance.
*/
static FILE *
dt_preproc(dtrace_hdl_t *dtp, FILE *ifp)
{
int argc = dtp->dt_cpp_argc;
char **argv = malloc(sizeof (char *) * (argc + 5));
FILE *ofp = tmpfile();
char ipath[20], opath[20]; /* big enough for /dev/fd/ + INT_MAX + \0 */
char verdef[32]; /* big enough for -D__SUNW_D_VERSION=0x%08x + \0 */
struct sigaction act, oact;
sigset_t mask, omask;
int wstat, estat;
pid_t pid;
off64_t off;
int c;
if (argv == NULL || ofp == NULL) {
(void) dt_set_errno(dtp, errno);
goto err;
}
/*
* If the input is a seekable file, see if it is an interpreter file.
* If we see #!, seek past the first line because cpp will choke on it.
* We start cpp just prior to the \n at the end of this line so that
* it still sees the newline, ensuring that #line values are correct.
*/
if (isatty(fileno(ifp)) == 0 && (off = ftello64(ifp)) != -1) {
if ((c = fgetc(ifp)) == '#' && (c = fgetc(ifp)) == '!') {
for (off += 2; c != '\n'; off++) {
if ((c = fgetc(ifp)) == EOF)
break;
}
if (c == '\n')
off--; /* start cpp just prior to \n */
}
(void) fflush(ifp);
(void) fseeko64(ifp, off, SEEK_SET);
}
(void) snprintf(ipath, sizeof (ipath), "/dev/fd/%d", fileno(ifp));
(void) snprintf(opath, sizeof (opath), "/dev/fd/%d", fileno(ofp));
bcopy(dtp->dt_cpp_argv, argv, sizeof (char *) * argc);
(void) snprintf(verdef, sizeof (verdef),
"-D__SUNW_D_VERSION=0x%08x", dtp->dt_vmax);
argv[argc++] = verdef;
switch (dtp->dt_stdcmode) {
case DT_STDC_XA:
case DT_STDC_XT:
argv[argc++] = "-D__STDC__=0";
break;
case DT_STDC_XC:
argv[argc++] = "-D__STDC__=1";
break;
}
argv[argc++] = ipath;
argv[argc++] = opath;
argv[argc] = NULL;
/*
* libdtrace must be able to be embedded in other programs that may
* include application-specific signal handlers. Therefore, if we
* need to fork to run cpp(1), we must avoid generating a SIGCHLD
* that could confuse the containing application. To do this,
* we block SIGCHLD and reset its disposition to SIG_DFL.
* We restore our signal state once we are done.
*/
(void) sigemptyset(&mask);
(void) sigaddset(&mask, SIGCHLD);
(void) sigprocmask(SIG_BLOCK, &mask, &omask);
bzero(&act, sizeof (act));
act.sa_handler = SIG_DFL;
(void) sigaction(SIGCHLD, &act, &oact);
if ((pid = fork1()) == -1) {
(void) sigaction(SIGCHLD, &oact, NULL);
(void) sigprocmask(SIG_SETMASK, &omask, NULL);
(void) dt_set_errno(dtp, EDT_CPPFORK);
goto err;
}
if (pid == 0) {
(void) execvp(dtp->dt_cpp_path, argv);
_exit(errno == ENOENT ? 127 : 126);
}
do {
dt_dprintf("waiting for %s (PID %d)\n", dtp->dt_cpp_path,
(int)pid);
} while (waitpid(pid, &wstat, 0) == -1 && errno == EINTR);
(void) sigaction(SIGCHLD, &oact, NULL);
(void) sigprocmask(SIG_SETMASK, &omask, NULL);
dt_dprintf("%s returned exit status 0x%x\n", dtp->dt_cpp_path, wstat);
estat = WIFEXITED(wstat) ? WEXITSTATUS(wstat) : -1;
if (estat != 0) {
switch (estat) {
case 126:
(void) dt_set_errno(dtp, EDT_CPPEXEC);
break;
case 127:
(void) dt_set_errno(dtp, EDT_CPPENT);
break;
default:
(void) dt_set_errno(dtp, EDT_CPPERR);
}
goto err;
}
free(argv);
(void) fflush(ofp);
(void) fseek(ofp, 0, SEEK_SET);
return (ofp);
err:
free(argv);
(void) fclose(ofp);
return (NULL);
}
static void
dt_lib_depend_error(dtrace_hdl_t *dtp, const char *format, ...)
{
va_list ap;
va_start(ap, format);
dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
va_end(ap);
}
int
dt_lib_depend_add(dtrace_hdl_t *dtp, dt_list_t *dlp, const char *arg)
{
dt_lib_depend_t *dld;
const char *end;
assert(arg != NULL);
if ((end = strrchr(arg, '/')) == NULL)
return (dt_set_errno(dtp, EINVAL));
if ((dld = dt_zalloc(dtp, sizeof (dt_lib_depend_t))) == NULL)
return (-1);
if ((dld->dtld_libpath = dt_alloc(dtp, MAXPATHLEN)) == NULL) {
dt_free(dtp, dld);
return (-1);
}
(void) strlcpy(dld->dtld_libpath, arg, end - arg + 2);
if ((dld->dtld_library = strdup(arg)) == NULL) {
dt_free(dtp, dld->dtld_libpath);
dt_free(dtp, dld);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dt_list_append(dlp, dld);
return (0);
}
dt_lib_depend_t *
dt_lib_depend_lookup(dt_list_t *dld, const char *arg)
{
dt_lib_depend_t *dldn;
for (dldn = dt_list_next(dld); dldn != NULL;
dldn = dt_list_next(dldn)) {
if (strcmp(dldn->dtld_library, arg) == 0)
return (dldn);
}
return (NULL);
}
/*
* Go through all the library files, and, if any library dependencies exist for
* that file, add it to that node's list of dependents. The result of this
* will be a graph which can then be topologically sorted to produce a
* compilation order.
*/
static int
dt_lib_build_graph(dtrace_hdl_t *dtp)
{
dt_lib_depend_t *dld, *dpld;
for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL;
dld = dt_list_next(dld)) {
char *library = dld->dtld_library;
for (dpld = dt_list_next(&dld->dtld_dependencies); dpld != NULL;
dpld = dt_list_next(dpld)) {
dt_lib_depend_t *dlda;
if ((dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep,
dpld->dtld_library)) == NULL) {
dt_lib_depend_error(dtp,
"Invalid library dependency in %s: %s\n",
dld->dtld_library, dpld->dtld_library);
return (dt_set_errno(dtp, EDT_COMPILER));
}
if ((dt_lib_depend_add(dtp, &dlda->dtld_dependents,
library)) != 0) {
return (-1); /* preserve dt_errno */
}
}
}
return (0);
}
static int
dt_topo_sort(dtrace_hdl_t *dtp, dt_lib_depend_t *dld, int *count)
{
dt_lib_depend_t *dpld, *dlda, *new;
dld->dtld_start = ++(*count);
for (dpld = dt_list_next(&dld->dtld_dependents); dpld != NULL;
dpld = dt_list_next(dpld)) {
dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep,
dpld->dtld_library);
assert(dlda != NULL);
if (dlda->dtld_start == 0 &&
dt_topo_sort(dtp, dlda, count) == -1)
return (-1);
}
if ((new = dt_zalloc(dtp, sizeof (dt_lib_depend_t))) == NULL)
return (-1);
if ((new->dtld_library = strdup(dld->dtld_library)) == NULL) {
dt_free(dtp, new);
return (dt_set_errno(dtp, EDT_NOMEM));
}
new->dtld_start = dld->dtld_start;
new->dtld_finish = dld->dtld_finish = ++(*count);
dt_list_prepend(&dtp->dt_lib_dep_sorted, new);
dt_dprintf("library %s sorted (%d/%d)\n", new->dtld_library,
new->dtld_start, new->dtld_finish);
return (0);
}
static int
dt_lib_depend_sort(dtrace_hdl_t *dtp)
{
dt_lib_depend_t *dld, *dpld, *dlda;
int count = 0;
if (dt_lib_build_graph(dtp) == -1)
return (-1); /* preserve dt_errno */
/*
* Perform a topological sort of the graph that hangs off
* dtp->dt_lib_dep. The result of this process will be a
* dependency ordered list located at dtp->dt_lib_dep_sorted.
*/
for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL;
dld = dt_list_next(dld)) {
if (dld->dtld_start == 0 &&
dt_topo_sort(dtp, dld, &count) == -1)
return (-1); /* preserve dt_errno */;
}
/*
* Check the graph for cycles. If an ancestor's finishing time is
* less than any of its dependent's finishing times then a back edge
* exists in the graph and this is a cycle.
*/
for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL;
dld = dt_list_next(dld)) {
for (dpld = dt_list_next(&dld->dtld_dependents); dpld != NULL;
dpld = dt_list_next(dpld)) {
dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep_sorted,
dpld->dtld_library);
assert(dlda != NULL);
if (dlda->dtld_finish > dld->dtld_finish) {
dt_lib_depend_error(dtp,
"Cyclic dependency detected: %s => %s\n",
dld->dtld_library, dpld->dtld_library);
return (dt_set_errno(dtp, EDT_COMPILER));
}
}
}
return (0);
}
static void
dt_lib_depend_free(dtrace_hdl_t *dtp)
{
dt_lib_depend_t *dld, *dlda;
while ((dld = dt_list_next(&dtp->dt_lib_dep)) != NULL) {
while ((dlda = dt_list_next(&dld->dtld_dependencies)) != NULL) {
dt_list_delete(&dld->dtld_dependencies, dlda);
dt_free(dtp, dlda->dtld_library);
dt_free(dtp, dlda->dtld_libpath);
dt_free(dtp, dlda);
}
while ((dlda = dt_list_next(&dld->dtld_dependents)) != NULL) {
dt_list_delete(&dld->dtld_dependents, dlda);
dt_free(dtp, dlda->dtld_library);
dt_free(dtp, dlda->dtld_libpath);
dt_free(dtp, dlda);
}
dt_list_delete(&dtp->dt_lib_dep, dld);
dt_free(dtp, dld->dtld_library);
dt_free(dtp, dld->dtld_libpath);
dt_free(dtp, dld);
}
while ((dld = dt_list_next(&dtp->dt_lib_dep_sorted)) != NULL) {
dt_list_delete(&dtp->dt_lib_dep_sorted, dld);
dt_free(dtp, dld->dtld_library);
dt_free(dtp, dld);
}
}
/*
* Open all the .d library files found in the specified directory and
* compile each one of them. We silently ignore any missing directories and
* other files found therein. We only fail (and thereby fail dt_load_libs()) if
* we fail to compile a library and the error is something other than #pragma D
* depends_on. Dependency errors are silently ignored to permit a library
* directory to contain libraries which may not be accessible depending on our
* privileges.
*/
static int
dt_load_libs_dir(dtrace_hdl_t *dtp, const char *path)
{
struct dirent *dp;
const char *p, *end;
DIR *dirp;
char fname[PATH_MAX];
FILE *fp;
void *rv;
dt_lib_depend_t *dld;
if ((dirp = opendir(path)) == NULL) {
dt_dprintf("skipping lib dir %s: %s\n", path, strerror(errno));
return (0);
}
/* First, parse each file for library dependencies. */
while ((dp = readdir(dirp)) != NULL) {
if ((p = strrchr(dp->d_name, '.')) == NULL || strcmp(p, ".d"))
continue; /* skip any filename not ending in .d */
(void) snprintf(fname, sizeof (fname),
"%s/%s", path, dp->d_name);
if ((fp = fopen(fname, "r")) == NULL) {
dt_dprintf("skipping library %s: %s\n",
fname, strerror(errno));
continue;
}
/*
* Skip files whose name match an already processed library
*/
for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL;
dld = dt_list_next(dld)) {
end = strrchr(dld->dtld_library, '/');
/* dt_lib_depend_add ensures this */
assert(end != NULL);
if (strcmp(end + 1, dp->d_name) == 0)
break;
}
if (dld != NULL) {
dt_dprintf("skipping library %s, already processed "
"library with the same name: %s", dp->d_name,
dld->dtld_library);
continue;
}
dtp->dt_filetag = fname;
if (dt_lib_depend_add(dtp, &dtp->dt_lib_dep, fname) != 0)
return (-1); /* preserve dt_errno */
rv = dt_compile(dtp, DT_CTX_DPROG,
DTRACE_PROBESPEC_NAME, NULL,
DTRACE_C_EMPTY | DTRACE_C_CTL, 0, NULL, fp, NULL);
if (rv != NULL && dtp->dt_errno &&
(dtp->dt_errno != EDT_COMPILER ||
dtp->dt_errtag != dt_errtag(D_PRAGMA_DEPEND)))
return (-1); /* preserve dt_errno */
if (dtp->dt_errno)
dt_dprintf("error parsing library %s: %s\n",
fname, dtrace_errmsg(dtp, dtrace_errno(dtp)));
(void) fclose(fp);
dtp->dt_filetag = NULL;
}
(void) closedir(dirp);
return (0);
}
/*
* Perform a topological sorting of all the libraries found across the entire
* dt_lib_path. Once sorted, compile each one in topological order to cache its
* inlines and translators, etc. We silently ignore any missing directories and
* other files found therein. We only fail (and thereby fail dt_load_libs()) if
* we fail to compile a library and the error is something other than #pragma D
* depends_on. Dependency errors are silently ignored to permit a library
* directory to contain libraries which may not be accessible depending on our
* privileges.
*/
static int
dt_load_libs_sort(dtrace_hdl_t *dtp)
{
dtrace_prog_t *pgp;
FILE *fp;
dt_lib_depend_t *dld;
/*
* Finish building the graph containing the library dependencies
* and perform a topological sort to generate an ordered list
* for compilation.
*/
if (dt_lib_depend_sort(dtp) == -1)
goto err;
for (dld = dt_list_next(&dtp->dt_lib_dep_sorted); dld != NULL;
dld = dt_list_next(dld)) {
if ((fp = fopen(dld->dtld_library, "r")) == NULL) {
dt_dprintf("skipping library %s: %s\n",
dld->dtld_library, strerror(errno));
continue;
}
dtp->dt_filetag = dld->dtld_library;
pgp = dtrace_program_fcompile(dtp, fp, DTRACE_C_EMPTY, 0, NULL);
(void) fclose(fp);
dtp->dt_filetag = NULL;
if (pgp == NULL && (dtp->dt_errno != EDT_COMPILER ||
dtp->dt_errtag != dt_errtag(D_PRAGMA_DEPEND)))
goto err;
if (pgp == NULL) {
dt_dprintf("skipping library %s: %s\n",
dld->dtld_library,
dtrace_errmsg(dtp, dtrace_errno(dtp)));
} else {
dld->dtld_loaded = B_TRUE;
dt_program_destroy(dtp, pgp);
}
}
dt_lib_depend_free(dtp);
return (0);
err:
dt_lib_depend_free(dtp);
return (-1); /* preserve dt_errno */
}
/*
* Load the contents of any appropriate DTrace .d library files. These files
* contain inlines and translators that will be cached by the compiler. We
* defer this activity until the first compile to permit libdtrace clients to
* add their own library directories and so that we can properly report errors.
*/
static int
dt_load_libs(dtrace_hdl_t *dtp)
{
dt_dirpath_t *dirp;
if (dtp->dt_cflags & DTRACE_C_NOLIBS)
return (0); /* libraries already processed */
dtp->dt_cflags |= DTRACE_C_NOLIBS;
/*
* /usr/lib/dtrace is always at the head of the list. The rest of the
* list is specified in the precedence order the user requested. Process
* everything other than the head first. DTRACE_C_NOLIBS has already
* been spcified so dt_vopen will ensure that there is always one entry
* in dt_lib_path.
*/
for (dirp = dt_list_next(dt_list_next(&dtp->dt_lib_path));
dirp != NULL; dirp = dt_list_next(dirp)) {
if (dt_load_libs_dir(dtp, dirp->dir_path) != 0) {
dtp->dt_cflags &= ~DTRACE_C_NOLIBS;
return (-1); /* errno is set for us */
}
}
/* Handle /usr/lib/dtrace */
dirp = dt_list_next(&dtp->dt_lib_path);
if (dt_load_libs_dir(dtp, dirp->dir_path) != 0) {
dtp->dt_cflags &= ~DTRACE_C_NOLIBS;
return (-1); /* errno is set for us */
}
if (dt_load_libs_sort(dtp) < 0)
return (-1); /* errno is set for us */
return (0);
}
static void *
dt_compile(dtrace_hdl_t *dtp, int context, dtrace_probespec_t pspec, void *arg,
uint_t cflags, int argc, char *const argv[], FILE *fp, const char *s)
{
dt_node_t *dnp;
dt_decl_t *ddp;
dt_pcb_t pcb;
void *rv;
int err;
if ((fp == NULL && s == NULL) || (cflags & ~DTRACE_C_MASK) != 0) {
(void) dt_set_errno(dtp, EINVAL);
return (NULL);
}
if (dt_list_next(&dtp->dt_lib_path) != NULL && dt_load_libs(dtp) != 0)
return (NULL); /* errno is set for us */
if (dtp->dt_globals->dh_nelems != 0)
(void) dt_idhash_iter(dtp->dt_globals, dt_idreset, NULL);
if (dtp->dt_tls->dh_nelems != 0)
(void) dt_idhash_iter(dtp->dt_tls, dt_idreset, NULL);
if (fp && (cflags & DTRACE_C_CPP) && (fp = dt_preproc(dtp, fp)) == NULL)
return (NULL); /* errno is set for us */
dt_pcb_push(dtp, &pcb);
pcb.pcb_fileptr = fp;
pcb.pcb_string = s;
pcb.pcb_strptr = s;
pcb.pcb_strlen = s ? strlen(s) : 0;
pcb.pcb_sargc = argc;
pcb.pcb_sargv = argv;
pcb.pcb_sflagv = argc ? calloc(argc, sizeof (ushort_t)) : NULL;
pcb.pcb_pspec = pspec;
pcb.pcb_cflags = dtp->dt_cflags | cflags;
pcb.pcb_amin = dtp->dt_amin;
pcb.pcb_yystate = -1;
pcb.pcb_context = context;
pcb.pcb_token = context;
if (context != DT_CTX_DPROG)
yybegin(YYS_EXPR);
else if (cflags & DTRACE_C_CTL)
yybegin(YYS_CONTROL);
else
yybegin(YYS_CLAUSE);
if ((err = setjmp(yypcb->pcb_jmpbuf)) != 0)
goto out;
if (yypcb->pcb_sargc != 0 && yypcb->pcb_sflagv == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
yypcb->pcb_idents = dt_idhash_create("ambiguous", NULL, 0, 0);
yypcb->pcb_locals = dt_idhash_create("clause local", NULL,
DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);
if (yypcb->pcb_idents == NULL || yypcb->pcb_locals == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
/*
* Invoke the parser to evaluate the D source code. If any errors
* occur during parsing, an error function will be called and we
* will longjmp back to pcb_jmpbuf to abort. If parsing succeeds,
* we optionally display the parse tree if debugging is enabled.
*/
if (yyparse() != 0 || yypcb->pcb_root == NULL)
xyerror(D_EMPTY, "empty D program translation unit\n");
yybegin(YYS_DONE);
if (cflags & DTRACE_C_CTL)
goto out;
if (context != DT_CTX_DTYPE && DT_TREEDUMP_PASS(dtp, 1))
dt_node_printr(yypcb->pcb_root, stderr, 0);
if (yypcb->pcb_pragmas != NULL)
(void) dt_idhash_iter(yypcb->pcb_pragmas, dt_idpragma, NULL);
if (argc > 1 && !(yypcb->pcb_cflags & DTRACE_C_ARGREF) &&
!(yypcb->pcb_sflagv[argc - 1] & DT_IDFLG_REF)) {
xyerror(D_MACRO_UNUSED, "extraneous argument '%s' ($%d is "
"not referenced)\n", yypcb->pcb_sargv[argc - 1], argc - 1);
}
/*
* If we have successfully created a parse tree for a D program, loop
* over the clauses and actions and instantiate the corresponding
* libdtrace program. If we are parsing a D expression, then we
* simply run the code generator and assembler on the resulting tree.
*/
switch (context) {
case DT_CTX_DPROG:
assert(yypcb->pcb_root->dn_kind == DT_NODE_PROG);
if ((dnp = yypcb->pcb_root->dn_list) == NULL &&
!(yypcb->pcb_cflags & DTRACE_C_EMPTY))
xyerror(D_EMPTY, "empty D program translation unit\n");
if ((yypcb->pcb_prog = dt_program_create(dtp)) == NULL)
longjmp(yypcb->pcb_jmpbuf, dtrace_errno(dtp));
for (; dnp != NULL; dnp = dnp->dn_list) {
switch (dnp->dn_kind) {
case DT_NODE_CLAUSE:
dt_compile_clause(dtp, dnp);
break;
case DT_NODE_XLATOR:
if (dtp->dt_xlatemode == DT_XL_DYNAMIC)
dt_compile_xlator(dnp);
break;
case DT_NODE_PROVIDER:
(void) dt_node_cook(dnp, DT_IDFLG_REF);
break;
}
}
yypcb->pcb_prog->dp_xrefs = yypcb->pcb_asxrefs;
yypcb->pcb_prog->dp_xrefslen = yypcb->pcb_asxreflen;
yypcb->pcb_asxrefs = NULL;
yypcb->pcb_asxreflen = 0;
rv = yypcb->pcb_prog;
break;
case DT_CTX_DEXPR:
(void) dt_node_cook(yypcb->pcb_root, DT_IDFLG_REF);
dt_cg(yypcb, yypcb->pcb_root);
rv = dt_as(yypcb);
break;
case DT_CTX_DTYPE:
ddp = (dt_decl_t *)yypcb->pcb_root; /* root is really a decl */
err = dt_decl_type(ddp, arg);
dt_decl_free(ddp);
if (err != 0)
longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
rv = NULL;
break;
}
out:
if (context != DT_CTX_DTYPE && yypcb->pcb_root != NULL &&
DT_TREEDUMP_PASS(dtp, 3))
dt_node_printr(yypcb->pcb_root, stderr, 0);
if (dtp->dt_cdefs_fd != -1 && (ftruncate64(dtp->dt_cdefs_fd, 0) == -1 ||
lseek64(dtp->dt_cdefs_fd, 0, SEEK_SET) == -1 ||
ctf_write(dtp->dt_cdefs->dm_ctfp, dtp->dt_cdefs_fd) == CTF_ERR))
dt_dprintf("failed to update CTF cache: %s\n", strerror(errno));
if (dtp->dt_ddefs_fd != -1 && (ftruncate64(dtp->dt_ddefs_fd, 0) == -1 ||
lseek64(dtp->dt_ddefs_fd, 0, SEEK_SET) == -1 ||
ctf_write(dtp->dt_ddefs->dm_ctfp, dtp->dt_ddefs_fd) == CTF_ERR))
dt_dprintf("failed to update CTF cache: %s\n", strerror(errno));
if (yypcb->pcb_fileptr && (cflags & DTRACE_C_CPP))
(void) fclose(yypcb->pcb_fileptr); /* close dt_preproc() file */
dt_pcb_pop(dtp, err);
(void) dt_set_errno(dtp, err);
return (err ? NULL : rv);
}
dtrace_prog_t *
dtrace_program_strcompile(dtrace_hdl_t *dtp, const char *s,
dtrace_probespec_t spec, uint_t cflags, int argc, char *const argv[])
{
return (dt_compile(dtp, DT_CTX_DPROG,
spec, NULL, cflags, argc, argv, NULL, s));
}
dtrace_prog_t *
dtrace_program_fcompile(dtrace_hdl_t *dtp, FILE *fp,
uint_t cflags, int argc, char *const argv[])
{
return (dt_compile(dtp, DT_CTX_DPROG,
DTRACE_PROBESPEC_NAME, NULL, cflags, argc, argv, fp, NULL));
}
int
dtrace_type_strcompile(dtrace_hdl_t *dtp, const char *s, dtrace_typeinfo_t *dtt)
{
(void) dt_compile(dtp, DT_CTX_DTYPE,
DTRACE_PROBESPEC_NONE, dtt, 0, 0, NULL, NULL, s);
return (dtp->dt_errno ? -1 : 0);
}
int
dtrace_type_fcompile(dtrace_hdl_t *dtp, FILE *fp, dtrace_typeinfo_t *dtt)
{
(void) dt_compile(dtp, DT_CTX_DTYPE,
DTRACE_PROBESPEC_NONE, dtt, 0, 0, NULL, fp, NULL);
return (dtp->dt_errno ? -1 : 0);
}