findevs.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <fcntl.h>
#include <libdevinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/sunddi.h>
#include <sys/types.h>
#include <ctype.h>
#include <libgen.h>
#include <unistd.h>
#include <devid.h>
#include "libdiskmgt.h"
#include "disks_private.h"
#define CLUSTER_DEV "did"
/* specify which disk links to use in the /dev directory */
#define DEVLINK_REGEX "rdsk/.*"
#define DEVLINK_FLOPPY_REGEX "rdiskette[0-9]"
#define DEVLINK_DID_REGEX "did/rdsk/.*"
#define FLOPPY_NAME "rdiskette"
#define MAXPROPLEN 1024
#define DEVICE_ID_PROP "devid"
#define PROD_ID_PROP "inquiry-product-id"
#define PROD_ID_USB_PROP "usb-product-name"
#define REMOVABLE_PROP "removable-media"
#define SCSI_OPTIONS_PROP "scsi-options"
#define VENDOR_ID_PROP "inquiry-vendor-id"
#define VENDOR_ID_USB_PROP "usb-vendor-name"
#define WWN_PROP "node-wwn"
/* The list of names of possible disk types used by libdevinfo. */
static char *disktypes[] = {
DDI_NT_BLOCK,
DDI_NT_BLOCK_CHAN,
DDI_NT_BLOCK_WWN,
DDI_NT_BLOCK_FABRIC,
DDI_NT_CD_CHAN,
DDI_NT_CD,
DDI_NT_FD,
NULL
};
/*
* Most of the removable media will be lumped under here; CD, DVD, MO, etc.
*/
static char *cdromtypes[] = {
DDI_NT_CD_CHAN,
DDI_NT_CD,
NULL
};
static char *ctrltypes[] = {
DDI_NT_SCSI_NEXUS,
DDI_NT_SCSI_ATTACHMENT_POINT,
DDI_NT_FC_ATTACHMENT_POINT,
NULL
};
static char *bustypes[] = {
"sbus",
"pci",
"usb",
NULL
};
static bus_t *add_bus(struct search_args *args, di_node_t node,
di_minor_t minor, controller_t *cp);
static int add_cluster_devs(di_node_t node, di_minor_t minor,
void *arg);
static controller_t *add_controller(struct search_args *args,
di_node_t node, di_minor_t minor);
static int add_devpath(di_devlink_t devlink, void *arg);
static int add_devs(di_node_t node, di_minor_t minor, void *arg);
static int add_disk2controller(disk_t *diskp,
struct search_args *args);
static int add_disk2path(disk_t *dp, path_t *pp,
di_path_state_t st, char *wwn);
static int add_int2array(int p, int **parray);
static int add_ptr2array(void *p, void ***parray);
static char *bus_type(di_node_t node, di_minor_t minor,
di_prom_handle_t ph);
static int can_remove_controller(controller_t *cp,
controller_t *currp);
static void clean_paths(struct search_args *args);
static disk_t *create_disk(char *deviceid, char *kernel_name,
struct search_args *args);
static char *ctype(di_node_t node, di_minor_t minor);
static boolean_t disk_is_cdrom(char *type);
static alias_t *find_alias(disk_t *diskp, char *kernel_name);
static bus_t *find_bus(struct search_args *args, char *name);
static controller_t *find_controller(struct search_args *args, char *name);
static int fix_cluster_devpath(di_devlink_t devlink, void *arg);
static disk_t *get_disk_by_deviceid(disk_t *listp, char *devid);
static void get_disk_name_from_path(char *path, char *name,
int size);
static char *get_byte_prop(char *prop_name, di_node_t node);
static di_node_t get_parent_bus(di_node_t node,
struct search_args *args);
static int get_prom_int(char *prop_name, di_node_t node,
di_prom_handle_t ph);
static char *get_prom_str(char *prop_name, di_node_t node,
di_prom_handle_t ph);
static int get_prop(char *prop_name, di_node_t node);
static char *get_str_prop(char *prop_name, di_node_t node);
static int have_disk(struct search_args *args, char *devid,
char *kernel_name, disk_t **diskp);
static int is_cluster_disk(di_node_t node, di_minor_t minor);
static int is_ctds(char *name);
static int is_drive(di_minor_t minor);
static int is_HBA(di_node_t node, di_minor_t minor);
static int new_alias(disk_t *diskp, char *kernel_path,
char *devlink_path, struct search_args *args);
static int new_devpath(alias_t *ap, char *devpath);
static path_t *new_path(controller_t *cp, disk_t *diskp,
di_node_t node, di_path_state_t st, char *wwn);
static void remove_invalid_controller(char *name,
controller_t *currp, struct search_args *args);
static char *str_case_index(register char *s1, register char *s2);
/*
* The functions in this file do a dev tree walk to build up a model of the
* disks, controllers and paths on the system. This model is returned in the
* args->disk_listp and args->controller_listp members of the args param.
* There is no global data for this file so it is thread safe. It is up to
* the caller to merge the resulting model with any existing model that is
* cached. The caller must also free the memory for this model when it is
* no longer needed.
*/
void
findevs(struct search_args *args)
{
uint_t flags;
di_node_t di_root;
args->dev_walk_status = 0;
args->disk_listp = NULL;
args->controller_listp = NULL;
args->bus_listp = NULL;
args->handle = di_devlink_init(NULL, 0);
/*
* Have to make several passes at this with the new devfs caching.
* First, we find non-mpxio devices. Then we find mpxio/multipath
* devices. Finally, we get cluster devices.
*/
flags = DINFOCACHE;
di_root = di_init("/", flags);
args->ph = di_prom_init();
(void) di_walk_minor(di_root, NULL, 0, args, add_devs);
di_fini(di_root);
flags = DINFOCPYALL | DINFOPATH;
di_root = di_init("/", flags);
(void) di_walk_minor(di_root, NULL, 0, args, add_devs);
di_fini(di_root);
/* do another pass to clean up cluster devpaths */
flags = DINFOCACHE;
di_root = di_init("/", flags);
(void) di_walk_minor(di_root, DDI_PSEUDO, 0, args, add_cluster_devs);
if (args->ph != DI_PROM_HANDLE_NIL) {
(void) di_prom_fini(args->ph);
}
di_fini(di_root);
(void) di_devlink_fini(&(args->handle));
clean_paths(args);
}
/*
* Definitions of private functions
*/
static bus_t *
add_bus(struct search_args *args, di_node_t node, di_minor_t minor,
controller_t *cp)
{
char *btype;
char *devpath;
bus_t *bp;
char kstat_name[MAXPATHLEN];
di_node_t pnode;
if (node == DI_NODE_NIL) {
return (NULL);
}
if ((btype = bus_type(node, minor, args->ph)) == NULL) {
return (add_bus(args, di_parent_node(node),
di_minor_next(di_parent_node(node), NULL), cp));
}
devpath = di_devfs_path(node);
if ((bp = find_bus(args, devpath)) != NULL) {
di_devfs_path_free((void *) devpath);
if (cp != NULL) {
if (add_ptr2array(cp, (void ***)&bp->controllers) != 0) {
args->dev_walk_status = ENOMEM;
return (NULL);
}
}
return (bp);
}
/* Special handling for root node. */
if (strcmp(devpath, "/") == 0) {
di_devfs_path_free((void *) devpath);
return (NULL);
}
if (dm_debug) {
(void) fprintf(stderr, "INFO: add_bus %s\n", devpath);
}
bp = (bus_t *)calloc(1, sizeof (bus_t));
if (bp == NULL) {
return (NULL);
}
bp->name = strdup(devpath);
di_devfs_path_free((void *) devpath);
if (bp->name == NULL) {
args->dev_walk_status = ENOMEM;
cache_free_bus(bp);
return (NULL);
}
bp->btype = strdup(btype);
if (bp->btype == NULL) {
args->dev_walk_status = ENOMEM;
cache_free_bus(bp);
return (NULL);
}
(void) snprintf(kstat_name, sizeof (kstat_name), "%s%d",
di_node_name(node), di_instance(node));
if ((bp->kstat_name = strdup(kstat_name)) == NULL) {
args->dev_walk_status = ENOMEM;
cache_free_bus(bp);
return (NULL);
}
/* if parent node is a bus, get its name */
if ((pnode = get_parent_bus(node, args)) != NULL) {
devpath = di_devfs_path(pnode);
bp->pname = strdup(devpath);
di_devfs_path_free((void *) devpath);
if (bp->pname == NULL) {
args->dev_walk_status = ENOMEM;
cache_free_bus(bp);
return (NULL);
}
} else {
bp->pname = NULL;
}
bp->freq = get_prom_int("clock-frequency", node, args->ph);
bp->controllers = (controller_t **)calloc(1, sizeof (controller_t *));
if (bp->controllers == NULL) {
args->dev_walk_status = ENOMEM;
cache_free_bus(bp);
return (NULL);
}
bp->controllers[0] = NULL;
if (cp != NULL) {
if (add_ptr2array(cp, (void ***)&bp->controllers) != 0) {
args->dev_walk_status = ENOMEM;
return (NULL);
}
}
bp->next = args->bus_listp;
args->bus_listp = bp;
return (bp);
}
static int
add_cluster_devs(di_node_t node, di_minor_t minor, void *arg)
{
struct search_args *args;
char *devpath;
char slice_path[MAXPATHLEN];
int result = DI_WALK_CONTINUE;
if (!is_cluster_disk(node, minor)) {
return (DI_WALK_CONTINUE);
}
args = (struct search_args *)arg;
if (dm_debug > 1) {
/* This is all just debugging code */
char *devpath;
char dev_name[MAXPATHLEN];
devpath = di_devfs_path(node);
(void) snprintf(dev_name, sizeof (dev_name), "%s:%s", devpath,
di_minor_name(minor));
di_devfs_path_free((void *) devpath);
(void) fprintf(stderr, "INFO: cluster dev: %s\n", dev_name);
}
args->node = node;
args->minor = minor;
args->dev_walk_status = 0;
/*
* Fix the devpaths for the cluster drive.
*
* We will come through here once for each raw slice device name.
*/
devpath = di_devfs_path(node);
(void) snprintf(slice_path, sizeof (slice_path), "%s:%s", devpath,
di_minor_name(minor));
di_devfs_path_free((void *) devpath);
/* Walk the /dev tree to get the cluster devlinks. */
(void) di_devlink_walk(args->handle, DEVLINK_DID_REGEX, slice_path,
DI_PRIMARY_LINK, arg, fix_cluster_devpath);
if (args->dev_walk_status != 0) {
result = DI_WALK_TERMINATE;
}
return (result);
}
static controller_t *
add_controller(struct search_args *args, di_node_t node, di_minor_t minor)
{
char *devpath;
controller_t *cp;
char kstat_name[MAXPATHLEN];
char *c_type = DM_CTYPE_UNKNOWN;
devpath = di_devfs_path(node);
if ((cp = find_controller(args, devpath)) != NULL) {
di_devfs_path_free((void *) devpath);
return (cp);
}
/* Special handling for fp attachment node. */
if (strcmp(di_node_name(node), "fp") == 0) {
di_node_t pnode;
pnode = di_parent_node(node);
if (pnode != DI_NODE_NIL) {
di_devfs_path_free((void *) devpath);
devpath = di_devfs_path(pnode);
if ((cp = find_controller(args, devpath)) != NULL) {
di_devfs_path_free((void *) devpath);
return (cp);
}
/* not in the list, create it */
node = pnode;
c_type = DM_CTYPE_FIBRE;
}
}
if (dm_debug) {
(void) fprintf(stderr, "INFO: add_controller %s\n", devpath);
}
cp = (controller_t *)calloc(1, sizeof (controller_t));
if (cp == NULL) {
return (NULL);
}
cp->name = strdup(devpath);
di_devfs_path_free((void *) devpath);
if (cp->name == NULL) {
cache_free_controller(cp);
return (NULL);
}
if (strcmp(c_type, DM_CTYPE_UNKNOWN) == 0) {
c_type = ctype(node, minor);
}
cp->ctype = c_type;
(void) snprintf(kstat_name, sizeof (kstat_name), "%s%d",
di_node_name(node), di_instance(node));
if ((cp->kstat_name = strdup(kstat_name)) == NULL) {
cache_free_controller(cp);
return (NULL);
}
if (libdiskmgt_str_eq(cp->ctype, "scsi")) {
cp->scsi_options = get_prop(SCSI_OPTIONS_PROP, node);
}
if (libdiskmgt_str_eq(di_node_name(node), "scsi_vhci")) {
cp->multiplex = 1;
} else {
cp->multiplex = 0;
}
cp->freq = get_prom_int("clock-frequency", node, args->ph);
cp->disks = (disk_t **)calloc(1, sizeof (disk_t *));
if (cp->disks == NULL) {
cache_free_controller(cp);
return (NULL);
}
cp->disks[0] = NULL;
cp->next = args->controller_listp;
args->controller_listp = cp;
cp->bus = add_bus(args, di_parent_node(node),
di_minor_next(di_parent_node(node), NULL), cp);
return (cp);
}
static int
add_devpath(di_devlink_t devlink, void *arg)
{
struct search_args *args;
char *devidstr;
disk_t *diskp;
char kernel_name[MAXPATHLEN];
args = (struct search_args *)arg;
/*
* Get the diskp value from calling have_disk. Can either be found
* by kernel name or devid.
*/
diskp = NULL;
devidstr = get_str_prop(DEVICE_ID_PROP, args->node);
(void) snprintf(kernel_name, sizeof (kernel_name), "%s%d",
di_node_name(args->node), di_instance(args->node));
(void) have_disk(args, devidstr, kernel_name, &diskp);
/*
* The devlink_path is usually of the form /dev/rdsk/c0t0d0s0.
* For diskettes it is /dev/rdiskette*.
* On Intel we would also get each fdisk partition as well
* (e.g. /dev/rdsk/c0t0d0p0).
*/
if (diskp != NULL) {
alias_t *ap;
char *devlink_path;
if (diskp->drv_type != DM_DT_FLOPPY) {
/*
* Add other controllers for multipath disks. This will have
* no effect if the controller relationship is already set up.
*/
if (add_disk2controller(diskp, args) != 0) {
args->dev_walk_status = ENOMEM;
}
}
(void) snprintf(kernel_name, sizeof (kernel_name), "%s%d",
di_node_name(args->node), di_instance(args->node));
devlink_path = (char *)di_devlink_path(devlink);
if (dm_debug > 1) {
(void) fprintf(stderr, "INFO: devpath %s\n", devlink_path);
}
if ((ap = find_alias(diskp, kernel_name)) == NULL) {
if (new_alias(diskp, kernel_name, devlink_path, args) != 0) {
args->dev_walk_status = ENOMEM;
}
} else {
/*
* It is possible that we have already added this devpath.
* Do not add it again. new_devpath will return a 0 if
* found, and not add the path.
*/
if (new_devpath(ap, devlink_path) != 0) {
args->dev_walk_status = ENOMEM;
}
}
}
return (DI_WALK_CONTINUE);
}
static int
add_devs(di_node_t node, di_minor_t minor, void *arg)
{
struct search_args *args;
int result = DI_WALK_CONTINUE;
args = (struct search_args *)arg;
if (dm_debug > 1) {
/* This is all just debugging code */
char *devpath;
char dev_name[MAXPATHLEN];
devpath = di_devfs_path(node);
(void) snprintf(dev_name, sizeof (dev_name), "%s:%s", devpath,
di_minor_name(minor));
di_devfs_path_free((void *) devpath);
(void) fprintf(stderr,
"INFO: dev: %s, node: %s%d, minor: 0x%x, type: %s\n",
dev_name,
di_node_name(node), di_instance(node),
di_minor_spectype(minor),
(di_minor_nodetype(minor) != NULL ?
di_minor_nodetype(minor) : "NULL"));
}
if (bus_type(node, minor, args->ph) != NULL) {
if (add_bus(args, node, minor, NULL) == NULL) {
args->dev_walk_status = ENOMEM;
result = DI_WALK_TERMINATE;
}
} else if (is_HBA(node, minor)) {
if (add_controller(args, node, minor) == NULL) {
args->dev_walk_status = ENOMEM;
result = DI_WALK_TERMINATE;
}
} else if (di_minor_spectype(minor) == S_IFCHR && is_drive(minor)) {
char *devidstr;
char kernel_name[MAXPATHLEN];
disk_t *diskp;
(void) snprintf(kernel_name, sizeof (kernel_name), "%s%d",
di_node_name(node), di_instance(node));
devidstr = get_str_prop(DEVICE_ID_PROP, node);
args->node = node;
args->minor = minor;
/* Check if we already got this disk and this is another slice */
if (!have_disk(args, devidstr, kernel_name, &diskp)) {
args->dev_walk_status = 0;
/* This is a newly found disk, create the disk structure. */
diskp = create_disk(devidstr, kernel_name, args);
if (diskp == NULL) {
args->dev_walk_status = ENOMEM;
}
if (diskp->drv_type != DM_DT_FLOPPY) {
/* add the controller relationship */
if (args->dev_walk_status == 0) {
if (add_disk2controller(diskp, args) != 0) {
args->dev_walk_status = ENOMEM;
}
}
}
}
/* Add the devpaths for the drive. */
if (args->dev_walk_status == 0) {
char *devpath;
char slice_path[MAXPATHLEN];
char *pattern;
/*
* We will come through here once for each of the raw slice
* device names.
*/
devpath = di_devfs_path(node);
(void) snprintf(slice_path, sizeof (slice_path), "%s:%s",
devpath, di_minor_name(minor));
di_devfs_path_free((void *) devpath);
if (libdiskmgt_str_eq(di_minor_nodetype(minor), DDI_NT_FD)) {
pattern = DEVLINK_FLOPPY_REGEX;
} else {
pattern = DEVLINK_REGEX;
}
/* Walk the /dev tree to get the devlinks. */
(void) di_devlink_walk(args->handle, pattern, slice_path,
DI_PRIMARY_LINK, arg, add_devpath);
}
if (args->dev_walk_status != 0) {
result = DI_WALK_TERMINATE;
}
}
return (result);
}
static int
add_disk2controller(disk_t *diskp, struct search_args *args)
{
di_node_t pnode;
controller_t *cp;
di_minor_t minor;
di_node_t node;
int i;
node = args->node;
pnode = di_parent_node(node);
if (pnode == DI_NODE_NIL) {
return (0);
}
minor = di_minor_next(pnode, NULL);
if (minor == NULL) {
return (0);
}
if ((cp = add_controller(args, pnode, minor)) == NULL) {
return (ENOMEM);
}
/* check if the disk <-> ctrl assoc is already there */
for (i = 0; diskp->controllers[i]; i++) {
if (cp == diskp->controllers[i]) {
return (0);
}
}
/* this is a new controller for this disk */
/* add the disk to the controlller */
if (add_ptr2array(diskp, (void ***)&cp->disks) != 0) {
return (ENOMEM);
}
/* add the controlller to the disk */
if (add_ptr2array(cp, (void ***)&diskp->controllers) != 0) {
return (ENOMEM);
}
/*
* Set up paths for mpxio controlled drives.
*/
if (libdiskmgt_str_eq(di_node_name(pnode), "scsi_vhci")) {
/* note: mpxio di_path stuff is all consolidation private */
di_path_t pi = DI_PATH_NIL;
while ((pi = di_path_next_phci(node, pi)) != DI_PATH_NIL) {
int cnt;
uchar_t *bytes;
char str[MAXPATHLEN];
char *wwn;
di_node_t phci_node = di_path_phci_node(pi);
/* get the node wwn */
cnt = di_path_prop_lookup_bytes(pi, WWN_PROP, &bytes);
wwn = NULL;
if (cnt > 0) {
int i;
str[0] = 0;
for (i = 0; i < cnt; i++) {
char bstr[8]; /* a byte is only 2 hex chars + null */
(void) snprintf(bstr, sizeof (bstr), "%.2x", bytes[i]);
(void) strlcat(str, bstr, sizeof (str));
}
wwn = str;
}
if (new_path(cp, diskp, phci_node, di_path_state(pi), wwn)
== NULL) {
return (ENOMEM);
}
}
}
return (0);
}
static int
add_disk2path(disk_t *dp, path_t *pp, di_path_state_t st, char *wwn)
{
/* add the disk to the path */
if (add_ptr2array(dp, (void ***)&pp->disks) != 0) {
cache_free_path(pp);
return (0);
}
/* add the path to the disk */
if (add_ptr2array(pp, (void ***)&dp->paths) != 0) {
cache_free_path(pp);
return (0);
}
/* add the path state for this disk */
if (add_int2array(st, &pp->states) != 0) {
cache_free_path(pp);
return (0);
}
/* add the path state for this disk */
if (wwn != NULL) {
char *wp;
if ((wp = strdup(wwn)) != NULL) {
if (add_ptr2array(wp, (void ***)(&pp->wwns)) != 0) {
cache_free_path(pp);
return (0);
}
}
}
return (1);
}
static int
add_int2array(int p, int **parray)
{
int i;
int cnt;
int *pa;
int *new_array;
pa = *parray;
cnt = 0;
if (pa != NULL) {
for (; pa[cnt] != -1; cnt++);
}
new_array = (int *)calloc(cnt + 2, sizeof (int *));
if (new_array == NULL) {
return (ENOMEM);
}
/* copy the existing array */
for (i = 0; i < cnt; i++) {
new_array[i] = pa[i];
}
new_array[i] = p;
new_array[i + 1] = -1;
free(pa);
*parray = new_array;
return (0);
}
static int
add_ptr2array(void *p, void ***parray)
{
int i;
int cnt;
void **pa;
void **new_array;
pa = *parray;
cnt = 0;
if (pa != NULL) {
for (; pa[cnt]; cnt++);
}
new_array = (void **)calloc(cnt + 2, sizeof (void *));
if (new_array == NULL) {
return (ENOMEM);
}
/* copy the existing array */
for (i = 0; i < cnt; i++) {
new_array[i] = pa[i];
}
new_array[i] = p;
new_array[i + 1] = NULL;
free(pa);
*parray = new_array;
return (0);
}
/*
* This double checks that we aren't going to get into a bad situation.
* This function should never fail, but I just want to double check things.
*/
static int
can_remove_controller(controller_t *cp, controller_t *currp)
{
if (dm_debug) {
if (cp == currp) {
(void) fprintf(stderr, "ERROR: remove current controller\n");
}
if (cp->disks != NULL && cp->disks[0] != NULL) {
(void) fprintf(stderr,
"ERROR: remove controller with disk ptrs\n");
}
if (cp->paths != NULL && cp->paths[0] != NULL) {
(void) fprintf(stderr,
"ERROR: remove controller with path ptrs\n");
}
}
return (1);
}
/*
* If we have a controller in the list that is really a path then we need to
* take that controller out of the list since nodes that are paths are not
* considered to be controllers.
*/
static void
clean_paths(struct search_args *args)
{
controller_t *cp;
cp = args->controller_listp;
while (cp != NULL) {
path_t **pp;
pp = cp->paths;
if (pp != NULL) {
int i;
for (i = 0; pp[i]; i++) {
remove_invalid_controller(pp[i]->name, cp, args);
}
}
cp = cp->next;
}
}
static disk_t *
create_disk(char *deviceid, char *kernel_name, struct search_args *args)
{
disk_t *diskp;
char *type;
char *prod_id;
char *vendor_id;
if (dm_debug) {
(void) fprintf(stderr, "INFO: create_disk %s\n", kernel_name);
}
diskp = calloc(1, sizeof (disk_t));
if (diskp == NULL) {
return (NULL);
}
diskp->controllers = (controller_t **)
calloc(1, sizeof (controller_t *));
if (diskp->controllers == NULL) {
cache_free_disk(diskp);
return (NULL);
}
diskp->controllers[0] = NULL;
diskp->devid = NULL;
if (deviceid != NULL) {
if ((diskp->device_id = strdup(deviceid)) == NULL) {
cache_free_disk(diskp);
return (NULL);
}
(void) devid_str_decode(deviceid, &(diskp->devid), NULL);
}
if (kernel_name != NULL) {
diskp->kernel_name = strdup(kernel_name);
if (diskp->kernel_name == NULL) {
cache_free_disk(diskp);
return (NULL);
}
}
diskp->paths = NULL;
diskp->aliases = NULL;
diskp->cd_rom = 0;
diskp->rpm = 0;
type = di_minor_nodetype(args->minor);
prod_id = get_str_prop(PROD_ID_PROP, args->node);
if (prod_id != NULL) {
if ((diskp->product_id = strdup(prod_id)) == NULL) {
cache_free_disk(diskp);
return (NULL);
}
} else {
prod_id = get_str_prop(PROD_ID_USB_PROP, args->node);
if (prod_id != NULL) {
if ((diskp->product_id = strdup(prod_id)) == NULL) {
cache_free_disk(diskp);
return (NULL);
}
}
}
vendor_id = get_str_prop(VENDOR_ID_PROP, args->node);
if (vendor_id != NULL) {
if ((diskp->vendor_id = strdup(vendor_id)) == NULL) {
cache_free_disk(diskp);
return (NULL);
}
} else {
vendor_id = get_str_prop(VENDOR_ID_PROP, args->node);
if (vendor_id != NULL) {
if ((diskp->vendor_id = strdup(vendor_id)) == NULL) {
cache_free_disk(diskp);
return (NULL);
}
}
}
/*
* DVD, CD-ROM, CD-RW, MO, etc. are all reported as CD-ROMS.
* We try to use uscsi later to determine the real type.
* The cd_rom flag tells us that the kernel categorized the drive
* as a CD-ROM. We leave the drv_type as UKNOWN for now.
* The combination of the cd_rom flag being set with the drv_type of
* unknown is what triggers the uscsi probe in drive.c.
*/
if (disk_is_cdrom(type)) {
diskp->drv_type = DM_DT_UNKNOWN;
diskp->cd_rom = 1;
diskp->removable = 1;
} else if (libdiskmgt_str_eq(type, DDI_NT_FD)) {
diskp->drv_type = DM_DT_FLOPPY;
diskp->removable = 1;
} else {
/* not a "CD-ROM" or Floppy */
diskp->removable = get_prop(REMOVABLE_PROP, args->node);
if (diskp->removable == -1) {
diskp->removable = 0;
#ifdef i386
/*
* x86 does not have removable property. Check for common
* removable drives, zip & jaz, and mark those correctly.
*/
if (vendor_id != NULL && prod_id != NULL) {
if (str_case_index(vendor_id, "iomega") != NULL) {
if (str_case_index(prod_id, "jaz") != NULL) {
diskp->removable = 1;
} else if (str_case_index(prod_id, "zip") != NULL) {
diskp->removable = 1;
}
}
}
#endif
}
if (diskp->removable) {
/*
* For removable jaz or zip drives there is no way
* to get the drive type unless media is inserted, so we
* look at the product-id for a hint.
*/
diskp->drv_type = DM_DT_UNKNOWN;
if (prod_id != NULL) {
if (str_case_index(prod_id, "jaz") != NULL) {
diskp->drv_type = DM_DT_JAZ;
} else if (str_case_index(prod_id, "zip") != NULL) {
diskp->drv_type = DM_DT_ZIP;
}
}
} else {
diskp->drv_type = DM_DT_FIXED;
}
}
diskp->volm_path_set = 0;
diskp->volm_path = NULL;
diskp->next = args->disk_listp;
args->disk_listp = diskp;
return (diskp);
}
static char *
ctype(di_node_t node, di_minor_t minor)
{
char *type;
char *name;
type = di_minor_nodetype(minor);
name = di_node_name(node);
/* IDE disks use SCSI nexus as the type, so handle this special case */
if (libdiskmgt_str_eq(name, "ide")) {
return (DM_CTYPE_ATA);
}
if (libdiskmgt_str_eq(di_minor_name(minor), "scsa2usb")) {
return (DM_CTYPE_USB);
}
if (libdiskmgt_str_eq(type, DDI_NT_SCSI_NEXUS) ||
libdiskmgt_str_eq(type, DDI_NT_SCSI_ATTACHMENT_POINT)) {
return (DM_CTYPE_SCSI);
}
if (libdiskmgt_str_eq(type, DDI_NT_FC_ATTACHMENT_POINT)) {
return (DM_CTYPE_FIBRE);
}
if (libdiskmgt_str_eq(type, DDI_NT_NEXUS) &&
libdiskmgt_str_eq(name, "fp")) {
return (DM_CTYPE_FIBRE);
}
if (libdiskmgt_str_eq(type, DDI_PSEUDO) &&
libdiskmgt_str_eq(name, "ide")) {
return (DM_CTYPE_ATA);
}
return (DM_CTYPE_UNKNOWN);
}
static boolean_t
disk_is_cdrom(char *type)
{
int type_index;
for (type_index = 0; cdromtypes[type_index] != NULL; type_index++) {
if (libdiskmgt_str_eq(type, cdromtypes[type_index])) {
return (B_TRUE);
}
}
return (B_FALSE);
}
static alias_t *
find_alias(disk_t *diskp, char *kernel_name)
{
alias_t *ap;
ap = diskp->aliases;
while (ap != NULL) {
if (libdiskmgt_str_eq(ap->kstat_name, kernel_name)) {
return (ap);
}
ap = ap->next;
}
return (NULL);
}
static bus_t *
find_bus(struct search_args *args, char *name)
{
bus_t *listp;
listp = args->bus_listp;
while (listp != NULL) {
if (libdiskmgt_str_eq(listp->name, name)) {
return (listp);
}
listp = listp->next;
}
return (NULL);
}
static controller_t *
find_controller(struct search_args *args, char *name)
{
controller_t *listp;
listp = args->controller_listp;
while (listp != NULL) {
if (libdiskmgt_str_eq(listp->name, name)) {
return (listp);
}
listp = listp->next;
}
return (NULL);
}
static int
fix_cluster_devpath(di_devlink_t devlink, void *arg)
{
int fd;
struct search_args *args;
char *devlink_path;
disk_t *diskp = NULL;
alias_t *ap = NULL;
/*
* The devlink_path is of the form /dev/did/rdsk/d1s0.
*/
args = (struct search_args *)arg;
/* Find the disk by the deviceid we read from the cluster disk. */
devlink_path = (char *)di_devlink_path(devlink);
if (devlink_path == NULL) {
return (DI_WALK_CONTINUE);
}
if ((fd = open(devlink_path, O_RDONLY|O_NDELAY)) >= 0) {
ddi_devid_t devid;
if (dm_debug > 1) {
(void) fprintf(stderr, "INFO: cluster devpath %s\n",
devlink_path);
}
if (devid_get(fd, &devid) == 0) {
char *minor;
char *devidstr;
minor = di_minor_name(args->minor);
if ((devidstr = devid_str_encode(devid, minor)) != NULL) {
diskp = get_disk_by_deviceid(args->disk_listp, devidstr);
/*
* This really shouldn't happen, since we should have
* found all of the disks during our first pass through
* the dev tree, but just in case...
*/
if (diskp == NULL) {
if (dm_debug > 1) {
(void) fprintf(stderr,
"INFO: cluster create disk\n");
}
diskp = create_disk(devidstr, NULL, args);
if (diskp == NULL) {
args->dev_walk_status = ENOMEM;
}
/* add the controller relationship */
if (args->dev_walk_status == 0) {
if (add_disk2controller(diskp, args) != 0) {
args->dev_walk_status = ENOMEM;
}
}
if (new_alias(diskp, NULL, devlink_path, args)
!= 0) {
args->dev_walk_status = ENOMEM;
}
}
devid_str_free(devidstr);
}
devid_free(devid);
}
(void) close(fd);
}
if (diskp != NULL) {
if (dm_debug > 1) {
(void) fprintf(stderr, "INFO: cluster found disk\n");
}
ap = diskp->aliases;
}
if (ap != NULL) {
/* NOTE: if ap->next != NULL have cluster disks w/ multiple paths */
if (!ap->cluster) {
char *basep;
char *namep;
int cnt = 0;
int size;
char alias[MAXPATHLEN];
/*
* First time; save the /dev/rdsk devpaths and update the
* alias info with the new alias name.
*/
ap->orig_paths = ap->devpaths;
ap->devpaths = NULL;
free(ap->alias);
/* get the new cluster alias name */
basep = strrchr(devlink_path, '/');
if (basep == NULL) {
basep = devlink_path;
} else {
basep++;
}
size = sizeof (alias) - 1;
namep = alias;
while (*basep != 0 && *basep != 's' && cnt < size) {
*namep++ = *basep++;
cnt++;
}
*namep = 0;
if ((ap->alias = strdup(alias)) == NULL) {
args->dev_walk_status = ENOMEM;
}
ap->cluster = 1;
}
if (new_devpath(ap, devlink_path) != 0) {
args->dev_walk_status = ENOMEM;
}
}
return (DI_WALK_CONTINUE);
}
/*
* Check if we have the drive in our list, based upon the device id.
* We got the device id from the dev tree walk. This is encoded
* using devid_str_encode(3DEVID). In order to check the device ids we need
* to use the devid_compare(3DEVID) function, so we need to decode the
* string representation of the device id.
*/
static disk_t *
get_disk_by_deviceid(disk_t *listp, char *devidstr)
{
ddi_devid_t devid;
if (devidstr == NULL || devid_str_decode(devidstr, &devid, NULL) != 0) {
return (NULL);
}
while (listp != NULL) {
if (listp->devid != NULL &&
devid_compare(listp->devid, devid) == 0) {
break;
}
listp = listp->next;
}
devid_free(devid);
return (listp);
}
/*
* Get the base disk name with no path prefix and no slice (if there is one).
* The name parameter should be big enough to hold the name.
* This handles diskette names ok (/dev/rdiskette0) since there is no slice,
* and converts the raw diskette name.
* But, we don't know how to strip off the slice from third party drive
* names. That just means that their drive name will include a slice on
* it.
*/
static void
get_disk_name_from_path(char *path, char *name, int size)
{
char *basep;
int cnt = 0;
basep = strrchr(path, '/');
if (basep == NULL) {
basep = path;
} else {
basep++;
}
size = size - 1; /* leave room for terminating 0 */
if (is_ctds(basep)) {
while (*basep != 0 && *basep != 's' && cnt < size) {
*name++ = *basep++;
cnt++;
}
*name = 0;
} else {
if (strncmp(basep, FLOPPY_NAME, sizeof (FLOPPY_NAME) - 1) == 0) {
/*
* a floppy, convert rdiskette name to diskette name,
* by skipping over the 'r' for raw diskette
*/
basep++;
}
/* not a ctds name, just copy it */
(void) strlcpy(name, basep, size);
}
}
static char *
get_byte_prop(char *prop_name, di_node_t node)
{
int cnt;
uchar_t *bytes;
int i;
char str[MAXPATHLEN];
cnt = di_prop_lookup_bytes(DDI_DEV_T_ANY, node, prop_name, &bytes);
if (cnt < 1) {
return (NULL);
}
str[0] = 0;
for (i = 0; i < cnt; i++) {
char bstr[8]; /* a byte is only 2 hex chars + null */
(void) snprintf(bstr, sizeof (bstr), "%.2x", bytes[i]);
(void) strlcat(str, bstr, sizeof (str));
}
return (strdup(str));
}
static di_node_t
get_parent_bus(di_node_t node, struct search_args *args)
{
di_node_t pnode;
pnode = di_parent_node(node);
if (pnode == DI_NODE_NIL) {
return (NULL);
}
if (bus_type(pnode, di_minor_next(pnode, NULL), args->ph) != NULL) {
return (pnode);
}
return (get_parent_bus(pnode, args));
}
static int
get_prom_int(char *prop_name, di_node_t node, di_prom_handle_t ph)
{
int *n;
if (di_prom_prop_lookup_ints(ph, node, prop_name, &n) == 1) {
return (*n);
}
return (0);
}
static char *
get_prom_str(char *prop_name, di_node_t node, di_prom_handle_t ph)
{
char *str;
if (di_prom_prop_lookup_strings(ph, node, prop_name, &str) == 1) {
return (str);
}
return (NULL);
}
/*
* Get one of the positive int or boolean properties.
*/
static int
get_prop(char *prop_name, di_node_t node)
{
int num;
int *ip;
if ((num = di_prop_lookup_ints(DDI_DEV_T_ANY, node, prop_name, &ip))
>= 0) {
if (num == 0) {
/* boolean */
return (1);
} else if (num == 1) {
/* single int */
return (*ip);
}
}
return (-1);
}
static char *
get_str_prop(char *prop_name, di_node_t node)
{
char *str;
if (di_prop_lookup_strings(DDI_DEV_T_ANY, node, prop_name, &str) == 1) {
return (str);
}
return (NULL);
}
/*
* Check if we have the drive in our list, based upon the device id, if the
* drive has a device id, or the kernel name, if it doesn't have a device id.
*/
static int
have_disk(struct search_args *args, char *devidstr, char *kernel_name,
disk_t **diskp)
{
disk_t *listp;
*diskp = NULL;
listp = args->disk_listp;
if (devidstr != NULL) {
if ((*diskp = get_disk_by_deviceid(listp, devidstr)) != NULL) {
return (1);
}
} else {
/* no devid, try matching the kernel names on the drives */
while (listp != NULL) {
if (libdiskmgt_str_eq(kernel_name, listp->kernel_name)) {
*diskp = listp;
return (1);
}
listp = listp->next;
}
}
return (0);
}
static char *
bus_type(di_node_t node, di_minor_t minor, di_prom_handle_t ph)
{
char *type;
int i;
type = get_prom_str("device_type", node, ph);
if (type == NULL) {
type = di_node_name(node);
}
for (i = 0; bustypes[i]; i++) {
if (libdiskmgt_str_eq(type, bustypes[i])) {
return (type);
}
}
if (minor != NULL && strcmp(di_minor_nodetype(minor),
DDI_NT_USB_ATTACHMENT_POINT) == 0) {
return ("usb");
}
return (NULL);
}
static int
is_cluster_disk(di_node_t node, di_minor_t minor)
{
if (di_minor_spectype(minor) == S_IFCHR &&
libdiskmgt_str_eq(di_minor_nodetype(minor), DDI_PSEUDO) &&
libdiskmgt_str_eq(di_node_name(node), CLUSTER_DEV)) {
return (1);
}
return (0);
}
/*
* If the input name is in c[t]ds format then return 1, otherwise return 0.
*/
static int
is_ctds(char *name)
{
char *p;
p = name;
if (*p++ != 'c') {
return (0);
}
/* skip controller digits */
while (isdigit(*p)) {
p++;
}
/* handle optional target */
if (*p == 't') {
p++;
/* skip over target */
while (isdigit(*p) || isupper(*p)) {
p++;
}
}
if (*p++ != 'd') {
return (0);
}
while (isdigit(*p)) {
p++;
}
if (*p++ != 's') {
return (0);
}
/* check the slice number */
while (isdigit(*p)) {
p++;
}
if (*p != 0) {
return (0);
}
return (1);
}
static int
is_drive(di_minor_t minor)
{
char *type;
int type_index;
type = di_minor_nodetype(minor);
type_index = 0;
while (disktypes[type_index] != NULL) {
if (libdiskmgt_str_eq(type, disktypes[type_index])) {
return (1);
}
type_index++;
}
return (0);
}
static int
is_HBA(di_node_t node, di_minor_t minor)
{
char *type;
char *name;
int type_index;
type = di_minor_nodetype(minor);
type_index = 0;
while (ctrltypes[type_index] != NULL) {
if (libdiskmgt_str_eq(type, ctrltypes[type_index])) {
return (1);
}
type_index++;
}
name = di_node_name(node);
if (libdiskmgt_str_eq(type, DDI_PSEUDO) &&
libdiskmgt_str_eq(name, "ide")) {
return (1);
}
return (0);
}
static int
new_alias(disk_t *diskp, char *kernel_name, char *devlink_path,
struct search_args *args)
{
alias_t *aliasp;
char alias[MAXPATHLEN];
di_node_t pnode;
aliasp = malloc(sizeof (alias_t));
if (aliasp == NULL) {
return (ENOMEM);
}
aliasp->alias = NULL;
aliasp->kstat_name = NULL;
aliasp->wwn = NULL;
aliasp->devpaths = NULL;
aliasp->orig_paths = NULL;
get_disk_name_from_path(devlink_path, alias, sizeof (alias));
aliasp->alias = strdup(alias);
if (aliasp->alias == NULL) {
cache_free_alias(aliasp);
return (ENOMEM);
}
if (kernel_name != NULL) {
aliasp->kstat_name = strdup(kernel_name);
if (aliasp->kstat_name == NULL) {
cache_free_alias(aliasp);
return (ENOMEM);
}
} else {
aliasp->kstat_name = NULL;
}
aliasp->cluster = 0;
aliasp->lun = get_prop(DM_LUN, args->node);
aliasp->target = get_prop(DM_TARGET, args->node);
aliasp->wwn = get_byte_prop(WWN_PROP, args->node);
pnode = di_parent_node(args->node);
if (pnode != DI_NODE_NIL) {
char prop_name[MAXPROPLEN];
(void) snprintf(prop_name, sizeof (prop_name),
"target%d-sync-speed", aliasp->target);
diskp->sync_speed = get_prop(prop_name, pnode);
(void) snprintf(prop_name, sizeof (prop_name), "target%d-wide",
aliasp->target);
diskp->wide = get_prop(prop_name, pnode);
}
if (new_devpath(aliasp, devlink_path) != 0) {
cache_free_alias(aliasp);
return (ENOMEM);
}
aliasp->next = diskp->aliases;
diskp->aliases = aliasp;
return (0);
}
/*
* Append the new devpath to the end of the devpath list. This is important
* since we may want to use the order of the devpaths to match up the vtoc
* entries.
*/
static int
new_devpath(alias_t *ap, char *devpath)
{
slice_t *newdp;
slice_t *alistp;
/*
* First, search the alias list to be sure that this devpath is
* not already there.
*/
for (alistp = ap->devpaths; alistp != NULL; alistp = alistp->next) {
if (libdiskmgt_str_eq(alistp->devpath, devpath)) {
return (0);
}
}
/*
* Otherwise, not found so add this new devpath to the list.
*/
newdp = malloc(sizeof (slice_t));
if (newdp == NULL) {
return (ENOMEM);
}
newdp->devpath = strdup(devpath);
if (newdp->devpath == NULL) {
free(newdp);
return (ENOMEM);
}
newdp->slice_num = -1;
newdp->next = NULL;
if (ap->devpaths == NULL) {
ap->devpaths = newdp;
} else {
/* append the devpath to the end of the list */
slice_t *dp;
dp = ap->devpaths;
while (dp->next != NULL) {
dp = dp->next;
}
dp->next = newdp;
}
return (0);
}
static path_t *
new_path(controller_t *cp, disk_t *dp, di_node_t node, di_path_state_t st,
char *wwn)
{
char *devpath;
path_t *pp;
di_minor_t minor;
/* Special handling for fp attachment node. */
if (strcmp(di_node_name(node), "fp") == 0) {
di_node_t pnode;
pnode = di_parent_node(node);
if (pnode != DI_NODE_NIL) {
node = pnode;
}
}
devpath = di_devfs_path(node);
/* check if the path is already there */
pp = NULL;
if (cp->paths != NULL) {
int i;
for (i = 0; cp->paths[i]; i++) {
if (libdiskmgt_str_eq(devpath, cp->paths[i]->name)) {
pp = cp->paths[i];
break;
}
}
}
if (pp != NULL) {
/* the path exists, add this disk to it */
di_devfs_path_free((void *) devpath);
if (!add_disk2path(dp, pp, st, wwn)) {
return (NULL);
}
return (pp);
}
/* create a new path */
pp = calloc(1, sizeof (path_t));
if (pp == NULL) {
di_devfs_path_free((void *) devpath);
return (NULL);
}
pp->name = strdup(devpath);
di_devfs_path_free((void *) devpath);
if (pp->name == NULL) {
cache_free_path(pp);
return (NULL);
}
/* add the disk to the path */
if (!add_disk2path(dp, pp, st, wwn)) {
return (NULL);
}
/* add the path to the controller */
if (add_ptr2array(pp, (void ***)&cp->paths) != 0) {
cache_free_path(pp);
return (NULL);
}
/* add the controller to the path */
pp->controller = cp;
minor = di_minor_next(node, NULL);
if (minor != NULL) {
pp->ctype = ctype(node, minor);
} else {
pp->ctype = DM_CTYPE_UNKNOWN;
}
return (pp);
}
/*
* We pass in the current controller pointer (currp) so we can double check
* that we aren't corrupting the list by removing the element we are on. This
* should never happen, but it doesn't hurt to double check.
*/
static void
remove_invalid_controller(char *name, controller_t *currp,
struct search_args *args)
{
controller_t *cp;
bus_t *bp;
controller_t *prevp;
bp = args->bus_listp;
while (bp != NULL) {
int i;
for (i = 0; bp->controllers[i]; i++) {
if (libdiskmgt_str_eq(bp->controllers[i]->name, name)) {
int j;
/* remove pointer to invalid controller (it is a path) */
for (j = i; bp->controllers[j]; j++) {
bp->controllers[j] = bp->controllers[j + 1];
}
}
}
bp = bp->next;
}
if (args->controller_listp == NULL) {
return;
}
cp = args->controller_listp;
if (libdiskmgt_str_eq(cp->name, name)) {
if (can_remove_controller(cp, currp)) {
args->controller_listp = cp->next;
cache_free_controller(cp);
}
return;
}
prevp = cp;
cp = cp->next;
while (cp != NULL) {
if (libdiskmgt_str_eq(cp->name, name)) {
if (can_remove_controller(cp, currp)) {
prevp->next = cp->next;
cache_free_controller(cp);
}
return;
}
prevp = cp;
cp = cp->next;
}
}
/*
* This is the standard strstr code modified for case independence.
*/
static char *
str_case_index(register char *s1, register char *s2)
{
uint_t s2len = strlen(s2); /* length of the second string */
/* If the length of the second string is 0, return the first arg. */
if (s2len == 0) {
return (s1);
}
while (strlen(s1) >= s2len) {
if (strncasecmp(s1, s2, s2len) == 0) {
return (s1);
}
s1++;
}
return (NULL);
}