synch.c revision f841f6ad96ea6675d6c6b35c749eaac601799fdf
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/sdt.h>
#include "lint.h"
#include "thr_uberdata.h"
/*
* This mutex is initialized to be held by lwp#1.
* It is used to block a thread that has returned from a mutex_lock()
* of a PTHREAD_PRIO_INHERIT mutex with an unrecoverable error.
*/
mutex_t stall_mutex = DEFAULTMUTEX;
static int shared_mutex_held(mutex_t *);
/*
* Lock statistics support functions.
*/
void
record_begin_hold(tdb_mutex_stats_t *msp)
{
tdb_incr(msp->mutex_lock);
msp->mutex_begin_hold = gethrtime();
}
hrtime_t
record_hold_time(tdb_mutex_stats_t *msp)
{
hrtime_t now = gethrtime();
if (msp->mutex_begin_hold)
msp->mutex_hold_time += now - msp->mutex_begin_hold;
msp->mutex_begin_hold = 0;
return (now);
}
/*
* Called once at library initialization.
*/
void
mutex_setup(void)
{
if (set_lock_byte(&stall_mutex.mutex_lockw))
thr_panic("mutex_setup() cannot acquire stall_mutex");
stall_mutex.mutex_owner = (uintptr_t)curthread;
}
/*
* The default spin counts of 1000 and 500 are experimentally determined.
* On sun4u machines with any number of processors they could be raised
* to 10,000 but that (experimentally) makes almost no difference.
* The environment variables:
* _THREAD_ADAPTIVE_SPIN=count
* _THREAD_RELEASE_SPIN=count
* can be used to override and set the counts in the range [0 .. 1,000,000].
*/
int thread_adaptive_spin = 1000;
uint_t thread_max_spinners = 100;
int thread_release_spin = 500;
int thread_queue_verify = 0;
static int ncpus;
/*
* Distinguish spinning for queue locks from spinning for regular locks.
* The environment variable:
* _THREAD_QUEUE_SPIN=count
* can be used to override and set the count in the range [0 .. 1,000,000].
* There is no release spin concept for queue locks.
*/
int thread_queue_spin = 1000;
/*
* Use the otherwise-unused 'mutex_ownerpid' field of a USYNC_THREAD
* mutex to be a count of adaptive spins in progress.
*/
#define mutex_spinners mutex_ownerpid
void
_mutex_set_typeattr(mutex_t *mp, int attr)
{
mp->mutex_type |= (uint8_t)attr;
}
/*
* 'type' can be one of USYNC_THREAD or USYNC_PROCESS, possibly
* augmented by the flags LOCK_RECURSIVE and/or LOCK_ERRORCHECK,
* or it can be USYNC_PROCESS_ROBUST with no extra flags.
*/
#pragma weak _private_mutex_init = __mutex_init
#pragma weak mutex_init = __mutex_init
#pragma weak _mutex_init = __mutex_init
/* ARGSUSED2 */
int
__mutex_init(mutex_t *mp, int type, void *arg)
{
int error;
switch (type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) {
case USYNC_THREAD:
case USYNC_PROCESS:
(void) _memset(mp, 0, sizeof (*mp));
mp->mutex_type = (uint8_t)type;
mp->mutex_flag = LOCK_INITED;
error = 0;
break;
case USYNC_PROCESS_ROBUST:
if (type & (LOCK_RECURSIVE|LOCK_ERRORCHECK))
error = EINVAL;
else
error = ___lwp_mutex_init(mp, type);
break;
default:
error = EINVAL;
break;
}
if (error == 0)
mp->mutex_magic = MUTEX_MAGIC;
return (error);
}
/*
* Delete mp from list of ceil mutexes owned by curthread.
* Return 1 if the head of the chain was updated.
*/
int
_ceil_mylist_del(mutex_t *mp)
{
ulwp_t *self = curthread;
mxchain_t **mcpp;
mxchain_t *mcp;
mcpp = &self->ul_mxchain;
while ((*mcpp)->mxchain_mx != mp)
mcpp = &(*mcpp)->mxchain_next;
mcp = *mcpp;
*mcpp = mcp->mxchain_next;
lfree(mcp, sizeof (*mcp));
return (mcpp == &self->ul_mxchain);
}
/*
* Add mp to head of list of ceil mutexes owned by curthread.
* Return ENOMEM if no memory could be allocated.
*/
int
_ceil_mylist_add(mutex_t *mp)
{
ulwp_t *self = curthread;
mxchain_t *mcp;
if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
return (ENOMEM);
mcp->mxchain_mx = mp;
mcp->mxchain_next = self->ul_mxchain;
self->ul_mxchain = mcp;
return (0);
}
/*
* Inherit priority from ceiling. The inheritance impacts the effective
* priority, not the assigned priority. See _thread_setschedparam_main().
*/
void
_ceil_prio_inherit(int ceil)
{
ulwp_t *self = curthread;
struct sched_param param;
(void) _memset(&param, 0, sizeof (param));
param.sched_priority = ceil;
if (_thread_setschedparam_main(self->ul_lwpid,
self->ul_policy, &param, PRIO_INHERIT)) {
/*
* Panic since unclear what error code to return.
* If we do return the error codes returned by above
* called routine, update the man page...
*/
thr_panic("_thread_setschedparam_main() fails");
}
}
/*
* Waive inherited ceiling priority. Inherit from head of owned ceiling locks
* if holding at least one ceiling lock. If no ceiling locks are held at this
* point, disinherit completely, reverting back to assigned priority.
*/
void
_ceil_prio_waive(void)
{
ulwp_t *self = curthread;
struct sched_param param;
(void) _memset(&param, 0, sizeof (param));
if (self->ul_mxchain == NULL) {
/*
* No ceil locks held. Zero the epri, revert back to ul_pri.
* Since thread's hash lock is not held, one cannot just
* read ul_pri here...do it in the called routine...
*/
param.sched_priority = self->ul_pri; /* ignored */
if (_thread_setschedparam_main(self->ul_lwpid,
self->ul_policy, &param, PRIO_DISINHERIT))
thr_panic("_thread_setschedparam_main() fails");
} else {
/*
* Set priority to that of the mutex at the head
* of the ceilmutex chain.
*/
param.sched_priority =
self->ul_mxchain->mxchain_mx->mutex_ceiling;
if (_thread_setschedparam_main(self->ul_lwpid,
self->ul_policy, &param, PRIO_INHERIT))
thr_panic("_thread_setschedparam_main() fails");
}
}
/*
* Non-preemptive spin locks. Used by queue_lock().
* No lock statistics are gathered for these locks.
*/
void
spin_lock_set(mutex_t *mp)
{
ulwp_t *self = curthread;
no_preempt(self);
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
/*
* Spin for a while, attempting to acquire the lock.
*/
if (self->ul_spin_lock_spin != UINT_MAX)
self->ul_spin_lock_spin++;
if (mutex_queuelock_adaptive(mp) == 0 ||
set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
/*
* Try harder if we were previously at a no premption level.
*/
if (self->ul_preempt > 1) {
if (self->ul_spin_lock_spin2 != UINT_MAX)
self->ul_spin_lock_spin2++;
if (mutex_queuelock_adaptive(mp) == 0 ||
set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
}
/*
* Give up and block in the kernel for the mutex.
*/
if (self->ul_spin_lock_sleep != UINT_MAX)
self->ul_spin_lock_sleep++;
(void) ___lwp_mutex_timedlock(mp, NULL);
mp->mutex_owner = (uintptr_t)self;
}
void
spin_lock_clear(mutex_t *mp)
{
ulwp_t *self = curthread;
mp->mutex_owner = 0;
if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
(void) ___lwp_mutex_wakeup(mp);
if (self->ul_spin_lock_wakeup != UINT_MAX)
self->ul_spin_lock_wakeup++;
}
preempt(self);
}
/*
* Allocate the sleep queue hash table.
*/
void
queue_alloc(void)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
void *data;
int i;
/*
* No locks are needed; we call here only when single-threaded.
*/
ASSERT(self == udp->ulwp_one);
ASSERT(!udp->uberflags.uf_mt);
if ((data = _private_mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
== MAP_FAILED)
thr_panic("cannot allocate thread queue_head table");
udp->queue_head = (queue_head_t *)data;
for (i = 0; i < 2 * QHASHSIZE; i++)
udp->queue_head[i].qh_lock.mutex_magic = MUTEX_MAGIC;
}
#if defined(THREAD_DEBUG)
/*
* Debugging: verify correctness of a sleep queue.
*/
void
QVERIFY(queue_head_t *qp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ulwp_t *ulwp;
ulwp_t *prev;
uint_t index;
uint32_t cnt = 0;
char qtype;
void *wchan;
ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
ASSERT((qp->qh_head != NULL && qp->qh_tail != NULL) ||
(qp->qh_head == NULL && qp->qh_tail == NULL));
if (!thread_queue_verify)
return;
/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
for (prev = NULL, ulwp = qp->qh_head; ulwp != NULL;
prev = ulwp, ulwp = ulwp->ul_link, cnt++) {
ASSERT(ulwp->ul_qtype == qtype);
ASSERT(ulwp->ul_wchan != NULL);
ASSERT(ulwp->ul_sleepq == qp);
wchan = ulwp->ul_wchan;
index = QUEUE_HASH(wchan, qtype);
ASSERT(&udp->queue_head[index] == qp);
}
ASSERT(qp->qh_tail == prev);
ASSERT(qp->qh_qlen == cnt);
}
#else /* THREAD_DEBUG */
#define QVERIFY(qp)
#endif /* THREAD_DEBUG */
/*
* Acquire a queue head.
*/
queue_head_t *
queue_lock(void *wchan, int qtype)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
ASSERT(qtype == MX || qtype == CV);
/*
* It is possible that we could be called while still single-threaded.
* If so, we call queue_alloc() to allocate the queue_head[] array.
*/
if ((qp = udp->queue_head) == NULL) {
queue_alloc();
qp = udp->queue_head;
}
qp += QUEUE_HASH(wchan, qtype);
spin_lock_set(&qp->qh_lock);
/*
* At once per nanosecond, qh_lockcount will wrap after 512 years.
* Were we to care about this, we could peg the value at UINT64_MAX.
*/
qp->qh_lockcount++;
QVERIFY(qp);
return (qp);
}
/*
* Release a queue head.
*/
void
queue_unlock(queue_head_t *qp)
{
QVERIFY(qp);
spin_lock_clear(&qp->qh_lock);
}
/*
* For rwlock queueing, we must queue writers ahead of readers of the
* same priority. We do this by making writers appear to have a half
* point higher priority for purposes of priority comparisons below.
*/
#define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
void
enqueue(queue_head_t *qp, ulwp_t *ulwp, void *wchan, int qtype)
{
ulwp_t **ulwpp;
ulwp_t *next;
int pri = CMP_PRIO(ulwp);
int force_fifo = (qtype & FIFOQ);
int do_fifo;
qtype &= ~FIFOQ;
ASSERT(qtype == MX || qtype == CV);
ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
ASSERT(ulwp->ul_sleepq != qp);
/*
* LIFO queue ordering is unfair and can lead to starvation,
* but it gives better performance for heavily contended locks.
* We use thread_queue_fifo (range is 0..8) to determine
* the frequency of FIFO vs LIFO queuing:
* 0 : every 256th time (almost always LIFO)
* 1 : every 128th time
* 2 : every 64th time
* 3 : every 32nd time
* 4 : every 16th time (the default value, mostly LIFO)
* 5 : every 8th time
* 6 : every 4th time
* 7 : every 2nd time
* 8 : every time (never LIFO, always FIFO)
* Note that there is always some degree of FIFO ordering.
* This breaks live lock conditions that occur in applications
* that are written assuming (incorrectly) that threads acquire
* locks fairly, that is, in roughly round-robin order.
* In any event, the queue is maintained in priority order.
*
* If we are given the FIFOQ flag in qtype, fifo queueing is forced.
* SUSV3 requires this for semaphores.
*/
do_fifo = (force_fifo ||
((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0);
if (qp->qh_head == NULL) {
/*
* The queue is empty. LIFO/FIFO doesn't matter.
*/
ASSERT(qp->qh_tail == NULL);
ulwpp = &qp->qh_head;
} else if (do_fifo) {
/*
* Enqueue after the last thread whose priority is greater
* than or equal to the priority of the thread being queued.
* Attempt first to go directly onto the tail of the queue.
*/
if (pri <= CMP_PRIO(qp->qh_tail))
ulwpp = &qp->qh_tail->ul_link;
else {
for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
ulwpp = &next->ul_link)
if (pri > CMP_PRIO(next))
break;
}
} else {
/*
* Enqueue before the first thread whose priority is less
* than or equal to the priority of the thread being queued.
* Hopefully we can go directly onto the head of the queue.
*/
for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
ulwpp = &next->ul_link)
if (pri >= CMP_PRIO(next))
break;
}
if ((ulwp->ul_link = *ulwpp) == NULL)
qp->qh_tail = ulwp;
*ulwpp = ulwp;
ulwp->ul_sleepq = qp;
ulwp->ul_wchan = wchan;
ulwp->ul_qtype = qtype;
if (qp->qh_qmax < ++qp->qh_qlen)
qp->qh_qmax = qp->qh_qlen;
}
/*
* Return a pointer to the queue slot of the
* highest priority thread on the queue.
* On return, prevp, if not NULL, will contain a pointer
* to the thread's predecessor on the queue
*/
static ulwp_t **
queue_slot(queue_head_t *qp, void *wchan, int *more, ulwp_t **prevp)
{
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev = NULL;
ulwp_t **suspp = NULL;
ulwp_t *susprev;
ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
/*
* Find a waiter on the sleep queue.
*/
for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
if (ulwp->ul_wchan == wchan) {
if (!ulwp->ul_stop)
break;
/*
* Try not to return a suspended thread.
* This mimics the old libthread's behavior.
*/
if (suspp == NULL) {
suspp = ulwpp;
susprev = prev;
}
}
}
if (ulwp == NULL && suspp != NULL) {
ulwp = *(ulwpp = suspp);
prev = susprev;
suspp = NULL;
}
if (ulwp == NULL) {
if (more != NULL)
*more = 0;
return (NULL);
}
if (prevp != NULL)
*prevp = prev;
if (more == NULL)
return (ulwpp);
/*
* Scan the remainder of the queue for another waiter.
*/
if (suspp != NULL) {
*more = 1;
return (ulwpp);
}
for (ulwp = ulwp->ul_link; ulwp != NULL; ulwp = ulwp->ul_link) {
if (ulwp->ul_wchan == wchan) {
*more = 1;
return (ulwpp);
}
}
*more = 0;
return (ulwpp);
}
ulwp_t *
dequeue(queue_head_t *qp, void *wchan, int *more)
{
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev;
if ((ulwpp = queue_slot(qp, wchan, more, &prev)) == NULL)
return (NULL);
/*
* Dequeue the waiter.
*/
ulwp = *ulwpp;
*ulwpp = ulwp->ul_link;
ulwp->ul_link = NULL;
if (qp->qh_tail == ulwp)
qp->qh_tail = prev;
qp->qh_qlen--;
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
return (ulwp);
}
/*
* Return a pointer to the highest priority thread sleeping on wchan.
*/
ulwp_t *
queue_waiter(queue_head_t *qp, void *wchan)
{
ulwp_t **ulwpp;
if ((ulwpp = queue_slot(qp, wchan, NULL, NULL)) == NULL)
return (NULL);
return (*ulwpp);
}
uint8_t
dequeue_self(queue_head_t *qp, void *wchan)
{
ulwp_t *self = curthread;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev = NULL;
int found = 0;
int more = 0;
ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
/* find self on the sleep queue */
for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
if (ulwp == self) {
/* dequeue ourself */
*ulwpp = self->ul_link;
if (qp->qh_tail == self)
qp->qh_tail = prev;
qp->qh_qlen--;
ASSERT(self->ul_wchan == wchan);
self->ul_cvmutex = NULL;
self->ul_sleepq = NULL;
self->ul_wchan = NULL;
self->ul_cv_wake = 0;
self->ul_link = NULL;
found = 1;
break;
}
if (ulwp->ul_wchan == wchan)
more = 1;
}
if (!found)
thr_panic("dequeue_self(): curthread not found on queue");
if (more)
return (1);
/* scan the remainder of the queue for another waiter */
for (ulwp = *ulwpp; ulwp != NULL; ulwp = ulwp->ul_link) {
if (ulwp->ul_wchan == wchan)
return (1);
}
return (0);
}
/*
* Called from call_user_handler() and _thrp_suspend() to take
* ourself off of our sleep queue so we can grab locks.
*/
void
unsleep_self(void)
{
ulwp_t *self = curthread;
queue_head_t *qp;
/*
* Calling enter_critical()/exit_critical() here would lead
* to recursion. Just manipulate self->ul_critical directly.
*/
self->ul_critical++;
self->ul_writer = 0;
while (self->ul_sleepq != NULL) {
qp = queue_lock(self->ul_wchan, self->ul_qtype);
/*
* We may have been moved from a CV queue to a
* mutex queue while we were attempting queue_lock().
* If so, just loop around and try again.
* dequeue_self() clears self->ul_sleepq.
*/
if (qp == self->ul_sleepq)
(void) dequeue_self(qp, self->ul_wchan);
queue_unlock(qp);
}
self->ul_critical--;
}
/*
* Common code for calling the the ___lwp_mutex_timedlock() system call.
* Returns with mutex_owner and mutex_ownerpid set correctly.
*/
int
mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
hrtime_t begin_sleep;
int error;
self->ul_sp = stkptr();
self->ul_wchan = mp;
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = mp;
tdb_event(TD_SLEEP, udp);
}
if (msp) {
tdb_incr(msp->mutex_sleep);
begin_sleep = gethrtime();
}
DTRACE_PROBE1(plockstat, mutex__block, mp);
for (;;) {
if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0) {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
break;
}
if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
/*
* Defend against forkall(). We may be the child,
* in which case we don't actually own the mutex.
*/
enter_critical(self);
if (mp->mutex_ownerpid == udp->pid) {
mp->mutex_owner = (uintptr_t)self;
exit_critical(self);
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
0, 0);
break;
}
exit_critical(self);
} else {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
break;
}
}
if (msp)
msp->mutex_sleep_time += gethrtime() - begin_sleep;
self->ul_wchan = NULL;
self->ul_sp = 0;
return (error);
}
/*
* Common code for calling the ___lwp_mutex_trylock() system call.
* Returns with mutex_owner and mutex_ownerpid set correctly.
*/
int
mutex_trylock_kernel(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int error;
for (;;) {
if ((error = ___lwp_mutex_trylock(mp)) != 0) {
if (error != EBUSY) {
DTRACE_PROBE2(plockstat, mutex__error, mp,
error);
}
break;
}
if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
/*
* Defend against forkall(). We may be the child,
* in which case we don't actually own the mutex.
*/
enter_critical(self);
if (mp->mutex_ownerpid == udp->pid) {
mp->mutex_owner = (uintptr_t)self;
exit_critical(self);
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
0, 0);
break;
}
exit_critical(self);
} else {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
break;
}
}
return (error);
}
volatile sc_shared_t *
setup_schedctl(void)
{
ulwp_t *self = curthread;
volatile sc_shared_t *scp;
sc_shared_t *tmp;
if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
!self->ul_vfork && /* not a child of vfork() */
!self->ul_schedctl_called) { /* haven't been called before */
enter_critical(self);
self->ul_schedctl_called = &self->ul_uberdata->uberflags;
if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
self->ul_schedctl = scp = tmp;
exit_critical(self);
}
/*
* Unless the call to setup_schedctl() is surrounded
* by enter_critical()/exit_critical(), the address
* we are returning could be invalid due to a forkall()
* having occurred in another thread.
*/
return (scp);
}
/*
* Interfaces from libsched, incorporated into libc.
* libsched.so.1 is now a filter library onto libc.
*/
#pragma weak schedctl_lookup = _schedctl_init
#pragma weak _schedctl_lookup = _schedctl_init
#pragma weak schedctl_init = _schedctl_init
schedctl_t *
_schedctl_init(void)
{
volatile sc_shared_t *scp = setup_schedctl();
return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
}
#pragma weak schedctl_exit = _schedctl_exit
void
_schedctl_exit(void)
{
}
/*
* Contract private interface for java.
* Set up the schedctl data if it doesn't exist yet.
* Return a pointer to the pointer to the schedctl data.
*/
volatile sc_shared_t *volatile *
_thr_schedctl(void)
{
ulwp_t *self = curthread;
volatile sc_shared_t *volatile *ptr;
if (self->ul_vfork)
return (NULL);
if (*(ptr = &self->ul_schedctl) == NULL)
(void) setup_schedctl();
return (ptr);
}
/*
* Block signals and attempt to block preemption.
* no_preempt()/preempt() must be used in pairs but can be nested.
*/
void
no_preempt(ulwp_t *self)
{
volatile sc_shared_t *scp;
if (self->ul_preempt++ == 0) {
enter_critical(self);
if ((scp = self->ul_schedctl) != NULL ||
(scp = setup_schedctl()) != NULL) {
/*
* Save the pre-existing preempt value.
*/
self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
scp->sc_preemptctl.sc_nopreempt = 1;
}
}
}
/*
* Undo the effects of no_preempt().
*/
void
preempt(ulwp_t *self)
{
volatile sc_shared_t *scp;
ASSERT(self->ul_preempt > 0);
if (--self->ul_preempt == 0) {
if ((scp = self->ul_schedctl) != NULL) {
/*
* Restore the pre-existing preempt value.
*/
scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
if (scp->sc_preemptctl.sc_yield &&
scp->sc_preemptctl.sc_nopreempt == 0) {
lwp_yield();
if (scp->sc_preemptctl.sc_yield) {
/*
* Shouldn't happen. This is either
* a race condition or the thread
* just entered the real-time class.
*/
lwp_yield();
scp->sc_preemptctl.sc_yield = 0;
}
}
}
exit_critical(self);
}
}
/*
* If a call to preempt() would cause the current thread to yield or to
* take deferred actions in exit_critical(), then unpark the specified
* lwp so it can run while we delay. Return the original lwpid if the
* unpark was not performed, else return zero. The tests are a repeat
* of some of the tests in preempt(), above. This is a statistical
* optimization solely for cond_sleep_queue(), below.
*/
static lwpid_t
preempt_unpark(ulwp_t *self, lwpid_t lwpid)
{
volatile sc_shared_t *scp = self->ul_schedctl;
ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
(self->ul_curplease && self->ul_critical == 1)) {
(void) __lwp_unpark(lwpid);
lwpid = 0;
}
return (lwpid);
}
/*
* Spin for a while, trying to grab the lock. We know that we
* failed set_lock_byte(&mp->mutex_lockw) once before coming here.
* If this fails, return EBUSY and let the caller deal with it.
* If this succeeds, return 0 with mutex_owner set to curthread.
*/
int
mutex_trylock_adaptive(mutex_t *mp)
{
ulwp_t *self = curthread;
ulwp_t *ulwp;
volatile sc_shared_t *scp;
volatile uint8_t *lockp;
volatile uint64_t *ownerp;
int count, max = self->ul_adaptive_spin;
ASSERT(!(mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)));
if (max == 0 || (mp->mutex_spinners >= self->ul_max_spinners))
return (EBUSY);
lockp = (volatile uint8_t *)&mp->mutex_lockw;
ownerp = (volatile uint64_t *)&mp->mutex_owner;
DTRACE_PROBE1(plockstat, mutex__spin, mp);
/*
* This spin loop is unfair to lwps that have already dropped into
* the kernel to sleep. They will starve on a highly-contended mutex.
* This is just too bad. The adaptive spin algorithm is intended
* to allow programs with highly-contended locks (that is, broken
* programs) to execute with reasonable speed despite their contention.
* Being fair would reduce the speed of such programs and well-written
* programs will not suffer in any case.
*/
enter_critical(self); /* protects ul_schedctl */
incr32(&mp->mutex_spinners);
for (count = 0; count < max; count++) {
if (*lockp == 0 && set_lock_byte(lockp) == 0) {
*ownerp = (uintptr_t)self;
decr32(&mp->mutex_spinners);
exit_critical(self);
DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
return (0);
}
SMT_PAUSE();
/*
* Stop spinning if the mutex owner is not running on
* a processor; it will not drop the lock any time soon
* and we would just be wasting time to keep spinning.
*
* Note that we are looking at another thread (ulwp_t)
* without ensuring that the other thread does not exit.
* The scheme relies on ulwp_t structures never being
* deallocated by the library (the library employs a free
* list of ulwp_t structs that are reused when new threads
* are created) and on schedctl shared memory never being
* deallocated once created via __schedctl().
*
* Thus, the worst that can happen when the spinning thread
* looks at the owner's schedctl data is that it is looking
* at some other thread's schedctl data. This almost never
* happens and is benign when it does.
*/
if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
((scp = ulwp->ul_schedctl) == NULL ||
scp->sc_state != SC_ONPROC))
break;
}
decr32(&mp->mutex_spinners);
exit_critical(self);
DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
return (EBUSY);
}
/*
* Same as mutex_trylock_adaptive(), except specifically for queue locks.
* The owner field is not set here; the caller (spin_lock_set()) sets it.
*/
int
mutex_queuelock_adaptive(mutex_t *mp)
{
ulwp_t *ulwp;
volatile sc_shared_t *scp;
volatile uint8_t *lockp;
volatile uint64_t *ownerp;
int count = curthread->ul_queue_spin;
ASSERT(mp->mutex_type == USYNC_THREAD);
if (count == 0)
return (EBUSY);
lockp = (volatile uint8_t *)&mp->mutex_lockw;
ownerp = (volatile uint64_t *)&mp->mutex_owner;
while (--count >= 0) {
if (*lockp == 0 && set_lock_byte(lockp) == 0)
return (0);
SMT_PAUSE();
if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
((scp = ulwp->ul_schedctl) == NULL ||
scp->sc_state != SC_ONPROC))
break;
}
return (EBUSY);
}
/*
* Like mutex_trylock_adaptive(), but for process-shared mutexes.
* Spin for a while, trying to grab the lock. We know that we
* failed set_lock_byte(&mp->mutex_lockw) once before coming here.
* If this fails, return EBUSY and let the caller deal with it.
* If this succeeds, return 0 with mutex_owner set to curthread
* and mutex_ownerpid set to the current pid.
*/
int
mutex_trylock_process(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int count;
volatile uint8_t *lockp;
volatile uint64_t *ownerp;
volatile int32_t *pidp;
pid_t pid, newpid;
uint64_t owner, newowner;
if ((count = ncpus) == 0)
count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
count = (count > 1)? self->ul_adaptive_spin : 0;
ASSERT((mp->mutex_type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) ==
USYNC_PROCESS);
if (count == 0)
return (EBUSY);
lockp = (volatile uint8_t *)&mp->mutex_lockw;
ownerp = (volatile uint64_t *)&mp->mutex_owner;
pidp = (volatile int32_t *)&mp->mutex_ownerpid;
owner = *ownerp;
pid = *pidp;
/*
* This is a process-shared mutex.
* We cannot know if the owner is running on a processor.
* We just spin and hope that it is on a processor.
*/
while (--count >= 0) {
if (*lockp == 0) {
enter_critical(self);
if (set_lock_byte(lockp) == 0) {
*ownerp = (uintptr_t)self;
*pidp = udp->pid;
exit_critical(self);
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
0, 0);
return (0);
}
exit_critical(self);
} else if ((newowner = *ownerp) == owner &&
(newpid = *pidp) == pid) {
SMT_PAUSE();
continue;
}
/*
* The owner of the lock changed; start the count over again.
* This may be too aggressive; it needs testing.
*/
owner = newowner;
pid = newpid;
count = self->ul_adaptive_spin;
}
return (EBUSY);
}
/*
* Mutex wakeup code for releasing a USYNC_THREAD mutex.
* Returns the lwpid of the thread that was dequeued, if any.
* The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
* to wake up the specified lwp.
*/
lwpid_t
mutex_wakeup(mutex_t *mp)
{
lwpid_t lwpid = 0;
queue_head_t *qp;
ulwp_t *ulwp;
int more;
/*
* Dequeue a waiter from the sleep queue. Don't touch the mutex
* waiters bit if no one was found on the queue because the mutex
* might have been deallocated or reallocated for another purpose.
*/
qp = queue_lock(mp, MX);
if ((ulwp = dequeue(qp, mp, &more)) != NULL) {
lwpid = ulwp->ul_lwpid;
mp->mutex_waiters = (more? 1 : 0);
}
queue_unlock(qp);
return (lwpid);
}
/*
* Spin for a while, testing to see if the lock has been grabbed.
* If this fails, call mutex_wakeup() to release a waiter.
*/
lwpid_t
mutex_unlock_queue(mutex_t *mp)
{
ulwp_t *self = curthread;
uint32_t *lockw = &mp->mutex_lockword;
lwpid_t lwpid;
volatile uint8_t *lockp;
volatile uint32_t *spinp;
int count;
/*
* We use the swap primitive to clear the lock, but we must
* atomically retain the waiters bit for the remainder of this
* code to work. We first check to see if the waiters bit is
* set and if so clear the lock by swapping in a word containing
* only the waiters bit. This could produce a false positive test
* for whether there are waiters that need to be waked up, but
* this just causes an extra call to mutex_wakeup() to do nothing.
* The opposite case is more delicate: If there are no waiters,
* we swap in a zero lock byte and a zero waiters bit. The result
* of the swap could indicate that there really was a waiter so in
* this case we go directly to mutex_wakeup() without performing
* any of the adaptive code because the waiter bit has been cleared
* and the adaptive code is unreliable in this case.
*/
if (!(*lockw & WAITERMASK)) { /* no waiter exists right now */
mp->mutex_owner = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (!(swap32(lockw, 0) & WAITERMASK)) /* still no waiters */
return (0);
no_preempt(self); /* ensure a prompt wakeup */
lwpid = mutex_wakeup(mp);
} else {
no_preempt(self); /* ensure a prompt wakeup */
lockp = (volatile uint8_t *)&mp->mutex_lockw;
spinp = (volatile uint32_t *)&mp->mutex_spinners;
mp->mutex_owner = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
(void) swap32(lockw, WAITER); /* clear lock, retain waiter */
/*
* We spin here fewer times than mutex_trylock_adaptive().
* We are trying to balance two conflicting goals:
* 1. Avoid waking up anyone if a spinning thread
* grabs the lock.
* 2. Wake up a sleeping thread promptly to get on
* with useful work.
* We don't spin at all if there is no acquiring spinner;
* (mp->mutex_spinners is non-zero if there are spinners).
*/
for (count = self->ul_release_spin;
*spinp && count > 0; count--) {
/*
* There is a waiter that we will have to wake
* up unless someone else grabs the lock while
* we are busy spinning. Like the spin loop in
* mutex_trylock_adaptive(), this spin loop is
* unfair to lwps that have already dropped into
* the kernel to sleep. They will starve on a
* highly-contended mutex. Too bad.
*/
if (*lockp != 0) { /* somebody grabbed the lock */
preempt(self);
return (0);
}
SMT_PAUSE();
}
/*
* No one grabbed the lock.
* Wake up some lwp that is waiting for it.
*/
mp->mutex_waiters = 0;
lwpid = mutex_wakeup(mp);
}
if (lwpid == 0)
preempt(self);
return (lwpid);
}
/*
* Like mutex_unlock_queue(), but for process-shared mutexes.
* We tested the waiters field before calling here and it was non-zero.
*/
void
mutex_unlock_process(mutex_t *mp)
{
ulwp_t *self = curthread;
int count;
volatile uint8_t *lockp;
/*
* See the comments in mutex_unlock_queue(), above.
*/
if ((count = ncpus) == 0)
count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
count = (count > 1)? self->ul_release_spin : 0;
no_preempt(self);
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (count == 0) {
/* clear lock, test waiter */
if (!(swap32(&mp->mutex_lockword, 0) & WAITERMASK)) {
/* no waiters now */
preempt(self);
return;
}
} else {
/* clear lock, retain waiter */
(void) swap32(&mp->mutex_lockword, WAITER);
lockp = (volatile uint8_t *)&mp->mutex_lockw;
while (--count >= 0) {
if (*lockp != 0) {
/* somebody grabbed the lock */
preempt(self);
return;
}
SMT_PAUSE();
}
/*
* We must clear the waiters field before going
* to the kernel, else it could remain set forever.
*/
mp->mutex_waiters = 0;
}
(void) ___lwp_mutex_wakeup(mp);
preempt(self);
}
/*
* Return the real priority of a thread.
*/
int
real_priority(ulwp_t *ulwp)
{
if (ulwp->ul_epri == 0)
return (ulwp->ul_mappedpri? ulwp->ul_mappedpri : ulwp->ul_pri);
return (ulwp->ul_emappedpri? ulwp->ul_emappedpri : ulwp->ul_epri);
}
void
stall(void)
{
for (;;)
(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
}
/*
* Acquire a USYNC_THREAD mutex via user-level sleep queues.
* We failed set_lock_byte(&mp->mutex_lockw) before coming here.
* Returns with mutex_owner set correctly.
*/
int
mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
timespec_t *tsp)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
hrtime_t begin_sleep;
int error = 0;
self->ul_sp = stkptr();
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_wchan = mp;
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = mp;
tdb_event(TD_SLEEP, udp);
}
if (msp) {
tdb_incr(msp->mutex_sleep);
begin_sleep = gethrtime();
}
DTRACE_PROBE1(plockstat, mutex__block, mp);
/*
* Put ourself on the sleep queue, and while we are
* unable to grab the lock, go park in the kernel.
* Take ourself off the sleep queue after we acquire the lock.
* The waiter bit can be set/cleared only while holding the queue lock.
*/
qp = queue_lock(mp, MX);
enqueue(qp, self, mp, MX);
mp->mutex_waiters = 1;
for (;;) {
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
mp->mutex_waiters = dequeue_self(qp, mp);
break;
}
set_parking_flag(self, 1);
queue_unlock(qp);
/*
* __lwp_park() will return the residual time in tsp
* if we are unparked before the timeout expires.
*/
if ((error = __lwp_park(tsp, 0)) == EINTR)
error = 0;
set_parking_flag(self, 0);
/*
* We could have taken a signal or suspended ourself.
* If we did, then we removed ourself from the queue.
* Someone else may have removed us from the queue
* as a consequence of mutex_unlock(). We may have
* gotten a timeout from __lwp_park(). Or we may still
* be on the queue and this is just a spurious wakeup.
*/
qp = queue_lock(mp, MX);
if (self->ul_sleepq == NULL) {
if (error) {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
DTRACE_PROBE2(plockstat, mutex__error, mp,
error);
break;
}
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
0, 0);
break;
}
enqueue(qp, self, mp, MX);
mp->mutex_waiters = 1;
}
ASSERT(self->ul_sleepq == qp &&
self->ul_qtype == MX &&
self->ul_wchan == mp);
if (error) {
mp->mutex_waiters = dequeue_self(qp, mp);
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
break;
}
}
ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
self->ul_wchan == NULL);
self->ul_sp = 0;
queue_unlock(qp);
if (msp)
msp->mutex_sleep_time += gethrtime() - begin_sleep;
ASSERT(error == 0 || error == EINVAL || error == ETIME);
return (error);
}
/*
* Returns with mutex_owner set correctly.
*/
int
mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
int error = 0;
ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
if (!self->ul_schedctl_called)
(void) setup_schedctl();
if (msp && try == MUTEX_TRY)
tdb_incr(msp->mutex_try);
if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_is_held(mp)) {
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX) {
error = EAGAIN;
} else {
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1, 0);
return (0);
}
} else if (try == MUTEX_TRY) {
return (EBUSY);
} else {
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK);
}
}
if (self->ul_error_detection && try == MUTEX_LOCK &&
tsp == NULL && mutex_is_held(mp))
lock_error(mp, "mutex_lock", NULL, NULL);
if (mtype &
(USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
uint8_t ceil;
int myprio;
if (mtype & PTHREAD_PRIO_PROTECT) {
ceil = mp->mutex_ceiling;
ASSERT(_validate_rt_prio(SCHED_FIFO, ceil) == 0);
myprio = real_priority(self);
if (myprio > ceil) {
DTRACE_PROBE2(plockstat, mutex__error, mp,
EINVAL);
return (EINVAL);
}
if ((error = _ceil_mylist_add(mp)) != 0) {
DTRACE_PROBE2(plockstat, mutex__error, mp,
error);
return (error);
}
if (myprio < ceil)
_ceil_prio_inherit(ceil);
}
if (mtype & PTHREAD_PRIO_INHERIT) {
/* go straight to the kernel */
if (try == MUTEX_TRY)
error = mutex_trylock_kernel(mp);
else /* MUTEX_LOCK */
error = mutex_lock_kernel(mp, tsp, msp);
/*
* The kernel never sets or clears the lock byte
* for PTHREAD_PRIO_INHERIT mutexes.
* Set it here for debugging consistency.
*/
switch (error) {
case 0:
case EOWNERDEAD:
mp->mutex_lockw = LOCKSET;
break;
}
} else if (mtype & USYNC_PROCESS_ROBUST) {
/* go straight to the kernel */
if (try == MUTEX_TRY)
error = mutex_trylock_kernel(mp);
else /* MUTEX_LOCK */
error = mutex_lock_kernel(mp, tsp, msp);
} else { /* PTHREAD_PRIO_PROTECT */
/*
* Try once at user level before going to the kernel.
* If this is a process shared mutex then protect
* against forkall() while setting mp->mutex_ownerpid.
*/
if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
enter_critical(self);
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
mp->mutex_ownerpid = udp->pid;
exit_critical(self);
DTRACE_PROBE3(plockstat,
mutex__acquire, mp, 0, 0);
} else {
exit_critical(self);
error = EBUSY;
}
} else {
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat,
mutex__acquire, mp, 0, 0);
} else {
error = EBUSY;
}
}
if (error && try == MUTEX_LOCK)
error = mutex_lock_kernel(mp, tsp, msp);
}
if (error) {
if (mtype & PTHREAD_PRIO_INHERIT) {
switch (error) {
case EOWNERDEAD:
case ENOTRECOVERABLE:
if (mtype & PTHREAD_MUTEX_ROBUST_NP)
break;
if (error == EOWNERDEAD) {
/*
* We own the mutex; unlock it.
* It becomes ENOTRECOVERABLE.
* All waiters are waked up.
*/
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat,
mutex__release, mp, 0);
mp->mutex_lockw = LOCKCLEAR;
(void) ___lwp_mutex_unlock(mp);
}
/* FALLTHROUGH */
case EDEADLK:
if (try == MUTEX_LOCK)
stall();
error = EBUSY;
break;
}
}
if ((mtype & PTHREAD_PRIO_PROTECT) &&
error != EOWNERDEAD) {
(void) _ceil_mylist_del(mp);
if (myprio < ceil)
_ceil_prio_waive();
}
}
} else if (mtype & USYNC_PROCESS) {
/*
* This is a process shared mutex. Protect against
* forkall() while setting mp->mutex_ownerpid.
*/
enter_critical(self);
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
mp->mutex_ownerpid = udp->pid;
exit_critical(self);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else {
/* try a little harder */
exit_critical(self);
error = mutex_trylock_process(mp);
}
if (error && try == MUTEX_LOCK)
error = mutex_lock_kernel(mp, tsp, msp);
} else { /* USYNC_THREAD */
/* try once */
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else {
/* try a little harder if we don't own the mutex */
error = EBUSY;
if (MUTEX_OWNER(mp) != self)
error = mutex_trylock_adaptive(mp);
if (error && try == MUTEX_LOCK) /* go park */
error = mutex_lock_queue(self, msp, mp, tsp);
}
}
switch (error) {
case EOWNERDEAD:
case ELOCKUNMAPPED:
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
/* FALLTHROUGH */
case 0:
if (msp)
record_begin_hold(msp);
break;
default:
if (try == MUTEX_TRY) {
if (msp)
tdb_incr(msp->mutex_try_fail);
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
}
break;
}
return (error);
}
int
fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
/*
* We know that USYNC_PROCESS is set in mtype and that
* zero, one, or both of the flags LOCK_RECURSIVE and
* LOCK_ERRORCHECK are set, and that no other flags are set.
*/
enter_critical(self);
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
mp->mutex_ownerpid = udp->pid;
exit_critical(self);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
exit_critical(self);
if ((mtype & ~USYNC_PROCESS) && shared_mutex_held(mp)) {
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX)
return (EAGAIN);
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
return (0);
}
if (try == MUTEX_LOCK) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK);
}
return (EBUSY);
}
/* try a little harder if we don't own the mutex */
if (!shared_mutex_held(mp) && mutex_trylock_process(mp) == 0)
return (0);
if (try == MUTEX_LOCK)
return (mutex_lock_kernel(mp, tsp, NULL));
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
return (EBUSY);
}
static int
slow_lock(ulwp_t *self, mutex_t *mp, timespec_t *tsp)
{
int error = 0;
if (MUTEX_OWNER(mp) == self || mutex_trylock_adaptive(mp) != 0)
error = mutex_lock_queue(self, NULL, mp, tsp);
return (error);
}
int
mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
uberflags_t *gflags;
int mtype;
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
udp->uberflags.uf_all) == 0) {
/*
* Only one thread exists so we don't need an atomic operation.
*/
if (mp->mutex_lockw == 0) {
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self) {
/*
* LOCK_RECURSIVE, LOCK_ERRORCHECK, or both.
*/
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX)
return (EAGAIN);
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1, 0);
return (0);
}
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK); /* LOCK_ERRORCHECK */
}
/*
* We have reached a deadlock, probably because the
* process is executing non-async-signal-safe code in
* a signal handler and is attempting to acquire a lock
* that it already owns. This is not surprising, given
* bad programming practices over the years that has
* resulted in applications calling printf() and such
* in their signal handlers. Unless the user has told
* us that the signal handlers are safe by setting:
* export _THREAD_ASYNC_SAFE=1
* we return EDEADLK rather than actually deadlocking.
*/
if (tsp == NULL &&
MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK);
}
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(gflags->uf_trs_ted |
(mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
if (mtype & USYNC_PROCESS)
return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self) {
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX)
return (EAGAIN);
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1, 0);
return (0);
}
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK); /* LOCK_ERRORCHECK */
}
return (slow_lock(self, mp, tsp));
}
/* else do it the long way */
return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
}
#pragma weak _private_mutex_lock = __mutex_lock
#pragma weak mutex_lock = __mutex_lock
#pragma weak _mutex_lock = __mutex_lock
#pragma weak pthread_mutex_lock = __mutex_lock
#pragma weak _pthread_mutex_lock = __mutex_lock
int
__mutex_lock(mutex_t *mp)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
return (mutex_lock_impl(mp, NULL));
}
#pragma weak pthread_mutex_timedlock = _pthread_mutex_timedlock
int
_pthread_mutex_timedlock(mutex_t *mp, const timespec_t *abstime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
error = mutex_lock_impl(mp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
#pragma weak pthread_mutex_reltimedlock_np = _pthread_mutex_reltimedlock_np
int
_pthread_mutex_reltimedlock_np(mutex_t *mp, const timespec_t *reltime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
tslocal = *reltime;
error = mutex_lock_impl(mp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
static int
slow_trylock(mutex_t *mp, ulwp_t *self)
{
if (MUTEX_OWNER(mp) == self ||
mutex_trylock_adaptive(mp) != 0) {
uberdata_t *udp = self->ul_uberdata;
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
return (EBUSY);
}
return (0);
}
#pragma weak _private_mutex_trylock = __mutex_trylock
#pragma weak mutex_trylock = __mutex_trylock
#pragma weak _mutex_trylock = __mutex_trylock
#pragma weak pthread_mutex_trylock = __mutex_trylock
#pragma weak _pthread_mutex_trylock = __mutex_trylock
int
__mutex_trylock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
uberflags_t *gflags;
int mtype;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
udp->uberflags.uf_all) == 0) {
/*
* Only one thread exists so we don't need an atomic operation.
*/
if (mp->mutex_lockw == 0) {
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self) {
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX)
return (EAGAIN);
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1, 0);
return (0);
}
return (EDEADLK); /* LOCK_ERRORCHECK */
}
return (EBUSY);
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(gflags->uf_trs_ted |
(mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
if (mtype & USYNC_PROCESS)
return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self) {
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX)
return (EAGAIN);
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1, 0);
return (0);
}
return (EBUSY); /* LOCK_ERRORCHECK */
}
return (slow_trylock(mp, self));
}
/* else do it the long way */
return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
}
int
mutex_unlock_internal(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
tdb_mutex_stats_t *msp;
int error;
lwpid_t lwpid;
if ((mtype & LOCK_ERRORCHECK) && !mutex_is_held(mp))
return (EPERM);
if (self->ul_error_detection && !mutex_is_held(mp))
lock_error(mp, "mutex_unlock", NULL, NULL);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
if ((msp = MUTEX_STATS(mp, udp)) != NULL)
(void) record_hold_time(msp);
if (mtype &
(USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
no_preempt(self);
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (mtype & PTHREAD_PRIO_INHERIT) {
mp->mutex_lockw = LOCKCLEAR;
error = ___lwp_mutex_unlock(mp);
} else if (mtype & USYNC_PROCESS_ROBUST) {
error = ___lwp_mutex_unlock(mp);
} else {
if (swap32(&mp->mutex_lockword, 0) & WAITERMASK)
(void) ___lwp_mutex_wakeup(mp);
error = 0;
}
if (mtype & PTHREAD_PRIO_PROTECT) {
if (_ceil_mylist_del(mp))
_ceil_prio_waive();
}
preempt(self);
} else if (mtype & USYNC_PROCESS) {
if (mp->mutex_lockword & WAITERMASK)
mutex_unlock_process(mp);
else {
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
no_preempt(self);
(void) ___lwp_mutex_wakeup(mp);
preempt(self);
}
}
error = 0;
} else { /* USYNC_THREAD */
if ((lwpid = mutex_unlock_queue(mp)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
error = 0;
}
return (error);
}
#pragma weak _private_mutex_unlock = __mutex_unlock
#pragma weak mutex_unlock = __mutex_unlock
#pragma weak _mutex_unlock = __mutex_unlock
#pragma weak pthread_mutex_unlock = __mutex_unlock
#pragma weak _pthread_mutex_unlock = __mutex_unlock
int
__mutex_unlock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
uberflags_t *gflags;
lwpid_t lwpid;
int mtype;
short el;
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
udp->uberflags.uf_all) == 0) {
if (mtype) {
/*
* At this point we know that one or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
}
/*
* Only one thread exists so we don't need an atomic operation.
* Also, there can be no waiters.
*/
mp->mutex_owner = 0;
mp->mutex_lockword = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
return (0);
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL) {
if (((el = gflags->uf_trs_ted) | mtype) == 0) {
fast_unlock:
if (!(mp->mutex_lockword & WAITERMASK)) {
/* no waiter exists right now */
mp->mutex_owner = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (swap32(&mp->mutex_lockword, 0) &
WAITERMASK) {
/* a waiter suddenly appeared */
no_preempt(self);
if ((lwpid = mutex_wakeup(mp)) != 0)
(void) __lwp_unpark(lwpid);
preempt(self);
}
} else if ((lwpid = mutex_unlock_queue(mp)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
return (0);
}
if (el) /* error detection or lock statistics */
goto slow_unlock;
if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
/*
* At this point we know that one or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
goto fast_unlock;
}
if ((mtype &
~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
/*
* At this point we know that zero, one, or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
* that the USYNC_PROCESS flag is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
if (mp->mutex_lockword & WAITERMASK)
mutex_unlock_process(mp);
else {
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
if (swap32(&mp->mutex_lockword, 0) &
WAITERMASK) {
no_preempt(self);
(void) ___lwp_mutex_wakeup(mp);
preempt(self);
}
}
return (0);
}
}
/* else do it the long way */
slow_unlock:
return (mutex_unlock_internal(mp));
}
/*
* Internally to the library, almost all mutex lock/unlock actions
* go through these lmutex_ functions, to protect critical regions.
* We replicate a bit of code from __mutex_lock() and __mutex_unlock()
* to make these functions faster since we know that the mutex type
* of all internal locks is USYNC_THREAD. We also know that internal
* locking can never fail, so we panic if it does.
*/
void
lmutex_lock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(mp->mutex_type == USYNC_THREAD);
enter_critical(self);
/*
* Optimize the case of no lock statistics and only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (udp->uberflags.uf_all == 0) {
/*
* Only one thread exists; the mutex must be free.
*/
ASSERT(mp->mutex_lockw == 0);
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else {
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
if (!self->ul_schedctl_called)
(void) setup_schedctl();
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else if (mutex_trylock_adaptive(mp) != 0) {
(void) mutex_lock_queue(self, msp, mp, NULL);
}
if (msp)
record_begin_hold(msp);
}
}
void
lmutex_unlock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(mp->mutex_type == USYNC_THREAD);
/*
* Optimize the case of no lock statistics and only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (udp->uberflags.uf_all == 0) {
/*
* Only one thread exists so there can be no waiters.
*/
mp->mutex_owner = 0;
mp->mutex_lockword = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
} else {
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
lwpid_t lwpid;
if (msp)
(void) record_hold_time(msp);
if ((lwpid = mutex_unlock_queue(mp)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
}
exit_critical(self);
}
/*
* For specialized code in libc, like the asynchronous i/o code,
* the following sig_*() locking primitives are used in order
* to make the code asynchronous signal safe. Signals are
* deferred while locks acquired by these functions are held.
*/
void
sig_mutex_lock(mutex_t *mp)
{
sigoff(curthread);
(void) _private_mutex_lock(mp);
}
void
sig_mutex_unlock(mutex_t *mp)
{
(void) _private_mutex_unlock(mp);
sigon(curthread);
}
int
sig_mutex_trylock(mutex_t *mp)
{
int error;
sigoff(curthread);
if ((error = _private_mutex_trylock(mp)) != 0)
sigon(curthread);
return (error);
}
/*
* sig_cond_wait() is a cancellation point.
*/
int
sig_cond_wait(cond_t *cv, mutex_t *mp)
{
int error;
ASSERT(curthread->ul_sigdefer != 0);
_private_testcancel();
error = _cond_wait(cv, mp);
if (error == EINTR && curthread->ul_cursig) {
sig_mutex_unlock(mp);
/* take the deferred signal here */
sig_mutex_lock(mp);
}
_private_testcancel();
return (error);
}
/*
* sig_cond_reltimedwait() is a cancellation point.
*/
int
sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
{
int error;
ASSERT(curthread->ul_sigdefer != 0);
_private_testcancel();
error = _cond_reltimedwait(cv, mp, ts);
if (error == EINTR && curthread->ul_cursig) {
sig_mutex_unlock(mp);
/* take the deferred signal here */
sig_mutex_lock(mp);
}
_private_testcancel();
return (error);
}
static int
shared_mutex_held(mutex_t *mparg)
{
/*
* There is an inherent data race in the current ownership design.
* The mutex_owner and mutex_ownerpid fields cannot be set or tested
* atomically as a pair. The original implementation tested each
* field just once. This was exposed to trivial false positives in
* the case of multiple multithreaded processes with thread addresses
* in common. To close the window to an acceptable level we now use a
* sequence of five tests: pid-thr-pid-thr-pid. This ensures that any
* single interruption will still leave one uninterrupted sequence of
* pid-thr-pid tests intact.
*
* It is assumed that all updates are always ordered thr-pid and that
* we have TSO hardware.
*/
volatile mutex_t *mp = (volatile mutex_t *)mparg;
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
if (mp->mutex_ownerpid != udp->pid)
return (0);
if (!MUTEX_OWNED(mp, self))
return (0);
if (mp->mutex_ownerpid != udp->pid)
return (0);
if (!MUTEX_OWNED(mp, self))
return (0);
if (mp->mutex_ownerpid != udp->pid)
return (0);
return (1);
}
/*
* Some crufty old programs define their own version of _mutex_held()
* to be simply return(1). This breaks internal libc logic, so we
* define a private version for exclusive use by libc, mutex_is_held(),
* and also a new public function, __mutex_held(), to be used in new
* code to circumvent these crufty old programs.
*/
#pragma weak mutex_held = mutex_is_held
#pragma weak _mutex_held = mutex_is_held
#pragma weak __mutex_held = mutex_is_held
int
mutex_is_held(mutex_t *mp)
{
if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
return (shared_mutex_held(mp));
return (MUTEX_OWNED(mp, curthread));
}
#pragma weak _private_mutex_destroy = __mutex_destroy
#pragma weak mutex_destroy = __mutex_destroy
#pragma weak _mutex_destroy = __mutex_destroy
#pragma weak pthread_mutex_destroy = __mutex_destroy
#pragma weak _pthread_mutex_destroy = __mutex_destroy
int
__mutex_destroy(mutex_t *mp)
{
mp->mutex_magic = 0;
mp->mutex_flag &= ~LOCK_INITED;
tdb_sync_obj_deregister(mp);
return (0);
}
/*
* Spin locks are separate from ordinary mutexes,
* but we use the same data structure for them.
*/
#pragma weak pthread_spin_init = _pthread_spin_init
int
_pthread_spin_init(pthread_spinlock_t *lock, int pshared)
{
mutex_t *mp = (mutex_t *)lock;
(void) _memset(mp, 0, sizeof (*mp));
if (pshared == PTHREAD_PROCESS_SHARED)
mp->mutex_type = USYNC_PROCESS;
else
mp->mutex_type = USYNC_THREAD;
mp->mutex_flag = LOCK_INITED;
mp->mutex_magic = MUTEX_MAGIC;
return (0);
}
#pragma weak pthread_spin_destroy = _pthread_spin_destroy
int
_pthread_spin_destroy(pthread_spinlock_t *lock)
{
(void) _memset(lock, 0, sizeof (*lock));
return (0);
}
#pragma weak pthread_spin_trylock = _pthread_spin_trylock
int
_pthread_spin_trylock(pthread_spinlock_t *lock)
{
mutex_t *mp = (mutex_t *)lock;
ulwp_t *self = curthread;
int error = 0;
no_preempt(self);
if (set_lock_byte(&mp->mutex_lockw) != 0)
error = EBUSY;
else {
mp->mutex_owner = (uintptr_t)self;
if (mp->mutex_type == USYNC_PROCESS)
mp->mutex_ownerpid = self->ul_uberdata->pid;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
}
preempt(self);
return (error);
}
#pragma weak pthread_spin_lock = _pthread_spin_lock
int
_pthread_spin_lock(pthread_spinlock_t *lock)
{
volatile uint8_t *lockp =
(volatile uint8_t *)&((mutex_t *)lock)->mutex_lockw;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
/*
* We don't care whether the owner is running on a processor.
* We just spin because that's what this interface requires.
*/
for (;;) {
if (*lockp == 0) { /* lock byte appears to be clear */
if (_pthread_spin_trylock(lock) == 0)
return (0);
}
SMT_PAUSE();
}
}
#pragma weak pthread_spin_unlock = _pthread_spin_unlock
int
_pthread_spin_unlock(pthread_spinlock_t *lock)
{
mutex_t *mp = (mutex_t *)lock;
ulwp_t *self = curthread;
no_preempt(self);
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
(void) swap32(&mp->mutex_lockword, 0);
preempt(self);
return (0);
}
#pragma weak cond_init = _cond_init
/* ARGSUSED2 */
int
_cond_init(cond_t *cvp, int type, void *arg)
{
if (type != USYNC_THREAD && type != USYNC_PROCESS)
return (EINVAL);
(void) _memset(cvp, 0, sizeof (*cvp));
cvp->cond_type = (uint16_t)type;
cvp->cond_magic = COND_MAGIC;
return (0);
}
/*
* cond_sleep_queue(): utility function for cond_wait_queue().
*
* Go to sleep on a condvar sleep queue, expect to be waked up
* by someone calling cond_signal() or cond_broadcast() or due
* to receiving a UNIX signal or being cancelled, or just simply
* due to a spurious wakeup (like someome calling forkall()).
*
* The associated mutex is *not* reacquired before returning.
* That must be done by the caller of cond_sleep_queue().
*/
int
cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
queue_head_t *qp;
queue_head_t *mqp;
lwpid_t lwpid;
int signalled;
int error;
/*
* Put ourself on the CV sleep queue, unlock the mutex, then
* park ourself and unpark a candidate lwp to grab the mutex.
* We must go onto the CV sleep queue before dropping the
* mutex in order to guarantee atomicity of the operation.
*/
self->ul_sp = stkptr();
qp = queue_lock(cvp, CV);
enqueue(qp, self, cvp, CV);
cvp->cond_waiters_user = 1;
self->ul_cvmutex = mp;
self->ul_cv_wake = (tsp != NULL);
self->ul_signalled = 0;
lwpid = mutex_unlock_queue(mp);
for (;;) {
set_parking_flag(self, 1);
queue_unlock(qp);
if (lwpid != 0) {
lwpid = preempt_unpark(self, lwpid);
preempt(self);
}
/*
* We may have a deferred signal present,
* in which case we should return EINTR.
* Also, we may have received a SIGCANCEL; if so
* and we are cancelable we should return EINTR.
* We force an immediate EINTR return from
* __lwp_park() by turning our parking flag off.
*/
if (self->ul_cursig != 0 ||
(self->ul_cancelable && self->ul_cancel_pending))
set_parking_flag(self, 0);
/*
* __lwp_park() will return the residual time in tsp
* if we are unparked before the timeout expires.
*/
error = __lwp_park(tsp, lwpid);
set_parking_flag(self, 0);
lwpid = 0; /* unpark the other lwp only once */
/*
* We were waked up by cond_signal(), cond_broadcast(),
* by an interrupt or timeout (EINTR or ETIME),
* or we may just have gotten a spurious wakeup.
*/
qp = queue_lock(cvp, CV);
mqp = queue_lock(mp, MX);
if (self->ul_sleepq == NULL)
break;
/*
* We are on either the condvar sleep queue or the
* mutex sleep queue. Break out of the sleep if we
* were interrupted or we timed out (EINTR or ETIME).
* Else this is a spurious wakeup; continue the loop.
*/
if (self->ul_sleepq == mqp) { /* mutex queue */
if (error) {
mp->mutex_waiters = dequeue_self(mqp, mp);
break;
}
tsp = NULL; /* no more timeout */
} else if (self->ul_sleepq == qp) { /* condvar queue */
if (error) {
cvp->cond_waiters_user = dequeue_self(qp, cvp);
break;
}
/*
* Else a spurious wakeup on the condvar queue.
* __lwp_park() has already adjusted the timeout.
*/
} else {
thr_panic("cond_sleep_queue(): thread not on queue");
}
queue_unlock(mqp);
}
self->ul_sp = 0;
ASSERT(self->ul_cvmutex == NULL && self->ul_cv_wake == 0);
ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
self->ul_wchan == NULL);
signalled = self->ul_signalled;
self->ul_signalled = 0;
queue_unlock(qp);
queue_unlock(mqp);
/*
* If we were concurrently cond_signal()d and any of:
* received a UNIX signal, were cancelled, or got a timeout,
* then perform another cond_signal() to avoid consuming it.
*/
if (error && signalled)
(void) cond_signal_internal(cvp);
return (error);
}
int
cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp,
tdb_mutex_stats_t *msp)
{
ulwp_t *self = curthread;
int error;
/*
* The old thread library was programmed to defer signals
* while in cond_wait() so that the associated mutex would
* be guaranteed to be held when the application signal
* handler was invoked.
*
* We do not behave this way by default; the state of the
* associated mutex in the signal handler is undefined.
*
* To accommodate applications that depend on the old
* behavior, the _THREAD_COND_WAIT_DEFER environment
* variable can be set to 1 and we will behave in the
* old way with respect to cond_wait().
*/
if (self->ul_cond_wait_defer)
sigoff(self);
error = cond_sleep_queue(cvp, mp, tsp);
/*
* Reacquire the mutex.
*/
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else if (mutex_trylock_adaptive(mp) != 0) {
(void) mutex_lock_queue(self, msp, mp, NULL);
}
if (msp)
record_begin_hold(msp);
/*
* Take any deferred signal now, after we have reacquired the mutex.
*/
if (self->ul_cond_wait_defer)
sigon(self);
return (error);
}
/*
* cond_sleep_kernel(): utility function for cond_wait_kernel().
* See the comment ahead of cond_sleep_queue(), above.
*/
int
cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
int mtype = mp->mutex_type;
ulwp_t *self = curthread;
int error;
if (mtype & PTHREAD_PRIO_PROTECT) {
if (_ceil_mylist_del(mp))
_ceil_prio_waive();
}
self->ul_sp = stkptr();
self->ul_wchan = cvp;
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
if (mtype & PTHREAD_PRIO_INHERIT)
mp->mutex_lockw = LOCKCLEAR;
/*
* ___lwp_cond_wait() returns immediately with EINTR if
* set_parking_flag(self,0) is called on this lwp before it
* goes to sleep in the kernel. sigacthandler() calls this
* when a deferred signal is noted. This assures that we don't
* get stuck in ___lwp_cond_wait() with all signals blocked
* due to taking a deferred signal before going to sleep.
*/
set_parking_flag(self, 1);
if (self->ul_cursig != 0 ||
(self->ul_cancelable && self->ul_cancel_pending))
set_parking_flag(self, 0);
error = ___lwp_cond_wait(cvp, mp, tsp, 1);
set_parking_flag(self, 0);
self->ul_sp = 0;
self->ul_wchan = NULL;
return (error);
}
int
cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
int error;
int merror;
/*
* See the large comment in cond_wait_queue(), above.
*/
if (self->ul_cond_wait_defer)
sigoff(self);
error = cond_sleep_kernel(cvp, mp, tsp);
/*
* Override the return code from ___lwp_cond_wait()
* with any non-zero return code from mutex_lock().
* This addresses robust lock failures in particular;
* the caller must see the EOWNERDEAD or ENOTRECOVERABLE
* errors in order to take corrective action.
*/
if ((merror = _private_mutex_lock(mp)) != 0)
error = merror;
/*
* Take any deferred signal now, after we have reacquired the mutex.
*/
if (self->ul_cond_wait_defer)
sigon(self);
return (error);
}
/*
* Common code for _cond_wait() and _cond_timedwait()
*/
int
cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
int mtype = mp->mutex_type;
hrtime_t begin_sleep = 0;
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
uint8_t rcount;
int error = 0;
/*
* The SUSV3 Posix spec for pthread_cond_timedwait() states:
* Except in the case of [ETIMEDOUT], all these error checks
* shall act as if they were performed immediately at the
* beginning of processing for the function and shall cause
* an error return, in effect, prior to modifying the state
* of the mutex specified by mutex or the condition variable
* specified by cond.
* Therefore, we must return EINVAL now if the timout is invalid.
*/
if (tsp != NULL &&
(tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
return (EINVAL);
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_sp = stkptr();
self->ul_wchan = cvp;
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = cvp;
tdb_event(TD_SLEEP, udp);
self->ul_sp = 0;
}
if (csp) {
if (tsp)
tdb_incr(csp->cond_timedwait);
else
tdb_incr(csp->cond_wait);
}
if (msp)
begin_sleep = record_hold_time(msp);
else if (csp)
begin_sleep = gethrtime();
if (self->ul_error_detection) {
if (!mutex_is_held(mp))
lock_error(mp, "cond_wait", cvp, NULL);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
lock_error(mp, "recursive mutex in cond_wait",
cvp, NULL);
if (cvp->cond_type & USYNC_PROCESS) {
if (!(mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)))
lock_error(mp, "cond_wait", cvp,
"condvar process-shared, "
"mutex process-private");
} else {
if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
lock_error(mp, "cond_wait", cvp,
"condvar process-private, "
"mutex process-shared");
}
}
/*
* We deal with recursive mutexes by completely
* dropping the lock and restoring the recursion
* count after waking up. This is arguably wrong,
* but it obeys the principle of least astonishment.
*/
rcount = mp->mutex_rcount;
mp->mutex_rcount = 0;
if ((mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST |
PTHREAD_PRIO_INHERIT | PTHREAD_PRIO_PROTECT)) |
(cvp->cond_type & USYNC_PROCESS))
error = cond_wait_kernel(cvp, mp, tsp);
else
error = cond_wait_queue(cvp, mp, tsp, msp);
mp->mutex_rcount = rcount;
if (csp) {
hrtime_t lapse = gethrtime() - begin_sleep;
if (tsp == NULL)
csp->cond_wait_sleep_time += lapse;
else {
csp->cond_timedwait_sleep_time += lapse;
if (error == ETIME)
tdb_incr(csp->cond_timedwait_timeout);
}
}
return (error);
}
/*
* cond_wait() is a cancellation point but _cond_wait() is not.
* System libraries call the non-cancellation version.
* It is expected that only applications call the cancellation version.
*/
int
_cond_wait(cond_t *cvp, mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
uberflags_t *gflags;
/*
* Optimize the common case of USYNC_THREAD plus
* no error detection, no lock statistics, and no event tracing.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
self->ul_td_events_enable |
udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
return (cond_wait_queue(cvp, mp, NULL, NULL));
/*
* Else do it the long way.
*/
return (cond_wait_common(cvp, mp, NULL));
}
int
cond_wait(cond_t *cvp, mutex_t *mp)
{
int error;
_cancelon();
error = _cond_wait(cvp, mp);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
#pragma weak pthread_cond_wait = _pthread_cond_wait
int
_pthread_cond_wait(cond_t *cvp, mutex_t *mp)
{
int error;
error = cond_wait(cvp, mp);
return ((error == EINTR)? 0 : error);
}
/*
* cond_timedwait() is a cancellation point but _cond_timedwait() is not.
* System libraries call the non-cancellation version.
* It is expected that only applications call the cancellation version.
*/
int
_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
{
clockid_t clock_id = cvp->cond_clockid;
timespec_t reltime;
int error;
if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
clock_id = CLOCK_REALTIME;
abstime_to_reltime(clock_id, abstime, &reltime);
error = cond_wait_common(cvp, mp, &reltime);
if (error == ETIME && clock_id == CLOCK_HIGHRES) {
/*
* Don't return ETIME if we didn't really get a timeout.
* This can happen if we return because someone resets
* the system clock. Just return zero in this case,
* giving a spurious wakeup but not a timeout.
*/
if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
abstime->tv_nsec > gethrtime())
error = 0;
}
return (error);
}
int
cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
{
int error;
_cancelon();
error = _cond_timedwait(cvp, mp, abstime);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
#pragma weak pthread_cond_timedwait = _pthread_cond_timedwait
int
_pthread_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
{
int error;
error = cond_timedwait(cvp, mp, abstime);
if (error == ETIME)
error = ETIMEDOUT;
else if (error == EINTR)
error = 0;
return (error);
}
/*
* cond_reltimedwait() is a cancellation point but _cond_reltimedwait()
* is not. System libraries call the non-cancellation version.
* It is expected that only applications call the cancellation version.
*/
int
_cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
{
timespec_t tslocal = *reltime;
return (cond_wait_common(cvp, mp, &tslocal));
}
#pragma weak cond_reltimedwait = _cond_reltimedwait_cancel
int
_cond_reltimedwait_cancel(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
{
int error;
_cancelon();
error = _cond_reltimedwait(cvp, mp, reltime);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
#pragma weak pthread_cond_reltimedwait_np = _pthread_cond_reltimedwait_np
int
_pthread_cond_reltimedwait_np(cond_t *cvp, mutex_t *mp,
const timespec_t *reltime)
{
int error;
error = _cond_reltimedwait_cancel(cvp, mp, reltime);
if (error == ETIME)
error = ETIMEDOUT;
else if (error == EINTR)
error = 0;
return (error);
}
#pragma weak pthread_cond_signal = cond_signal_internal
#pragma weak _pthread_cond_signal = cond_signal_internal
#pragma weak cond_signal = cond_signal_internal
#pragma weak _cond_signal = cond_signal_internal
int
cond_signal_internal(cond_t *cvp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
int error = 0;
queue_head_t *qp;
mutex_t *mp;
queue_head_t *mqp;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev = NULL;
ulwp_t *next;
ulwp_t **suspp = NULL;
ulwp_t *susprev;
if (csp)
tdb_incr(csp->cond_signal);
if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
error = __lwp_cond_signal(cvp);
if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
return (error);
/*
* Move someone from the condvar sleep queue to the mutex sleep
* queue for the mutex that he will acquire on being waked up.
* We can do this only if we own the mutex he will acquire.
* If we do not own the mutex, or if his ul_cv_wake flag
* is set, just dequeue and unpark him.
*/
qp = queue_lock(cvp, CV);
for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
if (ulwp->ul_wchan == cvp) {
if (!ulwp->ul_stop)
break;
/*
* Try not to dequeue a suspended thread.
* This mimics the old libthread's behavior.
*/
if (suspp == NULL) {
suspp = ulwpp;
susprev = prev;
}
}
}
if (ulwp == NULL && suspp != NULL) {
ulwp = *(ulwpp = suspp);
prev = susprev;
suspp = NULL;
}
if (ulwp == NULL) { /* no one on the sleep queue */
cvp->cond_waiters_user = 0;
queue_unlock(qp);
return (error);
}
/*
* Scan the remainder of the CV queue for another waiter.
*/
if (suspp != NULL) {
next = *suspp;
} else {
for (next = ulwp->ul_link; next != NULL; next = next->ul_link)
if (next->ul_wchan == cvp)
break;
}
if (next == NULL)
cvp->cond_waiters_user = 0;
/*
* Inform the thread that he was the recipient of a cond_signal().
* This lets him deal with cond_signal() and, concurrently,
* one or more of a cancellation, a UNIX signal, or a timeout.
* These latter conditions must not consume a cond_signal().
*/
ulwp->ul_signalled = 1;
/*
* Dequeue the waiter but leave his ul_sleepq non-NULL
* while we move him to the mutex queue so that he can
* deal properly with spurious wakeups.
*/
*ulwpp = ulwp->ul_link;
if (qp->qh_tail == ulwp)
qp->qh_tail = prev;
qp->qh_qlen--;
ulwp->ul_link = NULL;
mp = ulwp->ul_cvmutex; /* the mutex he will acquire */
ulwp->ul_cvmutex = NULL;
ASSERT(mp != NULL);
if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
lwpid_t lwpid = ulwp->ul_lwpid;
no_preempt(self);
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
ulwp->ul_cv_wake = 0;
queue_unlock(qp);
(void) __lwp_unpark(lwpid);
preempt(self);
} else {
mqp = queue_lock(mp, MX);
enqueue(mqp, ulwp, mp, MX);
mp->mutex_waiters = 1;
queue_unlock(mqp);
queue_unlock(qp);
}
return (error);
}
#define MAXLWPS 128 /* max remembered lwpids before overflow */
#define NEWLWPS 2048 /* max remembered lwpids at first overflow */
#pragma weak pthread_cond_broadcast = cond_broadcast_internal
#pragma weak _pthread_cond_broadcast = cond_broadcast_internal
#pragma weak cond_broadcast = cond_broadcast_internal
#pragma weak _cond_broadcast = cond_broadcast_internal
int
cond_broadcast_internal(cond_t *cvp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
int error = 0;
queue_head_t *qp;
mutex_t *mp;
queue_head_t *mqp;
mutex_t *mp_cache = NULL;
queue_head_t *mqp_cache = NULL;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev = NULL;
lwpid_t buffer[MAXLWPS];
lwpid_t *lwpid = buffer;
int nlwpid = 0;
int maxlwps = MAXLWPS;
if (csp)
tdb_incr(csp->cond_broadcast);
if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
error = __lwp_cond_broadcast(cvp);
if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
return (error);
/*
* Move everyone from the condvar sleep queue to the mutex sleep
* queue for the mutex that they will acquire on being waked up.
* We can do this only if we own the mutex they will acquire.
* If we do not own the mutex, or if their ul_cv_wake flag
* is set, just dequeue and unpark them.
*
* We keep track of lwpids that are to be unparked in lwpid[].
* __lwp_unpark_all() is called to unpark all of them after
* they have been removed from the sleep queue and the sleep
* queue lock has been dropped. If we run out of space in our
* on-stack buffer, we need to allocate more but we can't call
* lmalloc() because we are holding a queue lock when the overflow
* occurs and lmalloc() acquires a lock. We can't use alloca()
* either because the application may have allocated a small stack
* and we don't want to overrun the stack. So we use the mmap()
* system call directly since that path acquires no locks.
*/
qp = queue_lock(cvp, CV);
cvp->cond_waiters_user = 0;
ulwpp = &qp->qh_head;
while ((ulwp = *ulwpp) != NULL) {
if (ulwp->ul_wchan != cvp) {
prev = ulwp;
ulwpp = &ulwp->ul_link;
continue;
}
*ulwpp = ulwp->ul_link;
if (qp->qh_tail == ulwp)
qp->qh_tail = prev;
qp->qh_qlen--;
ulwp->ul_link = NULL;
mp = ulwp->ul_cvmutex; /* his mutex */
ulwp->ul_cvmutex = NULL;
ASSERT(mp != NULL);
if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
ulwp->ul_cv_wake = 0;
if (nlwpid == maxlwps) {
/*
* Allocate NEWLWPS ids on the first overflow.
* Double the allocation each time after that.
*/
int newlwps = (lwpid == buffer)? NEWLWPS :
2 * maxlwps;
void *vaddr = _private_mmap(NULL,
newlwps * sizeof (lwpid_t),
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON, -1, (off_t)0);
if (vaddr == MAP_FAILED) {
/*
* Let's hope this never happens.
* If it does, then we have a terrible
* thundering herd on our hands.
*/
(void) __lwp_unpark_all(lwpid, nlwpid);
nlwpid = 0;
} else {
(void) _memcpy(vaddr, lwpid,
maxlwps * sizeof (lwpid_t));
if (lwpid != buffer)
(void) _private_munmap(lwpid,
maxlwps * sizeof (lwpid_t));
lwpid = vaddr;
maxlwps = newlwps;
}
}
lwpid[nlwpid++] = ulwp->ul_lwpid;
} else {
if (mp != mp_cache) {
if (mqp_cache != NULL)
queue_unlock(mqp_cache);
mqp_cache = queue_lock(mp, MX);
mp_cache = mp;
}
mqp = mqp_cache;
enqueue(mqp, ulwp, mp, MX);
mp->mutex_waiters = 1;
}
}
if (mqp_cache != NULL)
queue_unlock(mqp_cache);
queue_unlock(qp);
if (nlwpid) {
if (nlwpid == 1)
(void) __lwp_unpark(lwpid[0]);
else
(void) __lwp_unpark_all(lwpid, nlwpid);
}
if (lwpid != buffer)
(void) _private_munmap(lwpid, maxlwps * sizeof (lwpid_t));
return (error);
}
#pragma weak pthread_cond_destroy = _cond_destroy
#pragma weak _pthread_cond_destroy = _cond_destroy
#pragma weak cond_destroy = _cond_destroy
int
_cond_destroy(cond_t *cvp)
{
cvp->cond_magic = 0;
tdb_sync_obj_deregister(cvp);
return (0);
}
#if defined(THREAD_DEBUG)
void
assert_no_libc_locks_held(void)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
}
#endif
/* protected by link_lock */
uint64_t spin_lock_spin;
uint64_t spin_lock_spin2;
uint64_t spin_lock_sleep;
uint64_t spin_lock_wakeup;
/*
* Record spin lock statistics.
* Called by a thread exiting itself in thrp_exit().
* Also called via atexit() from the thread calling
* exit() to do all the other threads as well.
*/
void
record_spin_locks(ulwp_t *ulwp)
{
spin_lock_spin += ulwp->ul_spin_lock_spin;
spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
spin_lock_sleep += ulwp->ul_spin_lock_sleep;
spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
ulwp->ul_spin_lock_spin = 0;
ulwp->ul_spin_lock_spin2 = 0;
ulwp->ul_spin_lock_sleep = 0;
ulwp->ul_spin_lock_wakeup = 0;
}
/*
* atexit function: dump the queue statistics to stderr.
*/
#if !defined(__lint)
#define fprintf _fprintf
#endif
#include <stdio.h>
void
dump_queue_statistics(void)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
int qn;
uint64_t spin_lock_total = 0;
if (udp->queue_head == NULL || thread_queue_dump == 0)
return;
if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
fprintf(stderr, "queue# lockcount max qlen\n") < 0)
return;
for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
if (qp->qh_lockcount == 0)
continue;
spin_lock_total += qp->qh_lockcount;
if (fprintf(stderr, "%5d %12llu%12u\n", qn,
(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
return;
}
if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
fprintf(stderr, "queue# lockcount max qlen\n") < 0)
return;
for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
if (qp->qh_lockcount == 0)
continue;
spin_lock_total += qp->qh_lockcount;
if (fprintf(stderr, "%5d %12llu%12u\n", qn,
(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
return;
}
(void) fprintf(stderr, "\n spin_lock_total = %10llu\n",
(u_longlong_t)spin_lock_total);
(void) fprintf(stderr, " spin_lock_spin = %10llu\n",
(u_longlong_t)spin_lock_spin);
(void) fprintf(stderr, " spin_lock_spin2 = %10llu\n",
(u_longlong_t)spin_lock_spin2);
(void) fprintf(stderr, " spin_lock_sleep = %10llu\n",
(u_longlong_t)spin_lock_sleep);
(void) fprintf(stderr, " spin_lock_wakeup = %10llu\n",
(u_longlong_t)spin_lock_wakeup);
}