synch.c revision 7257d1b4d25bfac0c802847390e98a464fd787ac
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "lint.h"
#include "thr_uberdata.h"
#include <sys/rtpriocntl.h>
#include <sys/sdt.h>
#include <atomic.h>
#if defined(THREAD_DEBUG)
#define INCR32(x) (((x) != UINT32_MAX)? (x)++ : 0)
#define INCR(x) ((x)++)
#define DECR(x) ((x)--)
#define MAXINCR(m, x) ((m < ++x)? (m = x) : 0)
#else
#define INCR32(x)
#define INCR(x)
#define DECR(x)
#define MAXINCR(m, x)
#endif
/*
* This mutex is initialized to be held by lwp#1.
* It is used to block a thread that has returned from a mutex_lock()
* of a LOCK_PRIO_INHERIT mutex with an unrecoverable error.
*/
mutex_t stall_mutex = DEFAULTMUTEX;
static int shared_mutex_held(mutex_t *);
static int mutex_queuelock_adaptive(mutex_t *);
static void mutex_wakeup_all(mutex_t *);
/*
* Lock statistics support functions.
*/
void
record_begin_hold(tdb_mutex_stats_t *msp)
{
tdb_incr(msp->mutex_lock);
msp->mutex_begin_hold = gethrtime();
}
hrtime_t
record_hold_time(tdb_mutex_stats_t *msp)
{
hrtime_t now = gethrtime();
if (msp->mutex_begin_hold)
msp->mutex_hold_time += now - msp->mutex_begin_hold;
msp->mutex_begin_hold = 0;
return (now);
}
/*
* Called once at library initialization.
*/
void
mutex_setup(void)
{
if (set_lock_byte(&stall_mutex.mutex_lockw))
thr_panic("mutex_setup() cannot acquire stall_mutex");
stall_mutex.mutex_owner = (uintptr_t)curthread;
}
/*
* The default spin count of 1000 is experimentally determined.
* On sun4u machines with any number of processors it could be raised
* to 10,000 but that (experimentally) makes almost no difference.
* The environment variable:
* _THREAD_ADAPTIVE_SPIN=count
* can be used to override and set the count in the range [0 .. 1,000,000].
*/
int thread_adaptive_spin = 1000;
uint_t thread_max_spinners = 100;
int thread_queue_verify = 0;
static int ncpus;
/*
* Distinguish spinning for queue locks from spinning for regular locks.
* We try harder to acquire queue locks by spinning.
* The environment variable:
* _THREAD_QUEUE_SPIN=count
* can be used to override and set the count in the range [0 .. 1,000,000].
*/
int thread_queue_spin = 10000;
#define ALL_ATTRIBUTES \
(LOCK_RECURSIVE | LOCK_ERRORCHECK | \
LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT | \
LOCK_ROBUST)
/*
* 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST,
* augmented by zero or more the flags:
* LOCK_RECURSIVE
* LOCK_ERRORCHECK
* LOCK_PRIO_INHERIT
* LOCK_PRIO_PROTECT
* LOCK_ROBUST
*/
#pragma weak _mutex_init = mutex_init
/* ARGSUSED2 */
int
mutex_init(mutex_t *mp, int type, void *arg)
{
int basetype = (type & ~ALL_ATTRIBUTES);
const pcclass_t *pccp;
int error = 0;
int ceil;
if (basetype == USYNC_PROCESS_ROBUST) {
/*
* USYNC_PROCESS_ROBUST is a deprecated historical type.
* We change it into (USYNC_PROCESS | LOCK_ROBUST) but
* retain the USYNC_PROCESS_ROBUST flag so we can return
* ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST
* mutexes will ever draw ELOCKUNMAPPED).
*/
type |= (USYNC_PROCESS | LOCK_ROBUST);
basetype = USYNC_PROCESS;
}
if (type & LOCK_PRIO_PROTECT)
pccp = get_info_by_policy(SCHED_FIFO);
if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) ||
(type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT))
== (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) ||
((type & LOCK_PRIO_PROTECT) &&
((ceil = *(int *)arg) < pccp->pcc_primin ||
ceil > pccp->pcc_primax))) {
error = EINVAL;
} else if (type & LOCK_ROBUST) {
/*
* Callers of mutex_init() with the LOCK_ROBUST attribute
* are required to pass an initially all-zero mutex.
* Multiple calls to mutex_init() are allowed; all but
* the first return EBUSY. A call to mutex_init() is
* allowed to make an inconsistent robust lock consistent
* (for historical usage, even though the proper interface
* for this is mutex_consistent()). Note that we use
* atomic_or_16() to set the LOCK_INITED flag so as
* not to disturb surrounding bits (LOCK_OWNERDEAD, etc).
*/
if (!(mp->mutex_flag & LOCK_INITED)) {
mp->mutex_type = (uint8_t)type;
atomic_or_16(&mp->mutex_flag, LOCK_INITED);
mp->mutex_magic = MUTEX_MAGIC;
} else if (type != mp->mutex_type ||
((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) {
error = EINVAL;
} else if (mutex_consistent(mp) != 0) {
error = EBUSY;
}
/* register a process robust mutex with the kernel */
if (basetype == USYNC_PROCESS)
register_lock(mp);
} else {
(void) memset(mp, 0, sizeof (*mp));
mp->mutex_type = (uint8_t)type;
mp->mutex_flag = LOCK_INITED;
mp->mutex_magic = MUTEX_MAGIC;
}
if (error == 0 && (type & LOCK_PRIO_PROTECT)) {
mp->mutex_ceiling = ceil;
}
return (error);
}
/*
* Delete mp from list of ceiling mutexes owned by curthread.
* Return 1 if the head of the chain was updated.
*/
int
_ceil_mylist_del(mutex_t *mp)
{
ulwp_t *self = curthread;
mxchain_t **mcpp;
mxchain_t *mcp;
for (mcpp = &self->ul_mxchain;
(mcp = *mcpp) != NULL;
mcpp = &mcp->mxchain_next) {
if (mcp->mxchain_mx == mp) {
*mcpp = mcp->mxchain_next;
lfree(mcp, sizeof (*mcp));
return (mcpp == &self->ul_mxchain);
}
}
return (0);
}
/*
* Add mp to the list of ceiling mutexes owned by curthread.
* Return ENOMEM if no memory could be allocated.
*/
int
_ceil_mylist_add(mutex_t *mp)
{
ulwp_t *self = curthread;
mxchain_t *mcp;
if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
return (ENOMEM);
mcp->mxchain_mx = mp;
mcp->mxchain_next = self->ul_mxchain;
self->ul_mxchain = mcp;
return (0);
}
/*
* Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below.
*/
static void
set_rt_priority(ulwp_t *self, int prio)
{
pcparms_t pcparm;
pcparm.pc_cid = self->ul_rtclassid;
((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE;
((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio;
(void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm);
}
/*
* Inherit priority from ceiling.
* This changes the effective priority, not the assigned priority.
*/
void
_ceil_prio_inherit(int prio)
{
ulwp_t *self = curthread;
self->ul_epri = prio;
set_rt_priority(self, prio);
}
/*
* Waive inherited ceiling priority. Inherit from head of owned ceiling locks
* if holding at least one ceiling lock. If no ceiling locks are held at this
* point, disinherit completely, reverting back to assigned priority.
*/
void
_ceil_prio_waive(void)
{
ulwp_t *self = curthread;
mxchain_t *mcp = self->ul_mxchain;
int prio;
if (mcp == NULL) {
prio = self->ul_pri;
self->ul_epri = 0;
} else {
prio = mcp->mxchain_mx->mutex_ceiling;
self->ul_epri = prio;
}
set_rt_priority(self, prio);
}
/*
* Clear the lock byte. Retain the waiters byte and the spinners byte.
* Return the old value of the lock word.
*/
static uint32_t
clear_lockbyte(volatile uint32_t *lockword)
{
uint32_t old;
uint32_t new;
do {
old = *lockword;
new = old & ~LOCKMASK;
} while (atomic_cas_32(lockword, old, new) != old);
return (old);
}
/*
* Same as clear_lockbyte(), but operates on mutex_lockword64.
* The mutex_ownerpid field is cleared along with the lock byte.
*/
static uint64_t
clear_lockbyte64(volatile uint64_t *lockword64)
{
uint64_t old;
uint64_t new;
do {
old = *lockword64;
new = old & ~LOCKMASK64;
} while (atomic_cas_64(lockword64, old, new) != old);
return (old);
}
/*
* Similar to set_lock_byte(), which only tries to set the lock byte.
* Here, we attempt to set the lock byte AND the mutex_ownerpid,
* keeping the remaining bytes constant.
*/
static int
set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid)
{
uint64_t old;
uint64_t new;
old = *lockword64 & ~LOCKMASK64;
new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64;
if (atomic_cas_64(lockword64, old, new) == old)
return (LOCKCLEAR);
return (LOCKSET);
}
/*
* Increment the spinners count in the mutex lock word.
* Return 0 on success. Return -1 if the count would overflow.
*/
static int
spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners)
{
uint32_t old;
uint32_t new;
do {
old = *lockword;
if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners)
return (-1);
new = old + (1 << SPINNERSHIFT);
} while (atomic_cas_32(lockword, old, new) != old);
return (0);
}
/*
* Decrement the spinners count in the mutex lock word.
* Return the new value of the lock word.
*/
static uint32_t
spinners_decr(volatile uint32_t *lockword)
{
uint32_t old;
uint32_t new;
do {
new = old = *lockword;
if (new & SPINNERMASK)
new -= (1 << SPINNERSHIFT);
} while (atomic_cas_32(lockword, old, new) != old);
return (new);
}
/*
* Non-preemptive spin locks. Used by queue_lock().
* No lock statistics are gathered for these locks.
* No DTrace probes are provided for these locks.
*/
void
spin_lock_set(mutex_t *mp)
{
ulwp_t *self = curthread;
no_preempt(self);
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
/*
* Spin for a while, attempting to acquire the lock.
*/
INCR32(self->ul_spin_lock_spin);
if (mutex_queuelock_adaptive(mp) == 0 ||
set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
/*
* Try harder if we were previously at a no premption level.
*/
if (self->ul_preempt > 1) {
INCR32(self->ul_spin_lock_spin2);
if (mutex_queuelock_adaptive(mp) == 0 ||
set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
return;
}
}
/*
* Give up and block in the kernel for the mutex.
*/
INCR32(self->ul_spin_lock_sleep);
(void) ___lwp_mutex_timedlock(mp, NULL);
mp->mutex_owner = (uintptr_t)self;
}
void
spin_lock_clear(mutex_t *mp)
{
ulwp_t *self = curthread;
mp->mutex_owner = 0;
if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) {
(void) ___lwp_mutex_wakeup(mp, 0);
INCR32(self->ul_spin_lock_wakeup);
}
preempt(self);
}
/*
* Allocate the sleep queue hash table.
*/
void
queue_alloc(void)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
queue_head_t *qp;
void *data;
int i;
/*
* No locks are needed; we call here only when single-threaded.
*/
ASSERT(self == udp->ulwp_one);
ASSERT(!udp->uberflags.uf_mt);
if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
== MAP_FAILED)
thr_panic("cannot allocate thread queue_head table");
udp->queue_head = qp = (queue_head_t *)data;
for (i = 0; i < 2 * QHASHSIZE; qp++, i++) {
qp->qh_type = (i < QHASHSIZE)? MX : CV;
qp->qh_lock.mutex_flag = LOCK_INITED;
qp->qh_lock.mutex_magic = MUTEX_MAGIC;
qp->qh_hlist = &qp->qh_def_root;
#if defined(THREAD_DEBUG)
qp->qh_hlen = 1;
qp->qh_hmax = 1;
#endif
}
}
#if defined(THREAD_DEBUG)
/*
* Debugging: verify correctness of a sleep queue.
*/
void
QVERIFY(queue_head_t *qp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
queue_root_t *qrp;
ulwp_t *ulwp;
ulwp_t *prev;
uint_t index;
uint32_t cnt;
char qtype;
void *wchan;
ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
cnt++;
ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) ||
(qrp->qr_head == NULL && qrp->qr_tail == NULL));
}
ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt);
qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
ASSERT(qp->qh_type == qtype);
if (!thread_queue_verify)
return;
/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL;
prev = ulwp, ulwp = ulwp->ul_link) {
cnt++;
if (ulwp->ul_writer)
ASSERT(prev == NULL || prev->ul_writer);
ASSERT(ulwp->ul_qtype == qtype);
ASSERT(ulwp->ul_wchan != NULL);
ASSERT(ulwp->ul_sleepq == qp);
wchan = ulwp->ul_wchan;
ASSERT(qrp->qr_wchan == wchan);
index = QUEUE_HASH(wchan, qtype);
ASSERT(&udp->queue_head[index] == qp);
}
ASSERT(qrp->qr_tail == prev);
}
ASSERT(qp->qh_qlen == cnt);
}
#else /* THREAD_DEBUG */
#define QVERIFY(qp)
#endif /* THREAD_DEBUG */
/*
* Acquire a queue head.
*/
queue_head_t *
queue_lock(void *wchan, int qtype)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
queue_root_t *qrp;
ASSERT(qtype == MX || qtype == CV);
/*
* It is possible that we could be called while still single-threaded.
* If so, we call queue_alloc() to allocate the queue_head[] array.
*/
if ((qp = udp->queue_head) == NULL) {
queue_alloc();
qp = udp->queue_head;
}
qp += QUEUE_HASH(wchan, qtype);
spin_lock_set(&qp->qh_lock);
for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next)
if (qrp->qr_wchan == wchan)
break;
if (qrp == NULL && qp->qh_def_root.qr_head == NULL) {
/* the default queue root is available; use it */
qrp = &qp->qh_def_root;
qrp->qr_wchan = wchan;
ASSERT(qrp->qr_next == NULL);
ASSERT(qrp->qr_tail == NULL &&
qrp->qr_rtcount == 0 && qrp->qr_qlen == 0);
}
qp->qh_wchan = wchan; /* valid until queue_unlock() is called */
qp->qh_root = qrp; /* valid until queue_unlock() is called */
INCR32(qp->qh_lockcount);
QVERIFY(qp);
return (qp);
}
/*
* Release a queue head.
*/
void
queue_unlock(queue_head_t *qp)
{
QVERIFY(qp);
spin_lock_clear(&qp->qh_lock);
}
/*
* For rwlock queueing, we must queue writers ahead of readers of the
* same priority. We do this by making writers appear to have a half
* point higher priority for purposes of priority comparisons below.
*/
#define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
void
enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo)
{
queue_root_t *qrp;
ulwp_t **ulwpp;
ulwp_t *next;
int pri = CMP_PRIO(ulwp);
ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
ASSERT(ulwp->ul_sleepq != qp);
if ((qrp = qp->qh_root) == NULL) {
/* use the thread's queue root for the linkage */
qrp = &ulwp->ul_queue_root;
qrp->qr_next = qp->qh_hlist;
qrp->qr_prev = NULL;
qrp->qr_head = NULL;
qrp->qr_tail = NULL;
qrp->qr_wchan = qp->qh_wchan;
qrp->qr_rtcount = 0;
qrp->qr_qlen = 0;
qrp->qr_qmax = 0;
qp->qh_hlist->qr_prev = qrp;
qp->qh_hlist = qrp;
qp->qh_root = qrp;
MAXINCR(qp->qh_hmax, qp->qh_hlen);
}
/*
* LIFO queue ordering is unfair and can lead to starvation,
* but it gives better performance for heavily contended locks.
* We use thread_queue_fifo (range is 0..8) to determine
* the frequency of FIFO vs LIFO queuing:
* 0 : every 256th time (almost always LIFO)
* 1 : every 128th time
* 2 : every 64th time
* 3 : every 32nd time
* 4 : every 16th time (the default value, mostly LIFO)
* 5 : every 8th time
* 6 : every 4th time
* 7 : every 2nd time
* 8 : every time (never LIFO, always FIFO)
* Note that there is always some degree of FIFO ordering.
* This breaks live lock conditions that occur in applications
* that are written assuming (incorrectly) that threads acquire
* locks fairly, that is, in roughly round-robin order.
* In any event, the queue is maintained in kernel priority order.
*
* If force_fifo is non-zero, fifo queueing is forced.
* SUSV3 requires this for semaphores.
*/
if (qrp->qr_head == NULL) {
/*
* The queue is empty. LIFO/FIFO doesn't matter.
*/
ASSERT(qrp->qr_tail == NULL);
ulwpp = &qrp->qr_head;
} else if (force_fifo |
(((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) {
/*
* Enqueue after the last thread whose priority is greater
* than or equal to the priority of the thread being queued.
* Attempt first to go directly onto the tail of the queue.
*/
if (pri <= CMP_PRIO(qrp->qr_tail))
ulwpp = &qrp->qr_tail->ul_link;
else {
for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
ulwpp = &next->ul_link)
if (pri > CMP_PRIO(next))
break;
}
} else {
/*
* Enqueue before the first thread whose priority is less
* than or equal to the priority of the thread being queued.
* Hopefully we can go directly onto the head of the queue.
*/
for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
ulwpp = &next->ul_link)
if (pri >= CMP_PRIO(next))
break;
}
if ((ulwp->ul_link = *ulwpp) == NULL)
qrp->qr_tail = ulwp;
*ulwpp = ulwp;
ulwp->ul_sleepq = qp;
ulwp->ul_wchan = qp->qh_wchan;
ulwp->ul_qtype = qp->qh_type;
if ((ulwp->ul_schedctl != NULL &&
ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) |
ulwp->ul_pilocks) {
ulwp->ul_rtqueued = 1;
qrp->qr_rtcount++;
}
MAXINCR(qrp->qr_qmax, qrp->qr_qlen);
MAXINCR(qp->qh_qmax, qp->qh_qlen);
}
/*
* Helper function for queue_slot() and queue_slot_rt().
* Try to find a non-suspended thread on the queue.
*/
static ulwp_t **
queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt)
{
ulwp_t *ulwp;
ulwp_t **foundpp = NULL;
int priority = -1;
ulwp_t *prev;
int tpri;
for (prev = NULL;
(ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
if (ulwp->ul_stop) /* skip suspended threads */
continue;
tpri = rt? CMP_PRIO(ulwp) : 0;
if (tpri > priority) {
foundpp = ulwpp;
*prevp = prev;
priority = tpri;
if (!rt)
break;
}
}
return (foundpp);
}
/*
* For real-time, we search the entire queue because the dispatch
* (kernel) priorities may have changed since enqueueing.
*/
static ulwp_t **
queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp)
{
ulwp_t **ulwpp = ulwpp_org;
ulwp_t *ulwp = *ulwpp;
ulwp_t **foundpp = ulwpp;
int priority = CMP_PRIO(ulwp);
ulwp_t *prev;
int tpri;
for (prev = ulwp, ulwpp = &ulwp->ul_link;
(ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
tpri = CMP_PRIO(ulwp);
if (tpri > priority) {
foundpp = ulwpp;
*prevp = prev;
priority = tpri;
}
}
ulwp = *foundpp;
/*
* Try not to return a suspended thread.
* This mimics the old libthread's behavior.
*/
if (ulwp->ul_stop &&
(ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) {
foundpp = ulwpp;
ulwp = *foundpp;
}
ulwp->ul_rt = 1;
return (foundpp);
}
ulwp_t **
queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more)
{
queue_root_t *qrp;
ulwp_t **ulwpp;
ulwp_t *ulwp;
int rt;
ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) {
*more = 0;
return (NULL); /* no lwps on the queue */
}
rt = (qrp->qr_rtcount != 0);
*prevp = NULL;
if (ulwp->ul_link == NULL) { /* only one lwp on the queue */
*more = 0;
ulwp->ul_rt = rt;
return (&qrp->qr_head);
}
*more = 1;
if (rt) /* real-time queue */
return (queue_slot_rt(&qrp->qr_head, prevp));
/*
* Try not to return a suspended thread.
* This mimics the old libthread's behavior.
*/
if (ulwp->ul_stop &&
(ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) {
ulwp = *ulwpp;
ulwp->ul_rt = 0;
return (ulwpp);
}
/*
* The common case; just pick the first thread on the queue.
*/
ulwp->ul_rt = 0;
return (&qrp->qr_head);
}
/*
* Common code for unlinking an lwp from a user-level sleep queue.
*/
void
queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev)
{
queue_root_t *qrp = qp->qh_root;
queue_root_t *nqrp;
ulwp_t *ulwp = *ulwpp;
ulwp_t *next;
ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan);
DECR(qp->qh_qlen);
DECR(qrp->qr_qlen);
if (ulwp->ul_rtqueued) {
ulwp->ul_rtqueued = 0;
qrp->qr_rtcount--;
}
next = ulwp->ul_link;
*ulwpp = next;
ulwp->ul_link = NULL;
if (qrp->qr_tail == ulwp)
qrp->qr_tail = prev;
if (qrp == &ulwp->ul_queue_root) {
/*
* We can't continue to use the unlinked thread's
* queue root for the linkage.
*/
queue_root_t *qr_next = qrp->qr_next;
queue_root_t *qr_prev = qrp->qr_prev;
if (qrp->qr_tail) {
/* switch to using the last thread's queue root */
ASSERT(qrp->qr_qlen != 0);
nqrp = &qrp->qr_tail->ul_queue_root;
*nqrp = *qrp;
if (qr_next)
qr_next->qr_prev = nqrp;
if (qr_prev)
qr_prev->qr_next = nqrp;
else
qp->qh_hlist = nqrp;
qp->qh_root = nqrp;
} else {
/* empty queue root; just delete from the hash list */
ASSERT(qrp->qr_qlen == 0);
if (qr_next)
qr_next->qr_prev = qr_prev;
if (qr_prev)
qr_prev->qr_next = qr_next;
else
qp->qh_hlist = qr_next;
qp->qh_root = NULL;
DECR(qp->qh_hlen);
}
}
}
ulwp_t *
dequeue(queue_head_t *qp, int *more)
{
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev;
if ((ulwpp = queue_slot(qp, &prev, more)) == NULL)
return (NULL);
ulwp = *ulwpp;
queue_unlink(qp, ulwpp, prev);
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
return (ulwp);
}
/*
* Return a pointer to the highest priority thread sleeping on wchan.
*/
ulwp_t *
queue_waiter(queue_head_t *qp)
{
ulwp_t **ulwpp;
ulwp_t *prev;
int more;
if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL)
return (NULL);
return (*ulwpp);
}
int
dequeue_self(queue_head_t *qp)
{
ulwp_t *self = curthread;
queue_root_t *qrp;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev;
int found = 0;
ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
/* find self on the sleep queue */
if ((qrp = qp->qh_root) != NULL) {
for (prev = NULL, ulwpp = &qrp->qr_head;
(ulwp = *ulwpp) != NULL;
prev = ulwp, ulwpp = &ulwp->ul_link) {
if (ulwp == self) {
queue_unlink(qp, ulwpp, prev);
self->ul_cvmutex = NULL;
self->ul_sleepq = NULL;
self->ul_wchan = NULL;
found = 1;
break;
}
}
}
if (!found)
thr_panic("dequeue_self(): curthread not found on queue");
return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL);
}
/*
* Called from call_user_handler() and _thrp_suspend() to take
* ourself off of our sleep queue so we can grab locks.
*/
void
unsleep_self(void)
{
ulwp_t *self = curthread;
queue_head_t *qp;
/*
* Calling enter_critical()/exit_critical() here would lead
* to recursion. Just manipulate self->ul_critical directly.
*/
self->ul_critical++;
while (self->ul_sleepq != NULL) {
qp = queue_lock(self->ul_wchan, self->ul_qtype);
/*
* We may have been moved from a CV queue to a
* mutex queue while we were attempting queue_lock().
* If so, just loop around and try again.
* dequeue_self() clears self->ul_sleepq.
*/
if (qp == self->ul_sleepq)
(void) dequeue_self(qp);
queue_unlock(qp);
}
self->ul_writer = 0;
self->ul_critical--;
}
/*
* Common code for calling the the ___lwp_mutex_timedlock() system call.
* Returns with mutex_owner and mutex_ownerpid set correctly.
*/
static int
mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
hrtime_t begin_sleep;
int acquired;
int error;
self->ul_sp = stkptr();
self->ul_wchan = mp;
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = mp;
tdb_event(TD_SLEEP, udp);
}
if (msp) {
tdb_incr(msp->mutex_sleep);
begin_sleep = gethrtime();
}
DTRACE_PROBE1(plockstat, mutex__block, mp);
for (;;) {
/*
* A return value of EOWNERDEAD or ELOCKUNMAPPED
* means we successfully acquired the lock.
*/
if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0 &&
error != EOWNERDEAD && error != ELOCKUNMAPPED) {
acquired = 0;
break;
}
if (mtype & USYNC_PROCESS) {
/*
* Defend against forkall(). We may be the child,
* in which case we don't actually own the mutex.
*/
enter_critical(self);
if (mp->mutex_ownerpid == udp->pid) {
mp->mutex_owner = (uintptr_t)self;
exit_critical(self);
acquired = 1;
break;
}
exit_critical(self);
} else {
mp->mutex_owner = (uintptr_t)self;
acquired = 1;
break;
}
}
if (msp)
msp->mutex_sleep_time += gethrtime() - begin_sleep;
self->ul_wchan = NULL;
self->ul_sp = 0;
if (acquired) {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
}
return (error);
}
/*
* Common code for calling the ___lwp_mutex_trylock() system call.
* Returns with mutex_owner and mutex_ownerpid set correctly.
*/
int
mutex_trylock_kernel(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
int error;
int acquired;
for (;;) {
/*
* A return value of EOWNERDEAD or ELOCKUNMAPPED
* means we successfully acquired the lock.
*/
if ((error = ___lwp_mutex_trylock(mp)) != 0 &&
error != EOWNERDEAD && error != ELOCKUNMAPPED) {
acquired = 0;
break;
}
if (mtype & USYNC_PROCESS) {
/*
* Defend against forkall(). We may be the child,
* in which case we don't actually own the mutex.
*/
enter_critical(self);
if (mp->mutex_ownerpid == udp->pid) {
mp->mutex_owner = (uintptr_t)self;
exit_critical(self);
acquired = 1;
break;
}
exit_critical(self);
} else {
mp->mutex_owner = (uintptr_t)self;
acquired = 1;
break;
}
}
if (acquired) {
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else if (error != EBUSY) {
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
}
return (error);
}
volatile sc_shared_t *
setup_schedctl(void)
{
ulwp_t *self = curthread;
volatile sc_shared_t *scp;
sc_shared_t *tmp;
if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
!self->ul_vfork && /* not a child of vfork() */
!self->ul_schedctl_called) { /* haven't been called before */
enter_critical(self);
self->ul_schedctl_called = &self->ul_uberdata->uberflags;
if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
self->ul_schedctl = scp = tmp;
exit_critical(self);
}
/*
* Unless the call to setup_schedctl() is surrounded
* by enter_critical()/exit_critical(), the address
* we are returning could be invalid due to a forkall()
* having occurred in another thread.
*/
return (scp);
}
/*
* Interfaces from libsched, incorporated into libc.
* libsched.so.1 is now a filter library onto libc.
*/
#pragma weak schedctl_lookup = schedctl_init
schedctl_t *
schedctl_init(void)
{
volatile sc_shared_t *scp = setup_schedctl();
return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
}
void
schedctl_exit(void)
{
}
/*
* Contract private interface for java.
* Set up the schedctl data if it doesn't exist yet.
* Return a pointer to the pointer to the schedctl data.
*/
volatile sc_shared_t *volatile *
_thr_schedctl(void)
{
ulwp_t *self = curthread;
volatile sc_shared_t *volatile *ptr;
if (self->ul_vfork)
return (NULL);
if (*(ptr = &self->ul_schedctl) == NULL)
(void) setup_schedctl();
return (ptr);
}
/*
* Block signals and attempt to block preemption.
* no_preempt()/preempt() must be used in pairs but can be nested.
*/
void
no_preempt(ulwp_t *self)
{
volatile sc_shared_t *scp;
if (self->ul_preempt++ == 0) {
enter_critical(self);
if ((scp = self->ul_schedctl) != NULL ||
(scp = setup_schedctl()) != NULL) {
/*
* Save the pre-existing preempt value.
*/
self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
scp->sc_preemptctl.sc_nopreempt = 1;
}
}
}
/*
* Undo the effects of no_preempt().
*/
void
preempt(ulwp_t *self)
{
volatile sc_shared_t *scp;
ASSERT(self->ul_preempt > 0);
if (--self->ul_preempt == 0) {
if ((scp = self->ul_schedctl) != NULL) {
/*
* Restore the pre-existing preempt value.
*/
scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
if (scp->sc_preemptctl.sc_yield &&
scp->sc_preemptctl.sc_nopreempt == 0) {
yield();
if (scp->sc_preemptctl.sc_yield) {
/*
* Shouldn't happen. This is either
* a race condition or the thread
* just entered the real-time class.
*/
yield();
scp->sc_preemptctl.sc_yield = 0;
}
}
}
exit_critical(self);
}
}
/*
* If a call to preempt() would cause the current thread to yield or to
* take deferred actions in exit_critical(), then unpark the specified
* lwp so it can run while we delay. Return the original lwpid if the
* unpark was not performed, else return zero. The tests are a repeat
* of some of the tests in preempt(), above. This is a statistical
* optimization solely for cond_sleep_queue(), below.
*/
static lwpid_t
preempt_unpark(ulwp_t *self, lwpid_t lwpid)
{
volatile sc_shared_t *scp = self->ul_schedctl;
ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
(self->ul_curplease && self->ul_critical == 1)) {
(void) __lwp_unpark(lwpid);
lwpid = 0;
}
return (lwpid);
}
/*
* Spin for a while (if 'tryhard' is true), trying to grab the lock.
* If this fails, return EBUSY and let the caller deal with it.
* If this succeeds, return 0 with mutex_owner set to curthread.
*/
static int
mutex_trylock_adaptive(mutex_t *mp, int tryhard)
{
ulwp_t *self = curthread;
int error = EBUSY;
ulwp_t *ulwp;
volatile sc_shared_t *scp;
volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner;
uint32_t new_lockword;
int count = 0;
int max_count;
uint8_t max_spinners;
ASSERT(!(mp->mutex_type & USYNC_PROCESS));
if (MUTEX_OWNER(mp) == self)
return (EBUSY);
/* short-cut, not definitive (see below) */
if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
error = ENOTRECOVERABLE;
goto done;
}
/*
* Make one attempt to acquire the lock before
* incurring the overhead of the spin loop.
*/
if (set_lock_byte(lockp) == 0) {
*ownerp = (uintptr_t)self;
error = 0;
goto done;
}
if (!tryhard)
goto done;
if (ncpus == 0)
ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
if ((max_spinners = self->ul_max_spinners) >= ncpus)
max_spinners = ncpus - 1;
max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
if (max_count == 0)
goto done;
/*
* This spin loop is unfair to lwps that have already dropped into
* the kernel to sleep. They will starve on a highly-contended mutex.
* This is just too bad. The adaptive spin algorithm is intended
* to allow programs with highly-contended locks (that is, broken
* programs) to execute with reasonable speed despite their contention.
* Being fair would reduce the speed of such programs and well-written
* programs will not suffer in any case.
*/
enter_critical(self);
if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) {
exit_critical(self);
goto done;
}
DTRACE_PROBE1(plockstat, mutex__spin, mp);
for (count = 1; ; count++) {
if (*lockp == 0 && set_lock_byte(lockp) == 0) {
*ownerp = (uintptr_t)self;
error = 0;
break;
}
if (count == max_count)
break;
SMT_PAUSE();
/*
* Stop spinning if the mutex owner is not running on
* a processor; it will not drop the lock any time soon
* and we would just be wasting time to keep spinning.
*
* Note that we are looking at another thread (ulwp_t)
* without ensuring that the other thread does not exit.
* The scheme relies on ulwp_t structures never being
* deallocated by the library (the library employs a free
* list of ulwp_t structs that are reused when new threads
* are created) and on schedctl shared memory never being
* deallocated once created via __schedctl().
*
* Thus, the worst that can happen when the spinning thread
* looks at the owner's schedctl data is that it is looking
* at some other thread's schedctl data. This almost never
* happens and is benign when it does.
*/
if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
((scp = ulwp->ul_schedctl) == NULL ||
scp->sc_state != SC_ONPROC))
break;
}
new_lockword = spinners_decr(&mp->mutex_lockword);
if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
/*
* We haven't yet acquired the lock, the lock
* is free, and there are no other spinners.
* Make one final attempt to acquire the lock.
*
* This isn't strictly necessary since mutex_lock_queue()
* (the next action this thread will take if it doesn't
* acquire the lock here) makes one attempt to acquire
* the lock before putting the thread to sleep.
*
* If the next action for this thread (on failure here)
* were not to call mutex_lock_queue(), this would be
* necessary for correctness, to avoid ending up with an
* unheld mutex with waiters but no one to wake them up.
*/
if (set_lock_byte(lockp) == 0) {
*ownerp = (uintptr_t)self;
error = 0;
}
count++;
}
exit_critical(self);
done:
if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
/*
* We shouldn't own the mutex.
* Just clear the lock; everyone has already been waked up.
*/
mp->mutex_owner = 0;
(void) clear_lockbyte(&mp->mutex_lockword);
error = ENOTRECOVERABLE;
}
if (error) {
if (count) {
DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
}
if (error != EBUSY) {
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
}
} else {
if (count) {
DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
}
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
if (mp->mutex_flag & LOCK_OWNERDEAD) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
error = EOWNERDEAD;
}
}
return (error);
}
/*
* Same as mutex_trylock_adaptive(), except specifically for queue locks.
* The owner field is not set here; the caller (spin_lock_set()) sets it.
*/
static int
mutex_queuelock_adaptive(mutex_t *mp)
{
ulwp_t *ulwp;
volatile sc_shared_t *scp;
volatile uint8_t *lockp;
volatile uint64_t *ownerp;
int count = curthread->ul_queue_spin;
ASSERT(mp->mutex_type == USYNC_THREAD);
if (count == 0)
return (EBUSY);
lockp = (volatile uint8_t *)&mp->mutex_lockw;
ownerp = (volatile uint64_t *)&mp->mutex_owner;
while (--count >= 0) {
if (*lockp == 0 && set_lock_byte(lockp) == 0)
return (0);
SMT_PAUSE();
if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
((scp = ulwp->ul_schedctl) == NULL ||
scp->sc_state != SC_ONPROC))
break;
}
return (EBUSY);
}
/*
* Like mutex_trylock_adaptive(), but for process-shared mutexes.
* Spin for a while (if 'tryhard' is true), trying to grab the lock.
* If this fails, return EBUSY and let the caller deal with it.
* If this succeeds, return 0 with mutex_owner set to curthread
* and mutex_ownerpid set to the current pid.
*/
static int
mutex_trylock_process(mutex_t *mp, int tryhard)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int error = EBUSY;
volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64;
uint32_t new_lockword;
int count = 0;
int max_count;
uint8_t max_spinners;
ASSERT(mp->mutex_type & USYNC_PROCESS);
if (shared_mutex_held(mp))
return (EBUSY);
/* short-cut, not definitive (see below) */
if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
error = ENOTRECOVERABLE;
goto done;
}
/*
* Make one attempt to acquire the lock before
* incurring the overhead of the spin loop.
*/
enter_critical(self);
if (set_lock_byte64(lockp, udp->pid) == 0) {
mp->mutex_owner = (uintptr_t)self;
/* mp->mutex_ownerpid was set by set_lock_byte64() */
exit_critical(self);
error = 0;
goto done;
}
exit_critical(self);
if (!tryhard)
goto done;
if (ncpus == 0)
ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
if ((max_spinners = self->ul_max_spinners) >= ncpus)
max_spinners = ncpus - 1;
max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
if (max_count == 0)
goto done;
/*
* This is a process-shared mutex.
* We cannot know if the owner is running on a processor.
* We just spin and hope that it is on a processor.
*/
enter_critical(self);
if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) {
exit_critical(self);
goto done;
}
DTRACE_PROBE1(plockstat, mutex__spin, mp);
for (count = 1; ; count++) {
if ((*lockp & LOCKMASK64) == 0 &&
set_lock_byte64(lockp, udp->pid) == 0) {
mp->mutex_owner = (uintptr_t)self;
/* mp->mutex_ownerpid was set by set_lock_byte64() */
error = 0;
break;
}
if (count == max_count)
break;
SMT_PAUSE();
}
new_lockword = spinners_decr(&mp->mutex_lockword);
if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
/*
* We haven't yet acquired the lock, the lock
* is free, and there are no other spinners.
* Make one final attempt to acquire the lock.
*
* This isn't strictly necessary since mutex_lock_kernel()
* (the next action this thread will take if it doesn't
* acquire the lock here) makes one attempt to acquire
* the lock before putting the thread to sleep.
*
* If the next action for this thread (on failure here)
* were not to call mutex_lock_kernel(), this would be
* necessary for correctness, to avoid ending up with an
* unheld mutex with waiters but no one to wake them up.
*/
if (set_lock_byte64(lockp, udp->pid) == 0) {
mp->mutex_owner = (uintptr_t)self;
/* mp->mutex_ownerpid was set by set_lock_byte64() */
error = 0;
}
count++;
}
exit_critical(self);
done:
if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
/*
* We shouldn't own the mutex.
* Just clear the lock; everyone has already been waked up.
*/
mp->mutex_owner = 0;
/* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
(void) clear_lockbyte64(&mp->mutex_lockword64);
error = ENOTRECOVERABLE;
}
if (error) {
if (count) {
DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
}
if (error != EBUSY) {
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
}
} else {
if (count) {
DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
}
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
if (mp->mutex_flag & LOCK_OWNERDEAD)
error = EOWNERDEAD;
else if (mp->mutex_type & USYNC_PROCESS_ROBUST)
error = ELOCKUNMAPPED;
else
error = EOWNERDEAD;
}
}
return (error);
}
/*
* Mutex wakeup code for releasing a USYNC_THREAD mutex.
* Returns the lwpid of the thread that was dequeued, if any.
* The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
* to wake up the specified lwp.
*/
static lwpid_t
mutex_wakeup(mutex_t *mp)
{
lwpid_t lwpid = 0;
int more;
queue_head_t *qp;
ulwp_t *ulwp;
/*
* Dequeue a waiter from the sleep queue. Don't touch the mutex
* waiters bit if no one was found on the queue because the mutex
* might have been deallocated or reallocated for another purpose.
*/
qp = queue_lock(mp, MX);
if ((ulwp = dequeue(qp, &more)) != NULL) {
lwpid = ulwp->ul_lwpid;
mp->mutex_waiters = more;
}
queue_unlock(qp);
return (lwpid);
}
/*
* Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex.
*/
static void
mutex_wakeup_all(mutex_t *mp)
{
queue_head_t *qp;
queue_root_t *qrp;
int nlwpid = 0;
int maxlwps = MAXLWPS;
ulwp_t *ulwp;
lwpid_t buffer[MAXLWPS];
lwpid_t *lwpid = buffer;
/*
* Walk the list of waiters and prepare to wake up all of them.
* The waiters flag has already been cleared from the mutex.
*
* We keep track of lwpids that are to be unparked in lwpid[].
* __lwp_unpark_all() is called to unpark all of them after
* they have been removed from the sleep queue and the sleep
* queue lock has been dropped. If we run out of space in our
* on-stack buffer, we need to allocate more but we can't call
* lmalloc() because we are holding a queue lock when the overflow
* occurs and lmalloc() acquires a lock. We can't use alloca()
* either because the application may have allocated a small
* stack and we don't want to overrun the stack. So we call
* alloc_lwpids() to allocate a bigger buffer using the mmap()
* system call directly since that path acquires no locks.
*/
qp = queue_lock(mp, MX);
for (;;) {
if ((qrp = qp->qh_root) == NULL ||
(ulwp = qrp->qr_head) == NULL)
break;
ASSERT(ulwp->ul_wchan == mp);
queue_unlink(qp, &qrp->qr_head, NULL);
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
if (nlwpid == maxlwps)
lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
lwpid[nlwpid++] = ulwp->ul_lwpid;
}
if (nlwpid == 0) {
queue_unlock(qp);
} else {
mp->mutex_waiters = 0;
no_preempt(curthread);
queue_unlock(qp);
if (nlwpid == 1)
(void) __lwp_unpark(lwpid[0]);
else
(void) __lwp_unpark_all(lwpid, nlwpid);
preempt(curthread);
}
if (lwpid != buffer)
(void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
}
/*
* Release a process-private mutex.
* As an optimization, if there are waiters but there are also spinners
* attempting to acquire the mutex, then don't bother waking up a waiter;
* one of the spinners will acquire the mutex soon and it would be a waste
* of resources to wake up some thread just to have it spin for a while
* and then possibly go back to sleep. See mutex_trylock_adaptive().
*/
static lwpid_t
mutex_unlock_queue(mutex_t *mp, int release_all)
{
lwpid_t lwpid = 0;
uint32_t old_lockword;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
mp->mutex_owner = 0;
old_lockword = clear_lockbyte(&mp->mutex_lockword);
if ((old_lockword & WAITERMASK) &&
(release_all || (old_lockword & SPINNERMASK) == 0)) {
ulwp_t *self = curthread;
no_preempt(self); /* ensure a prompt wakeup */
if (release_all)
mutex_wakeup_all(mp);
else
lwpid = mutex_wakeup(mp);
if (lwpid == 0)
preempt(self);
}
return (lwpid);
}
/*
* Like mutex_unlock_queue(), but for process-shared mutexes.
*/
static void
mutex_unlock_process(mutex_t *mp, int release_all)
{
uint64_t old_lockword64;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
mp->mutex_owner = 0;
/* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64);
if ((old_lockword64 & WAITERMASK64) &&
(release_all || (old_lockword64 & SPINNERMASK64) == 0)) {
ulwp_t *self = curthread;
no_preempt(self); /* ensure a prompt wakeup */
(void) ___lwp_mutex_wakeup(mp, release_all);
preempt(self);
}
}
void
stall(void)
{
for (;;)
(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
}
/*
* Acquire a USYNC_THREAD mutex via user-level sleep queues.
* We failed set_lock_byte(&mp->mutex_lockw) before coming here.
* If successful, returns with mutex_owner set correctly.
*/
int
mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
timespec_t *tsp)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
hrtime_t begin_sleep;
int error = 0;
self->ul_sp = stkptr();
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_wchan = mp;
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = mp;
tdb_event(TD_SLEEP, udp);
}
if (msp) {
tdb_incr(msp->mutex_sleep);
begin_sleep = gethrtime();
}
DTRACE_PROBE1(plockstat, mutex__block, mp);
/*
* Put ourself on the sleep queue, and while we are
* unable to grab the lock, go park in the kernel.
* Take ourself off the sleep queue after we acquire the lock.
* The waiter bit can be set/cleared only while holding the queue lock.
*/
qp = queue_lock(mp, MX);
enqueue(qp, self, 0);
mp->mutex_waiters = 1;
for (;;) {
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
mp->mutex_waiters = dequeue_self(qp);
break;
}
set_parking_flag(self, 1);
queue_unlock(qp);
/*
* __lwp_park() will return the residual time in tsp
* if we are unparked before the timeout expires.
*/
error = __lwp_park(tsp, 0);
set_parking_flag(self, 0);
/*
* We could have taken a signal or suspended ourself.
* If we did, then we removed ourself from the queue.
* Someone else may have removed us from the queue
* as a consequence of mutex_unlock(). We may have
* gotten a timeout from __lwp_park(). Or we may still
* be on the queue and this is just a spurious wakeup.
*/
qp = queue_lock(mp, MX);
if (self->ul_sleepq == NULL) {
if (error) {
mp->mutex_waiters = queue_waiter(qp)? 1 : 0;
if (error != EINTR)
break;
error = 0;
}
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
break;
}
enqueue(qp, self, 0);
mp->mutex_waiters = 1;
}
ASSERT(self->ul_sleepq == qp &&
self->ul_qtype == MX &&
self->ul_wchan == mp);
if (error) {
if (error != EINTR) {
mp->mutex_waiters = dequeue_self(qp);
break;
}
error = 0;
}
}
ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
self->ul_wchan == NULL);
self->ul_sp = 0;
queue_unlock(qp);
if (msp)
msp->mutex_sleep_time += gethrtime() - begin_sleep;
ASSERT(error == 0 || error == EINVAL || error == ETIME);
if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
/*
* We shouldn't own the mutex.
* Just clear the lock; everyone has already been waked up.
*/
mp->mutex_owner = 0;
(void) clear_lockbyte(&mp->mutex_lockword);
error = ENOTRECOVERABLE;
}
if (error) {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
} else {
DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
if (mp->mutex_flag & LOCK_OWNERDEAD) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
error = EOWNERDEAD;
}
}
return (error);
}
static int
mutex_recursion(mutex_t *mp, int mtype, int try)
{
ASSERT(mutex_held(mp));
ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK));
ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
if (mtype & LOCK_RECURSIVE) {
if (mp->mutex_rcount == RECURSION_MAX) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN);
return (EAGAIN);
}
mp->mutex_rcount++;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
return (0);
}
if (try == MUTEX_LOCK) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK);
}
return (EBUSY);
}
/*
* Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so
* it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary.
* We use tdb_hash_lock here and in the synch object tracking code in
* the tdb_agent.c file. There is no conflict between these two usages.
*/
void
register_lock(mutex_t *mp)
{
uberdata_t *udp = curthread->ul_uberdata;
uint_t hash = LOCK_HASH(mp);
robust_t *rlp;
robust_t **rlpp;
robust_t **table;
if ((table = udp->robustlocks) == NULL) {
lmutex_lock(&udp->tdb_hash_lock);
if ((table = udp->robustlocks) == NULL) {
table = lmalloc(LOCKHASHSZ * sizeof (robust_t *));
membar_producer();
udp->robustlocks = table;
}
lmutex_unlock(&udp->tdb_hash_lock);
}
membar_consumer();
/*
* First search the registered table with no locks held.
* This is safe because the table never shrinks
* and we can only get a false negative.
*/
for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) {
if (rlp->robust_lock == mp) /* already registered */
return;
}
/*
* The lock was not found.
* Repeat the operation with tdb_hash_lock held.
*/
lmutex_lock(&udp->tdb_hash_lock);
for (rlpp = &table[hash];
(rlp = *rlpp) != NULL;
rlpp = &rlp->robust_next) {
if (rlp->robust_lock == mp) { /* already registered */
lmutex_unlock(&udp->tdb_hash_lock);
return;
}
}
/*
* The lock has never been registered.
* Register it now and add it to the table.
*/
(void) ___lwp_mutex_register(mp);
rlp = lmalloc(sizeof (*rlp));
rlp->robust_lock = mp;
membar_producer();
*rlpp = rlp;
lmutex_unlock(&udp->tdb_hash_lock);
}
/*
* This is called in the child of fork()/forkall() to start over
* with a clean slate. (Each process must register its own locks.)
* No locks are needed because all other threads are suspended or gone.
*/
void
unregister_locks(void)
{
uberdata_t *udp = curthread->ul_uberdata;
uint_t hash;
robust_t **table;
robust_t *rlp;
robust_t *next;
if ((table = udp->robustlocks) != NULL) {
for (hash = 0; hash < LOCKHASHSZ; hash++) {
rlp = table[hash];
while (rlp != NULL) {
next = rlp->robust_next;
lfree(rlp, sizeof (*rlp));
rlp = next;
}
}
lfree(table, LOCKHASHSZ * sizeof (robust_t *));
udp->robustlocks = NULL;
}
}
/*
* Returns with mutex_owner set correctly.
*/
int
mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
int error = 0;
int noceil = try & MUTEX_NOCEIL;
uint8_t ceil;
int myprio;
try &= ~MUTEX_NOCEIL;
ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
if (!self->ul_schedctl_called)
(void) setup_schedctl();
if (msp && try == MUTEX_TRY)
tdb_incr(msp->mutex_try);
if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp))
return (mutex_recursion(mp, mtype, try));
if (self->ul_error_detection && try == MUTEX_LOCK &&
tsp == NULL && mutex_held(mp))
lock_error(mp, "mutex_lock", NULL, NULL);
if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
update_sched(self);
if (self->ul_cid != self->ul_rtclassid) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM);
return (EPERM);
}
ceil = mp->mutex_ceiling;
myprio = self->ul_epri? self->ul_epri : self->ul_pri;
if (myprio > ceil) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL);
return (EINVAL);
}
if ((error = _ceil_mylist_add(mp)) != 0) {
DTRACE_PROBE2(plockstat, mutex__error, mp, error);
return (error);
}
if (myprio < ceil)
_ceil_prio_inherit(ceil);
}
if ((mtype & (USYNC_PROCESS | LOCK_ROBUST))
== (USYNC_PROCESS | LOCK_ROBUST))
register_lock(mp);
if (mtype & LOCK_PRIO_INHERIT) {
/* go straight to the kernel */
if (try == MUTEX_TRY)
error = mutex_trylock_kernel(mp);
else /* MUTEX_LOCK */
error = mutex_lock_kernel(mp, tsp, msp);
/*
* The kernel never sets or clears the lock byte
* for LOCK_PRIO_INHERIT mutexes.
* Set it here for consistency.
*/
switch (error) {
case 0:
self->ul_pilocks++;
mp->mutex_lockw = LOCKSET;
break;
case EOWNERDEAD:
case ELOCKUNMAPPED:
self->ul_pilocks++;
mp->mutex_lockw = LOCKSET;
/* FALLTHROUGH */
case ENOTRECOVERABLE:
ASSERT(mtype & LOCK_ROBUST);
break;
case EDEADLK:
if (try == MUTEX_LOCK)
stall();
error = EBUSY;
break;
}
} else if (mtype & USYNC_PROCESS) {
error = mutex_trylock_process(mp, try == MUTEX_LOCK);
if (error == EBUSY && try == MUTEX_LOCK)
error = mutex_lock_kernel(mp, tsp, msp);
} else { /* USYNC_THREAD */
error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK);
if (error == EBUSY && try == MUTEX_LOCK)
error = mutex_lock_queue(self, msp, mp, tsp);
}
switch (error) {
case 0:
case EOWNERDEAD:
case ELOCKUNMAPPED:
if (mtype & LOCK_ROBUST)
remember_lock(mp);
if (msp)
record_begin_hold(msp);
break;
default:
if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
(void) _ceil_mylist_del(mp);
if (myprio < ceil)
_ceil_prio_waive();
}
if (try == MUTEX_TRY) {
if (msp)
tdb_incr(msp->mutex_try_fail);
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
}
break;
}
return (error);
}
int
fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
/*
* We know that USYNC_PROCESS is set in mtype and that
* zero, one, or both of the flags LOCK_RECURSIVE and
* LOCK_ERRORCHECK are set, and that no other flags are set.
*/
ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0);
enter_critical(self);
if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) {
mp->mutex_owner = (uintptr_t)self;
/* mp->mutex_ownerpid was set by set_lock_byte64() */
exit_critical(self);
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
exit_critical(self);
if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp))
return (mutex_recursion(mp, mtype, try));
if (try == MUTEX_LOCK) {
if (mutex_trylock_process(mp, 1) == 0)
return (0);
return (mutex_lock_kernel(mp, tsp, NULL));
}
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
return (EBUSY);
}
static int
mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
int mtype = mp->mutex_type;
uberflags_t *gflags;
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
self->ul_uberdata->uberflags.uf_all) == 0) {
/*
* Only one thread exists so we don't need an atomic operation.
*/
if (mp->mutex_lockw == 0) {
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self)
return (mutex_recursion(mp, mtype, MUTEX_LOCK));
/*
* We have reached a deadlock, probably because the
* process is executing non-async-signal-safe code in
* a signal handler and is attempting to acquire a lock
* that it already owns. This is not surprising, given
* bad programming practices over the years that has
* resulted in applications calling printf() and such
* in their signal handlers. Unless the user has told
* us that the signal handlers are safe by setting:
* export _THREAD_ASYNC_SAFE=1
* we return EDEADLK rather than actually deadlocking.
*/
if (tsp == NULL &&
MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
return (EDEADLK);
}
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(gflags->uf_trs_ted |
(mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
if (mtype & USYNC_PROCESS)
return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self)
return (mutex_recursion(mp, mtype, MUTEX_LOCK));
if (mutex_trylock_adaptive(mp, 1) != 0)
return (mutex_lock_queue(self, NULL, mp, tsp));
return (0);
}
/* else do it the long way */
return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
}
#pragma weak pthread_mutex_lock = mutex_lock
#pragma weak _mutex_lock = mutex_lock
int
mutex_lock(mutex_t *mp)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
return (mutex_lock_impl(mp, NULL));
}
int
pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp,
const struct timespec *_RESTRICT_KYWD abstime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
error = mutex_lock_impl((mutex_t *)mp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
int
pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp,
const struct timespec *_RESTRICT_KYWD reltime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
tslocal = *reltime;
error = mutex_lock_impl((mutex_t *)mp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
#pragma weak pthread_mutex_trylock = mutex_trylock
int
mutex_trylock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
uberflags_t *gflags;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
udp->uberflags.uf_all) == 0) {
/*
* Only one thread exists so we don't need an atomic operation.
*/
if (mp->mutex_lockw == 0) {
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self)
return (mutex_recursion(mp, mtype, MUTEX_TRY));
return (EBUSY);
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(gflags->uf_trs_ted |
(mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
if (mtype & USYNC_PROCESS)
return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
return (0);
}
if (mtype && MUTEX_OWNER(mp) == self)
return (mutex_recursion(mp, mtype, MUTEX_TRY));
if (__td_event_report(self, TD_LOCK_TRY, udp)) {
self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
tdb_event(TD_LOCK_TRY, udp);
}
return (EBUSY);
}
/* else do it the long way */
return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
}
int
mutex_unlock_internal(mutex_t *mp, int retain_robust_flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int mtype = mp->mutex_type;
tdb_mutex_stats_t *msp;
int error = 0;
int release_all;
lwpid_t lwpid;
if ((mtype & LOCK_ERRORCHECK) && !mutex_held(mp))
return (EPERM);
if (self->ul_error_detection && !mutex_held(mp))
lock_error(mp, "mutex_unlock", NULL, NULL);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
if ((msp = MUTEX_STATS(mp, udp)) != NULL)
(void) record_hold_time(msp);
if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) &&
(mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
ASSERT(mp->mutex_type & LOCK_ROBUST);
mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
mp->mutex_flag |= LOCK_NOTRECOVERABLE;
}
release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
if (mtype & LOCK_PRIO_INHERIT) {
no_preempt(self);
mp->mutex_owner = 0;
/* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
mp->mutex_lockw = LOCKCLEAR;
self->ul_pilocks--;
error = ___lwp_mutex_unlock(mp);
preempt(self);
} else if (mtype & USYNC_PROCESS) {
mutex_unlock_process(mp, release_all);
} else { /* USYNC_THREAD */
if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
}
if (mtype & LOCK_ROBUST)
forget_lock(mp);
if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
_ceil_prio_waive();
return (error);
}
#pragma weak pthread_mutex_unlock = mutex_unlock
#pragma weak _mutex_unlock = mutex_unlock
int
mutex_unlock(mutex_t *mp)
{
ulwp_t *self = curthread;
int mtype = mp->mutex_type;
uberflags_t *gflags;
lwpid_t lwpid;
short el;
/*
* Optimize the case of USYNC_THREAD, including
* the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
* no error detection, no lock statistics,
* and the process has only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
self->ul_uberdata->uberflags.uf_all) == 0) {
if (mtype) {
/*
* At this point we know that one or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
}
/*
* Only one thread exists so we don't need an atomic operation.
* Also, there can be no waiters.
*/
mp->mutex_owner = 0;
mp->mutex_lockword = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
return (0);
}
/*
* Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
* no error detection, and no lock statistics.
* Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
*/
if ((gflags = self->ul_schedctl_called) != NULL) {
if (((el = gflags->uf_trs_ted) | mtype) == 0) {
fast_unlock:
if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
return (0);
}
if (el) /* error detection or lock statistics */
goto slow_unlock;
if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
/*
* At this point we know that one or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
goto fast_unlock;
}
if ((mtype &
~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
/*
* At this point we know that zero, one, or both of the
* flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
* that the USYNC_PROCESS flag is set.
*/
if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
return (EPERM);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
mp->mutex_rcount--;
DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
return (0);
}
mutex_unlock_process(mp, 0);
return (0);
}
}
/* else do it the long way */
slow_unlock:
return (mutex_unlock_internal(mp, 0));
}
/*
* Internally to the library, almost all mutex lock/unlock actions
* go through these lmutex_ functions, to protect critical regions.
* We replicate a bit of code from mutex_lock() and mutex_unlock()
* to make these functions faster since we know that the mutex type
* of all internal locks is USYNC_THREAD. We also know that internal
* locking can never fail, so we panic if it does.
*/
void
lmutex_lock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(mp->mutex_type == USYNC_THREAD);
enter_critical(self);
/*
* Optimize the case of no lock statistics and only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (udp->uberflags.uf_all == 0) {
/*
* Only one thread exists; the mutex must be free.
*/
ASSERT(mp->mutex_lockw == 0);
mp->mutex_lockw = LOCKSET;
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else {
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
if (!self->ul_schedctl_called)
(void) setup_schedctl();
if (set_lock_byte(&mp->mutex_lockw) == 0) {
mp->mutex_owner = (uintptr_t)self;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
} else if (mutex_trylock_adaptive(mp, 1) != 0) {
(void) mutex_lock_queue(self, msp, mp, NULL);
}
if (msp)
record_begin_hold(msp);
}
}
void
lmutex_unlock(mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(mp->mutex_type == USYNC_THREAD);
/*
* Optimize the case of no lock statistics and only a single thread.
* (Most likely a traditional single-threaded application.)
*/
if (udp->uberflags.uf_all == 0) {
/*
* Only one thread exists so there can be no waiters.
*/
mp->mutex_owner = 0;
mp->mutex_lockword = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
} else {
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
lwpid_t lwpid;
if (msp)
(void) record_hold_time(msp);
if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
(void) __lwp_unpark(lwpid);
preempt(self);
}
}
exit_critical(self);
}
/*
* For specialized code in libc, like the asynchronous i/o code,
* the following sig_*() locking primitives are used in order
* to make the code asynchronous signal safe. Signals are
* deferred while locks acquired by these functions are held.
*/
void
sig_mutex_lock(mutex_t *mp)
{
sigoff(curthread);
(void) mutex_lock(mp);
}
void
sig_mutex_unlock(mutex_t *mp)
{
(void) mutex_unlock(mp);
sigon(curthread);
}
int
sig_mutex_trylock(mutex_t *mp)
{
int error;
sigoff(curthread);
if ((error = mutex_trylock(mp)) != 0)
sigon(curthread);
return (error);
}
/*
* sig_cond_wait() is a cancellation point.
*/
int
sig_cond_wait(cond_t *cv, mutex_t *mp)
{
int error;
ASSERT(curthread->ul_sigdefer != 0);
pthread_testcancel();
error = __cond_wait(cv, mp);
if (error == EINTR && curthread->ul_cursig) {
sig_mutex_unlock(mp);
/* take the deferred signal here */
sig_mutex_lock(mp);
}
pthread_testcancel();
return (error);
}
/*
* sig_cond_reltimedwait() is a cancellation point.
*/
int
sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
{
int error;
ASSERT(curthread->ul_sigdefer != 0);
pthread_testcancel();
error = __cond_reltimedwait(cv, mp, ts);
if (error == EINTR && curthread->ul_cursig) {
sig_mutex_unlock(mp);
/* take the deferred signal here */
sig_mutex_lock(mp);
}
pthread_testcancel();
return (error);
}
/*
* For specialized code in libc, like the stdio code.
* the following cancel_safe_*() locking primitives are used in
* order to make the code cancellation-safe. Cancellation is
* deferred while locks acquired by these functions are held.
*/
void
cancel_safe_mutex_lock(mutex_t *mp)
{
(void) mutex_lock(mp);
curthread->ul_libc_locks++;
}
int
cancel_safe_mutex_trylock(mutex_t *mp)
{
int error;
if ((error = mutex_trylock(mp)) == 0)
curthread->ul_libc_locks++;
return (error);
}
void
cancel_safe_mutex_unlock(mutex_t *mp)
{
ulwp_t *self = curthread;
ASSERT(self->ul_libc_locks != 0);
(void) mutex_unlock(mp);
/*
* Decrement the count of locks held by cancel_safe_mutex_lock().
* If we are then in a position to terminate cleanly and
* if there is a pending cancellation and cancellation
* is not disabled and we received EINTR from a recent
* system call then perform the cancellation action now.
*/
if (--self->ul_libc_locks == 0 &&
!(self->ul_vfork | self->ul_nocancel |
self->ul_critical | self->ul_sigdefer) &&
cancel_active())
pthread_exit(PTHREAD_CANCELED);
}
static int
shared_mutex_held(mutex_t *mparg)
{
/*
* The 'volatile' is necessary to make sure the compiler doesn't
* reorder the tests of the various components of the mutex.
* They must be tested in this order:
* mutex_lockw
* mutex_owner
* mutex_ownerpid
* This relies on the fact that everywhere mutex_lockw is cleared,
* mutex_owner and mutex_ownerpid are cleared before mutex_lockw
* is cleared, and that everywhere mutex_lockw is set, mutex_owner
* and mutex_ownerpid are set after mutex_lockw is set, and that
* mutex_lockw is set or cleared with a memory barrier.
*/
volatile mutex_t *mp = (volatile mutex_t *)mparg;
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid);
}
#pragma weak _mutex_held = mutex_held
int
mutex_held(mutex_t *mparg)
{
volatile mutex_t *mp = (volatile mutex_t *)mparg;
if (mparg->mutex_type & USYNC_PROCESS)
return (shared_mutex_held(mparg));
return (MUTEX_OWNED(mp, curthread));
}
#pragma weak pthread_mutex_destroy = mutex_destroy
#pragma weak _mutex_destroy = mutex_destroy
int
mutex_destroy(mutex_t *mp)
{
if (mp->mutex_type & USYNC_PROCESS)
forget_lock(mp);
(void) memset(mp, 0, sizeof (*mp));
tdb_sync_obj_deregister(mp);
return (0);
}
#pragma weak pthread_mutex_consistent_np = mutex_consistent
int
mutex_consistent(mutex_t *mp)
{
/*
* Do this only for an inconsistent, initialized robust lock
* that we hold. For all other cases, return EINVAL.
*/
if (mutex_held(mp) &&
(mp->mutex_type & LOCK_ROBUST) &&
(mp->mutex_flag & LOCK_INITED) &&
(mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
mp->mutex_rcount = 0;
return (0);
}
return (EINVAL);
}
/*
* Spin locks are separate from ordinary mutexes,
* but we use the same data structure for them.
*/
int
pthread_spin_init(pthread_spinlock_t *lock, int pshared)
{
mutex_t *mp = (mutex_t *)lock;
(void) memset(mp, 0, sizeof (*mp));
if (pshared == PTHREAD_PROCESS_SHARED)
mp->mutex_type = USYNC_PROCESS;
else
mp->mutex_type = USYNC_THREAD;
mp->mutex_flag = LOCK_INITED;
mp->mutex_magic = MUTEX_MAGIC;
return (0);
}
int
pthread_spin_destroy(pthread_spinlock_t *lock)
{
(void) memset(lock, 0, sizeof (*lock));
return (0);
}
int
pthread_spin_trylock(pthread_spinlock_t *lock)
{
mutex_t *mp = (mutex_t *)lock;
ulwp_t *self = curthread;
int error = 0;
no_preempt(self);
if (set_lock_byte(&mp->mutex_lockw) != 0)
error = EBUSY;
else {
mp->mutex_owner = (uintptr_t)self;
if (mp->mutex_type == USYNC_PROCESS)
mp->mutex_ownerpid = self->ul_uberdata->pid;
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
}
preempt(self);
return (error);
}
int
pthread_spin_lock(pthread_spinlock_t *lock)
{
mutex_t *mp = (mutex_t *)lock;
ulwp_t *self = curthread;
volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
int count = 0;
ASSERT(!self->ul_critical || self->ul_bindflags);
DTRACE_PROBE1(plockstat, mutex__spin, mp);
/*
* We don't care whether the owner is running on a processor.
* We just spin because that's what this interface requires.
*/
for (;;) {
if (*lockp == 0) { /* lock byte appears to be clear */
no_preempt(self);
if (set_lock_byte(lockp) == 0)
break;
preempt(self);
}
if (count < INT_MAX)
count++;
SMT_PAUSE();
}
mp->mutex_owner = (uintptr_t)self;
if (mp->mutex_type == USYNC_PROCESS)
mp->mutex_ownerpid = self->ul_uberdata->pid;
preempt(self);
if (count) {
DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
}
DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
return (0);
}
int
pthread_spin_unlock(pthread_spinlock_t *lock)
{
mutex_t *mp = (mutex_t *)lock;
ulwp_t *self = curthread;
no_preempt(self);
mp->mutex_owner = 0;
mp->mutex_ownerpid = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
(void) atomic_swap_32(&mp->mutex_lockword, 0);
preempt(self);
return (0);
}
#define INITIAL_LOCKS 8 /* initial size of ul_heldlocks.array */
/*
* Find/allocate an entry for 'lock' in our array of held locks.
*/
static mutex_t **
find_lock_entry(mutex_t *lock)
{
ulwp_t *self = curthread;
mutex_t **remembered = NULL;
mutex_t **lockptr;
uint_t nlocks;
if ((nlocks = self->ul_heldlockcnt) != 0)
lockptr = self->ul_heldlocks.array;
else {
nlocks = 1;
lockptr = &self->ul_heldlocks.single;
}
for (; nlocks; nlocks--, lockptr++) {
if (*lockptr == lock)
return (lockptr);
if (*lockptr == NULL && remembered == NULL)
remembered = lockptr;
}
if (remembered != NULL) {
*remembered = lock;
return (remembered);
}
/*
* No entry available. Allocate more space, converting
* the single entry into an array of entries if necessary.
*/
if ((nlocks = self->ul_heldlockcnt) == 0) {
/*
* Initial allocation of the array.
* Convert the single entry into an array.
*/
self->ul_heldlockcnt = nlocks = INITIAL_LOCKS;
lockptr = lmalloc(nlocks * sizeof (mutex_t *));
/*
* The single entry becomes the first entry in the array.
*/
*lockptr = self->ul_heldlocks.single;
self->ul_heldlocks.array = lockptr;
/*
* Return the next available entry in the array.
*/
*++lockptr = lock;
return (lockptr);
}
/*
* Reallocate the array, double the size each time.
*/
lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *));
(void) memcpy(lockptr, self->ul_heldlocks.array,
nlocks * sizeof (mutex_t *));
lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
self->ul_heldlocks.array = lockptr;
self->ul_heldlockcnt *= 2;
/*
* Return the next available entry in the newly allocated array.
*/
*(lockptr += nlocks) = lock;
return (lockptr);
}
/*
* Insert 'lock' into our list of held locks.
* Currently only used for LOCK_ROBUST mutexes.
*/
void
remember_lock(mutex_t *lock)
{
(void) find_lock_entry(lock);
}
/*
* Remove 'lock' from our list of held locks.
* Currently only used for LOCK_ROBUST mutexes.
*/
void
forget_lock(mutex_t *lock)
{
*find_lock_entry(lock) = NULL;
}
/*
* Free the array of held locks.
*/
void
heldlock_free(ulwp_t *ulwp)
{
uint_t nlocks;
if ((nlocks = ulwp->ul_heldlockcnt) != 0)
lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
ulwp->ul_heldlockcnt = 0;
ulwp->ul_heldlocks.array = NULL;
}
/*
* Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD.
* Called from _thrp_exit() to deal with abandoned locks.
*/
void
heldlock_exit(void)
{
ulwp_t *self = curthread;
mutex_t **lockptr;
uint_t nlocks;
mutex_t *mp;
if ((nlocks = self->ul_heldlockcnt) != 0)
lockptr = self->ul_heldlocks.array;
else {
nlocks = 1;
lockptr = &self->ul_heldlocks.single;
}
for (; nlocks; nlocks--, lockptr++) {
/*
* The kernel takes care of transitioning held
* LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD.
* We avoid that case here.
*/
if ((mp = *lockptr) != NULL &&
mutex_held(mp) &&
(mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) ==
LOCK_ROBUST) {
mp->mutex_rcount = 0;
if (!(mp->mutex_flag & LOCK_UNMAPPED))
mp->mutex_flag |= LOCK_OWNERDEAD;
(void) mutex_unlock_internal(mp, 1);
}
}
heldlock_free(self);
}
#pragma weak _cond_init = cond_init
/* ARGSUSED2 */
int
cond_init(cond_t *cvp, int type, void *arg)
{
if (type != USYNC_THREAD && type != USYNC_PROCESS)
return (EINVAL);
(void) memset(cvp, 0, sizeof (*cvp));
cvp->cond_type = (uint16_t)type;
cvp->cond_magic = COND_MAGIC;
return (0);
}
/*
* cond_sleep_queue(): utility function for cond_wait_queue().
*
* Go to sleep on a condvar sleep queue, expect to be waked up
* by someone calling cond_signal() or cond_broadcast() or due
* to receiving a UNIX signal or being cancelled, or just simply
* due to a spurious wakeup (like someome calling forkall()).
*
* The associated mutex is *not* reacquired before returning.
* That must be done by the caller of cond_sleep_queue().
*/
static int
cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
queue_head_t *qp;
queue_head_t *mqp;
lwpid_t lwpid;
int signalled;
int error;
int cv_wake;
int release_all;
/*
* Put ourself on the CV sleep queue, unlock the mutex, then
* park ourself and unpark a candidate lwp to grab the mutex.
* We must go onto the CV sleep queue before dropping the
* mutex in order to guarantee atomicity of the operation.
*/
self->ul_sp = stkptr();
qp = queue_lock(cvp, CV);
enqueue(qp, self, 0);
cvp->cond_waiters_user = 1;
self->ul_cvmutex = mp;
self->ul_cv_wake = cv_wake = (tsp != NULL);
self->ul_signalled = 0;
if (mp->mutex_flag & LOCK_OWNERDEAD) {
mp->mutex_flag &= ~LOCK_OWNERDEAD;
mp->mutex_flag |= LOCK_NOTRECOVERABLE;
}
release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
lwpid = mutex_unlock_queue(mp, release_all);
for (;;) {
set_parking_flag(self, 1);
queue_unlock(qp);
if (lwpid != 0) {
lwpid = preempt_unpark(self, lwpid);
preempt(self);
}
/*
* We may have a deferred signal present,
* in which case we should return EINTR.
* Also, we may have received a SIGCANCEL; if so
* and we are cancelable we should return EINTR.
* We force an immediate EINTR return from
* __lwp_park() by turning our parking flag off.
*/
if (self->ul_cursig != 0 ||
(self->ul_cancelable && self->ul_cancel_pending))
set_parking_flag(self, 0);
/*
* __lwp_park() will return the residual time in tsp
* if we are unparked before the timeout expires.
*/
error = __lwp_park(tsp, lwpid);
set_parking_flag(self, 0);
lwpid = 0; /* unpark the other lwp only once */
/*
* We were waked up by cond_signal(), cond_broadcast(),
* by an interrupt or timeout (EINTR or ETIME),
* or we may just have gotten a spurious wakeup.
*/
qp = queue_lock(cvp, CV);
if (!cv_wake)
mqp = queue_lock(mp, MX);
if (self->ul_sleepq == NULL)
break;
/*
* We are on either the condvar sleep queue or the
* mutex sleep queue. Break out of the sleep if we
* were interrupted or we timed out (EINTR or ETIME).
* Else this is a spurious wakeup; continue the loop.
*/
if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */
if (error) {
mp->mutex_waiters = dequeue_self(mqp);
break;
}
tsp = NULL; /* no more timeout */
} else if (self->ul_sleepq == qp) { /* condvar queue */
if (error) {
cvp->cond_waiters_user = dequeue_self(qp);
break;
}
/*
* Else a spurious wakeup on the condvar queue.
* __lwp_park() has already adjusted the timeout.
*/
} else {
thr_panic("cond_sleep_queue(): thread not on queue");
}
if (!cv_wake)
queue_unlock(mqp);
}
self->ul_sp = 0;
self->ul_cv_wake = 0;
ASSERT(self->ul_cvmutex == NULL);
ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
self->ul_wchan == NULL);
signalled = self->ul_signalled;
self->ul_signalled = 0;
queue_unlock(qp);
if (!cv_wake)
queue_unlock(mqp);
/*
* If we were concurrently cond_signal()d and any of:
* received a UNIX signal, were cancelled, or got a timeout,
* then perform another cond_signal() to avoid consuming it.
*/
if (error && signalled)
(void) cond_signal(cvp);
return (error);
}
int
cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
int error;
int merror;
/*
* The old thread library was programmed to defer signals
* while in cond_wait() so that the associated mutex would
* be guaranteed to be held when the application signal
* handler was invoked.
*
* We do not behave this way by default; the state of the
* associated mutex in the signal handler is undefined.
*
* To accommodate applications that depend on the old
* behavior, the _THREAD_COND_WAIT_DEFER environment
* variable can be set to 1 and we will behave in the
* old way with respect to cond_wait().
*/
if (self->ul_cond_wait_defer)
sigoff(self);
error = cond_sleep_queue(cvp, mp, tsp);
/*
* Reacquire the mutex.
*/
if ((merror = mutex_lock_impl(mp, NULL)) != 0)
error = merror;
/*
* Take any deferred signal now, after we have reacquired the mutex.
*/
if (self->ul_cond_wait_defer)
sigon(self);
return (error);
}
/*
* cond_sleep_kernel(): utility function for cond_wait_kernel().
* See the comment ahead of cond_sleep_queue(), above.
*/
static int
cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
int mtype = mp->mutex_type;
ulwp_t *self = curthread;
int error;
if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
_ceil_prio_waive();
self->ul_sp = stkptr();
self->ul_wchan = cvp;
mp->mutex_owner = 0;
/* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */
if (mtype & LOCK_PRIO_INHERIT) {
mp->mutex_lockw = LOCKCLEAR;
self->ul_pilocks--;
}
/*
* ___lwp_cond_wait() returns immediately with EINTR if
* set_parking_flag(self,0) is called on this lwp before it
* goes to sleep in the kernel. sigacthandler() calls this
* when a deferred signal is noted. This assures that we don't
* get stuck in ___lwp_cond_wait() with all signals blocked
* due to taking a deferred signal before going to sleep.
*/
set_parking_flag(self, 1);
if (self->ul_cursig != 0 ||
(self->ul_cancelable && self->ul_cancel_pending))
set_parking_flag(self, 0);
error = ___lwp_cond_wait(cvp, mp, tsp, 1);
set_parking_flag(self, 0);
self->ul_sp = 0;
self->ul_wchan = NULL;
return (error);
}
int
cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
ulwp_t *self = curthread;
int error;
int merror;
/*
* See the large comment in cond_wait_queue(), above.
*/
if (self->ul_cond_wait_defer)
sigoff(self);
error = cond_sleep_kernel(cvp, mp, tsp);
/*
* Override the return code from ___lwp_cond_wait()
* with any non-zero return code from mutex_lock().
* This addresses robust lock failures in particular;
* the caller must see the EOWNERDEAD or ENOTRECOVERABLE
* errors in order to take corrective action.
*/
if ((merror = mutex_lock_impl(mp, NULL)) != 0)
error = merror;
/*
* Take any deferred signal now, after we have reacquired the mutex.
*/
if (self->ul_cond_wait_defer)
sigon(self);
return (error);
}
/*
* Common code for cond_wait() and cond_timedwait()
*/
int
cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
{
int mtype = mp->mutex_type;
hrtime_t begin_sleep = 0;
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
uint8_t rcount;
int error = 0;
/*
* The SUSV3 Posix spec for pthread_cond_timedwait() states:
* Except in the case of [ETIMEDOUT], all these error checks
* shall act as if they were performed immediately at the
* beginning of processing for the function and shall cause
* an error return, in effect, prior to modifying the state
* of the mutex specified by mutex or the condition variable
* specified by cond.
* Therefore, we must return EINVAL now if the timout is invalid.
*/
if (tsp != NULL &&
(tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
return (EINVAL);
if (__td_event_report(self, TD_SLEEP, udp)) {
self->ul_sp = stkptr();
self->ul_wchan = cvp;
self->ul_td_evbuf.eventnum = TD_SLEEP;
self->ul_td_evbuf.eventdata = cvp;
tdb_event(TD_SLEEP, udp);
self->ul_sp = 0;
}
if (csp) {
if (tsp)
tdb_incr(csp->cond_timedwait);
else
tdb_incr(csp->cond_wait);
}
if (msp)
begin_sleep = record_hold_time(msp);
else if (csp)
begin_sleep = gethrtime();
if (self->ul_error_detection) {
if (!mutex_held(mp))
lock_error(mp, "cond_wait", cvp, NULL);
if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
lock_error(mp, "recursive mutex in cond_wait",
cvp, NULL);
if (cvp->cond_type & USYNC_PROCESS) {
if (!(mtype & USYNC_PROCESS))
lock_error(mp, "cond_wait", cvp,
"condvar process-shared, "
"mutex process-private");
} else {
if (mtype & USYNC_PROCESS)
lock_error(mp, "cond_wait", cvp,
"condvar process-private, "
"mutex process-shared");
}
}
/*
* We deal with recursive mutexes by completely
* dropping the lock and restoring the recursion
* count after waking up. This is arguably wrong,
* but it obeys the principle of least astonishment.
*/
rcount = mp->mutex_rcount;
mp->mutex_rcount = 0;
if ((mtype &
(USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) |
(cvp->cond_type & USYNC_PROCESS))
error = cond_wait_kernel(cvp, mp, tsp);
else
error = cond_wait_queue(cvp, mp, tsp);
mp->mutex_rcount = rcount;
if (csp) {
hrtime_t lapse = gethrtime() - begin_sleep;
if (tsp == NULL)
csp->cond_wait_sleep_time += lapse;
else {
csp->cond_timedwait_sleep_time += lapse;
if (error == ETIME)
tdb_incr(csp->cond_timedwait_timeout);
}
}
return (error);
}
/*
* cond_wait() is a cancellation point but __cond_wait() is not.
* Internally, libc calls the non-cancellation version.
* Other libraries need to use pthread_setcancelstate(), as appropriate,
* since __cond_wait() is not exported from libc.
*/
int
__cond_wait(cond_t *cvp, mutex_t *mp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
uberflags_t *gflags;
/*
* Optimize the common case of USYNC_THREAD plus
* no error detection, no lock statistics, and no event tracing.
*/
if ((gflags = self->ul_schedctl_called) != NULL &&
(cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
self->ul_td_events_enable |
udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
return (cond_wait_queue(cvp, mp, NULL));
/*
* Else do it the long way.
*/
return (cond_wait_common(cvp, mp, NULL));
}
#pragma weak _cond_wait = cond_wait
int
cond_wait(cond_t *cvp, mutex_t *mp)
{
int error;
_cancelon();
error = __cond_wait(cvp, mp);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
/*
* pthread_cond_wait() is a cancellation point.
*/
int
pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp,
pthread_mutex_t *_RESTRICT_KYWD mp)
{
int error;
error = cond_wait((cond_t *)cvp, (mutex_t *)mp);
return ((error == EINTR)? 0 : error);
}
/*
* cond_timedwait() is a cancellation point but __cond_timedwait() is not.
*/
int
__cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
{
clockid_t clock_id = cvp->cond_clockid;
timespec_t reltime;
int error;
if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
clock_id = CLOCK_REALTIME;
abstime_to_reltime(clock_id, abstime, &reltime);
error = cond_wait_common(cvp, mp, &reltime);
if (error == ETIME && clock_id == CLOCK_HIGHRES) {
/*
* Don't return ETIME if we didn't really get a timeout.
* This can happen if we return because someone resets
* the system clock. Just return zero in this case,
* giving a spurious wakeup but not a timeout.
*/
if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
abstime->tv_nsec > gethrtime())
error = 0;
}
return (error);
}
int
cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
{
int error;
_cancelon();
error = __cond_timedwait(cvp, mp, abstime);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
/*
* pthread_cond_timedwait() is a cancellation point.
*/
int
pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp,
pthread_mutex_t *_RESTRICT_KYWD mp,
const struct timespec *_RESTRICT_KYWD abstime)
{
int error;
error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime);
if (error == ETIME)
error = ETIMEDOUT;
else if (error == EINTR)
error = 0;
return (error);
}
/*
* cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not.
*/
int
__cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
{
timespec_t tslocal = *reltime;
return (cond_wait_common(cvp, mp, &tslocal));
}
int
cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
{
int error;
_cancelon();
error = __cond_reltimedwait(cvp, mp, reltime);
if (error == EINTR)
_canceloff();
else
_canceloff_nocancel();
return (error);
}
int
pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp,
pthread_mutex_t *_RESTRICT_KYWD mp,
const struct timespec *_RESTRICT_KYWD reltime)
{
int error;
error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime);
if (error == ETIME)
error = ETIMEDOUT;
else if (error == EINTR)
error = 0;
return (error);
}
#pragma weak pthread_cond_signal = cond_signal
#pragma weak _cond_signal = cond_signal
int
cond_signal(cond_t *cvp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
int error = 0;
int more;
lwpid_t lwpid;
queue_head_t *qp;
mutex_t *mp;
queue_head_t *mqp;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev;
if (csp)
tdb_incr(csp->cond_signal);
if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
error = _lwp_cond_signal(cvp);
if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
return (error);
/*
* Move someone from the condvar sleep queue to the mutex sleep
* queue for the mutex that he will acquire on being waked up.
* We can do this only if we own the mutex he will acquire.
* If we do not own the mutex, or if his ul_cv_wake flag
* is set, just dequeue and unpark him.
*/
qp = queue_lock(cvp, CV);
ulwpp = queue_slot(qp, &prev, &more);
cvp->cond_waiters_user = more;
if (ulwpp == NULL) { /* no one on the sleep queue */
queue_unlock(qp);
return (error);
}
ulwp = *ulwpp;
/*
* Inform the thread that he was the recipient of a cond_signal().
* This lets him deal with cond_signal() and, concurrently,
* one or more of a cancellation, a UNIX signal, or a timeout.
* These latter conditions must not consume a cond_signal().
*/
ulwp->ul_signalled = 1;
/*
* Dequeue the waiter but leave his ul_sleepq non-NULL
* while we move him to the mutex queue so that he can
* deal properly with spurious wakeups.
*/
queue_unlink(qp, ulwpp, prev);
mp = ulwp->ul_cvmutex; /* the mutex he will acquire */
ulwp->ul_cvmutex = NULL;
ASSERT(mp != NULL);
if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
/* just wake him up */
lwpid = ulwp->ul_lwpid;
no_preempt(self);
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
queue_unlock(qp);
(void) __lwp_unpark(lwpid);
preempt(self);
} else {
/* move him to the mutex queue */
mqp = queue_lock(mp, MX);
enqueue(mqp, ulwp, 0);
mp->mutex_waiters = 1;
queue_unlock(mqp);
queue_unlock(qp);
}
return (error);
}
/*
* Utility function called by mutex_wakeup_all(), cond_broadcast(),
* and rw_queue_release() to (re)allocate a big buffer to hold the
* lwpids of all the threads to be set running after they are removed
* from their sleep queues. Since we are holding a queue lock, we
* cannot call any function that might acquire a lock. mmap(), munmap(),
* lwp_unpark_all() are simple system calls and are safe in this regard.
*/
lwpid_t *
alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr)
{
/*
* Allocate NEWLWPS ids on the first overflow.
* Double the allocation each time after that.
*/
int nlwpid = *nlwpid_ptr;
int maxlwps = *maxlwps_ptr;
int first_allocation;
int newlwps;
void *vaddr;
ASSERT(nlwpid == maxlwps);
first_allocation = (maxlwps == MAXLWPS);
newlwps = first_allocation? NEWLWPS : 2 * maxlwps;
vaddr = mmap(NULL, newlwps * sizeof (lwpid_t),
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0);
if (vaddr == MAP_FAILED) {
/*
* Let's hope this never happens.
* If it does, then we have a terrible
* thundering herd on our hands.
*/
(void) __lwp_unpark_all(lwpid, nlwpid);
*nlwpid_ptr = 0;
} else {
(void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t));
if (!first_allocation)
(void) munmap((caddr_t)lwpid,
maxlwps * sizeof (lwpid_t));
lwpid = vaddr;
*maxlwps_ptr = newlwps;
}
return (lwpid);
}
#pragma weak pthread_cond_broadcast = cond_broadcast
#pragma weak _cond_broadcast = cond_broadcast
int
cond_broadcast(cond_t *cvp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
int error = 0;
queue_head_t *qp;
queue_root_t *qrp;
mutex_t *mp;
mutex_t *mp_cache = NULL;
queue_head_t *mqp = NULL;
ulwp_t *ulwp;
int nlwpid = 0;
int maxlwps = MAXLWPS;
lwpid_t buffer[MAXLWPS];
lwpid_t *lwpid = buffer;
if (csp)
tdb_incr(csp->cond_broadcast);
if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
error = _lwp_cond_broadcast(cvp);
if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
return (error);
/*
* Move everyone from the condvar sleep queue to the mutex sleep
* queue for the mutex that they will acquire on being waked up.
* We can do this only if we own the mutex they will acquire.
* If we do not own the mutex, or if their ul_cv_wake flag
* is set, just dequeue and unpark them.
*
* We keep track of lwpids that are to be unparked in lwpid[].
* __lwp_unpark_all() is called to unpark all of them after
* they have been removed from the sleep queue and the sleep
* queue lock has been dropped. If we run out of space in our
* on-stack buffer, we need to allocate more but we can't call
* lmalloc() because we are holding a queue lock when the overflow
* occurs and lmalloc() acquires a lock. We can't use alloca()
* either because the application may have allocated a small
* stack and we don't want to overrun the stack. So we call
* alloc_lwpids() to allocate a bigger buffer using the mmap()
* system call directly since that path acquires no locks.
*/
qp = queue_lock(cvp, CV);
cvp->cond_waiters_user = 0;
for (;;) {
if ((qrp = qp->qh_root) == NULL ||
(ulwp = qrp->qr_head) == NULL)
break;
ASSERT(ulwp->ul_wchan == cvp);
queue_unlink(qp, &qrp->qr_head, NULL);
mp = ulwp->ul_cvmutex; /* his mutex */
ulwp->ul_cvmutex = NULL;
ASSERT(mp != NULL);
if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
/* just wake him up */
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
if (nlwpid == maxlwps)
lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
lwpid[nlwpid++] = ulwp->ul_lwpid;
} else {
/* move him to the mutex queue */
if (mp != mp_cache) {
mp_cache = mp;
if (mqp != NULL)
queue_unlock(mqp);
mqp = queue_lock(mp, MX);
}
enqueue(mqp, ulwp, 0);
mp->mutex_waiters = 1;
}
}
if (mqp != NULL)
queue_unlock(mqp);
if (nlwpid == 0) {
queue_unlock(qp);
} else {
no_preempt(self);
queue_unlock(qp);
if (nlwpid == 1)
(void) __lwp_unpark(lwpid[0]);
else
(void) __lwp_unpark_all(lwpid, nlwpid);
preempt(self);
}
if (lwpid != buffer)
(void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
return (error);
}
#pragma weak pthread_cond_destroy = cond_destroy
int
cond_destroy(cond_t *cvp)
{
cvp->cond_magic = 0;
tdb_sync_obj_deregister(cvp);
return (0);
}
#if defined(THREAD_DEBUG)
void
assert_no_libc_locks_held(void)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
}
/* protected by link_lock */
uint64_t spin_lock_spin;
uint64_t spin_lock_spin2;
uint64_t spin_lock_sleep;
uint64_t spin_lock_wakeup;
/*
* Record spin lock statistics.
* Called by a thread exiting itself in thrp_exit().
* Also called via atexit() from the thread calling
* exit() to do all the other threads as well.
*/
void
record_spin_locks(ulwp_t *ulwp)
{
spin_lock_spin += ulwp->ul_spin_lock_spin;
spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
spin_lock_sleep += ulwp->ul_spin_lock_sleep;
spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
ulwp->ul_spin_lock_spin = 0;
ulwp->ul_spin_lock_spin2 = 0;
ulwp->ul_spin_lock_sleep = 0;
ulwp->ul_spin_lock_wakeup = 0;
}
/*
* atexit function: dump the queue statistics to stderr.
*/
#include <stdio.h>
void
dump_queue_statistics(void)
{
uberdata_t *udp = curthread->ul_uberdata;
queue_head_t *qp;
int qn;
uint64_t spin_lock_total = 0;
if (udp->queue_head == NULL || thread_queue_dump == 0)
return;
if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0)
return;
for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
if (qp->qh_lockcount == 0)
continue;
spin_lock_total += qp->qh_lockcount;
if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
(u_longlong_t)qp->qh_lockcount,
qp->qh_qmax, qp->qh_hmax) < 0)
return;
}
if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0)
return;
for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
if (qp->qh_lockcount == 0)
continue;
spin_lock_total += qp->qh_lockcount;
if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
(u_longlong_t)qp->qh_lockcount,
qp->qh_qmax, qp->qh_hmax) < 0)
return;
}
(void) fprintf(stderr, "\n spin_lock_total = %10llu\n",
(u_longlong_t)spin_lock_total);
(void) fprintf(stderr, " spin_lock_spin = %10llu\n",
(u_longlong_t)spin_lock_spin);
(void) fprintf(stderr, " spin_lock_spin2 = %10llu\n",
(u_longlong_t)spin_lock_spin2);
(void) fprintf(stderr, " spin_lock_sleep = %10llu\n",
(u_longlong_t)spin_lock_sleep);
(void) fprintf(stderr, " spin_lock_wakeup = %10llu\n",
(u_longlong_t)spin_lock_wakeup);
}
#endif