dhcp_inittab.c revision 4b56a00321e0ce508e55cc5e43e3ad7b00005a39
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <stdarg.h>
#include <limits.h>
#include <ctype.h>
#include <libgen.h>
#include <sys/isa_defs.h>
#include <sys/socket.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/sysmacros.h>
#include <libinetutil.h>
#include <libdlpi.h>
#include <netinet/dhcp6.h>
#include "dhcp_symbol.h"
#include "dhcp_inittab.h"
static void inittab_msg(const char *, ...);
static uchar_t category_to_code(const char *);
static boolean_t encode_number(uint8_t, uint8_t, boolean_t, uint8_t,
const char *, uint8_t *, int *);
static boolean_t decode_number(uint8_t, uint8_t, boolean_t, uint8_t,
const uint8_t *, char *, int *);
static dhcp_symbol_t *inittab_lookup(uchar_t, char, const char *, int32_t,
size_t *);
static dsym_category_t itabcode_to_dsymcode(uchar_t);
static boolean_t parse_entry(char *, char **);
/*
* forward declaration of our internal inittab_table[]. too bulky to put
* up front -- check the end of this file for its definition.
*
* Note: we have only an IPv4 version here. The inittab_verify() function is
* used by the DHCP server and manager. We'll need a new function if the
* server is extended to DHCPv6.
*/
static dhcp_symbol_t inittab_table[];
/*
* the number of fields in the inittab and names for the fields. note that
* this order is meaningful to parse_entry(); other functions should just
* use them as indexes into the array returned from parse_entry().
*/
#define ITAB_FIELDS 7
enum { ITAB_NAME, ITAB_CODE, ITAB_TYPE, ITAB_GRAN, ITAB_MAX, ITAB_CONS,
ITAB_CAT };
/*
* the category_map_entry_t is used to map the inittab category codes to
* the dsym codes. the reason the codes are different is that the inittab
* needs to have the codes be ORable such that queries can retrieve more
* than one category at a time. this map is also used to map the inittab
* string representation of a category to its numerical code.
*/
typedef struct category_map_entry {
dsym_category_t cme_dsymcode;
char *cme_name;
uchar_t cme_itabcode;
} category_map_entry_t;
static category_map_entry_t category_map[] = {
{ DSYM_STANDARD, "STANDARD", ITAB_CAT_STANDARD },
{ DSYM_FIELD, "FIELD", ITAB_CAT_FIELD },
{ DSYM_INTERNAL, "INTERNAL", ITAB_CAT_INTERNAL },
{ DSYM_VENDOR, "VENDOR", ITAB_CAT_VENDOR },
{ DSYM_SITE, "SITE", ITAB_CAT_SITE }
};
/*
* inittab_load(): returns all inittab entries with the specified criteria
*
* input: uchar_t: the categories the consumer is interested in
* char: the consumer type of the caller
* size_t *: set to the number of entries returned
* output: dhcp_symbol_t *: an array of dynamically allocated entries
* on success, NULL upon failure
*/
dhcp_symbol_t *
inittab_load(uchar_t categories, char consumer, size_t *n_entries)
{
return (inittab_lookup(categories, consumer, NULL, -1, n_entries));
}
/*
* inittab_getbyname(): returns an inittab entry with the specified criteria
*
* input: int: the categories the consumer is interested in
* char: the consumer type of the caller
* char *: the name of the inittab entry the consumer wants
* output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure
* on success, NULL upon failure
*/
dhcp_symbol_t *
inittab_getbyname(uchar_t categories, char consumer, const char *name)
{
return (inittab_lookup(categories, consumer, name, -1, NULL));
}
/*
* inittab_getbycode(): returns an inittab entry with the specified criteria
*
* input: uchar_t: the categories the consumer is interested in
* char: the consumer type of the caller
* uint16_t: the code of the inittab entry the consumer wants
* output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure
* on success, NULL upon failure
*/
dhcp_symbol_t *
inittab_getbycode(uchar_t categories, char consumer, uint16_t code)
{
return (inittab_lookup(categories, consumer, NULL, code, NULL));
}
/*
* inittab_lookup(): returns inittab entries with the specified criteria
*
* input: uchar_t: the categories the consumer is interested in
* char: the consumer type of the caller
* const char *: the name of the entry the caller is interested
* in, or NULL if the caller doesn't care
* int32_t: the code the caller is interested in, or -1 if the
* caller doesn't care
* size_t *: set to the number of entries returned
* output: dhcp_symbol_t *: dynamically allocated dhcp_symbol structures
* on success, NULL upon failure
*/
static dhcp_symbol_t *
inittab_lookup(uchar_t categories, char consumer, const char *name,
int32_t code, size_t *n_entriesp)
{
FILE *inittab_fp;
dhcp_symbol_t *new_entries, *entries = NULL;
dhcp_symbol_t entry;
char buffer[ITAB_MAX_LINE_LEN];
char *fields[ITAB_FIELDS];
unsigned long line = 0;
size_t i, n_entries = 0;
const char *inittab_path;
uchar_t category_code;
dsym_cdtype_t type;
if (categories & ITAB_CAT_V6) {
inittab_path = getenv("DHCP_INITTAB6_PATH");
if (inittab_path == NULL)
inittab_path = ITAB_INITTAB6_PATH;
} else {
inittab_path = getenv("DHCP_INITTAB_PATH");
if (inittab_path == NULL)
inittab_path = ITAB_INITTAB_PATH;
}
inittab_fp = fopen(inittab_path, "r");
if (inittab_fp == NULL) {
inittab_msg("inittab_lookup: fopen: %s: %s",
inittab_path, strerror(errno));
return (NULL);
}
(void) bufsplit(",\n", 0, NULL);
while (fgets(buffer, sizeof (buffer), inittab_fp) != NULL) {
line++;
/*
* make sure the string didn't overflow our buffer
*/
if (strchr(buffer, '\n') == NULL) {
inittab_msg("inittab_lookup: line %li: too long, "
"skipping", line);
continue;
}
/*
* skip `pure comment' lines
*/
for (i = 0; buffer[i] != '\0'; i++)
if (isspace(buffer[i]) == 0)
break;
if (buffer[i] == ITAB_COMMENT_CHAR || buffer[i] == '\0')
continue;
/*
* parse the entry out into fields.
*/
if (parse_entry(buffer, fields) == B_FALSE) {
inittab_msg("inittab_lookup: line %li: syntax error, "
"skipping", line);
continue;
}
/*
* validate the values in the entries; skip if invalid.
*/
if (atoi(fields[ITAB_GRAN]) > ITAB_GRAN_MAX) {
inittab_msg("inittab_lookup: line %li: granularity `%s'"
" out of range, skipping", line, fields[ITAB_GRAN]);
continue;
}
if (atoi(fields[ITAB_MAX]) > ITAB_MAX_MAX) {
inittab_msg("inittab_lookup: line %li: maximum `%s' "
"out of range, skipping", line, fields[ITAB_MAX]);
continue;
}
if (dsym_get_type_id(fields[ITAB_TYPE], &type, B_FALSE) !=
DSYM_SUCCESS) {
inittab_msg("inittab_lookup: line %li: type `%s' "
"is invalid, skipping", line, fields[ITAB_TYPE]);
continue;
}
/*
* find out whether this entry of interest to our consumer,
* and if so, throw it onto the set of entries we'll return.
* check categories last since it's the most expensive check.
*/
if (strchr(fields[ITAB_CONS], consumer) == NULL)
continue;
if (code != -1 && atoi(fields[ITAB_CODE]) != code)
continue;
if (name != NULL && strcasecmp(fields[ITAB_NAME], name) != 0)
continue;
category_code = category_to_code(fields[ITAB_CAT]);
if ((category_code & categories) == 0)
continue;
/*
* looks like a match. allocate an entry and fill it in
*/
new_entries = realloc(entries, (n_entries + 1) *
sizeof (dhcp_symbol_t));
/*
* if we run out of memory, might as well return what we can
*/
if (new_entries == NULL) {
inittab_msg("inittab_lookup: ran out of memory "
"allocating dhcp_symbol_t's");
break;
}
entry.ds_max = atoi(fields[ITAB_MAX]);
entry.ds_code = atoi(fields[ITAB_CODE]);
entry.ds_type = type;
entry.ds_gran = atoi(fields[ITAB_GRAN]);
entry.ds_category = itabcode_to_dsymcode(category_code);
entry.ds_classes.dc_cnt = 0;
entry.ds_classes.dc_names = NULL;
(void) strlcpy(entry.ds_name, fields[ITAB_NAME],
sizeof (entry.ds_name));
entry.ds_dhcpv6 = (categories & ITAB_CAT_V6) ? 1 : 0;
entries = new_entries;
entries[n_entries++] = entry;
}
if (ferror(inittab_fp) != 0) {
inittab_msg("inittab_lookup: error on inittab stream");
clearerr(inittab_fp);
}
(void) fclose(inittab_fp);
if (n_entriesp != NULL)
*n_entriesp = n_entries;
return (entries);
}
/*
* parse_entry(): parses an entry out into its constituent fields
*
* input: char *: the entry
* char **: an array of ITAB_FIELDS length which contains
* pointers into the entry on upon return
* output: boolean_t: B_TRUE on success, B_FALSE on failure
*/
static boolean_t
parse_entry(char *entry, char **fields)
{
char *category, *spacep;
size_t n_fields, i;
/*
* due to a mistake made long ago, the first and second fields of
* each entry are not separated by a comma, but rather by
* whitespace -- have bufsplit() treat the two fields as one, then
* pull them apart afterwards.
*/
n_fields = bufsplit(entry, ITAB_FIELDS - 1, fields);
if (n_fields != (ITAB_FIELDS - 1))
return (B_FALSE);
/*
* pull the first and second fields apart. this is complicated
* since the first field can contain embedded whitespace (so we
* must separate the two fields by the last span of whitespace).
*
* first, find the initial span of whitespace. if there isn't one,
* then the entry is malformed.
*/
category = strpbrk(fields[ITAB_NAME], " \t");
if (category == NULL)
return (B_FALSE);
/*
* find the last span of whitespace.
*/
do {
while (isspace(*category))
category++;
spacep = strpbrk(category, " \t");
if (spacep != NULL)
category = spacep;
} while (spacep != NULL);
/*
* NUL-terminate the first byte of the last span of whitespace, so
* that the first field doesn't have any residual trailing
* whitespace.
*/
spacep = category - 1;
while (isspace(*spacep))
spacep--;
if (spacep <= fields[0])
return (B_FALSE);
*++spacep = '\0';
/*
* remove any whitespace from the fields.
*/
for (i = 0; i < n_fields; i++) {
while (isspace(*fields[i]))
fields[i]++;
}
fields[ITAB_CAT] = category;
return (B_TRUE);
}
/*
* inittab_verify(): verifies that a given inittab entry matches an internal
* definition
*
* input: dhcp_symbol_t *: the inittab entry to verify
* dhcp_symbol_t *: if non-NULL, a place to store the internal
* inittab entry upon return
* output: int: ITAB_FAILURE, ITAB_SUCCESS, or ITAB_UNKNOWN
*
* notes: IPv4 only
*/
int
inittab_verify(const dhcp_symbol_t *inittab_ent, dhcp_symbol_t *internal_ent)
{
unsigned int i;
for (i = 0; inittab_table[i].ds_name[0] != '\0'; i++) {
if (inittab_ent->ds_category != inittab_table[i].ds_category)
continue;
if (inittab_ent->ds_code == inittab_table[i].ds_code) {
if (internal_ent != NULL)
*internal_ent = inittab_table[i];
if (inittab_table[i].ds_type != inittab_ent->ds_type ||
inittab_table[i].ds_gran != inittab_ent->ds_gran ||
inittab_table[i].ds_max != inittab_ent->ds_max)
return (ITAB_FAILURE);
return (ITAB_SUCCESS);
}
}
return (ITAB_UNKNOWN);
}
/*
* get_hw_type(): interpret ",hwtype" in the input string, as part of a DUID.
* The hwtype string is optional, and must be 0-65535 if
* present.
*
* input: char **: pointer to string pointer
* int *: error return value
* output: int: hardware type, or -1 for empty, or -2 for error.
*/
static int
get_hw_type(char **strp, int *ierrnop)
{
char *str = *strp;
ulong_t hwtype;
if (*str++ != ',') {
*ierrnop = ITAB_BAD_NUMBER;
return (-2);
}
if (*str == ',' || *str == '\0') {
*strp = str;
return (-1);
}
hwtype = strtoul(str, strp, 0);
if (errno != 0 || *strp == str || hwtype > 65535) {
*ierrnop = ITAB_BAD_NUMBER;
return (-2);
} else {
return ((int)hwtype);
}
}
/*
* get_mac_addr(): interpret ",macaddr" in the input string, as part of a DUID.
* The 'macaddr' may be a hex string (in any standard format),
* or the name of a physical interface. If an interface name
* is given, then the interface type is extracted as well.
*
* input: const char *: input string
* int *: error return value
* uint16_t *: hardware type output (network byte order)
* int: hardware type input; -1 for empty
* uchar_t *: output buffer for MAC address
* output: int: length of MAC address, or -1 for error
*/
static int
get_mac_addr(const char *str, int *ierrnop, uint16_t *hwret, int hwtype,
uchar_t *outbuf)
{
int maclen;
int dig, val;
dlpi_handle_t dh;
dlpi_info_t dlinfo;
char chr;
if (*str != '\0') {
if (*str++ != ',')
goto failed;
if (dlpi_open(str, &dh, 0) != DLPI_SUCCESS) {
maclen = 0;
dig = val = 0;
/*
* Allow MAC addresses with separators matching regexp
* (:|-| *).
*/
while ((chr = *str++) != '\0') {
if (isdigit(chr)) {
val = (val << 4) + chr - '0';
} else if (isxdigit(chr)) {
val = (val << 4) + chr -
(isupper(chr) ? 'A' : 'a') + 10;
} else if (isspace(chr) && dig == 0) {
continue;
} else if (chr == ':' || chr == '-' ||
isspace(chr)) {
dig = 1;
} else {
goto failed;
}
if (++dig == 2) {
*outbuf++ = val;
maclen++;
dig = val = 0;
}
}
} else {
if (dlpi_info(dh, &dlinfo, 0) != DLPI_SUCCESS) {
dlpi_close(dh);
goto failed;
}
maclen = dlinfo.di_physaddrlen;
(void) memcpy(outbuf, dlinfo.di_physaddr, maclen);
dlpi_close(dh);
if (hwtype == -1)
hwtype = dlpi_arptype(dlinfo.di_mactype);
}
}
if (hwtype == -1)
goto failed;
*hwret = htons(hwtype);
return (maclen);
failed:
*ierrnop = ITAB_BAD_NUMBER;
return (-1);
}
/*
* inittab_encode_e(): converts a string representation of a given datatype into
* binary; used for encoding ascii values into a form that
* can be put in DHCP packets to be sent on the wire.
*
* input: const dhcp_symbol_t *: the entry describing the value option
* const char *: the value to convert
* uint16_t *: set to the length of the binary data returned
* boolean_t: if false, return a full DHCP option
* int *: error return value
* output: uchar_t *: a dynamically allocated byte array with converted data
*/
uchar_t *
inittab_encode_e(const dhcp_symbol_t *ie, const char *value, uint16_t *lengthp,
boolean_t just_payload, int *ierrnop)
{
int hlen = 0;
uint16_t length;
uchar_t n_entries = 0;
const char *valuep;
char *currp;
uchar_t *result = NULL;
uchar_t *optstart;
unsigned int i;
uint8_t type_size = inittab_type_to_size(ie);
boolean_t is_signed;
uint_t vallen, reslen;
dhcpv6_option_t *d6o;
int type;
char *cp2;
*ierrnop = 0;
if (type_size == 0) {
*ierrnop = ITAB_SYNTAX_ERROR;
return (NULL);
}
switch (ie->ds_type) {
case DSYM_ASCII:
n_entries = strlen(value); /* no NUL */
break;
case DSYM_OCTET:
vallen = strlen(value);
n_entries = vallen / 2;
n_entries += vallen % 2;
break;
case DSYM_DOMAIN:
/*
* Maximum (worst-case) encoded length is one byte more than
* the number of characters on input.
*/
n_entries = strlen(value) + 1;
break;
case DSYM_DUID:
/* Worst case is ":::::" */
n_entries = strlen(value);
if (n_entries < DLPI_PHYSADDR_MAX)
n_entries = DLPI_PHYSADDR_MAX;
n_entries += sizeof (duid_llt_t);
break;
default:
/*
* figure out the number of entries by counting the spaces
* in the value string
*/
for (valuep = value; valuep++ != NULL; n_entries++)
valuep = strchr(valuep, ' ');
break;
}
/*
* if we're gonna return a complete option, then include the
* option length and code in the size of the packet we allocate
*/
if (!just_payload)
hlen = ie->ds_dhcpv6 ? sizeof (*d6o) : 2;
length = n_entries * type_size;
if (hlen + length > 0)
result = malloc(hlen + length);
if ((optstart = result) != NULL && !just_payload)
optstart += hlen;
switch (ie->ds_type) {
case DSYM_ASCII:
if (optstart == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) memcpy(optstart, value, length);
break;
case DSYM_DOMAIN:
if (optstart == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
/*
* Note that this encoder always presents the trailing 0-octet
* when dealing with a list. This means that you can't have
* non-fully-qualified members anywhere but at the end of a
* list (or as the only member of the list).
*/
valuep = value;
while (*valuep != '\0') {
int dig, val, inchr;
boolean_t escape;
uchar_t *flen;
/*
* Skip over whitespace that delimits list members.
*/
if (isascii(*valuep) && isspace(*valuep)) {
valuep++;
continue;
}
dig = val = 0;
escape = B_FALSE;
flen = optstart++;
while ((inchr = *valuep) != '\0') {
valuep++;
/*
* Just copy non-ASCII text directly to the
* output string. This simplifies the use of
* other ctype macros below, as, unlike the
* special isascii function, they don't handle
* non-ASCII.
*/
if (!isascii(inchr)) {
escape = B_FALSE;
*optstart++ = inchr;
continue;
}
if (escape) {
/*
* Handle any of \D, \DD, or \DDD for
* a digit escape.
*/
if (isdigit(inchr)) {
val = val * 10 + inchr - '0';
if (++dig == 3) {
*optstart++ = val;
dig = val = 0;
escape = B_FALSE;
}
continue;
} else if (dig > 0) {
/*
* User terminated \D or \DD
* with non-digit. An error,
* but we can assume he means
* to treat as \00D or \0DD.
*/
*optstart++ = val;
dig = val = 0;
}
/* Fall through and copy character */
escape = B_FALSE;
} else if (inchr == '\\') {
escape = B_TRUE;
continue;
} else if (inchr == '.') {
/*
* End of component. Write the length
* prefix. If the component is zero
* length (i.e., ".."), the just omit
* it.
*/
*flen = (optstart - flen) - 1;
if (*flen > 0)
flen = optstart++;
continue;
} else if (isspace(inchr)) {
/*
* Unescaped space; end of domain name
* in list.
*/
break;
}
*optstart++ = inchr;
}
/*
* Handle trailing escape sequence. If string ends
* with \, then assume user wants \ at end of encoded
* string. If it ends with \D or \DD, assume \00D or
* \0DD.
*/
if (escape)
*optstart++ = dig > 0 ? val : '\\';
*flen = (optstart - flen) - 1;
/*
* If user specified FQDN with trailing '.', then above
* will result in zero for the last component length.
* We're done, and optstart already points to the start
* of the next in list. Otherwise, we need to write a
* single zero byte to end the entry, if there are more
* entries that will be decoded.
*/
while (isascii(*valuep) && isspace(*valuep))
valuep++;
if (*flen > 0 && *valuep != '\0')
*optstart++ = '\0';
}
length = (optstart - result) - hlen;
break;
case DSYM_DUID:
if (optstart == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
errno = 0;
type = strtoul(value, &currp, 0);
if (errno != 0 || value == currp || type > 65535 ||
(*currp != ',' && *currp != '\0')) {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
switch (type) {
case DHCPV6_DUID_LLT: {
duid_llt_t dllt;
int hwtype;
ulong_t tstamp;
int maclen;
if ((hwtype = get_hw_type(&currp, ierrnop)) == -2) {
free(result);
return (NULL);
}
if (*currp++ != ',') {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
if (*currp == ',' || *currp == '\0') {
tstamp = time(NULL) - DUID_TIME_BASE;
} else {
tstamp = strtoul(currp, &cp2, 0);
if (errno != 0 || currp == cp2) {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
currp = cp2;
}
maclen = get_mac_addr(currp, ierrnop,
&dllt.dllt_hwtype, hwtype,
optstart + sizeof (dllt));
if (maclen == -1) {
free(result);
return (NULL);
}
dllt.dllt_dutype = htons(type);
dllt.dllt_time = htonl(tstamp);
(void) memcpy(optstart, &dllt, sizeof (dllt));
length = maclen + sizeof (dllt);
break;
}
case DHCPV6_DUID_EN: {
duid_en_t den;
ulong_t enterp;
if (*currp++ != ',') {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
enterp = strtoul(currp, &cp2, 0);
DHCPV6_SET_ENTNUM(&den, enterp);
if (errno != 0 || currp == cp2 ||
enterp != DHCPV6_GET_ENTNUM(&den) ||
(*cp2 != ',' && *cp2 != '\0')) {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
if (*cp2 == ',')
cp2++;
vallen = strlen(cp2);
reslen = (vallen + 1) / 2;
if (hexascii_to_octet(cp2, vallen,
optstart + sizeof (den), &reslen) != 0) {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
den.den_dutype = htons(type);
(void) memcpy(optstart, &den, sizeof (den));
length = reslen + sizeof (den);
break;
}
case DHCPV6_DUID_LL: {
duid_ll_t dll;
int hwtype;
int maclen;
if ((hwtype = get_hw_type(&currp, ierrnop)) == -2) {
free(result);
return (NULL);
}
maclen = get_mac_addr(currp, ierrnop, &dll.dll_hwtype,
hwtype, optstart + sizeof (dll));
if (maclen == -1) {
free(result);
return (NULL);
}
dll.dll_dutype = htons(type);
(void) memcpy(optstart, &dll, sizeof (dll));
length = maclen + sizeof (dll);
break;
}
default:
if (*currp == ',')
currp++;
vallen = strlen(currp);
reslen = (vallen + 1) / 2;
if (hexascii_to_octet(currp, vallen, optstart + 2,
&reslen) != 0) {
free(result);
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
optstart[0] = type >> 8;
optstart[1] = type;
length = reslen + 2;
break;
}
break;
case DSYM_OCTET:
if (optstart == NULL) {
*ierrnop = ITAB_BAD_OCTET;
return (NULL);
}
reslen = length;
/* Call libinetutil function to decode */
if (hexascii_to_octet(value, vallen, optstart, &reslen) != 0) {
free(result);
*ierrnop = ITAB_BAD_OCTET;
return (NULL);
}
break;
case DSYM_IP:
case DSYM_IPV6:
if (optstart == NULL) {
*ierrnop = ITAB_BAD_IPADDR;
return (NULL);
}
if (n_entries % ie->ds_gran != 0) {
*ierrnop = ITAB_BAD_GRAN;
inittab_msg("inittab_encode: number of entries "
"not compatible with option granularity");
free(result);
return (NULL);
}
for (valuep = value, i = 0; i < n_entries; i++, valuep++) {
currp = strchr(valuep, ' ');
if (currp != NULL)
*currp = '\0';
if (inet_pton(ie->ds_type == DSYM_IP ? AF_INET :
AF_INET6, valuep, optstart) != 1) {
*ierrnop = ITAB_BAD_IPADDR;
inittab_msg("inittab_encode: bogus ip address");
free(result);
return (NULL);
}
valuep = currp;
if (valuep == NULL) {
if (i < (n_entries - 1)) {
*ierrnop = ITAB_NOT_ENOUGH_IP;
inittab_msg("inittab_encode: too few "
"ip addresses");
free(result);
return (NULL);
}
break;
}
optstart += type_size;
}
break;
case DSYM_NUMBER: /* FALLTHRU */
case DSYM_UNUMBER8: /* FALLTHRU */
case DSYM_SNUMBER8: /* FALLTHRU */
case DSYM_UNUMBER16: /* FALLTHRU */
case DSYM_SNUMBER16: /* FALLTHRU */
case DSYM_UNUMBER24: /* FALLTHRU */
case DSYM_UNUMBER32: /* FALLTHRU */
case DSYM_SNUMBER32: /* FALLTHRU */
case DSYM_UNUMBER64: /* FALLTHRU */
case DSYM_SNUMBER64:
if (optstart == NULL) {
*ierrnop = ITAB_BAD_NUMBER;
return (NULL);
}
is_signed = (ie->ds_type == DSYM_SNUMBER64 ||
ie->ds_type == DSYM_SNUMBER32 ||
ie->ds_type == DSYM_SNUMBER16 ||
ie->ds_type == DSYM_SNUMBER8);
if (encode_number(n_entries, type_size, is_signed, 0, value,
optstart, ierrnop) == B_FALSE) {
free(result);
return (NULL);
}
break;
default:
if (ie->ds_type == DSYM_BOOL)
*ierrnop = ITAB_BAD_BOOLEAN;
else
*ierrnop = ITAB_SYNTAX_ERROR;
inittab_msg("inittab_encode: unsupported type `%d'",
ie->ds_type);
free(result);
return (NULL);
}
/*
* if just_payload is false, then we need to add the option
* code and length fields in.
*/
if (!just_payload) {
if (ie->ds_dhcpv6) {
/* LINTED: alignment */
d6o = (dhcpv6_option_t *)result;
d6o->d6o_code = htons(ie->ds_code);
d6o->d6o_len = htons(length);
} else {
result[0] = ie->ds_code;
result[1] = length;
}
}
if (lengthp != NULL)
*lengthp = length + hlen;
return (result);
}
/*
* inittab_decode_e(): converts a binary representation of a given datatype into
* a string; used for decoding DHCP options in a packet off
* the wire into ascii
*
* input: dhcp_symbol_t *: the entry describing the payload option
* uchar_t *: the payload to convert
* uint16_t: the payload length (only used if just_payload is true)
* boolean_t: if false, payload is assumed to be a DHCP option
* int *: set to extended error code if error occurs.
* output: char *: a dynamically allocated string containing the converted data
*/
char *
inittab_decode_e(const dhcp_symbol_t *ie, const uchar_t *payload,
uint16_t length, boolean_t just_payload, int *ierrnop)
{
char *resultp, *result = NULL;
uint_t n_entries;
struct in_addr in_addr;
in6_addr_t in6_addr;
uint8_t type_size = inittab_type_to_size(ie);
boolean_t is_signed;
int type;
*ierrnop = 0;
if (type_size == 0) {
*ierrnop = ITAB_SYNTAX_ERROR;
return (NULL);
}
if (!just_payload) {
if (ie->ds_dhcpv6) {
dhcpv6_option_t d6o;
(void) memcpy(&d6o, payload, sizeof (d6o));
length = ntohs(d6o.d6o_len);
payload += sizeof (d6o);
} else {
length = payload[1];
payload += 2;
}
}
/*
* figure out the number of elements to convert. note that
* for ds_type NUMBER, the granularity is really 1 since the
* value of ds_gran is the number of bytes in the number.
*/
if (ie->ds_type == DSYM_NUMBER)
n_entries = MIN(ie->ds_max, length / type_size);
else
n_entries = MIN(ie->ds_max * ie->ds_gran, length / type_size);
if (n_entries == 0)
n_entries = length / type_size;
if ((length % type_size) != 0) {
inittab_msg("inittab_decode: length of string not compatible "
"with option type `%i'", ie->ds_type);
*ierrnop = ITAB_BAD_STRING;
return (NULL);
}
switch (ie->ds_type) {
case DSYM_ASCII:
result = malloc(n_entries + 1);
if (result == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) memcpy(result, payload, n_entries);
result[n_entries] = '\0';
break;
case DSYM_DOMAIN:
/*
* A valid, decoded RFC 1035 domain string or sequence of
* strings is always the same size as the encoded form, but we
* allow for RFC 1035 \DDD and \\ and \. escaping.
*
* Decoding stops at the end of the input or the first coding
* violation. Coding violations result in discarding the
* offending list entry entirely. Note that we ignore the 255
* character overall limit on domain names.
*/
if ((result = malloc(4 * length + 1)) == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
resultp = result;
while (length > 0) {
char *dstart;
int slen;
dstart = resultp;
while (length > 0) {
slen = *payload++;
length--;
/* Upper two bits of length must be zero */
if ((slen & 0xc0) != 0 || slen > length) {
length = 0;
resultp = dstart;
break;
}
if (resultp != dstart)
*resultp++ = '.';
if (slen == 0)
break;
length -= slen;
while (slen > 0) {
if (!isascii(*payload) ||
!isgraph(*payload)) {
(void) snprintf(resultp, 5,
"\\%03d",
*(unsigned char *)payload);
resultp += 4;
payload++;
} else {
if (*payload == '.' ||
*payload == '\\')
*resultp++ = '\\';
*resultp++ = *payload++;
}
slen--;
}
}
if (resultp != dstart && length > 0)
*resultp++ = ' ';
}
*resultp = '\0';
break;
case DSYM_DUID:
/*
* First, determine the type of DUID. We need at least two
* octets worth of data to grab the type code. Once we have
* that, the number of octets required for representation
* depends on the type.
*/
if (length < 2) {
*ierrnop = ITAB_BAD_GRAN;
return (NULL);
}
type = (payload[0] << 8) + payload[1];
switch (type) {
case DHCPV6_DUID_LLT: {
duid_llt_t dllt;
if (length < sizeof (dllt)) {
*ierrnop = ITAB_BAD_GRAN;
return (NULL);
}
(void) memcpy(&dllt, payload, sizeof (dllt));
payload += sizeof (dllt);
length -= sizeof (dllt);
n_entries = sizeof ("1,65535,4294967295,") +
length * 3;
if ((result = malloc(n_entries)) == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) snprintf(result, n_entries, "%d,%u,%u,", type,
ntohs(dllt.dllt_hwtype), ntohl(dllt.dllt_time));
break;
}
case DHCPV6_DUID_EN: {
duid_en_t den;
if (length < sizeof (den)) {
*ierrnop = ITAB_BAD_GRAN;
return (NULL);
}
(void) memcpy(&den, payload, sizeof (den));
payload += sizeof (den);
length -= sizeof (den);
n_entries = sizeof ("2,4294967295,") + length * 2;
if ((result = malloc(n_entries)) == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) snprintf(result, n_entries, "%d,%u,", type,
DHCPV6_GET_ENTNUM(&den));
break;
}
case DHCPV6_DUID_LL: {
duid_ll_t dll;
if (length < sizeof (dll)) {
*ierrnop = ITAB_BAD_GRAN;
return (NULL);
}
(void) memcpy(&dll, payload, sizeof (dll));
payload += sizeof (dll);
length -= sizeof (dll);
n_entries = sizeof ("3,65535,") + length * 3;
if ((result = malloc(n_entries)) == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) snprintf(result, n_entries, "%d,%u,", type,
ntohs(dll.dll_hwtype));
break;
}
default:
n_entries = sizeof ("0,") + length * 2;
if ((result = malloc(n_entries)) == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
(void) snprintf(result, n_entries, "%d,", type);
break;
}
resultp = result + strlen(result);
n_entries -= strlen(result);
if (type == DHCPV6_DUID_LLT || type == DHCPV6_DUID_LL) {
if (length > 0) {
resultp += snprintf(resultp, 3, "%02X",
*payload++);
length--;
}
while (length-- > 0) {
resultp += snprintf(resultp, 4, ":%02X",
*payload++);
}
} else {
while (length-- > 0) {
resultp += snprintf(resultp, 3, "%02X",
*payload++);
}
}
break;
case DSYM_OCTET:
result = malloc(n_entries * (sizeof ("0xNN") + 1));
if (result == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
result[0] = '\0';
resultp = result;
if (n_entries > 0) {
resultp += sprintf(resultp, "0x%02X", *payload++);
n_entries--;
}
while (n_entries-- > 0)
resultp += sprintf(resultp, " 0x%02X", *payload++);
break;
case DSYM_IP:
case DSYM_IPV6:
if ((length / type_size) % ie->ds_gran != 0) {
*ierrnop = ITAB_BAD_GRAN;
inittab_msg("inittab_decode: number of entries "
"not compatible with option granularity");
return (NULL);
}
result = malloc(n_entries * (ie->ds_type == DSYM_IP ?
INET_ADDRSTRLEN : INET6_ADDRSTRLEN));
if (result == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
for (resultp = result; n_entries != 0; n_entries--) {
if (ie->ds_type == DSYM_IP) {
(void) memcpy(&in_addr.s_addr, payload,
sizeof (ipaddr_t));
(void) strcpy(resultp, inet_ntoa(in_addr));
} else {
(void) memcpy(&in6_addr, payload,
sizeof (in6_addr));
(void) inet_ntop(AF_INET6, &in6_addr, resultp,
INET6_ADDRSTRLEN);
}
resultp += strlen(resultp);
if (n_entries > 1)
*resultp++ = ' ';
payload += type_size;
}
*resultp = '\0';
break;
case DSYM_NUMBER: /* FALLTHRU */
case DSYM_UNUMBER8: /* FALLTHRU */
case DSYM_SNUMBER8: /* FALLTHRU */
case DSYM_UNUMBER16: /* FALLTHRU */
case DSYM_SNUMBER16: /* FALLTHRU */
case DSYM_UNUMBER32: /* FALLTHRU */
case DSYM_SNUMBER32: /* FALLTHRU */
case DSYM_UNUMBER64: /* FALLTHRU */
case DSYM_SNUMBER64:
is_signed = (ie->ds_type == DSYM_SNUMBER64 ||
ie->ds_type == DSYM_SNUMBER32 ||
ie->ds_type == DSYM_SNUMBER16 ||
ie->ds_type == DSYM_SNUMBER8);
result = malloc(n_entries * ITAB_MAX_NUMBER_LEN);
if (result == NULL) {
*ierrnop = ITAB_NOMEM;
return (NULL);
}
if (decode_number(n_entries, type_size, is_signed, ie->ds_gran,
payload, result, ierrnop) == B_FALSE) {
free(result);
return (NULL);
}
break;
default:
inittab_msg("inittab_decode: unsupported type `%d'",
ie->ds_type);
break;
}
return (result);
}
/*
* inittab_encode(): converts a string representation of a given datatype into
* binary; used for encoding ascii values into a form that
* can be put in DHCP packets to be sent on the wire.
*
* input: dhcp_symbol_t *: the entry describing the value option
* const char *: the value to convert
* uint16_t *: set to the length of the binary data returned
* boolean_t: if false, return a full DHCP option
* output: uchar_t *: a dynamically allocated byte array with converted data
*/
uchar_t *
inittab_encode(const dhcp_symbol_t *ie, const char *value, uint16_t *lengthp,
boolean_t just_payload)
{
int ierrno;
return (inittab_encode_e(ie, value, lengthp, just_payload, &ierrno));
}
/*
* inittab_decode(): converts a binary representation of a given datatype into
* a string; used for decoding DHCP options in a packet off
* the wire into ascii
*
* input: dhcp_symbol_t *: the entry describing the payload option
* uchar_t *: the payload to convert
* uint16_t: the payload length (only used if just_payload is true)
* boolean_t: if false, payload is assumed to be a DHCP option
* output: char *: a dynamically allocated string containing the converted data
*/
char *
inittab_decode(const dhcp_symbol_t *ie, const uchar_t *payload, uint16_t length,
boolean_t just_payload)
{
int ierrno;
return (inittab_decode_e(ie, payload, length, just_payload, &ierrno));
}
/*
* inittab_msg(): prints diagnostic messages if INITTAB_DEBUG is set
*
* const char *: a printf-like format string
* ...: arguments to the format string
* output: void
*/
/*PRINTFLIKE1*/
static void
inittab_msg(const char *fmt, ...)
{
enum { INITTAB_MSG_CHECK, INITTAB_MSG_RETURN, INITTAB_MSG_OUTPUT };
va_list ap;
char buf[512];
static int action = INITTAB_MSG_CHECK;
/*
* check DHCP_INITTAB_DEBUG the first time in; thereafter, use
* the the cached result (stored in `action').
*/
switch (action) {
case INITTAB_MSG_CHECK:
if (getenv("DHCP_INITTAB_DEBUG") == NULL) {
action = INITTAB_MSG_RETURN;
return;
}
action = INITTAB_MSG_OUTPUT;
/* FALLTHRU into INITTAB_MSG_OUTPUT */
case INITTAB_MSG_OUTPUT:
va_start(ap, fmt);
(void) snprintf(buf, sizeof (buf), "inittab: %s\n", fmt);
(void) vfprintf(stderr, buf, ap);
va_end(ap);
break;
case INITTAB_MSG_RETURN:
return;
}
}
/*
* decode_number(): decodes a sequence of numbers from binary into ascii;
* binary is coming off of the network, so it is in nbo
*
* input: uint8_t: the number of "granularity" numbers to decode
* uint8_t: the length of each number
* boolean_t: whether the numbers should be considered signed
* uint8_t: the number of numbers per granularity
* const uint8_t *: where to decode the numbers from
* char *: where to decode the numbers to
* output: boolean_t: true on successful conversion, false on failure
*/
static boolean_t
decode_number(uint8_t n_entries, uint8_t size, boolean_t is_signed,
uint8_t granularity, const uint8_t *from, char *to, int *ierrnop)
{
uint16_t uint16;
uint32_t uint32;
uint64_t uint64;
if (granularity != 0) {
if ((granularity % n_entries) != 0) {
inittab_msg("decode_number: number of entries "
"not compatible with option granularity");
*ierrnop = ITAB_BAD_GRAN;
return (B_FALSE);
}
}
for (; n_entries != 0; n_entries--, from += size) {
switch (size) {
case 1:
to += sprintf(to, is_signed ? "%d" : "%u", *from);
break;
case 2:
(void) memcpy(&uint16, from, 2);
to += sprintf(to, is_signed ? "%hd" : "%hu",
ntohs(uint16));
break;
case 3:
uint32 = 0;
(void) memcpy((uchar_t *)&uint32 + 1, from, 3);
to += sprintf(to, is_signed ? "%ld" : "%lu",
ntohl(uint32));
break;
case 4:
(void) memcpy(&uint32, from, 4);
to += sprintf(to, is_signed ? "%ld" : "%lu",
ntohl(uint32));
break;
case 8:
(void) memcpy(&uint64, from, 8);
to += sprintf(to, is_signed ? "%lld" : "%llu",
ntohll(uint64));
break;
default:
*ierrnop = ITAB_BAD_NUMBER;
inittab_msg("decode_number: unknown integer size `%d'",
size);
return (B_FALSE);
}
if (n_entries > 0)
*to++ = ' ';
}
*to = '\0';
return (B_TRUE);
}
/*
* encode_number(): encodes a sequence of numbers from ascii into binary;
* number will end up on the wire so it needs to be in nbo
*
* input: uint8_t: the number of "granularity" numbers to encode
* uint8_t: the length of each number
* boolean_t: whether the numbers should be considered signed
* uint8_t: the number of numbers per granularity
* const uint8_t *: where to encode the numbers from
* char *: where to encode the numbers to
* int *: set to extended error code if error occurs.
* output: boolean_t: true on successful conversion, false on failure
*/
static boolean_t /* ARGSUSED */
encode_number(uint8_t n_entries, uint8_t size, boolean_t is_signed,
uint8_t granularity, const char *from, uint8_t *to, int *ierrnop)
{
uint8_t i;
uint16_t uint16;
uint32_t uint32;
uint64_t uint64;
char *endptr;
if (granularity != 0) {
if ((granularity % n_entries) != 0) {
*ierrnop = ITAB_BAD_GRAN;
inittab_msg("encode_number: number of entries "
"not compatible with option granularity");
return (B_FALSE);
}
}
for (i = 0; i < n_entries; i++, from++, to += size) {
/*
* totally obscure c factoid: it is legal to pass a
* string representing a negative number to strtoul().
* in this case, strtoul() will return an unsigned
* long that if cast to a long, would represent the
* negative number. we take advantage of this to
* cut down on code here.
*/
errno = 0;
switch (size) {
case 1:
*to = strtoul(from, &endptr, 0);
if (errno != 0 || from == endptr) {
goto error;
}
break;
case 2:
uint16 = htons(strtoul(from, &endptr, 0));
if (errno != 0 || from == endptr) {
goto error;
}
(void) memcpy(to, &uint16, 2);
break;
case 3:
uint32 = htonl(strtoul(from, &endptr, 0));
if (errno != 0 || from == endptr) {
goto error;
}
(void) memcpy(to, (uchar_t *)&uint32 + 1, 3);
break;
case 4:
uint32 = htonl(strtoul(from, &endptr, 0));
if (errno != 0 || from == endptr) {
goto error;
}
(void) memcpy(to, &uint32, 4);
break;
case 8:
uint64 = htonll(strtoull(from, &endptr, 0));
if (errno != 0 || from == endptr) {
goto error;
}
(void) memcpy(to, &uint64, 8);
break;
default:
inittab_msg("encode_number: unsupported integer "
"size `%d'", size);
return (B_FALSE);
}
from = strchr(from, ' ');
if (from == NULL)
break;
}
return (B_TRUE);
error:
*ierrnop = ITAB_BAD_NUMBER;
inittab_msg("encode_number: cannot convert to integer");
return (B_FALSE);
}
/*
* inittab_type_to_size(): given an inittab entry, returns size of one entry of
* its type
*
* input: dhcp_symbol_t *: an entry of the given type
* output: uint8_t: the size in bytes of an entry of that type
*/
uint8_t
inittab_type_to_size(const dhcp_symbol_t *ie)
{
switch (ie->ds_type) {
case DSYM_DUID:
case DSYM_DOMAIN:
case DSYM_ASCII:
case DSYM_OCTET:
case DSYM_SNUMBER8:
case DSYM_UNUMBER8:
return (1);
case DSYM_SNUMBER16:
case DSYM_UNUMBER16:
return (2);
case DSYM_UNUMBER24:
return (3);
case DSYM_SNUMBER32:
case DSYM_UNUMBER32:
case DSYM_IP:
return (4);
case DSYM_SNUMBER64:
case DSYM_UNUMBER64:
return (8);
case DSYM_NUMBER:
return (ie->ds_gran);
case DSYM_IPV6:
return (sizeof (in6_addr_t));
}
return (0);
}
/*
* itabcode_to_dsymcode(): maps an inittab category code to its dsym
* representation
*
* input: uchar_t: the inittab category code
* output: dsym_category_t: the dsym category code
*/
static dsym_category_t
itabcode_to_dsymcode(uchar_t itabcode)
{
unsigned int i;
for (i = 0; i < ITAB_CAT_COUNT; i++)
if (category_map[i].cme_itabcode == itabcode)
return (category_map[i].cme_dsymcode);
return (DSYM_BAD_CAT);
}
/*
* category_to_code(): maps a category name to its numeric representation
*
* input: const char *: the category name
* output: uchar_t: its internal code (numeric representation)
*/
static uchar_t
category_to_code(const char *category)
{
unsigned int i;
for (i = 0; i < ITAB_CAT_COUNT; i++)
if (strcasecmp(category_map[i].cme_name, category) == 0)
return (category_map[i].cme_itabcode);
return (0);
}
/*
* our internal table of DHCP option values, used by inittab_verify()
*/
static dhcp_symbol_t inittab_table[] =
{
{ DSYM_INTERNAL, 1024, "Hostname", DSYM_BOOL, 0, 0 },
{ DSYM_INTERNAL, 1025, "LeaseNeg", DSYM_BOOL, 0, 0 },
{ DSYM_INTERNAL, 1026, "EchoVC", DSYM_BOOL, 0, 0 },
{ DSYM_INTERNAL, 1027, "BootPath", DSYM_ASCII, 1, 128 },
{ DSYM_FIELD, 0, "Opcode", DSYM_UNUMBER8, 1, 1 },
{ DSYM_FIELD, 1, "Htype", DSYM_UNUMBER8, 1, 1 },
{ DSYM_FIELD, 2, "HLen", DSYM_UNUMBER8, 1, 1 },
{ DSYM_FIELD, 3, "Hops", DSYM_UNUMBER8, 1, 1 },
{ DSYM_FIELD, 4, "Xid", DSYM_UNUMBER32, 1, 1 },
{ DSYM_FIELD, 8, "Secs", DSYM_UNUMBER16, 1, 1 },
{ DSYM_FIELD, 10, "Flags", DSYM_OCTET, 1, 2 },
{ DSYM_FIELD, 12, "Ciaddr", DSYM_IP, 1, 1 },
{ DSYM_FIELD, 16, "Yiaddr", DSYM_IP, 1, 1 },
{ DSYM_FIELD, 20, "BootSrvA", DSYM_IP, 1, 1 },
{ DSYM_FIELD, 24, "Giaddr", DSYM_IP, 1, 1 },
{ DSYM_FIELD, 28, "Chaddr", DSYM_OCTET, 1, 16 },
{ DSYM_FIELD, 44, "BootSrvN", DSYM_ASCII, 1, 64 },
{ DSYM_FIELD, 108, "BootFile", DSYM_ASCII, 1, 128 },
{ DSYM_FIELD, 236, "Magic", DSYM_OCTET, 1, 4 },
{ DSYM_FIELD, 240, "Options", DSYM_OCTET, 1, 60 },
{ DSYM_STANDARD, 1, "Subnet", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 2, "UTCoffst", DSYM_SNUMBER32, 1, 1 },
{ DSYM_STANDARD, 3, "Router", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 4, "Timeserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 5, "IEN116ns", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 6, "DNSserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 7, "Logserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 8, "Cookie", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 9, "Lprserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 10, "Impress", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 11, "Resource", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 12, "Hostname", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 13, "Bootsize", DSYM_UNUMBER16, 1, 1 },
{ DSYM_STANDARD, 14, "Dumpfile", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 15, "DNSdmain", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 16, "Swapserv", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 17, "Rootpath", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 18, "ExtendP", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 19, "IpFwdF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 20, "NLrouteF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 21, "PFilter", DSYM_IP, 2, 0 },
{ DSYM_STANDARD, 22, "MaxIpSiz", DSYM_UNUMBER16, 1, 1 },
{ DSYM_STANDARD, 23, "IpTTL", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 24, "PathTO", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 25, "PathTbl", DSYM_UNUMBER16, 1, 0 },
{ DSYM_STANDARD, 26, "MTU", DSYM_UNUMBER16, 1, 1 },
{ DSYM_STANDARD, 27, "SameMtuF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 28, "Broadcst", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 29, "MaskDscF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 30, "MaskSupF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 31, "RDiscvyF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 32, "RSolictS", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 33, "StaticRt", DSYM_IP, 2, 0 },
{ DSYM_STANDARD, 34, "TrailerF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 35, "ArpTimeO", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 36, "EthEncap", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 37, "TcpTTL", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 38, "TcpKaInt", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 39, "TcpKaGbF", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 40, "NISdmain", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 41, "NISservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 42, "NTPservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 43, "Vendor", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 44, "NetBNms", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 45, "NetBDsts", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 46, "NetBNdT", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 47, "NetBScop", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 48, "XFontSrv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 49, "XDispMgr", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 50, "ReqIP", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 51, "LeaseTim", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 52, "OptOvrld", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 53, "DHCPType", DSYM_UNUMBER8, 1, 1 },
{ DSYM_STANDARD, 54, "ServerID", DSYM_IP, 1, 1 },
{ DSYM_STANDARD, 55, "ReqList", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 56, "Message", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 57, "DHCP_MTU", DSYM_UNUMBER16, 1, 1 },
{ DSYM_STANDARD, 58, "T1Time", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 59, "T2Time", DSYM_UNUMBER32, 1, 1 },
{ DSYM_STANDARD, 60, "ClassID", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 61, "ClientID", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 62, "NW_dmain", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 63, "NWIPOpts", DSYM_OCTET, 1, 128 },
{ DSYM_STANDARD, 64, "NIS+dom", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 65, "NIS+serv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 66, "TFTPsrvN", DSYM_ASCII, 1, 64 },
{ DSYM_STANDARD, 67, "OptBootF", DSYM_ASCII, 1, 128 },
{ DSYM_STANDARD, 68, "MblIPAgt", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 69, "SMTPserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 70, "POP3serv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 71, "NNTPserv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 72, "WWWservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 73, "Fingersv", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 74, "IRCservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 75, "STservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 76, "STDAservs", DSYM_IP, 1, 0 },
{ DSYM_STANDARD, 77, "UserClas", DSYM_ASCII, 1, 0 },
{ DSYM_STANDARD, 78, "SLP_DA", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 79, "SLP_SS", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 82, "AgentOpt", DSYM_OCTET, 1, 0 },
{ DSYM_STANDARD, 89, "FQDN", DSYM_OCTET, 1, 0 },
{ 0, 0, "", 0, 0, 0 }
};