thr.c revision 35e6f27ad0d19ae8ac48ddcbccbe1af717832f29
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "lint.h"
#include "thr_uberdata.h"
#include <pthread.h>
#include <procfs.h>
#include <sys/uio.h>
#include <ctype.h>
#include "libc.h"
/*
* These symbols should not be exported from libc, but
* /lib/libm.so.2 references _thr_main. libm needs to be fixed.
* Also, some older versions of the Studio compiler/debugger
* components reference them. These need to be fixed, too.
*/
#pragma weak _thr_main = thr_main
#pragma weak _thr_create = thr_create
#pragma weak _thr_join = thr_join
#pragma weak _thr_self = thr_self
#undef errno
extern int errno;
/*
* Between Solaris 2.5 and Solaris 9, __threaded was used to indicate
* "we are linked with libthread". The Sun Workshop 6 update 1 compilation
* system used it illegally (it is a consolidation private symbol).
* To accommodate this and possibly other abusers of the symbol,
* we make it always equal to 1 now that libthread has been folded
* into libc. The new __libc_threaded symbol is used to indicate
* the new meaning, "more than one thread exists".
*/
int __threaded = 1; /* always equal to 1 */
int __libc_threaded = 0; /* zero until first thr_create() */
/*
* thr_concurrency and pthread_concurrency are not used by the library.
* They exist solely to hold and return the values set by calls to
* thr_setconcurrency() and pthread_setconcurrency().
* Because thr_concurrency is affected by the THR_NEW_LWP flag
* to thr_create(), thr_concurrency is protected by link_lock.
*/
static int thr_concurrency = 1;
static int pthread_concurrency;
#define HASHTBLSZ 1024 /* must be a power of two */
#define TIDHASH(tid, udp) (tid & (udp)->hash_mask)
/* initial allocation, just enough for one lwp */
#pragma align 64(init_hash_table)
thr_hash_table_t init_hash_table[1] = {
{ DEFAULTMUTEX, DEFAULTCV, NULL },
};
extern const Lc_interface rtld_funcs[];
/*
* The weak version is known to libc_db and mdb.
*/
#pragma weak _uberdata = __uberdata
uberdata_t __uberdata = {
{ DEFAULTMUTEX, NULL, 0 }, /* link_lock */
{ RECURSIVEMUTEX, NULL, 0 }, /* ld_lock */
{ RECURSIVEMUTEX, NULL, 0 }, /* fork_lock */
{ RECURSIVEMUTEX, NULL, 0 }, /* atfork_lock */
{ RECURSIVEMUTEX, NULL, 0 }, /* callout_lock */
{ DEFAULTMUTEX, NULL, 0 }, /* tdb_hash_lock */
{ 0, }, /* tdb_hash_lock_stats */
{ { 0 }, }, /* siguaction[NSIG] */
{{ DEFAULTMUTEX, NULL, 0 }, /* bucket[NBUCKETS] */
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 },
{ DEFAULTMUTEX, NULL, 0 }},
{ RECURSIVEMUTEX, NULL, NULL }, /* atexit_root */
{ DEFAULTMUTEX, 0, 0, NULL }, /* tsd_metadata */
{ DEFAULTMUTEX, {0, 0}, {0, 0} }, /* tls_metadata */
0, /* primary_map */
0, /* bucket_init */
0, /* pad[0] */
0, /* pad[1] */
{ 0 }, /* uberflags */
NULL, /* queue_head */
init_hash_table, /* thr_hash_table */
1, /* hash_size: size of the hash table */
0, /* hash_mask: hash_size - 1 */
NULL, /* ulwp_one */
NULL, /* all_lwps */
NULL, /* all_zombies */
0, /* nthreads */
0, /* nzombies */
0, /* ndaemons */
0, /* pid */
sigacthandler, /* sigacthandler */
NULL, /* lwp_stacks */
NULL, /* lwp_laststack */
0, /* nfreestack */
10, /* thread_stack_cache */
NULL, /* ulwp_freelist */
NULL, /* ulwp_lastfree */
NULL, /* ulwp_replace_free */
NULL, /* ulwp_replace_last */
NULL, /* atforklist */
NULL, /* robustlocks */
NULL, /* robustlist */
NULL, /* __tdb_bootstrap */
{ /* tdb */
NULL, /* tdb_sync_addr_hash */
0, /* tdb_register_count */
0, /* tdb_hash_alloc_failed */
NULL, /* tdb_sync_addr_free */
NULL, /* tdb_sync_addr_last */
0, /* tdb_sync_alloc */
{ 0, 0 }, /* tdb_ev_global_mask */
tdb_events, /* tdb_events array */
},
};
/*
* The weak version is known to libc_db and mdb.
*/
#pragma weak _tdb_bootstrap = __tdb_bootstrap
uberdata_t **__tdb_bootstrap = NULL;
int thread_queue_fifo = 4;
int thread_queue_dump = 0;
int thread_cond_wait_defer = 0;
int thread_error_detection = 0;
int thread_async_safe = 0;
int thread_stack_cache = 10;
int thread_door_noreserve = 0;
int thread_locks_misaligned = 0;
static ulwp_t *ulwp_alloc(void);
static void ulwp_free(ulwp_t *);
/*
* Insert the lwp into the hash table.
*/
void
hash_in_unlocked(ulwp_t *ulwp, int ix, uberdata_t *udp)
{
ulwp->ul_hash = udp->thr_hash_table[ix].hash_bucket;
udp->thr_hash_table[ix].hash_bucket = ulwp;
ulwp->ul_ix = ix;
}
void
hash_in(ulwp_t *ulwp, uberdata_t *udp)
{
int ix = TIDHASH(ulwp->ul_lwpid, udp);
mutex_t *mp = &udp->thr_hash_table[ix].hash_lock;
lmutex_lock(mp);
hash_in_unlocked(ulwp, ix, udp);
lmutex_unlock(mp);
}
/*
* Delete the lwp from the hash table.
*/
void
hash_out_unlocked(ulwp_t *ulwp, int ix, uberdata_t *udp)
{
ulwp_t **ulwpp;
for (ulwpp = &udp->thr_hash_table[ix].hash_bucket;
ulwp != *ulwpp;
ulwpp = &(*ulwpp)->ul_hash)
;
*ulwpp = ulwp->ul_hash;
ulwp->ul_hash = NULL;
ulwp->ul_ix = -1;
}
void
hash_out(ulwp_t *ulwp, uberdata_t *udp)
{
int ix;
if ((ix = ulwp->ul_ix) >= 0) {
mutex_t *mp = &udp->thr_hash_table[ix].hash_lock;
lmutex_lock(mp);
hash_out_unlocked(ulwp, ix, udp);
lmutex_unlock(mp);
}
}
/*
* Retain stack information for thread structures that are being recycled for
* new threads. All other members of the thread structure should be zeroed.
*/
static void
ulwp_clean(ulwp_t *ulwp)
{
caddr_t stk = ulwp->ul_stk;
size_t mapsiz = ulwp->ul_mapsiz;
size_t guardsize = ulwp->ul_guardsize;
uintptr_t stktop = ulwp->ul_stktop;
size_t stksiz = ulwp->ul_stksiz;
(void) memset(ulwp, 0, sizeof (*ulwp));
ulwp->ul_stk = stk;
ulwp->ul_mapsiz = mapsiz;
ulwp->ul_guardsize = guardsize;
ulwp->ul_stktop = stktop;
ulwp->ul_stksiz = stksiz;
}
static int stackprot;
/*
* Answer the question, "Is the lwp in question really dead?"
* We must inquire of the operating system to be really sure
* because the lwp may have called lwp_exit() but it has not
* yet completed the exit.
*/
static int
dead_and_buried(ulwp_t *ulwp)
{
if (ulwp->ul_lwpid == (lwpid_t)(-1))
return (1);
if (ulwp->ul_dead && ulwp->ul_detached &&
_lwp_kill(ulwp->ul_lwpid, 0) == ESRCH) {
ulwp->ul_lwpid = (lwpid_t)(-1);
return (1);
}
return (0);
}
/*
* Attempt to keep the stack cache within the specified cache limit.
*/
static void
trim_stack_cache(int cache_limit)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *prev = NULL;
ulwp_t **ulwpp = &udp->lwp_stacks;
ulwp_t *ulwp;
ASSERT(udp->nthreads <= 1 || MUTEX_OWNED(&udp->link_lock, self));
while (udp->nfreestack > cache_limit && (ulwp = *ulwpp) != NULL) {
if (dead_and_buried(ulwp)) {
*ulwpp = ulwp->ul_next;
if (ulwp == udp->lwp_laststack)
udp->lwp_laststack = prev;
hash_out(ulwp, udp);
udp->nfreestack--;
(void) munmap(ulwp->ul_stk, ulwp->ul_mapsiz);
/*
* Now put the free ulwp on the ulwp freelist.
*/
ulwp->ul_mapsiz = 0;
ulwp->ul_next = NULL;
if (udp->ulwp_freelist == NULL)
udp->ulwp_freelist = udp->ulwp_lastfree = ulwp;
else {
udp->ulwp_lastfree->ul_next = ulwp;
udp->ulwp_lastfree = ulwp;
}
} else {
prev = ulwp;
ulwpp = &ulwp->ul_next;
}
}
}
/*
* Find an unused stack of the requested size
* or create a new stack of the requested size.
* Return a pointer to the ulwp_t structure referring to the stack, or NULL.
* thr_exit() stores 1 in the ul_dead member.
* thr_join() stores -1 in the ul_lwpid member.
*/
static ulwp_t *
find_stack(size_t stksize, size_t guardsize)
{
static size_t pagesize = 0;
uberdata_t *udp = curthread->ul_uberdata;
size_t mapsize;
ulwp_t *prev;
ulwp_t *ulwp;
ulwp_t **ulwpp;
void *stk;
/*
* The stack is allocated PROT_READ|PROT_WRITE|PROT_EXEC
* unless overridden by the system's configuration.
*/
if (stackprot == 0) { /* do this once */
long lprot = _sysconf(_SC_STACK_PROT);
if (lprot <= 0)
lprot = (PROT_READ|PROT_WRITE|PROT_EXEC);
stackprot = (int)lprot;
}
if (pagesize == 0) /* do this once */
pagesize = _sysconf(_SC_PAGESIZE);
/*
* One megabyte stacks by default, but subtract off
* two pages for the system-created red zones.
* Round up a non-zero stack size to a pagesize multiple.
*/
if (stksize == 0)
stksize = DEFAULTSTACK - 2 * pagesize;
else
stksize = ((stksize + pagesize - 1) & -pagesize);
/*
* Round up the mapping size to a multiple of pagesize.
* Note: mmap() provides at least one page of red zone
* so we deduct that from the value of guardsize.
*/
if (guardsize != 0)
guardsize = ((guardsize + pagesize - 1) & -pagesize) - pagesize;
mapsize = stksize + guardsize;
lmutex_lock(&udp->link_lock);
for (prev = NULL, ulwpp = &udp->lwp_stacks;
(ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_next) {
if (ulwp->ul_mapsiz == mapsize &&
ulwp->ul_guardsize == guardsize &&
dead_and_buried(ulwp)) {
/*
* The previous lwp is gone; reuse the stack.
* Remove the ulwp from the stack list.
*/
*ulwpp = ulwp->ul_next;
ulwp->ul_next = NULL;
if (ulwp == udp->lwp_laststack)
udp->lwp_laststack = prev;
hash_out(ulwp, udp);
udp->nfreestack--;
lmutex_unlock(&udp->link_lock);
ulwp_clean(ulwp);
return (ulwp);
}
}
/*
* None of the cached stacks matched our mapping size.
* Reduce the stack cache to get rid of possibly
* very old stacks that will never be reused.
*/
if (udp->nfreestack > udp->thread_stack_cache)
trim_stack_cache(udp->thread_stack_cache);
else if (udp->nfreestack > 0)
trim_stack_cache(udp->nfreestack - 1);
lmutex_unlock(&udp->link_lock);
/*
* Create a new stack.
*/
if ((stk = mmap(NULL, mapsize, stackprot,
MAP_PRIVATE|MAP_NORESERVE|MAP_ANON, -1, (off_t)0)) != MAP_FAILED) {
/*
* We have allocated our stack. Now allocate the ulwp.
*/
ulwp = ulwp_alloc();
if (ulwp == NULL)
(void) munmap(stk, mapsize);
else {
ulwp->ul_stk = stk;
ulwp->ul_mapsiz = mapsize;
ulwp->ul_guardsize = guardsize;
ulwp->ul_stktop = (uintptr_t)stk + mapsize;
ulwp->ul_stksiz = stksize;
if (guardsize) /* protect the extra red zone */
(void) mprotect(stk, guardsize, PROT_NONE);
}
}
return (ulwp);
}
/*
* Get a ulwp_t structure from the free list or allocate a new one.
* Such ulwp_t's do not have a stack allocated by the library.
*/
static ulwp_t *
ulwp_alloc(void)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
size_t tls_size;
ulwp_t *prev;
ulwp_t *ulwp;
ulwp_t **ulwpp;
caddr_t data;
lmutex_lock(&udp->link_lock);
for (prev = NULL, ulwpp = &udp->ulwp_freelist;
(ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_next) {
if (dead_and_buried(ulwp)) {
*ulwpp = ulwp->ul_next;
ulwp->ul_next = NULL;
if (ulwp == udp->ulwp_lastfree)
udp->ulwp_lastfree = prev;
hash_out(ulwp, udp);
lmutex_unlock(&udp->link_lock);
ulwp_clean(ulwp);
return (ulwp);
}
}
lmutex_unlock(&udp->link_lock);
tls_size = roundup64(udp->tls_metadata.static_tls.tls_size);
data = lmalloc(sizeof (*ulwp) + tls_size);
if (data != NULL) {
/* LINTED pointer cast may result in improper alignment */
ulwp = (ulwp_t *)(data + tls_size);
}
return (ulwp);
}
/*
* Free a ulwp structure.
* If there is an associated stack, put it on the stack list and
* munmap() previously freed stacks up to the residual cache limit.
* Else put it on the ulwp free list and never call lfree() on it.
*/
static void
ulwp_free(ulwp_t *ulwp)
{
uberdata_t *udp = curthread->ul_uberdata;
ASSERT(udp->nthreads <= 1 || MUTEX_OWNED(&udp->link_lock, curthread));
ulwp->ul_next = NULL;
if (ulwp == udp->ulwp_one) /* don't reuse the primoridal stack */
/*EMPTY*/;
else if (ulwp->ul_mapsiz != 0) {
if (udp->lwp_stacks == NULL)
udp->lwp_stacks = udp->lwp_laststack = ulwp;
else {
udp->lwp_laststack->ul_next = ulwp;
udp->lwp_laststack = ulwp;
}
if (++udp->nfreestack > udp->thread_stack_cache)
trim_stack_cache(udp->thread_stack_cache);
} else {
if (udp->ulwp_freelist == NULL)
udp->ulwp_freelist = udp->ulwp_lastfree = ulwp;
else {
udp->ulwp_lastfree->ul_next = ulwp;
udp->ulwp_lastfree = ulwp;
}
}
}
/*
* Find a named lwp and return a pointer to its hash list location.
* On success, returns with the hash lock held.
*/
ulwp_t **
find_lwpp(thread_t tid)
{
uberdata_t *udp = curthread->ul_uberdata;
int ix = TIDHASH(tid, udp);
mutex_t *mp = &udp->thr_hash_table[ix].hash_lock;
ulwp_t *ulwp;
ulwp_t **ulwpp;
if (tid == 0)
return (NULL);
lmutex_lock(mp);
for (ulwpp = &udp->thr_hash_table[ix].hash_bucket;
(ulwp = *ulwpp) != NULL;
ulwpp = &ulwp->ul_hash) {
if (ulwp->ul_lwpid == tid)
return (ulwpp);
}
lmutex_unlock(mp);
return (NULL);
}
/*
* Wake up all lwps waiting on this lwp for some reason.
*/
void
ulwp_broadcast(ulwp_t *ulwp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(MUTEX_OWNED(ulwp_mutex(ulwp, udp), self));
(void) cond_broadcast(ulwp_condvar(ulwp, udp));
}
/*
* Find a named lwp and return a pointer to it.
* Returns with the hash lock held.
*/
ulwp_t *
find_lwp(thread_t tid)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp = NULL;
ulwp_t **ulwpp;
if (self->ul_lwpid == tid) {
ulwp = self;
ulwp_lock(ulwp, udp);
} else if ((ulwpp = find_lwpp(tid)) != NULL) {
ulwp = *ulwpp;
}
if (ulwp && ulwp->ul_dead) {
ulwp_unlock(ulwp, udp);
ulwp = NULL;
}
return (ulwp);
}
int
_thrp_create(void *stk, size_t stksize, void *(*func)(void *), void *arg,
long flags, thread_t *new_thread, size_t guardsize)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ucontext_t uc;
uint_t lwp_flags;
thread_t tid;
int error;
ulwp_t *ulwp;
/*
* Enforce the restriction of not creating any threads
* until the primary link map has been initialized.
* Also, disallow thread creation to a child of vfork().
*/
if (!self->ul_primarymap || self->ul_vfork)
return (ENOTSUP);
if (udp->hash_size == 1)
finish_init();
if ((stk || stksize) && stksize < MINSTACK)
return (EINVAL);
if (stk == NULL) {
if ((ulwp = find_stack(stksize, guardsize)) == NULL)
return (ENOMEM);
stksize = ulwp->ul_mapsiz - ulwp->ul_guardsize;
} else {
/* initialize the private stack */
if ((ulwp = ulwp_alloc()) == NULL)
return (ENOMEM);
ulwp->ul_stk = stk;
ulwp->ul_stktop = (uintptr_t)stk + stksize;
ulwp->ul_stksiz = stksize;
}
/* ulwp is not in the hash table; make sure hash_out() doesn't fail */
ulwp->ul_ix = -1;
ulwp->ul_errnop = &ulwp->ul_errno;
lwp_flags = LWP_SUSPENDED;
if (flags & (THR_DETACHED|THR_DAEMON)) {
flags |= THR_DETACHED;
lwp_flags |= LWP_DETACHED;
}
if (flags & THR_DAEMON)
lwp_flags |= LWP_DAEMON;
/* creating a thread: enforce mt-correctness in mutex_lock() */
self->ul_async_safe = 1;
/* per-thread copies of global variables, for speed */
ulwp->ul_queue_fifo = self->ul_queue_fifo;
ulwp->ul_cond_wait_defer = self->ul_cond_wait_defer;
ulwp->ul_error_detection = self->ul_error_detection;
ulwp->ul_async_safe = self->ul_async_safe;
ulwp->ul_max_spinners = self->ul_max_spinners;
ulwp->ul_adaptive_spin = self->ul_adaptive_spin;
ulwp->ul_queue_spin = self->ul_queue_spin;
ulwp->ul_door_noreserve = self->ul_door_noreserve;
ulwp->ul_misaligned = self->ul_misaligned;
/* new thread inherits creating thread's scheduling parameters */
ulwp->ul_policy = self->ul_policy;
ulwp->ul_pri = (self->ul_epri? self->ul_epri : self->ul_pri);
ulwp->ul_cid = self->ul_cid;
ulwp->ul_rtclassid = self->ul_rtclassid;
ulwp->ul_primarymap = self->ul_primarymap;
ulwp->ul_self = ulwp;
ulwp->ul_uberdata = udp;
/* debugger support */
ulwp->ul_usropts = flags;
#ifdef __sparc
/*
* We cache several instructions in the thread structure for use
* by the fasttrap DTrace provider. When changing this, read the
* comment in fasttrap.h for the all the other places that must
* be changed.
*/
ulwp->ul_dsave = 0x9de04000; /* save %g1, %g0, %sp */
ulwp->ul_drestore = 0x81e80000; /* restore %g0, %g0, %g0 */
ulwp->ul_dftret = 0x91d0203a; /* ta 0x3a */
ulwp->ul_dreturn = 0x81ca0000; /* return %o0 */
#endif
ulwp->ul_startpc = func;
ulwp->ul_startarg = arg;
_fpinherit(ulwp);
/*
* Defer signals on the new thread until its TLS constructors
* have been called. _thrp_setup() will call sigon() after
* it has called tls_setup().
*/
ulwp->ul_sigdefer = 1;
error = setup_context(&uc, _thrp_setup, ulwp,
(caddr_t)ulwp->ul_stk + ulwp->ul_guardsize, stksize);
if (error != 0 && stk != NULL) /* inaccessible stack */
error = EFAULT;
/*
* Call enter_critical() to avoid being suspended until we
* have linked the new thread into the proper lists.
* This is necessary because forkall() and fork1() must
* suspend all threads and they must see a complete list.
*/
enter_critical(self);
uc.uc_sigmask = ulwp->ul_sigmask = self->ul_sigmask;
if (error != 0 ||
(error = __lwp_create(&uc, lwp_flags, &tid)) != 0) {
exit_critical(self);
ulwp->ul_lwpid = (lwpid_t)(-1);
ulwp->ul_dead = 1;
ulwp->ul_detached = 1;
lmutex_lock(&udp->link_lock);
ulwp_free(ulwp);
lmutex_unlock(&udp->link_lock);
return (error);
}
self->ul_nocancel = 0; /* cancellation is now possible */
udp->uberflags.uf_mt = 1;
if (new_thread)
*new_thread = tid;
if (flags & THR_DETACHED)
ulwp->ul_detached = 1;
ulwp->ul_lwpid = tid;
ulwp->ul_stop = TSTP_REGULAR;
if (flags & THR_SUSPENDED)
ulwp->ul_created = 1;
lmutex_lock(&udp->link_lock);
ulwp->ul_forw = udp->all_lwps;
ulwp->ul_back = udp->all_lwps->ul_back;
ulwp->ul_back->ul_forw = ulwp;
ulwp->ul_forw->ul_back = ulwp;
hash_in(ulwp, udp);
udp->nthreads++;
if (flags & THR_DAEMON)
udp->ndaemons++;
if (flags & THR_NEW_LWP)
thr_concurrency++;
__libc_threaded = 1; /* inform stdio */
lmutex_unlock(&udp->link_lock);
if (__td_event_report(self, TD_CREATE, udp)) {
self->ul_td_evbuf.eventnum = TD_CREATE;
self->ul_td_evbuf.eventdata = (void *)(uintptr_t)tid;
tdb_event(TD_CREATE, udp);
}
exit_critical(self);
if (!(flags & THR_SUSPENDED))
(void) _thrp_continue(tid, TSTP_REGULAR);
return (0);
}
int
thr_create(void *stk, size_t stksize, void *(*func)(void *), void *arg,
long flags, thread_t *new_thread)
{
return (_thrp_create(stk, stksize, func, arg, flags, new_thread, 0));
}
/*
* A special cancellation cleanup hook for DCE.
* cleanuphndlr, when it is not NULL, will contain a callback
* function to be called before a thread is terminated in
* thr_exit() as a result of being cancelled.
*/
static void (*cleanuphndlr)(void) = NULL;
/*
* _pthread_setcleanupinit: sets the cleanup hook.
*/
int
_pthread_setcleanupinit(void (*func)(void))
{
cleanuphndlr = func;
return (0);
}
void
_thrp_exit()
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *replace = NULL;
if (__td_event_report(self, TD_DEATH, udp)) {
self->ul_td_evbuf.eventnum = TD_DEATH;
tdb_event(TD_DEATH, udp);
}
ASSERT(self->ul_sigdefer != 0);
lmutex_lock(&udp->link_lock);
udp->nthreads--;
if (self->ul_usropts & THR_NEW_LWP)
thr_concurrency--;
if (self->ul_usropts & THR_DAEMON)
udp->ndaemons--;
else if (udp->nthreads == udp->ndaemons) {
/*
* We are the last non-daemon thread exiting.
* Exit the process. We retain our TSD and TLS so
* that atexit() application functions can use them.
*/
lmutex_unlock(&udp->link_lock);
exit(0);
thr_panic("_thrp_exit(): exit(0) returned");
}
lmutex_unlock(&udp->link_lock);
tsd_exit(); /* deallocate thread-specific data */
tls_exit(); /* deallocate thread-local storage */
heldlock_exit(); /* deal with left-over held locks */
/* block all signals to finish exiting */
block_all_signals(self);
/* also prevent ourself from being suspended */
enter_critical(self);
rwl_free(self);
lmutex_lock(&udp->link_lock);
ulwp_free(self);
(void) ulwp_lock(self, udp);
if (self->ul_mapsiz && !self->ul_detached) {
/*
* We want to free the stack for reuse but must keep
* the ulwp_t struct for the benefit of thr_join().
* For this purpose we allocate a replacement ulwp_t.
*/
if ((replace = udp->ulwp_replace_free) == NULL)
replace = lmalloc(REPLACEMENT_SIZE);
else if ((udp->ulwp_replace_free = replace->ul_next) == NULL)
udp->ulwp_replace_last = NULL;
}
if (udp->all_lwps == self)
udp->all_lwps = self->ul_forw;
if (udp->all_lwps == self)
udp->all_lwps = NULL;
else {
self->ul_forw->ul_back = self->ul_back;
self->ul_back->ul_forw = self->ul_forw;
}
self->ul_forw = self->ul_back = NULL;
#if defined(THREAD_DEBUG)
/* collect queue lock statistics before marking ourself dead */
record_spin_locks(self);
#endif
self->ul_dead = 1;
self->ul_pleasestop = 0;
if (replace != NULL) {
int ix = self->ul_ix; /* the hash index */
(void) memcpy(replace, self, REPLACEMENT_SIZE);
replace->ul_self = replace;
replace->ul_next = NULL; /* clone not on stack list */
replace->ul_mapsiz = 0; /* allows clone to be freed */
replace->ul_replace = 1; /* requires clone to be freed */
hash_out_unlocked(self, ix, udp);
hash_in_unlocked(replace, ix, udp);
ASSERT(!(self->ul_detached));
self->ul_detached = 1; /* this frees the stack */
self->ul_schedctl = NULL;
self->ul_schedctl_called = &udp->uberflags;
set_curthread(self = replace);
/*
* Having just changed the address of curthread, we
* must reset the ownership of the locks we hold so
* that assertions will not fire when we release them.
*/
udp->link_lock.mutex_owner = (uintptr_t)self;
ulwp_mutex(self, udp)->mutex_owner = (uintptr_t)self;
/*
* NOTE:
* On i386, %gs still references the original, not the
* replacement, ulwp structure. Fetching the replacement
* curthread pointer via %gs:0 works correctly since the
* original ulwp structure will not be reallocated until
* this lwp has completed its lwp_exit() system call (see
* dead_and_buried()), but from here on out, we must make
* no references to %gs:<offset> other than %gs:0.
*/
}
/*
* Put non-detached terminated threads in the all_zombies list.
*/
if (!self->ul_detached) {
udp->nzombies++;
if (udp->all_zombies == NULL) {
ASSERT(udp->nzombies == 1);
udp->all_zombies = self->ul_forw = self->ul_back = self;
} else {
self->ul_forw = udp->all_zombies;
self->ul_back = udp->all_zombies->ul_back;
self->ul_back->ul_forw = self;
self->ul_forw->ul_back = self;
}
}
/*
* Notify everyone waiting for this thread.
*/
ulwp_broadcast(self);
(void) ulwp_unlock(self, udp);
/*
* Prevent any more references to the schedctl data.
* We are exiting and continue_fork() may not find us.
* Do this just before dropping link_lock, since fork
* serializes on link_lock.
*/
self->ul_schedctl = NULL;
self->ul_schedctl_called = &udp->uberflags;
lmutex_unlock(&udp->link_lock);
ASSERT(self->ul_critical == 1);
ASSERT(self->ul_preempt == 0);
_lwp_terminate(); /* never returns */
thr_panic("_thrp_exit(): _lwp_terminate() returned");
}
#if defined(THREAD_DEBUG)
void
collect_queue_statistics()
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
if (thread_queue_dump) {
lmutex_lock(&udp->link_lock);
if ((ulwp = udp->all_lwps) != NULL) {
do {
record_spin_locks(ulwp);
} while ((ulwp = ulwp->ul_forw) != udp->all_lwps);
}
lmutex_unlock(&udp->link_lock);
}
}
#endif
static void __NORETURN
_thrp_exit_common(void *status, int unwind)
{
ulwp_t *self = curthread;
int cancelled = (self->ul_cancel_pending && status == PTHREAD_CANCELED);
ASSERT(self->ul_critical == 0 && self->ul_preempt == 0);
/*
* Disable cancellation and call the special DCE cancellation
* cleanup hook if it is enabled. Do nothing else before calling
* the DCE cancellation cleanup hook; it may call longjmp() and
* never return here.
*/
self->ul_cancel_disabled = 1;
self->ul_cancel_async = 0;
self->ul_save_async = 0;
self->ul_cancelable = 0;
self->ul_cancel_pending = 0;
set_cancel_pending_flag(self, 1);
if (cancelled && cleanuphndlr != NULL)
(*cleanuphndlr)();
/*
* Block application signals while we are exiting.
* We call out to C++, TSD, and TLS destructors while exiting
* and these are application-defined, so we cannot be assured
* that they won't reset the signal mask. We use sigoff() to
* defer any signals that may be received as a result of this
* bad behavior. Such signals will be lost to the process
* when the thread finishes exiting.
*/
(void) thr_sigsetmask(SIG_SETMASK, &maskset, NULL);
sigoff(self);
self->ul_rval = status;
/*
* If thr_exit is being called from the places where
* C++ destructors are to be called such as cancellation
* points, then set this flag. It is checked in _t_cancel()
* to decide whether _ex_unwind() is to be called or not.
*/
if (unwind)
self->ul_unwind = 1;
/*
* _thrp_unwind() will eventually call _thrp_exit().
* It never returns.
*/
_thrp_unwind(NULL);
thr_panic("_thrp_exit_common(): _thrp_unwind() returned");
for (;;) /* to shut the compiler up about __NORETURN */
continue;
}
/*
* Called when a thread returns from its start function.
* We are at the top of the stack; no unwinding is necessary.
*/
void
_thrp_terminate(void *status)
{
_thrp_exit_common(status, 0);
}
#pragma weak pthread_exit = thr_exit
#pragma weak _thr_exit = thr_exit
void
thr_exit(void *status)
{
_thrp_exit_common(status, 1);
}
int
_thrp_join(thread_t tid, thread_t *departed, void **status, int do_cancel)
{
uberdata_t *udp = curthread->ul_uberdata;
mutex_t *mp;
void *rval;
thread_t found;
ulwp_t *ulwp;
ulwp_t **ulwpp;
int replace;
int error;
if (do_cancel)
error = lwp_wait(tid, &found);
else {
while ((error = __lwp_wait(tid, &found)) == EINTR)
;
}
if (error)
return (error);
/*
* We must hold link_lock to avoid a race condition with find_stack().
*/
lmutex_lock(&udp->link_lock);
if ((ulwpp = find_lwpp(found)) == NULL) {
/*
* lwp_wait() found an lwp that the library doesn't know
* about. It must have been created with _lwp_create().
* Just return its lwpid; we can't know its status.
*/
lmutex_unlock(&udp->link_lock);
rval = NULL;
} else {
/*
* Remove ulwp from the hash table.
*/
ulwp = *ulwpp;
*ulwpp = ulwp->ul_hash;
ulwp->ul_hash = NULL;
/*
* Remove ulwp from all_zombies list.
*/
ASSERT(udp->nzombies >= 1);
if (udp->all_zombies == ulwp)
udp->all_zombies = ulwp->ul_forw;
if (udp->all_zombies == ulwp)
udp->all_zombies = NULL;
else {
ulwp->ul_forw->ul_back = ulwp->ul_back;
ulwp->ul_back->ul_forw = ulwp->ul_forw;
}
ulwp->ul_forw = ulwp->ul_back = NULL;
udp->nzombies--;
ASSERT(ulwp->ul_dead && !ulwp->ul_detached &&
!(ulwp->ul_usropts & (THR_DETACHED|THR_DAEMON)));
/*
* We can't call ulwp_unlock(ulwp) after we set
* ulwp->ul_ix = -1 so we have to get a pointer to the
* ulwp's hash table mutex now in order to unlock it below.
*/
mp = ulwp_mutex(ulwp, udp);
ulwp->ul_lwpid = (lwpid_t)(-1);
ulwp->ul_ix = -1;
rval = ulwp->ul_rval;
replace = ulwp->ul_replace;
lmutex_unlock(mp);
if (replace) {
ulwp->ul_next = NULL;
if (udp->ulwp_replace_free == NULL)
udp->ulwp_replace_free =
udp->ulwp_replace_last = ulwp;
else {
udp->ulwp_replace_last->ul_next = ulwp;
udp->ulwp_replace_last = ulwp;
}
}
lmutex_unlock(&udp->link_lock);
}
if (departed != NULL)
*departed = found;
if (status != NULL)
*status = rval;
return (0);
}
int
thr_join(thread_t tid, thread_t *departed, void **status)
{
int error = _thrp_join(tid, departed, status, 1);
return ((error == EINVAL)? ESRCH : error);
}
/*
* pthread_join() differs from Solaris thr_join():
* It does not return the departed thread's id
* and hence does not have a "departed" argument.
* It returns EINVAL if tid refers to a detached thread.
*/
#pragma weak _pthread_join = pthread_join
int
pthread_join(pthread_t tid, void **status)
{
return ((tid == 0)? ESRCH : _thrp_join(tid, NULL, status, 1));
}
int
pthread_detach(pthread_t tid)
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
ulwp_t **ulwpp;
int error = 0;
if ((ulwpp = find_lwpp(tid)) == NULL)
return (ESRCH);
ulwp = *ulwpp;
if (ulwp->ul_dead) {
ulwp_unlock(ulwp, udp);
error = _thrp_join(tid, NULL, NULL, 0);
} else {
error = __lwp_detach(tid);
ulwp->ul_detached = 1;
ulwp->ul_usropts |= THR_DETACHED;
ulwp_unlock(ulwp, udp);
}
return (error);
}
static const char *
ematch(const char *ev, const char *match)
{
int c;
while ((c = *match++) != '\0') {
if (*ev++ != c)
return (NULL);
}
if (*ev++ != '=')
return (NULL);
return (ev);
}
static int
envvar(const char *ev, const char *match, int limit)
{
int val = -1;
const char *ename;
if ((ename = ematch(ev, match)) != NULL) {
int c;
for (val = 0; (c = *ename) != '\0'; ename++) {
if (!isdigit(c)) {
val = -1;
break;
}
val = val * 10 + (c - '0');
if (val > limit) {
val = limit;
break;
}
}
}
return (val);
}
static void
etest(const char *ev)
{
int value;
if ((value = envvar(ev, "QUEUE_SPIN", 1000000)) >= 0)
thread_queue_spin = value;
if ((value = envvar(ev, "ADAPTIVE_SPIN", 1000000)) >= 0)
thread_adaptive_spin = value;
if ((value = envvar(ev, "MAX_SPINNERS", 255)) >= 0)
thread_max_spinners = value;
if ((value = envvar(ev, "QUEUE_FIFO", 8)) >= 0)
thread_queue_fifo = value;
#if defined(THREAD_DEBUG)
if ((value = envvar(ev, "QUEUE_VERIFY", 1)) >= 0)
thread_queue_verify = value;
if ((value = envvar(ev, "QUEUE_DUMP", 1)) >= 0)
thread_queue_dump = value;
#endif
if ((value = envvar(ev, "STACK_CACHE", 10000)) >= 0)
thread_stack_cache = value;
if ((value = envvar(ev, "COND_WAIT_DEFER", 1)) >= 0)
thread_cond_wait_defer = value;
if ((value = envvar(ev, "ERROR_DETECTION", 2)) >= 0)
thread_error_detection = value;
if ((value = envvar(ev, "ASYNC_SAFE", 1)) >= 0)
thread_async_safe = value;
if ((value = envvar(ev, "DOOR_NORESERVE", 1)) >= 0)
thread_door_noreserve = value;
if ((value = envvar(ev, "LOCKS_MISALIGNED", 1)) >= 0)
thread_locks_misaligned = value;
}
/*
* Look for and evaluate environment variables of the form "_THREAD_*".
* For compatibility with the past, we also look for environment
* names of the form "LIBTHREAD_*".
*/
static void
set_thread_vars()
{
extern const char **_environ;
const char **pev;
const char *ev;
char c;
if ((pev = _environ) == NULL)
return;
while ((ev = *pev++) != NULL) {
c = *ev;
if (c == '_' && strncmp(ev, "_THREAD_", 8) == 0)
etest(ev + 8);
if (c == 'L' && strncmp(ev, "LIBTHREAD_", 10) == 0)
etest(ev + 10);
}
}
/* PROBE_SUPPORT begin */
#pragma weak __tnf_probe_notify
extern void __tnf_probe_notify(void);
/* PROBE_SUPPORT end */
/* same as atexit() but private to the library */
extern int _atexit(void (*)(void));
/* same as _cleanup() but private to the library */
extern void __cleanup(void);
extern void atfork_init(void);
#ifdef __amd64
extern void __proc64id(void);
#endif
/*
* libc_init() is called by ld.so.1 for library initialization.
* We perform minimal initialization; enough to work with the main thread.
*/
void
libc_init(void)
{
uberdata_t *udp = &__uberdata;
ulwp_t *oldself = __curthread();
ucontext_t uc;
ulwp_t *self;
struct rlimit rl;
caddr_t data;
size_t tls_size;
int setmask;
/*
* For the initial stage of initialization, we must be careful
* not to call any function that could possibly call _cerror().
* For this purpose, we call only the raw system call wrappers.
*/
#ifdef __amd64
/*
* Gather information about cache layouts for optimized
* AMD and Intel assembler strfoo() and memfoo() functions.
*/
__proc64id();
#endif
/*
* Every libc, regardless of which link map, must register __cleanup().
*/
(void) _atexit(__cleanup);
/*
* We keep our uberdata on one of (a) the first alternate link map
* or (b) the primary link map. We switch to the primary link map
* and stay there once we see it. All intermediate link maps are
* subject to being unloaded at any time.
*/
if (oldself != NULL && (oldself->ul_primarymap || !primary_link_map)) {
__tdb_bootstrap = oldself->ul_uberdata->tdb_bootstrap;
mutex_setup();
atfork_init(); /* every link map needs atfork() processing */
return;
}
/*
* To establish the main stack information, we have to get our context.
* This is also convenient to use for getting our signal mask.
*/
uc.uc_flags = UC_ALL;
(void) __getcontext(&uc);
ASSERT(uc.uc_link == NULL);
tls_size = roundup64(udp->tls_metadata.static_tls.tls_size);
ASSERT(primary_link_map || tls_size == 0);
data = lmalloc(sizeof (ulwp_t) + tls_size);
if (data == NULL)
thr_panic("cannot allocate thread structure for main thread");
/* LINTED pointer cast may result in improper alignment */
self = (ulwp_t *)(data + tls_size);
init_hash_table[0].hash_bucket = self;
self->ul_sigmask = uc.uc_sigmask;
delete_reserved_signals(&self->ul_sigmask);
/*
* Are the old and new sets different?
* (This can happen if we are currently blocking SIGCANCEL.)
* If so, we must explicitly set our signal mask, below.
*/
setmask =
((self->ul_sigmask.__sigbits[0] ^ uc.uc_sigmask.__sigbits[0]) |
(self->ul_sigmask.__sigbits[1] ^ uc.uc_sigmask.__sigbits[1]));
#ifdef __sparc
/*
* We cache several instructions in the thread structure for use
* by the fasttrap DTrace provider. When changing this, read the
* comment in fasttrap.h for the all the other places that must
* be changed.
*/
self->ul_dsave = 0x9de04000; /* save %g1, %g0, %sp */
self->ul_drestore = 0x81e80000; /* restore %g0, %g0, %g0 */
self->ul_dftret = 0x91d0203a; /* ta 0x3a */
self->ul_dreturn = 0x81ca0000; /* return %o0 */
#endif
self->ul_stktop = (uintptr_t)uc.uc_stack.ss_sp + uc.uc_stack.ss_size;
(void) getrlimit(RLIMIT_STACK, &rl);
self->ul_stksiz = rl.rlim_cur;
self->ul_stk = (caddr_t)(self->ul_stktop - self->ul_stksiz);
self->ul_forw = self->ul_back = self;
self->ul_hash = NULL;
self->ul_ix = 0;
self->ul_lwpid = 1; /* _lwp_self() */
self->ul_main = 1;
self->ul_self = self;
self->ul_policy = -1; /* initialize only when needed */
self->ul_pri = 0;
self->ul_cid = 0;
self->ul_rtclassid = -1;
self->ul_uberdata = udp;
if (oldself != NULL) {
int i;
ASSERT(primary_link_map);
ASSERT(oldself->ul_main == 1);
self->ul_stsd = oldself->ul_stsd;
for (i = 0; i < TSD_NFAST; i++)
self->ul_ftsd[i] = oldself->ul_ftsd[i];
self->ul_tls = oldself->ul_tls;
/*
* Retrieve all pointers to uberdata allocated
* while running on previous link maps.
* We would like to do a structure assignment here, but
* gcc turns structure assignments into calls to memcpy(),
* a function exported from libc. We can't call any such
* external functions until we establish curthread, below,
* so we just call our private version of memcpy().
*/
(void) memcpy(udp, oldself->ul_uberdata, sizeof (*udp));
/*
* These items point to global data on the primary link map.
*/
udp->thr_hash_table = init_hash_table;
udp->sigacthandler = sigacthandler;
udp->tdb.tdb_events = tdb_events;
ASSERT(udp->nthreads == 1 && !udp->uberflags.uf_mt);
ASSERT(udp->lwp_stacks == NULL);
ASSERT(udp->ulwp_freelist == NULL);
ASSERT(udp->ulwp_replace_free == NULL);
ASSERT(udp->hash_size == 1);
}
udp->all_lwps = self;
udp->ulwp_one = self;
udp->pid = getpid();
udp->nthreads = 1;
/*
* In every link map, tdb_bootstrap points to the same piece of
* allocated memory. When the primary link map is initialized,
* the allocated memory is assigned a pointer to the one true
* uberdata. This allows libc_db to initialize itself regardless
* of which instance of libc it finds in the address space.
*/
if (udp->tdb_bootstrap == NULL)
udp->tdb_bootstrap = lmalloc(sizeof (uberdata_t *));
__tdb_bootstrap = udp->tdb_bootstrap;
if (primary_link_map) {
self->ul_primarymap = 1;
udp->primary_map = 1;
*udp->tdb_bootstrap = udp;
}
/*
* Cancellation can't happen until:
* pthread_cancel() is called
* or:
* another thread is created
* For now, as a single-threaded process, set the flag that tells
* PROLOGUE/EPILOGUE (in scalls.c) that cancellation can't happen.
*/
self->ul_nocancel = 1;
#if defined(__amd64)
(void) ___lwp_private(_LWP_SETPRIVATE, _LWP_FSBASE, self);
#elif defined(__i386)
(void) ___lwp_private(_LWP_SETPRIVATE, _LWP_GSBASE, self);
#endif /* __i386 || __amd64 */
set_curthread(self); /* redundant on i386 */
/*
* Now curthread is established and it is safe to call any
* function in libc except one that uses thread-local storage.
*/
self->ul_errnop = &errno;
if (oldself != NULL) {
/* tls_size was zero when oldself was allocated */
lfree(oldself, sizeof (ulwp_t));
}
mutex_setup();
atfork_init();
signal_init();
/*
* If the stack is unlimited, we set the size to zero to disable
* stack checking.
* XXX: Work harder here. Get the stack size from /proc/self/rmap
*/
if (self->ul_stksiz == RLIM_INFINITY) {
self->ul_ustack.ss_sp = (void *)self->ul_stktop;
self->ul_ustack.ss_size = 0;
} else {
self->ul_ustack.ss_sp = self->ul_stk;
self->ul_ustack.ss_size = self->ul_stksiz;
}
self->ul_ustack.ss_flags = 0;
(void) setustack(&self->ul_ustack);
/*
* Get the variables that affect thread behavior from the environment.
*/
set_thread_vars();
udp->uberflags.uf_thread_error_detection = (char)thread_error_detection;
udp->thread_stack_cache = thread_stack_cache;
/*
* Make per-thread copies of global variables, for speed.
*/
self->ul_queue_fifo = (char)thread_queue_fifo;
self->ul_cond_wait_defer = (char)thread_cond_wait_defer;
self->ul_error_detection = (char)thread_error_detection;
self->ul_async_safe = (char)thread_async_safe;
self->ul_door_noreserve = (char)thread_door_noreserve;
self->ul_misaligned = (char)thread_locks_misaligned;
self->ul_max_spinners = (uint8_t)thread_max_spinners;
self->ul_adaptive_spin = thread_adaptive_spin;
self->ul_queue_spin = thread_queue_spin;
#if defined(__sparc) && !defined(_LP64)
if (self->ul_misaligned) {
/*
* Tell the kernel to fix up ldx/stx instructions that
* refer to non-8-byte aligned data instead of giving
* the process an alignment trap and generating SIGBUS.
*
* Programs compiled for 32-bit sparc with the Studio SS12
* compiler get this done for them automatically (in _init()).
* We do it here for the benefit of programs compiled with
* other compilers, like gcc.
*
* This is necessary for the _THREAD_LOCKS_MISALIGNED=1
* environment variable horrible hack to work.
*/
extern void _do_fix_align(void);
_do_fix_align();
}
#endif
/*
* When we have initialized the primary link map, inform
* the dynamic linker about our interface functions.
*/
if (self->ul_primarymap)
_ld_libc((void *)rtld_funcs);
/*
* Defer signals until TLS constructors have been called.
*/
sigoff(self);
tls_setup();
sigon(self);
if (setmask)
(void) restore_signals(self);
/*
* Make private copies of __xpg4 and __xpg6 so libc can test
* them after this point without invoking the dynamic linker.
*/
libc__xpg4 = __xpg4;
libc__xpg6 = __xpg6;
/* PROBE_SUPPORT begin */
if (self->ul_primarymap && __tnf_probe_notify != NULL)
__tnf_probe_notify();
/* PROBE_SUPPORT end */
init_sigev_thread();
init_aio();
/*
* We need to reset __threaded dynamically at runtime, so that
* __threaded can be bound to __threaded outside libc which may not
* have initial value of 1 (without a copy relocation in a.out).
*/
__threaded = 1;
}
#pragma fini(libc_fini)
void
libc_fini()
{
/*
* If we are doing fini processing for the instance of libc
* on the first alternate link map (this happens only when
* the dynamic linker rejects a bad audit library), then clear
* __curthread(). We abandon whatever memory was allocated by
* lmalloc() while running on this alternate link-map but we
* don't care (and can't find the memory in any case); we just
* want to protect the application from this bad audit library.
* No fini processing is done by libc in the normal case.
*/
uberdata_t *udp = curthread->ul_uberdata;
if (udp->primary_map == 0 && udp == &__uberdata)
set_curthread(NULL);
}
/*
* finish_init is called when we are about to become multi-threaded,
* that is, on the first call to thr_create().
*/
void
finish_init()
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
thr_hash_table_t *htp;
void *data;
int i;
/*
* No locks needed here; we are single-threaded on the first call.
* We can be called only after the primary link map has been set up.
*/
ASSERT(self->ul_primarymap);
ASSERT(self == udp->ulwp_one);
ASSERT(!udp->uberflags.uf_mt);
ASSERT(udp->hash_size == 1);
/*
* Initialize self->ul_policy, self->ul_cid, and self->ul_pri.
*/
update_sched(self);
/*
* Allocate the queue_head array if not already allocated.
*/
if (udp->queue_head == NULL)
queue_alloc();
/*
* Now allocate the thread hash table.
*/
if ((data = mmap(NULL, HASHTBLSZ * sizeof (thr_hash_table_t),
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0))
== MAP_FAILED)
thr_panic("cannot allocate thread hash table");
udp->thr_hash_table = htp = (thr_hash_table_t *)data;
udp->hash_size = HASHTBLSZ;
udp->hash_mask = HASHTBLSZ - 1;
for (i = 0; i < HASHTBLSZ; i++, htp++) {
htp->hash_lock.mutex_flag = LOCK_INITED;
htp->hash_lock.mutex_magic = MUTEX_MAGIC;
htp->hash_cond.cond_magic = COND_MAGIC;
}
hash_in_unlocked(self, TIDHASH(self->ul_lwpid, udp), udp);
/*
* Set up the SIGCANCEL handler for threads cancellation.
*/
setup_cancelsig(SIGCANCEL);
/*
* Arrange to do special things on exit --
* - collect queue statistics from all remaining active threads.
* - dump queue statistics to stderr if _THREAD_QUEUE_DUMP is set.
* - grab assert_lock to ensure that assertion failures
* and a core dump take precedence over _exit().
* (Functions are called in the reverse order of their registration.)
*/
(void) _atexit(grab_assert_lock);
#if defined(THREAD_DEBUG)
(void) _atexit(dump_queue_statistics);
(void) _atexit(collect_queue_statistics);
#endif
}
/*
* Used only by postfork1_child(), below.
*/
static void
mark_dead_and_buried(ulwp_t *ulwp)
{
ulwp->ul_dead = 1;
ulwp->ul_lwpid = (lwpid_t)(-1);
ulwp->ul_hash = NULL;
ulwp->ul_ix = -1;
ulwp->ul_schedctl = NULL;
ulwp->ul_schedctl_called = NULL;
}
/*
* This is called from fork1() in the child.
* Reset our data structures to reflect one lwp.
*/
void
postfork1_child()
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
queue_head_t *qp;
ulwp_t *next;
ulwp_t *ulwp;
int i;
/* daemon threads shouldn't call fork1(), but oh well... */
self->ul_usropts &= ~THR_DAEMON;
udp->nthreads = 1;
udp->ndaemons = 0;
udp->uberflags.uf_mt = 0;
__libc_threaded = 0;
for (i = 0; i < udp->hash_size; i++)
udp->thr_hash_table[i].hash_bucket = NULL;
self->ul_lwpid = _lwp_self();
hash_in_unlocked(self, TIDHASH(self->ul_lwpid, udp), udp);
/*
* Some thread in the parent might have been suspended
* while holding udp->callout_lock or udp->ld_lock.
* Reinitialize the child's copies.
*/
(void) mutex_init(&udp->callout_lock,
USYNC_THREAD | LOCK_RECURSIVE, NULL);
(void) mutex_init(&udp->ld_lock,
USYNC_THREAD | LOCK_RECURSIVE, NULL);
/* no one in the child is on a sleep queue; reinitialize */
if ((qp = udp->queue_head) != NULL) {
(void) memset(qp, 0, 2 * QHASHSIZE * sizeof (queue_head_t));
for (i = 0; i < 2 * QHASHSIZE; qp++, i++) {
qp->qh_type = (i < QHASHSIZE)? MX : CV;
qp->qh_lock.mutex_flag = LOCK_INITED;
qp->qh_lock.mutex_magic = MUTEX_MAGIC;
qp->qh_hlist = &qp->qh_def_root;
#if defined(THREAD_DEBUG)
qp->qh_hlen = 1;
qp->qh_hmax = 1;
#endif
}
}
/*
* All lwps except ourself are gone. Mark them so.
* First mark all of the lwps that have already been freed.
* Then mark and free all of the active lwps except ourself.
* Since we are single-threaded, no locks are required here.
*/
for (ulwp = udp->lwp_stacks; ulwp != NULL; ulwp = ulwp->ul_next)
mark_dead_and_buried(ulwp);
for (ulwp = udp->ulwp_freelist; ulwp != NULL; ulwp = ulwp->ul_next)
mark_dead_and_buried(ulwp);
for (ulwp = self->ul_forw; ulwp != self; ulwp = next) {
next = ulwp->ul_forw;
ulwp->ul_forw = ulwp->ul_back = NULL;
mark_dead_and_buried(ulwp);
tsd_free(ulwp);
tls_free(ulwp);
rwl_free(ulwp);
heldlock_free(ulwp);
ulwp_free(ulwp);
}
self->ul_forw = self->ul_back = udp->all_lwps = self;
if (self != udp->ulwp_one)
mark_dead_and_buried(udp->ulwp_one);
if ((ulwp = udp->all_zombies) != NULL) {
ASSERT(udp->nzombies != 0);
do {
next = ulwp->ul_forw;
ulwp->ul_forw = ulwp->ul_back = NULL;
mark_dead_and_buried(ulwp);
udp->nzombies--;
if (ulwp->ul_replace) {
ulwp->ul_next = NULL;
if (udp->ulwp_replace_free == NULL) {
udp->ulwp_replace_free =
udp->ulwp_replace_last = ulwp;
} else {
udp->ulwp_replace_last->ul_next = ulwp;
udp->ulwp_replace_last = ulwp;
}
}
} while ((ulwp = next) != udp->all_zombies);
ASSERT(udp->nzombies == 0);
udp->all_zombies = NULL;
udp->nzombies = 0;
}
trim_stack_cache(0);
/*
* Do post-fork1 processing for subsystems that need it.
*/
postfork1_child_tpool();
postfork1_child_sigev_aio();
postfork1_child_sigev_mq();
postfork1_child_sigev_timer();
postfork1_child_aio();
}
lwpid_t
lwp_self(void)
{
return (curthread->ul_lwpid);
}
#pragma weak _ti_thr_self = thr_self
#pragma weak pthread_self = thr_self
thread_t
thr_self()
{
return (curthread->ul_lwpid);
}
int
thr_main()
{
ulwp_t *self = __curthread();
return ((self == NULL)? -1 : self->ul_main);
}
int
_thrp_cancelled(void)
{
return (curthread->ul_rval == PTHREAD_CANCELED);
}
int
_thrp_stksegment(ulwp_t *ulwp, stack_t *stk)
{
stk->ss_sp = (void *)ulwp->ul_stktop;
stk->ss_size = ulwp->ul_stksiz;
stk->ss_flags = 0;
return (0);
}
#pragma weak _thr_stksegment = thr_stksegment
int
thr_stksegment(stack_t *stk)
{
return (_thrp_stksegment(curthread, stk));
}
void
force_continue(ulwp_t *ulwp)
{
#if defined(THREAD_DEBUG)
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
#endif
int error;
timespec_t ts;
ASSERT(MUTEX_OWNED(&udp->fork_lock, self));
ASSERT(MUTEX_OWNED(ulwp_mutex(ulwp, udp), self));
for (;;) {
error = _lwp_continue(ulwp->ul_lwpid);
if (error != 0 && error != EINTR)
break;
error = 0;
if (ulwp->ul_stopping) { /* he is stopping himself */
ts.tv_sec = 0; /* give him a chance to run */
ts.tv_nsec = 100000; /* 100 usecs or clock tick */
(void) __nanosleep(&ts, NULL);
}
if (!ulwp->ul_stopping) /* he is running now */
break; /* so we are done */
/*
* He is marked as being in the process of stopping
* himself. Loop around and continue him again.
* He may not have been stopped the first time.
*/
}
}
/*
* Suspend an lwp with lwp_suspend(), then move it to a safe
* point, that is, to a point where ul_critical is zero.
* On return, the ulwp_lock() is dropped as with ulwp_unlock().
* If 'link_dropped' is non-NULL, then 'link_lock' is held on entry.
* If we have to drop link_lock, we store 1 through link_dropped.
* If the lwp exits before it can be suspended, we return ESRCH.
*/
int
safe_suspend(ulwp_t *ulwp, uchar_t whystopped, int *link_dropped)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
cond_t *cvp = ulwp_condvar(ulwp, udp);
mutex_t *mp = ulwp_mutex(ulwp, udp);
thread_t tid = ulwp->ul_lwpid;
int ix = ulwp->ul_ix;
int error = 0;
ASSERT(whystopped == TSTP_REGULAR ||
whystopped == TSTP_MUTATOR ||
whystopped == TSTP_FORK);
ASSERT(ulwp != self);
ASSERT(!ulwp->ul_stop);
ASSERT(MUTEX_OWNED(&udp->fork_lock, self));
ASSERT(MUTEX_OWNED(mp, self));
if (link_dropped != NULL)
*link_dropped = 0;
/*
* We must grab the target's spin lock before suspending it.
* See the comments below and in _thrp_suspend() for why.
*/
spin_lock_set(&ulwp->ul_spinlock);
(void) ___lwp_suspend(tid);
spin_lock_clear(&ulwp->ul_spinlock);
top:
if (ulwp->ul_critical == 0 || ulwp->ul_stopping) {
/* thread is already safe */
ulwp->ul_stop |= whystopped;
} else {
/*
* Setting ul_pleasestop causes the target thread to stop
* itself in _thrp_suspend(), below, after we drop its lock.
* We must continue the critical thread before dropping
* link_lock because the critical thread may be holding
* the queue lock for link_lock. This is delicate.
*/
ulwp->ul_pleasestop |= whystopped;
force_continue(ulwp);
if (link_dropped != NULL) {
*link_dropped = 1;
lmutex_unlock(&udp->link_lock);
/* be sure to drop link_lock only once */
link_dropped = NULL;
}
/*
* The thread may disappear by calling thr_exit() so we
* cannot rely on the ulwp pointer after dropping the lock.
* Instead, we search the hash table to find it again.
* When we return, we may find that the thread has been
* continued by some other thread. The suspend/continue
* interfaces are prone to such race conditions by design.
*/
while (ulwp && !ulwp->ul_dead && !ulwp->ul_stop &&
(ulwp->ul_pleasestop & whystopped)) {
(void) __cond_wait(cvp, mp);
for (ulwp = udp->thr_hash_table[ix].hash_bucket;
ulwp != NULL; ulwp = ulwp->ul_hash) {
if (ulwp->ul_lwpid == tid)
break;
}
}
if (ulwp == NULL || ulwp->ul_dead)
error = ESRCH;
else {
/*
* Do another lwp_suspend() to make sure we don't
* return until the target thread is fully stopped
* in the kernel. Don't apply lwp_suspend() until
* we know that the target is not holding any
* queue locks, that is, that it has completed
* ulwp_unlock(self) and has, or at least is
* about to, call lwp_suspend() on itself. We do
* this by grabbing the target's spin lock.
*/
ASSERT(ulwp->ul_lwpid == tid);
spin_lock_set(&ulwp->ul_spinlock);
(void) ___lwp_suspend(tid);
spin_lock_clear(&ulwp->ul_spinlock);
/*
* If some other thread did a thr_continue()
* on the target thread we have to start over.
*/
if (!ulwp->ul_stopping || !(ulwp->ul_stop & whystopped))
goto top;
}
}
(void) cond_broadcast(cvp);
lmutex_unlock(mp);
return (error);
}
int
_thrp_suspend(thread_t tid, uchar_t whystopped)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
int error = 0;
ASSERT((whystopped & (TSTP_REGULAR|TSTP_MUTATOR|TSTP_FORK)) != 0);
ASSERT((whystopped & ~(TSTP_REGULAR|TSTP_MUTATOR|TSTP_FORK)) == 0);
/*
* We can't suspend anyone except ourself while
* some other thread is performing a fork.
* This also allows only one suspension at a time.
*/
if (tid != self->ul_lwpid)
fork_lock_enter();
if ((ulwp = find_lwp(tid)) == NULL)
error = ESRCH;
else if (whystopped == TSTP_MUTATOR && !ulwp->ul_mutator) {
ulwp_unlock(ulwp, udp);
error = EINVAL;
} else if (ulwp->ul_stop) { /* already stopped */
ulwp->ul_stop |= whystopped;
ulwp_broadcast(ulwp);
ulwp_unlock(ulwp, udp);
} else if (ulwp != self) {
/*
* After suspending the other thread, move it out of a
* critical section and deal with the schedctl mappings.
* safe_suspend() suspends the other thread, calls
* ulwp_broadcast(ulwp) and drops the ulwp lock.
*/
error = safe_suspend(ulwp, whystopped, NULL);
} else {
int schedctl_after_fork = 0;
/*
* We are suspending ourself. We must not take a signal
* until we return from lwp_suspend() and clear ul_stopping.
* This is to guard against siglongjmp().
*/
enter_critical(self);
self->ul_sp = stkptr();
_flush_windows(); /* sparc */
self->ul_pleasestop = 0;
self->ul_stop |= whystopped;
/*
* Grab our spin lock before dropping ulwp_mutex(self).
* This prevents the suspending thread from applying
* lwp_suspend() to us before we emerge from
* lmutex_unlock(mp) and have dropped mp's queue lock.
*/
spin_lock_set(&self->ul_spinlock);
self->ul_stopping = 1;
ulwp_broadcast(self);
ulwp_unlock(self, udp);
/*
* From this point until we return from lwp_suspend(),
* we must not call any function that might invoke the
* dynamic linker, that is, we can only call functions
* private to the library.
*
* Also, this is a nasty race condition for a process
* that is undergoing a forkall() operation:
* Once we clear our spinlock (below), we are vulnerable
* to being suspended by the forkall() thread before
* we manage to suspend ourself in ___lwp_suspend().
* See safe_suspend() and force_continue().
*
* To avoid a SIGSEGV due to the disappearance
* of the schedctl mappings in the child process,
* which can happen in spin_lock_clear() if we
* are suspended while we are in the middle of
* its call to preempt(), we preemptively clear
* our own schedctl pointer before dropping our
* spinlock. We reinstate it, in both the parent
* and (if this really is a forkall()) the child.
*/
if (whystopped & TSTP_FORK) {
schedctl_after_fork = 1;
self->ul_schedctl = NULL;
self->ul_schedctl_called = &udp->uberflags;
}
spin_lock_clear(&self->ul_spinlock);
(void) ___lwp_suspend(tid);
/*
* Somebody else continued us.
* We can't grab ulwp_lock(self)
* until after clearing ul_stopping.
* force_continue() relies on this.
*/
self->ul_stopping = 0;
self->ul_sp = 0;
if (schedctl_after_fork) {
self->ul_schedctl_called = NULL;
self->ul_schedctl = NULL;
(void) setup_schedctl();
}
ulwp_lock(self, udp);
ulwp_broadcast(self);
ulwp_unlock(self, udp);
exit_critical(self);
}
if (tid != self->ul_lwpid)
fork_lock_exit();
return (error);
}
/*
* Suspend all lwps other than ourself in preparation for fork.
*/
void
suspend_fork()
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
int link_dropped;
ASSERT(MUTEX_OWNED(&udp->fork_lock, self));
top:
lmutex_lock(&udp->link_lock);
for (ulwp = self->ul_forw; ulwp != self; ulwp = ulwp->ul_forw) {
ulwp_lock(ulwp, udp);
if (ulwp->ul_stop) { /* already stopped */
ulwp->ul_stop |= TSTP_FORK;
ulwp_broadcast(ulwp);
ulwp_unlock(ulwp, udp);
} else {
/*
* Move the stopped lwp out of a critical section.
*/
if (safe_suspend(ulwp, TSTP_FORK, &link_dropped) ||
link_dropped)
goto top;
}
}
lmutex_unlock(&udp->link_lock);
}
void
continue_fork(int child)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
ASSERT(MUTEX_OWNED(&udp->fork_lock, self));
/*
* Clear the schedctl pointers in the child of forkall().
*/
if (child) {
for (ulwp = self->ul_forw; ulwp != self; ulwp = ulwp->ul_forw) {
ulwp->ul_schedctl_called =
ulwp->ul_dead? &udp->uberflags : NULL;
ulwp->ul_schedctl = NULL;
}
}
/*
* Set all lwps that were stopped for fork() running again.
*/
lmutex_lock(&udp->link_lock);
for (ulwp = self->ul_forw; ulwp != self; ulwp = ulwp->ul_forw) {
mutex_t *mp = ulwp_mutex(ulwp, udp);
lmutex_lock(mp);
ASSERT(ulwp->ul_stop & TSTP_FORK);
ulwp->ul_stop &= ~TSTP_FORK;
ulwp_broadcast(ulwp);
if (!ulwp->ul_stop)
force_continue(ulwp);
lmutex_unlock(mp);
}
lmutex_unlock(&udp->link_lock);
}
int
_thrp_continue(thread_t tid, uchar_t whystopped)
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
mutex_t *mp;
int error = 0;
ASSERT(whystopped == TSTP_REGULAR ||
whystopped == TSTP_MUTATOR);
/*
* We single-thread the entire thread suspend/continue mechanism.
*/
fork_lock_enter();
if ((ulwp = find_lwp(tid)) == NULL) {
fork_lock_exit();
return (ESRCH);
}
mp = ulwp_mutex(ulwp, udp);
if ((whystopped == TSTP_MUTATOR && !ulwp->ul_mutator)) {
error = EINVAL;
} else if (ulwp->ul_stop & whystopped) {
ulwp->ul_stop &= ~whystopped;
ulwp_broadcast(ulwp);
if (!ulwp->ul_stop) {
if (whystopped == TSTP_REGULAR && ulwp->ul_created) {
ulwp->ul_sp = 0;
ulwp->ul_created = 0;
}
force_continue(ulwp);
}
}
lmutex_unlock(mp);
fork_lock_exit();
return (error);
}
int
thr_suspend(thread_t tid)
{
return (_thrp_suspend(tid, TSTP_REGULAR));
}
int
thr_continue(thread_t tid)
{
return (_thrp_continue(tid, TSTP_REGULAR));
}
void
thr_yield()
{
yield();
}
#pragma weak pthread_kill = thr_kill
#pragma weak _thr_kill = thr_kill
int
thr_kill(thread_t tid, int sig)
{
if (sig == SIGCANCEL)
return (EINVAL);
return (_lwp_kill(tid, sig));
}
/*
* Exit a critical section, take deferred actions if necessary.
*/
void
do_exit_critical()
{
ulwp_t *self = curthread;
int sig;
ASSERT(self->ul_critical == 0);
if (self->ul_dead)
return;
while (self->ul_pleasestop ||
(self->ul_cursig != 0 && self->ul_sigdefer == 0)) {
/*
* Avoid a recursive call to exit_critical() in _thrp_suspend()
* by keeping self->ul_critical == 1 here.
*/
self->ul_critical++;
while (self->ul_pleasestop) {
/*
* Guard against suspending ourself while on a sleep
* queue. See the comments in call_user_handler().
*/
unsleep_self();
set_parking_flag(self, 0);
(void) _thrp_suspend(self->ul_lwpid,
self->ul_pleasestop);
}
self->ul_critical--;
if ((sig = self->ul_cursig) != 0 && self->ul_sigdefer == 0) {
/*
* Clear ul_cursig before proceeding.
* This protects us from the dynamic linker's
* calls to bind_guard()/bind_clear() in the
* event that it is invoked to resolve a symbol
* like take_deferred_signal() below.
*/
self->ul_cursig = 0;
take_deferred_signal(sig);
ASSERT(self->ul_cursig == 0);
}
}
ASSERT(self->ul_critical == 0);
}
/*
* _ti_bind_guard() and _ti_bind_clear() are called by the dynamic linker
* (ld.so.1) when it has do do something, like resolve a symbol to be called
* by the application or one of its libraries. _ti_bind_guard() is called
* on entry to ld.so.1, _ti_bind_clear() on exit from ld.so.1 back to the
* application. The dynamic linker gets special dispensation from libc to
* run in a critical region (all signals deferred and no thread suspension
* or forking allowed), and to be immune from cancellation for the duration.
*/
int
_ti_bind_guard(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int bindflag = (flags & THR_FLG_RTLD);
if ((self->ul_bindflags & bindflag) == bindflag)
return (0);
self->ul_bindflags |= bindflag;
if ((flags & (THR_FLG_NOLOCK | THR_FLG_REENTER)) == THR_FLG_NOLOCK) {
sigoff(self); /* see no signals while holding ld_lock */
(void) mutex_lock(&udp->ld_lock);
}
enter_critical(self);
self->ul_save_state = self->ul_cancel_disabled;
self->ul_cancel_disabled = 1;
set_cancel_pending_flag(self, 0);
return (1);
}
int
_ti_bind_clear(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int bindflag = (flags & THR_FLG_RTLD);
if ((self->ul_bindflags & bindflag) == 0)
return (self->ul_bindflags);
self->ul_bindflags &= ~bindflag;
self->ul_cancel_disabled = self->ul_save_state;
set_cancel_pending_flag(self, 0);
exit_critical(self);
if ((flags & (THR_FLG_NOLOCK | THR_FLG_REENTER)) == THR_FLG_NOLOCK) {
if (MUTEX_OWNED(&udp->ld_lock, self)) {
(void) mutex_unlock(&udp->ld_lock);
sigon(self); /* reenable signals */
}
}
return (self->ul_bindflags);
}
/*
* Tell the dynamic linker (ld.so.1) whether or not it was entered from
* a critical region in libc. Return zero if not, else return non-zero.
*/
int
_ti_critical(void)
{
ulwp_t *self = curthread;
int level = self->ul_critical;
if ((self->ul_bindflags & THR_FLG_RTLD) == 0 || level == 0)
return (level); /* ld.so.1 hasn't (yet) called enter() */
return (level - 1);
}
/*
* sigoff() and sigon() enable cond_wait() to behave (optionally) like
* it does in the old libthread (see the comments in cond_wait_queue()).
* Also, signals are deferred at thread startup until TLS constructors
* have all been called, at which time _thrp_setup() calls sigon().
*
* _sigoff() and _sigon() are external consolidation-private interfaces to
* sigoff() and sigon(), respectively, in libc. These are used in libnsl.
* Also, _sigoff() and _sigon() are called from dbx's run-time checking
* (librtc.so) to defer signals during its critical sections (not to be
* confused with libc critical sections [see exit_critical() above]).
*/
void
_sigoff(void)
{
sigoff(curthread);
}
void
_sigon(void)
{
sigon(curthread);
}
void
sigon(ulwp_t *self)
{
int sig;
ASSERT(self->ul_sigdefer > 0);
if (--self->ul_sigdefer == 0) {
if ((sig = self->ul_cursig) != 0 && self->ul_critical == 0) {
self->ul_cursig = 0;
take_deferred_signal(sig);
ASSERT(self->ul_cursig == 0);
}
}
}
int
thr_getconcurrency()
{
return (thr_concurrency);
}
int
pthread_getconcurrency()
{
return (pthread_concurrency);
}
int
thr_setconcurrency(int new_level)
{
uberdata_t *udp = curthread->ul_uberdata;
if (new_level < 0)
return (EINVAL);
if (new_level > 65536) /* 65536 is totally arbitrary */
return (EAGAIN);
lmutex_lock(&udp->link_lock);
if (new_level > thr_concurrency)
thr_concurrency = new_level;
lmutex_unlock(&udp->link_lock);
return (0);
}
int
pthread_setconcurrency(int new_level)
{
if (new_level < 0)
return (EINVAL);
if (new_level > 65536) /* 65536 is totally arbitrary */
return (EAGAIN);
pthread_concurrency = new_level;
return (0);
}
size_t
thr_min_stack(void)
{
return (MINSTACK);
}
int
__nthreads(void)
{
return (curthread->ul_uberdata->nthreads);
}
/*
* XXX
* The remainder of this file implements the private interfaces to java for
* garbage collection. It is no longer used, at least by java 1.2.
* It can all go away once all old JVMs have disappeared.
*/
int suspendingallmutators; /* when non-zero, suspending all mutators. */
int suspendedallmutators; /* when non-zero, all mutators suspended. */
int mutatorsbarrier; /* when non-zero, mutators barrier imposed. */
mutex_t mutatorslock = DEFAULTMUTEX; /* used to enforce mutators barrier. */
cond_t mutatorscv = DEFAULTCV; /* where non-mutators sleep. */
/*
* Get the available register state for the target thread.
* Return non-volatile registers: TRS_NONVOLATILE
*/
#pragma weak _thr_getstate = thr_getstate
int
thr_getstate(thread_t tid, int *flag, lwpid_t *lwp, stack_t *ss, gregset_t rs)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t **ulwpp;
ulwp_t *ulwp;
int error = 0;
int trs_flag = TRS_LWPID;
if (tid == 0 || self->ul_lwpid == tid) {
ulwp = self;
ulwp_lock(ulwp, udp);
} else if ((ulwpp = find_lwpp(tid)) != NULL) {
ulwp = *ulwpp;
} else {
if (flag)
*flag = TRS_INVALID;
return (ESRCH);
}
if (ulwp->ul_dead) {
trs_flag = TRS_INVALID;
} else if (!ulwp->ul_stop && !suspendedallmutators) {
error = EINVAL;
trs_flag = TRS_INVALID;
} else if (ulwp->ul_stop) {
trs_flag = TRS_NONVOLATILE;
getgregs(ulwp, rs);
}
if (flag)
*flag = trs_flag;
if (lwp)
*lwp = tid;
if (ss != NULL)
(void) _thrp_stksegment(ulwp, ss);
ulwp_unlock(ulwp, udp);
return (error);
}
/*
* Set the appropriate register state for the target thread.
* This is not used by java. It exists solely for the MSTC test suite.
*/
#pragma weak _thr_setstate = thr_setstate
int
thr_setstate(thread_t tid, int flag, gregset_t rs)
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
int error = 0;
if ((ulwp = find_lwp(tid)) == NULL)
return (ESRCH);
if (!ulwp->ul_stop && !suspendedallmutators)
error = EINVAL;
else if (rs != NULL) {
switch (flag) {
case TRS_NONVOLATILE:
/* do /proc stuff here? */
if (ulwp->ul_stop)
setgregs(ulwp, rs);
else
error = EINVAL;
break;
case TRS_LWPID: /* do /proc stuff here? */
default:
error = EINVAL;
break;
}
}
ulwp_unlock(ulwp, udp);
return (error);
}
int
getlwpstatus(thread_t tid, struct lwpstatus *sp)
{
extern ssize_t __pread(int, void *, size_t, off_t);
char buf[100];
int fd;
/* "/proc/self/lwp/%u/lwpstatus" w/o stdio */
(void) strcpy(buf, "/proc/self/lwp/");
ultos((uint64_t)tid, 10, buf + strlen(buf));
(void) strcat(buf, "/lwpstatus");
if ((fd = __open(buf, O_RDONLY, 0)) >= 0) {
while (__pread(fd, sp, sizeof (*sp), 0) == sizeof (*sp)) {
if (sp->pr_flags & PR_STOPPED) {
(void) __close(fd);
return (0);
}
yield(); /* give him a chance to stop */
}
(void) __close(fd);
}
return (-1);
}
int
putlwpregs(thread_t tid, prgregset_t prp)
{
extern ssize_t __writev(int, const struct iovec *, int);
char buf[100];
int fd;
long dstop_sreg[2];
long run_null[2];
iovec_t iov[3];
/* "/proc/self/lwp/%u/lwpctl" w/o stdio */
(void) strcpy(buf, "/proc/self/lwp/");
ultos((uint64_t)tid, 10, buf + strlen(buf));
(void) strcat(buf, "/lwpctl");
if ((fd = __open(buf, O_WRONLY, 0)) >= 0) {
dstop_sreg[0] = PCDSTOP; /* direct it to stop */
dstop_sreg[1] = PCSREG; /* set the registers */
iov[0].iov_base = (caddr_t)dstop_sreg;
iov[0].iov_len = sizeof (dstop_sreg);
iov[1].iov_base = (caddr_t)prp; /* from the register set */
iov[1].iov_len = sizeof (prgregset_t);
run_null[0] = PCRUN; /* make it runnable again */
run_null[1] = 0;
iov[2].iov_base = (caddr_t)run_null;
iov[2].iov_len = sizeof (run_null);
if (__writev(fd, iov, 3) >= 0) {
(void) __close(fd);
return (0);
}
(void) __close(fd);
}
return (-1);
}
static ulong_t
gettsp_slow(thread_t tid)
{
char buf[100];
struct lwpstatus status;
if (getlwpstatus(tid, &status) != 0) {
/* "__gettsp(%u): can't read lwpstatus" w/o stdio */
(void) strcpy(buf, "__gettsp(");
ultos((uint64_t)tid, 10, buf + strlen(buf));
(void) strcat(buf, "): can't read lwpstatus");
thr_panic(buf);
}
return (status.pr_reg[R_SP]);
}
ulong_t
__gettsp(thread_t tid)
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
ulong_t result;
if ((ulwp = find_lwp(tid)) == NULL)
return (0);
if (ulwp->ul_stop && (result = ulwp->ul_sp) != 0) {
ulwp_unlock(ulwp, udp);
return (result);
}
result = gettsp_slow(tid);
ulwp_unlock(ulwp, udp);
return (result);
}
/*
* This tells java stack walkers how to find the ucontext
* structure passed to signal handlers.
*/
#pragma weak _thr_sighndlrinfo = thr_sighndlrinfo
void
thr_sighndlrinfo(void (**func)(), int *funcsize)
{
*func = &__sighndlr;
*funcsize = (char *)&__sighndlrend - (char *)&__sighndlr;
}
/*
* Mark a thread a mutator or reset a mutator to being a default,
* non-mutator thread.
*/
#pragma weak _thr_setmutator = thr_setmutator
int
thr_setmutator(thread_t tid, int enabled)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
int error;
int cancel_state;
enabled = enabled? 1 : 0;
top:
if (tid == 0) {
ulwp = self;
ulwp_lock(ulwp, udp);
} else if ((ulwp = find_lwp(tid)) == NULL) {
return (ESRCH);
}
/*
* The target thread should be the caller itself or a suspended thread.
* This prevents the target from also changing its ul_mutator field.
*/
error = 0;
if (ulwp != self && !ulwp->ul_stop && enabled)
error = EINVAL;
else if (ulwp->ul_mutator != enabled) {
lmutex_lock(&mutatorslock);
if (mutatorsbarrier) {
ulwp_unlock(ulwp, udp);
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
&cancel_state);
while (mutatorsbarrier)
(void) cond_wait(&mutatorscv, &mutatorslock);
(void) pthread_setcancelstate(cancel_state, NULL);
lmutex_unlock(&mutatorslock);
goto top;
}
ulwp->ul_mutator = enabled;
lmutex_unlock(&mutatorslock);
}
ulwp_unlock(ulwp, udp);
return (error);
}
/*
* Establish a barrier against new mutators. Any non-mutator trying
* to become a mutator is suspended until the barrier is removed.
*/
#pragma weak _thr_mutators_barrier = thr_mutators_barrier
void
thr_mutators_barrier(int enabled)
{
int oldvalue;
int cancel_state;
lmutex_lock(&mutatorslock);
/*
* Wait if trying to set the barrier while it is already set.
*/
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cancel_state);
while (mutatorsbarrier && enabled)
(void) cond_wait(&mutatorscv, &mutatorslock);
(void) pthread_setcancelstate(cancel_state, NULL);
oldvalue = mutatorsbarrier;
mutatorsbarrier = enabled;
/*
* Wakeup any blocked non-mutators when barrier is removed.
*/
if (oldvalue && !enabled)
(void) cond_broadcast(&mutatorscv);
lmutex_unlock(&mutatorslock);
}
/*
* Suspend the set of all mutators except for the caller. The list
* of actively running threads is searched and only the mutators
* in this list are suspended. Actively running non-mutators remain
* running. Any other thread is suspended.
*/
#pragma weak _thr_suspend_allmutators = thr_suspend_allmutators
int
thr_suspend_allmutators(void)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
int link_dropped;
/*
* We single-thread the entire thread suspend/continue mechanism.
*/
fork_lock_enter();
top:
lmutex_lock(&udp->link_lock);
if (suspendingallmutators || suspendedallmutators) {
lmutex_unlock(&udp->link_lock);
fork_lock_exit();
return (EINVAL);
}
suspendingallmutators = 1;
for (ulwp = self->ul_forw; ulwp != self; ulwp = ulwp->ul_forw) {
ulwp_lock(ulwp, udp);
if (!ulwp->ul_mutator) {
ulwp_unlock(ulwp, udp);
} else if (ulwp->ul_stop) { /* already stopped */
ulwp->ul_stop |= TSTP_MUTATOR;
ulwp_broadcast(ulwp);
ulwp_unlock(ulwp, udp);
} else {
/*
* Move the stopped lwp out of a critical section.
*/
if (safe_suspend(ulwp, TSTP_MUTATOR, &link_dropped) ||
link_dropped) {
suspendingallmutators = 0;
goto top;
}
}
}
suspendedallmutators = 1;
suspendingallmutators = 0;
lmutex_unlock(&udp->link_lock);
fork_lock_exit();
return (0);
}
/*
* Suspend the target mutator. The caller is permitted to suspend
* itself. If a mutator barrier is enabled, the caller will suspend
* itself as though it had been suspended by thr_suspend_allmutators().
* When the barrier is removed, this thread will be resumed. Any
* suspended mutator, whether suspended by thr_suspend_mutator(), or by
* thr_suspend_allmutators(), can be resumed by thr_continue_mutator().
*/
#pragma weak _thr_suspend_mutator = thr_suspend_mutator
int
thr_suspend_mutator(thread_t tid)
{
if (tid == 0)
tid = curthread->ul_lwpid;
return (_thrp_suspend(tid, TSTP_MUTATOR));
}
/*
* Resume the set of all suspended mutators.
*/
#pragma weak _thr_continue_allmutators = thr_continue_allmutators
int
thr_continue_allmutators()
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
/*
* We single-thread the entire thread suspend/continue mechanism.
*/
fork_lock_enter();
lmutex_lock(&udp->link_lock);
if (!suspendedallmutators) {
lmutex_unlock(&udp->link_lock);
fork_lock_exit();
return (EINVAL);
}
suspendedallmutators = 0;
for (ulwp = self->ul_forw; ulwp != self; ulwp = ulwp->ul_forw) {
mutex_t *mp = ulwp_mutex(ulwp, udp);
lmutex_lock(mp);
if (ulwp->ul_stop & TSTP_MUTATOR) {
ulwp->ul_stop &= ~TSTP_MUTATOR;
ulwp_broadcast(ulwp);
if (!ulwp->ul_stop)
force_continue(ulwp);
}
lmutex_unlock(mp);
}
lmutex_unlock(&udp->link_lock);
fork_lock_exit();
return (0);
}
/*
* Resume a suspended mutator.
*/
#pragma weak _thr_continue_mutator = thr_continue_mutator
int
thr_continue_mutator(thread_t tid)
{
return (_thrp_continue(tid, TSTP_MUTATOR));
}
#pragma weak _thr_wait_mutator = thr_wait_mutator
int
thr_wait_mutator(thread_t tid, int dontwait)
{
uberdata_t *udp = curthread->ul_uberdata;
ulwp_t *ulwp;
int cancel_state;
int error = 0;
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cancel_state);
top:
if ((ulwp = find_lwp(tid)) == NULL) {
(void) pthread_setcancelstate(cancel_state, NULL);
return (ESRCH);
}
if (!ulwp->ul_mutator)
error = EINVAL;
else if (dontwait) {
if (!(ulwp->ul_stop & TSTP_MUTATOR))
error = EWOULDBLOCK;
} else if (!(ulwp->ul_stop & TSTP_MUTATOR)) {
cond_t *cvp = ulwp_condvar(ulwp, udp);
mutex_t *mp = ulwp_mutex(ulwp, udp);
(void) cond_wait(cvp, mp);
(void) lmutex_unlock(mp);
goto top;
}
ulwp_unlock(ulwp, udp);
(void) pthread_setcancelstate(cancel_state, NULL);
return (error);
}
/* PROBE_SUPPORT begin */
void
thr_probe_setup(void *data)
{
curthread->ul_tpdp = data;
}
static void *
_thread_probe_getfunc()
{
return (curthread->ul_tpdp);
}
void * (*thr_probe_getfunc_addr)(void) = _thread_probe_getfunc;
/* ARGSUSED */
void
_resume(ulwp_t *ulwp, caddr_t sp, int dontsave)
{
/* never called */
}
/* ARGSUSED */
void
_resume_ret(ulwp_t *oldlwp)
{
/* never called */
}
/* PROBE_SUPPORT end */