rwlock.c revision 8cd45542f2a452ca0dab13d8b2d5cfa876ccbebc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "lint.h"
#include "thr_uberdata.h"
#include <sys/sdt.h>
#define TRY_FLAG 0x10
#define READ_LOCK 0
#define WRITE_LOCK 1
#define READ_LOCK_TRY (READ_LOCK | TRY_FLAG)
#define WRITE_LOCK_TRY (WRITE_LOCK | TRY_FLAG)
#define NLOCKS 4 /* initial number of readlock_t structs allocated */
#define ASSERT_CONSISTENT_STATE(readers) \
ASSERT(!((readers) & URW_WRITE_LOCKED) || \
((readers) & ~URW_HAS_WAITERS) == URW_WRITE_LOCKED)
/*
* Find/allocate an entry for rwlp in our array of rwlocks held for reading.
* We must be deferring signals for this to be safe.
* Else if we are returning an entry with ul_rdlockcnt == 0,
* it could be reassigned behind our back in a signal handler.
*/
static readlock_t *
rwl_entry(rwlock_t *rwlp)
{
ulwp_t *self = curthread;
readlock_t *remembered = NULL;
readlock_t *readlockp;
uint_t nlocks;
/* we must be deferring signals */
ASSERT((self->ul_critical + self->ul_sigdefer) != 0);
if ((nlocks = self->ul_rdlockcnt) != 0)
readlockp = self->ul_readlock.array;
else {
nlocks = 1;
readlockp = &self->ul_readlock.single;
}
for (; nlocks; nlocks--, readlockp++) {
if (readlockp->rd_rwlock == rwlp)
return (readlockp);
if (readlockp->rd_count == 0 && remembered == NULL)
remembered = readlockp;
}
if (remembered != NULL) {
remembered->rd_rwlock = rwlp;
return (remembered);
}
/*
* No entry available. Allocate more space, converting the single
* readlock_t entry into an array of readlock_t entries if necessary.
*/
if ((nlocks = self->ul_rdlockcnt) == 0) {
/*
* Initial allocation of the readlock_t array.
* Convert the single entry into an array.
*/
self->ul_rdlockcnt = nlocks = NLOCKS;
readlockp = lmalloc(nlocks * sizeof (readlock_t));
/*
* The single readlock_t becomes the first entry in the array.
*/
*readlockp = self->ul_readlock.single;
self->ul_readlock.single.rd_count = 0;
self->ul_readlock.array = readlockp;
/*
* Return the next available entry in the array.
*/
(++readlockp)->rd_rwlock = rwlp;
return (readlockp);
}
/*
* Reallocate the array, double the size each time.
*/
readlockp = lmalloc(nlocks * 2 * sizeof (readlock_t));
(void) memcpy(readlockp, self->ul_readlock.array,
nlocks * sizeof (readlock_t));
lfree(self->ul_readlock.array, nlocks * sizeof (readlock_t));
self->ul_readlock.array = readlockp;
self->ul_rdlockcnt *= 2;
/*
* Return the next available entry in the newly allocated array.
*/
(readlockp += nlocks)->rd_rwlock = rwlp;
return (readlockp);
}
/*
* Free the array of rwlocks held for reading.
*/
void
rwl_free(ulwp_t *ulwp)
{
uint_t nlocks;
if ((nlocks = ulwp->ul_rdlockcnt) != 0)
lfree(ulwp->ul_readlock.array, nlocks * sizeof (readlock_t));
ulwp->ul_rdlockcnt = 0;
ulwp->ul_readlock.single.rd_rwlock = NULL;
ulwp->ul_readlock.single.rd_count = 0;
}
/*
* Check if a reader version of the lock is held by the current thread.
* rw_read_is_held() is private to libc.
*/
#pragma weak rw_read_is_held = _rw_read_held
#pragma weak rw_read_held = _rw_read_held
int
_rw_read_held(rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
readlock_t *readlockp;
uint_t nlocks;
int rval = 0;
no_preempt(self);
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
if (!(readers & URW_WRITE_LOCKED) &&
(readers & URW_READERS_MASK) != 0) {
/*
* The lock is held for reading by some thread.
* Search our array of rwlocks held for reading for a match.
*/
if ((nlocks = self->ul_rdlockcnt) != 0)
readlockp = self->ul_readlock.array;
else {
nlocks = 1;
readlockp = &self->ul_readlock.single;
}
for (; nlocks; nlocks--, readlockp++) {
if (readlockp->rd_rwlock == rwlp) {
if (readlockp->rd_count)
rval = 1;
break;
}
}
}
preempt(self);
return (rval);
}
/*
* Check if a writer version of the lock is held by the current thread.
* rw_write_is_held() is private to libc.
*/
#pragma weak rw_write_is_held = _rw_write_held
#pragma weak rw_write_held = _rw_write_held
int
_rw_write_held(rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
int rval;
no_preempt(self);
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
rval = ((readers & URW_WRITE_LOCKED) &&
rwlp->rwlock_owner == (uintptr_t)self &&
(rwlp->rwlock_type == USYNC_THREAD ||
rwlp->rwlock_ownerpid == self->ul_uberdata->pid));
preempt(self);
return (rval);
}
#pragma weak rwlock_init = __rwlock_init
#pragma weak _rwlock_init = __rwlock_init
/* ARGSUSED2 */
int
__rwlock_init(rwlock_t *rwlp, int type, void *arg)
{
if (type != USYNC_THREAD && type != USYNC_PROCESS)
return (EINVAL);
/*
* Once reinitialized, we can no longer be holding a read or write lock.
* We can do nothing about other threads that are holding read locks.
*/
sigoff(curthread);
rwl_entry(rwlp)->rd_count = 0;
sigon(curthread);
(void) memset(rwlp, 0, sizeof (*rwlp));
rwlp->rwlock_type = (uint16_t)type;
rwlp->rwlock_magic = RWL_MAGIC;
rwlp->mutex.mutex_type = (uint8_t)type;
rwlp->mutex.mutex_flag = LOCK_INITED;
rwlp->mutex.mutex_magic = MUTEX_MAGIC;
return (0);
}
#pragma weak rwlock_destroy = __rwlock_destroy
#pragma weak _rwlock_destroy = __rwlock_destroy
#pragma weak pthread_rwlock_destroy = __rwlock_destroy
#pragma weak _pthread_rwlock_destroy = __rwlock_destroy
int
__rwlock_destroy(rwlock_t *rwlp)
{
/*
* Once destroyed, we can no longer be holding a read or write lock.
* We can do nothing about other threads that are holding read locks.
*/
sigoff(curthread);
rwl_entry(rwlp)->rd_count = 0;
sigon(curthread);
rwlp->rwlock_magic = 0;
tdb_sync_obj_deregister(rwlp);
return (0);
}
/*
* Attempt to acquire a readers lock. Return true on success.
*/
static int
read_lock_try(rwlock_t *rwlp, int ignore_waiters_flag)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t mask = ignore_waiters_flag?
URW_WRITE_LOCKED : (URW_HAS_WAITERS | URW_WRITE_LOCKED);
uint32_t readers;
ulwp_t *self = curthread;
no_preempt(self);
while (((readers = *rwstate) & mask) == 0) {
if (atomic_cas_32(rwstate, readers, readers + 1) == readers) {
preempt(self);
return (1);
}
}
preempt(self);
return (0);
}
/*
* Attempt to release a reader lock. Return true on success.
*/
static int
read_unlock_try(rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
no_preempt(self);
while (((readers = *rwstate) & URW_HAS_WAITERS) == 0) {
if (atomic_cas_32(rwstate, readers, readers - 1) == readers) {
preempt(self);
return (1);
}
}
preempt(self);
return (0);
}
/*
* Attempt to acquire a writer lock. Return true on success.
*/
static int
write_lock_try(rwlock_t *rwlp, int ignore_waiters_flag)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t mask = ignore_waiters_flag?
(URW_WRITE_LOCKED | URW_READERS_MASK) :
(URW_HAS_WAITERS | URW_WRITE_LOCKED | URW_READERS_MASK);
ulwp_t *self = curthread;
uint32_t readers;
no_preempt(self);
while (((readers = *rwstate) & mask) == 0) {
if (atomic_cas_32(rwstate, readers, readers | URW_WRITE_LOCKED)
== readers) {
preempt(self);
return (1);
}
}
preempt(self);
return (0);
}
/*
* Attempt to release a writer lock. Return true on success.
*/
static int
write_unlock_try(rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
no_preempt(self);
while (((readers = *rwstate) & URW_HAS_WAITERS) == 0) {
if (atomic_cas_32(rwstate, readers, 0) == readers) {
preempt(self);
return (1);
}
}
preempt(self);
return (0);
}
/*
* Wake up thread(s) sleeping on the rwlock queue and then
* drop the queue lock. Return non-zero if we wake up someone.
* This is called when a thread releases a lock that appears to have waiters.
*/
static int
rw_queue_release(queue_head_t *qp, rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
uint32_t writers;
ulwp_t **ulwpp;
ulwp_t *ulwp;
ulwp_t *prev;
int nlwpid = 0;
int more;
int maxlwps = MAXLWPS;
lwpid_t buffer[MAXLWPS];
lwpid_t *lwpid = buffer;
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
if (!(readers & URW_HAS_WAITERS)) {
queue_unlock(qp);
return (0);
}
readers &= URW_READERS_MASK;
writers = 0;
/*
* Examine the queue of waiters in priority order and prepare
* to wake up as many readers as we encounter before encountering
* a writer. If the highest priority thread on the queue is a
* writer, stop there and wake it up.
*
* We keep track of lwpids that are to be unparked in lwpid[].
* __lwp_unpark_all() is called to unpark all of them after
* they have been removed from the sleep queue and the sleep
* queue lock has been dropped. If we run out of space in our
* on-stack buffer, we need to allocate more but we can't call
* lmalloc() because we are holding a queue lock when the overflow
* occurs and lmalloc() acquires a lock. We can't use alloca()
* either because the application may have allocated a small
* stack and we don't want to overrun the stack. So we call
* alloc_lwpids() to allocate a bigger buffer using the mmap()
* system call directly since that path acquires no locks.
*/
while ((ulwpp = queue_slot(qp, &prev, &more)) != NULL) {
ulwp = *ulwpp;
ASSERT(ulwp->ul_wchan == rwlp);
if (ulwp->ul_writer) {
if (writers != 0 || readers != 0)
break;
/* one writer to wake */
writers++;
} else {
if (writers != 0)
break;
/* at least one reader to wake */
readers++;
if (nlwpid == maxlwps)
lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
}
queue_unlink(qp, ulwpp, prev);
ulwp->ul_sleepq = NULL;
ulwp->ul_wchan = NULL;
lwpid[nlwpid++] = ulwp->ul_lwpid;
}
if (ulwpp == NULL)
atomic_and_32(rwstate, ~URW_HAS_WAITERS);
if (nlwpid == 0) {
queue_unlock(qp);
} else {
ulwp_t *self = curthread;
no_preempt(self);
queue_unlock(qp);
if (nlwpid == 1)
(void) __lwp_unpark(lwpid[0]);
else
(void) __lwp_unpark_all(lwpid, nlwpid);
preempt(self);
}
if (lwpid != buffer)
(void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
return (nlwpid != 0);
}
/*
* Common code for rdlock, timedrdlock, wrlock, timedwrlock, tryrdlock,
* and trywrlock for process-shared (USYNC_PROCESS) rwlocks.
*
* Note: if the lock appears to be contended we call __lwp_rwlock_rdlock()
* or __lwp_rwlock_wrlock() holding the mutex. These return with the mutex
* released, and if they need to sleep will release the mutex first. In the
* event of a spurious wakeup, these will return EAGAIN (because it is much
* easier for us to re-acquire the mutex here).
*/
int
shared_rwlock_lock(rwlock_t *rwlp, timespec_t *tsp, int rd_wr)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
mutex_t *mp = &rwlp->mutex;
uint32_t readers;
int try_flag;
int error;
try_flag = (rd_wr & TRY_FLAG);
rd_wr &= ~TRY_FLAG;
ASSERT(rd_wr == READ_LOCK || rd_wr == WRITE_LOCK);
if (!try_flag) {
DTRACE_PROBE2(plockstat, rw__block, rwlp, rd_wr);
}
do {
if (try_flag && (*rwstate & URW_WRITE_LOCKED)) {
error = EBUSY;
break;
}
if ((error = mutex_lock(mp)) != 0)
break;
if (rd_wr == READ_LOCK) {
if (read_lock_try(rwlp, 0)) {
(void) mutex_unlock(mp);
break;
}
} else {
if (write_lock_try(rwlp, 0)) {
(void) mutex_unlock(mp);
break;
}
}
atomic_or_32(rwstate, URW_HAS_WAITERS);
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
/*
* The calls to __lwp_rwlock_*() below will release the mutex,
* so we need a dtrace probe here.
*/
mp->mutex_owner = 0;
DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
/*
* The waiters bit may be inaccurate.
* Only the kernel knows for sure.
*/
if (rd_wr == READ_LOCK) {
if (try_flag)
error = __lwp_rwlock_tryrdlock(rwlp);
else
error = __lwp_rwlock_rdlock(rwlp, tsp);
} else {
if (try_flag)
error = __lwp_rwlock_trywrlock(rwlp);
else
error = __lwp_rwlock_wrlock(rwlp, tsp);
}
} while (error == EAGAIN || error == EINTR);
if (!try_flag) {
DTRACE_PROBE3(plockstat, rw__blocked, rwlp, rd_wr, error == 0);
}
return (error);
}
/*
* Common code for rdlock, timedrdlock, wrlock, timedwrlock, tryrdlock,
* and trywrlock for process-private (USYNC_THREAD) rwlocks.
*/
int
rwlock_lock(rwlock_t *rwlp, timespec_t *tsp, int rd_wr)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
queue_head_t *qp;
ulwp_t *ulwp;
int try_flag;
int ignore_waiters_flag;
int error = 0;
try_flag = (rd_wr & TRY_FLAG);
rd_wr &= ~TRY_FLAG;
ASSERT(rd_wr == READ_LOCK || rd_wr == WRITE_LOCK);
if (!try_flag) {
DTRACE_PROBE2(plockstat, rw__block, rwlp, rd_wr);
}
qp = queue_lock(rwlp, MX);
/* initial attempt to acquire the lock fails if there are waiters */
ignore_waiters_flag = 0;
while (error == 0) {
if (rd_wr == READ_LOCK) {
if (read_lock_try(rwlp, ignore_waiters_flag))
break;
} else {
if (write_lock_try(rwlp, ignore_waiters_flag))
break;
}
/* subsequent attempts do not fail due to waiters */
ignore_waiters_flag = 1;
atomic_or_32(rwstate, URW_HAS_WAITERS);
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
if ((readers & URW_WRITE_LOCKED) ||
(rd_wr == WRITE_LOCK &&
(readers & URW_READERS_MASK) != 0))
/* EMPTY */; /* somebody holds the lock */
else if ((ulwp = queue_waiter(qp)) == NULL) {
atomic_and_32(rwstate, ~URW_HAS_WAITERS);
continue; /* no queued waiters, try again */
} else {
/*
* Do a priority check on the queued waiter (the
* highest priority thread on the queue) to see
* if we should defer to him or just grab the lock.
*/
int our_pri = real_priority(self);
int his_pri = real_priority(ulwp);
if (rd_wr == WRITE_LOCK) {
/*
* We defer to a queued thread that has
* a higher priority than ours.
*/
if (his_pri <= our_pri)
continue; /* try again */
} else {
/*
* We defer to a queued thread that has
* a higher priority than ours or that
* is a writer whose priority equals ours.
*/
if (his_pri < our_pri ||
(his_pri == our_pri && !ulwp->ul_writer))
continue; /* try again */
}
}
/*
* We are about to block.
* If we're doing a trylock, return EBUSY instead.
*/
if (try_flag) {
error = EBUSY;
break;
}
/*
* Enqueue writers ahead of readers.
*/
self->ul_writer = rd_wr; /* *must* be 0 or 1 */
enqueue(qp, self, 0);
set_parking_flag(self, 1);
queue_unlock(qp);
if ((error = __lwp_park(tsp, 0)) == EINTR)
error = ignore_waiters_flag = 0;
set_parking_flag(self, 0);
qp = queue_lock(rwlp, MX);
if (self->ul_sleepq && dequeue_self(qp) == 0)
atomic_and_32(rwstate, ~URW_HAS_WAITERS);
self->ul_writer = 0;
}
queue_unlock(qp);
if (!try_flag) {
DTRACE_PROBE3(plockstat, rw__blocked, rwlp, rd_wr, error == 0);
}
return (error);
}
int
rw_rdlock_impl(rwlock_t *rwlp, timespec_t *tsp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
readlock_t *readlockp;
tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
int error;
/*
* If we already hold a readers lock on this rwlock,
* just increment our reference count and return.
*/
sigoff(self);
readlockp = rwl_entry(rwlp);
if (readlockp->rd_count != 0) {
if (readlockp->rd_count == READ_LOCK_MAX) {
sigon(self);
error = EAGAIN;
goto out;
}
sigon(self);
error = 0;
goto out;
}
sigon(self);
/*
* If we hold the writer lock, bail out.
*/
if (rw_write_is_held(rwlp)) {
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_rdlock",
"calling thread owns the writer lock");
error = EDEADLK;
goto out;
}
if (read_lock_try(rwlp, 0))
error = 0;
else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
error = shared_rwlock_lock(rwlp, tsp, READ_LOCK);
else /* user-level */
error = rwlock_lock(rwlp, tsp, READ_LOCK);
out:
if (error == 0) {
sigoff(self);
rwl_entry(rwlp)->rd_count++;
sigon(self);
if (rwsp)
tdb_incr(rwsp->rw_rdlock);
DTRACE_PROBE2(plockstat, rw__acquire, rwlp, READ_LOCK);
} else {
DTRACE_PROBE3(plockstat, rw__error, rwlp, READ_LOCK, error);
}
return (error);
}
#pragma weak rw_rdlock = __rw_rdlock
#pragma weak _rw_rdlock = __rw_rdlock
#pragma weak pthread_rwlock_rdlock = __rw_rdlock
#pragma weak _pthread_rwlock_rdlock = __rw_rdlock
int
__rw_rdlock(rwlock_t *rwlp)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
return (rw_rdlock_impl(rwlp, NULL));
}
void
lrw_rdlock(rwlock_t *rwlp)
{
enter_critical(curthread);
(void) rw_rdlock_impl(rwlp, NULL);
}
#pragma weak pthread_rwlock_reltimedrdlock_np = \
_pthread_rwlock_reltimedrdlock_np
int
_pthread_rwlock_reltimedrdlock_np(rwlock_t *rwlp, const timespec_t *reltime)
{
timespec_t tslocal = *reltime;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
error = rw_rdlock_impl(rwlp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
#pragma weak pthread_rwlock_timedrdlock = _pthread_rwlock_timedrdlock
int
_pthread_rwlock_timedrdlock(rwlock_t *rwlp, const timespec_t *abstime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
error = rw_rdlock_impl(rwlp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
int
rw_wrlock_impl(rwlock_t *rwlp, timespec_t *tsp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
int error;
/*
* If we hold a readers lock on this rwlock, bail out.
*/
if (rw_read_is_held(rwlp)) {
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_wrlock",
"calling thread owns the readers lock");
error = EDEADLK;
goto out;
}
/*
* If we hold the writer lock, bail out.
*/
if (rw_write_is_held(rwlp)) {
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_wrlock",
"calling thread owns the writer lock");
error = EDEADLK;
goto out;
}
if (write_lock_try(rwlp, 0))
error = 0;
else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
error = shared_rwlock_lock(rwlp, tsp, WRITE_LOCK);
else /* user-level */
error = rwlock_lock(rwlp, tsp, WRITE_LOCK);
out:
if (error == 0) {
rwlp->rwlock_owner = (uintptr_t)self;
if (rwlp->rwlock_type == USYNC_PROCESS)
rwlp->rwlock_ownerpid = udp->pid;
if (rwsp) {
tdb_incr(rwsp->rw_wrlock);
rwsp->rw_wrlock_begin_hold = gethrtime();
}
DTRACE_PROBE2(plockstat, rw__acquire, rwlp, WRITE_LOCK);
} else {
DTRACE_PROBE3(plockstat, rw__error, rwlp, WRITE_LOCK, error);
}
return (error);
}
#pragma weak rw_wrlock = __rw_wrlock
#pragma weak _rw_wrlock = __rw_wrlock
#pragma weak pthread_rwlock_wrlock = __rw_wrlock
#pragma weak _pthread_rwlock_wrlock = __rw_wrlock
int
__rw_wrlock(rwlock_t *rwlp)
{
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
return (rw_wrlock_impl(rwlp, NULL));
}
void
lrw_wrlock(rwlock_t *rwlp)
{
enter_critical(curthread);
(void) rw_wrlock_impl(rwlp, NULL);
}
#pragma weak pthread_rwlock_reltimedwrlock_np = \
_pthread_rwlock_reltimedwrlock_np
int
_pthread_rwlock_reltimedwrlock_np(rwlock_t *rwlp, const timespec_t *reltime)
{
timespec_t tslocal = *reltime;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
error = rw_wrlock_impl(rwlp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
#pragma weak pthread_rwlock_timedwrlock = _pthread_rwlock_timedwrlock
int
_pthread_rwlock_timedwrlock(rwlock_t *rwlp, const timespec_t *abstime)
{
timespec_t tslocal;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
error = rw_wrlock_impl(rwlp, &tslocal);
if (error == ETIME)
error = ETIMEDOUT;
return (error);
}
#pragma weak rw_tryrdlock = __rw_tryrdlock
#pragma weak _rw_tryrdlock = __rw_tryrdlock
#pragma weak pthread_rwlock_tryrdlock = __rw_tryrdlock
#pragma weak _pthread_rwlock_tryrdlock = __rw_tryrdlock
int
__rw_tryrdlock(rwlock_t *rwlp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
readlock_t *readlockp;
int error;
ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
if (rwsp)
tdb_incr(rwsp->rw_rdlock_try);
/*
* If we already hold a readers lock on this rwlock,
* just increment our reference count and return.
*/
sigoff(self);
readlockp = rwl_entry(rwlp);
if (readlockp->rd_count != 0) {
if (readlockp->rd_count == READ_LOCK_MAX) {
sigon(self);
error = EAGAIN;
goto out;
}
sigon(self);
error = 0;
goto out;
}
sigon(self);
if (read_lock_try(rwlp, 0))
error = 0;
else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
error = shared_rwlock_lock(rwlp, NULL, READ_LOCK_TRY);
else /* user-level */
error = rwlock_lock(rwlp, NULL, READ_LOCK_TRY);
out:
if (error == 0) {
sigoff(self);
rwl_entry(rwlp)->rd_count++;
sigon(self);
DTRACE_PROBE2(plockstat, rw__acquire, rwlp, READ_LOCK);
} else {
if (rwsp)
tdb_incr(rwsp->rw_rdlock_try_fail);
if (error != EBUSY) {
DTRACE_PROBE3(plockstat, rw__error, rwlp, READ_LOCK,
error);
}
}
return (error);
}
#pragma weak rw_trywrlock = __rw_trywrlock
#pragma weak _rw_trywrlock = __rw_trywrlock
#pragma weak pthread_rwlock_trywrlock = __rw_trywrlock
#pragma weak _pthread_rwlock_trywrlock = __rw_trywrlock
int
__rw_trywrlock(rwlock_t *rwlp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
int error;
ASSERT(!self->ul_critical || self->ul_bindflags);
if (rwsp)
tdb_incr(rwsp->rw_wrlock_try);
if (write_lock_try(rwlp, 0))
error = 0;
else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
error = shared_rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY);
else /* user-level */
error = rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY);
if (error == 0) {
rwlp->rwlock_owner = (uintptr_t)self;
if (rwlp->rwlock_type == USYNC_PROCESS)
rwlp->rwlock_ownerpid = udp->pid;
if (rwsp)
rwsp->rw_wrlock_begin_hold = gethrtime();
DTRACE_PROBE2(plockstat, rw__acquire, rwlp, WRITE_LOCK);
} else {
if (rwsp)
tdb_incr(rwsp->rw_wrlock_try_fail);
if (error != EBUSY) {
DTRACE_PROBE3(plockstat, rw__error, rwlp, WRITE_LOCK,
error);
}
}
return (error);
}
#pragma weak rw_unlock = __rw_unlock
#pragma weak _rw_unlock = __rw_unlock
#pragma weak pthread_rwlock_unlock = __rw_unlock
#pragma weak _pthread_rwlock_unlock = __rw_unlock
int
__rw_unlock(rwlock_t *rwlp)
{
volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
uint32_t readers;
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
tdb_rwlock_stats_t *rwsp;
queue_head_t *qp;
int rd_wr;
int waked = 0;
readers = *rwstate;
ASSERT_CONSISTENT_STATE(readers);
if (readers & URW_WRITE_LOCKED) {
rd_wr = WRITE_LOCK;
readers = 0;
} else {
rd_wr = READ_LOCK;
readers &= URW_READERS_MASK;
}
if (rd_wr == WRITE_LOCK) {
/*
* Since the writer lock is held, we'd better be
* holding it, else we cannot legitimately be here.
*/
if (!rw_write_is_held(rwlp)) {
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_unlock",
"writer lock held, "
"but not by the calling thread");
return (EPERM);
}
if ((rwsp = RWLOCK_STATS(rwlp, udp)) != NULL) {
if (rwsp->rw_wrlock_begin_hold)
rwsp->rw_wrlock_hold_time +=
gethrtime() - rwsp->rw_wrlock_begin_hold;
rwsp->rw_wrlock_begin_hold = 0;
}
rwlp->rwlock_owner = 0;
rwlp->rwlock_ownerpid = 0;
} else if (readers > 0) {
/*
* A readers lock is held; if we don't hold one, bail out.
*/
readlock_t *readlockp;
sigoff(self);
readlockp = rwl_entry(rwlp);
if (readlockp->rd_count == 0) {
sigon(self);
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_unlock",
"readers lock held, "
"but not by the calling thread");
return (EPERM);
}
/*
* If we hold more than one readers lock on this rwlock,
* just decrement our reference count and return.
*/
if (--readlockp->rd_count != 0) {
sigon(self);
goto out;
}
sigon(self);
} else {
/*
* This is a usage error.
* No thread should release an unowned lock.
*/
if (self->ul_error_detection)
rwlock_error(rwlp, "rwlock_unlock", "lock not owned");
return (EPERM);
}
if (rd_wr == WRITE_LOCK && write_unlock_try(rwlp)) {
/* EMPTY */;
} else if (rd_wr == READ_LOCK && read_unlock_try(rwlp)) {
/* EMPTY */;
} else if (rwlp->rwlock_type == USYNC_PROCESS) {
(void) mutex_lock(&rwlp->mutex);
(void) __lwp_rwlock_unlock(rwlp);
(void) mutex_unlock(&rwlp->mutex);
waked = 1;
} else {
qp = queue_lock(rwlp, MX);
if (rd_wr == READ_LOCK)
atomic_dec_32(rwstate);
else
atomic_and_32(rwstate, ~URW_WRITE_LOCKED);
waked = rw_queue_release(qp, rwlp);
}
out:
DTRACE_PROBE2(plockstat, rw__release, rwlp, rd_wr);
/*
* Yield to the thread we just waked up, just in case we might
* be about to grab the rwlock again immediately upon return.
* This is pretty weak but it helps on a uniprocessor and also
* when cpu affinity has assigned both ourself and the other
* thread to the same CPU. Note that lwp_yield() will yield
* the processor only if the writer is at the same or higher
* priority than ourself. This provides more balanced program
* behavior; it doesn't guarantee acquisition of the lock by
* the pending writer.
*/
if (waked)
yield();
return (0);
}
void
lrw_unlock(rwlock_t *rwlp)
{
(void) __rw_unlock(rwlp);
exit_critical(curthread);
}