ses_facility.c revision 7793aa8b1cb26c7fc1397aa9db2364098fc25543
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Facility node support for SES enclosures. We support the following facility
* nodes, based on the node type:
*
* bay
* indicator=ident
* indicator=fail
* indicator=ok2rm
* sensor=fault
*
* controller
* indicator=ident
* indicator=fail
*
* fan
* indicator=ident
* indicator=fail
* sensor=speed
* sensor=fault
*
* psu
* indicator=ident
* indicator=fail
* sensor=status
*
* ses-enclosure
* indicator=ident
* indicator=fail
* sensor=fault
* sensor=<name> (temperature)
* sensor=<name> (voltage)
* sensor=<name> (current)
*
* Most of these are handled by a single method that supports getting and
* setting boolean properties on the node. The fan speed sensor requires a
* special handler, while the analog enclosure sensors all have similar
* behavior and can be grouped together using a common method.
*/
#include "ses.h"
#include "disk.h"
#include <string.h>
static int ses_indicator_mode(topo_mod_t *, tnode_t *, topo_version_t,
nvlist_t *, nvlist_t **);
static int ses_sensor_reading(topo_mod_t *, tnode_t *, topo_version_t,
nvlist_t *, nvlist_t **);
static int ses_sensor_state(topo_mod_t *, tnode_t *, topo_version_t,
nvlist_t *, nvlist_t **);
static int ses_psu_state(topo_mod_t *, tnode_t *, topo_version_t,
nvlist_t *, nvlist_t **);
#define SES_SUPP_WARN_UNDER 0x01
#define SES_SUPP_WARN_OVER 0x02
#define SES_SUPP_CRIT_UNDER 0x04
#define SES_SUPP_CRIT_OVER 0x08
typedef struct ses_sensor_desc {
int sd_type;
int sd_units;
const char *sd_propname;
double sd_multiplier;
} ses_sensor_desc_t;
#define TOPO_METH_SES_MODE_VERSION 0
#define TOPO_METH_SES_READING_VERSION 0
#define TOPO_METH_SES_STATE_VERSION 0
#define TOPO_METH_SES_PSU_VERSION 0
#define TOPO_METH_SES_READING_PROP "propname"
#define TOPO_METH_SES_READING_MULT "multiplier"
#define TOPO_METH_SES_STATE_PROP "propname"
#define TOPO_METH_SES_MODE_PROP "property-name"
#define TOPO_METH_SES_MODE_ALTPROP "alternate-property"
static const topo_method_t ses_indicator_methods[] = {
{ "ses_indicator_mode", TOPO_PROP_METH_DESC,
TOPO_METH_SES_MODE_VERSION, TOPO_STABILITY_INTERNAL,
ses_indicator_mode }
};
static const topo_method_t ses_sensor_methods[] = {
{ "ses_sensor_reading", TOPO_PROP_METH_DESC,
TOPO_METH_SES_READING_VERSION, TOPO_STABILITY_INTERNAL,
ses_sensor_reading },
{ "ses_sensor_state", TOPO_PROP_METH_DESC,
TOPO_METH_SES_STATE_VERSION, TOPO_STABILITY_INTERNAL,
ses_sensor_state },
{ "ses_psu_state", TOPO_PROP_METH_DESC,
TOPO_METH_SES_PSU_VERSION, TOPO_STABILITY_INTERNAL,
ses_psu_state },
};
/*
* Get or set an indicator. This method is invoked with arguments indicating
* the property to query to retrieve the value. Some elements (enclosures and
* devices) support a request property that is distinct from an array-detected
* property. Either of these conditions will result in the indicator being
* lit, so we have to check both properties.
*/
static int
ses_indicator_mode(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
ses_node_t *np;
nvlist_t *args, *pargs, *props;
char *propname, *altprop;
uint32_t mode;
boolean_t current, altcurrent;
nvlist_t *nvl;
if (vers > TOPO_METH_SES_MODE_VERSION)
return (topo_mod_seterrno(mod, ETOPO_METHOD_VERNEW));
if (nvlist_lookup_nvlist(in, TOPO_PROP_ARGS, &args) != 0 ||
nvlist_lookup_string(args, TOPO_METH_SES_MODE_PROP,
&propname) != 0) {
topo_mod_dprintf(mod, "invalid arguments to 'mode' method\n");
return (topo_mod_seterrno(mod, EMOD_NVL_INVAL));
}
if (nvlist_lookup_string(args, TOPO_METH_SES_MODE_ALTPROP,
&altprop) != 0)
altprop = NULL;
if ((np = ses_node_get(mod, tn)) == NULL) {
topo_mod_dprintf(mod, "failed to lookup ses node in 'mode' "
"method\n");
return (-1);
}
verify((props = ses_node_props(np)) != NULL);
if (nvlist_lookup_nvlist(in, TOPO_PROP_PARGS, &pargs) == 0 &&
nvlist_exists(pargs, TOPO_PROP_VAL_VAL)) {
/* set operation */
if (nvlist_lookup_uint32(pargs, TOPO_PROP_VAL_VAL,
&mode) != 0) {
topo_mod_dprintf(mod, "invalid type for indicator "
"mode property");
return (topo_mod_seterrno(mod, EMOD_NVL_INVAL));
}
if (mode != TOPO_LED_STATE_OFF && mode != TOPO_LED_STATE_ON) {
topo_mod_dprintf(mod, "invalid indicator mode %d\n",
mode);
return (topo_mod_seterrno(mod, EMOD_NVL_INVAL));
}
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_boolean_value(nvl, propname,
mode == TOPO_LED_STATE_ON ? B_TRUE : B_FALSE) != 0) {
nvlist_free(nvl);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
if (ses_node_ctl(np, SES_CTL_OP_SETPROP, nvl) != 0) {
topo_mod_dprintf(mod, "failed to set indicator: %s\n",
ses_errmsg());
nvlist_free(nvl);
return (-1);
}
nvlist_free(nvl);
} else {
/* get operation */
if (nvlist_lookup_boolean_value(props,
propname, &current) != 0) {
topo_mod_dprintf(mod, "failed to lookup %s in node "
"properties\n", propname);
return (topo_mod_seterrno(mod, EMOD_METHOD_NOTSUP));
}
if (altprop != NULL && nvlist_lookup_boolean_value(props,
altprop, &altcurrent) == 0)
current |= altcurrent;
mode = current ? TOPO_LED_STATE_ON : TOPO_LED_STATE_OFF;
}
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_PROP_VAL_NAME,
TOPO_LED_MODE) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_TYPE, TOPO_TYPE_UINT32) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_VAL, mode) != 0) {
nvlist_free(nvl);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
*out = nvl;
return (0);
}
/*
* Read the given sensor value. This just looks up the value in the node
* properties, and multiplies by a fixed value (determined when the method is
* instantiated).
*/
static int
ses_sensor_reading(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
ses_node_t *np;
nvlist_t *args, *props;
char *prop;
double raw, multiplier;
uint64_t current;
int64_t scurrent;
nvlist_t *nvl;
if (vers > TOPO_METH_SES_MODE_VERSION)
return (topo_mod_seterrno(mod, ETOPO_METHOD_VERNEW));
if (nvlist_lookup_nvlist(in, TOPO_PROP_ARGS, &args) != 0 ||
nvlist_lookup_string(args, TOPO_METH_SES_READING_PROP,
&prop) != 0) {
topo_mod_dprintf(mod,
"invalid arguments to 'reading' method\n");
return (topo_mod_seterrno(mod, EMOD_NVL_INVAL));
}
if (nvlist_lookup_double(args, TOPO_METH_SES_READING_MULT,
&multiplier) != 0)
multiplier = 1;
if ((np = ses_node_get(mod, tn)) == NULL) {
topo_mod_dprintf(mod, "failed to lookup ses node in 'mode' "
"method\n");
return (-1);
}
verify((props = ses_node_props(np)) != NULL);
if (nvlist_lookup_uint64(props, prop, &current) == 0) {
raw = (double)current;
} else if (nvlist_lookup_int64(props, prop, &scurrent) == 0) {
raw = (double)scurrent;
} else {
topo_mod_dprintf(mod, "failed to lookup %s in node "
"properties\n", prop);
return (topo_mod_seterrno(mod, EMOD_METHOD_NOTSUP));
}
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_PROP_VAL_NAME,
TOPO_SENSOR_READING) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_TYPE, TOPO_TYPE_DOUBLE) != 0 ||
nvlist_add_double(nvl, TOPO_PROP_VAL_VAL, raw * multiplier) != 0) {
nvlist_free(nvl);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
*out = nvl;
return (0);
}
/*
* Returns the current sensor state. This can be invoked for one of two
* different types of sensors: threshold or discrete sensors. For discrete
* sensors, we expect a name of a boolean property and indicate
* asserted/deasserted based on that. For threshold sensors, we check for the
* standard warning/critical properties and translate that into the appropriate
* topo state.
*/
/*ARGSUSED*/
static int
ses_sensor_state(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
nvlist_t *nvl, *args, *props;
boolean_t value, asserted;
uint64_t status;
uint32_t state;
ses_node_t *np;
char *prop;
if ((np = ses_node_get(mod, tn)) == NULL) {
topo_mod_dprintf(mod, "failed to lookup ses node in 'mode' "
"method\n");
return (-1);
}
verify((props = ses_node_props(np)) != NULL);
if (nvlist_lookup_nvlist(in, TOPO_PROP_ARGS, &args) != 0) {
topo_mod_dprintf(mod,
"invalid arguments to 'state' method\n");
return (topo_mod_seterrno(mod, EMOD_NVL_INVAL));
}
if (nvlist_lookup_uint64(props, SES_PROP_STATUS_CODE, &status) != 0)
status = SES_ESC_UNSUPPORTED;
state = 0;
if (nvlist_lookup_string(args, TOPO_METH_SES_STATE_PROP,
&prop) == 0) {
/* discrete (fault) sensor */
asserted = B_FALSE;
if (nvlist_lookup_boolean_value(props, prop, &value) == 0 &&
value)
asserted = B_TRUE;
if (status == SES_ESC_UNRECOVERABLE ||
status == SES_ESC_CRITICAL)
asserted = B_TRUE;
if (asserted)
state |= TOPO_SENSOR_STATE_GENERIC_STATE_ASSERTED;
else
state |= TOPO_SENSOR_STATE_GENERIC_STATE_DEASSERTED;
} else {
/* threshold sensor */
if (nvlist_lookup_boolean_value(props,
SES_PROP_WARN_UNDER, &value) == 0 && value)
state |= TOPO_SENSOR_THRESH_LOWER_NONCRIT;
if (nvlist_lookup_boolean_value(props,
SES_PROP_WARN_OVER, &value) == 0 && value)
state |= TOPO_SENSOR_THRESH_UPPER_NONCRIT;
if (nvlist_lookup_boolean_value(props,
SES_PROP_CRIT_UNDER, &value) == 0 && value)
state |= TOPO_SENSOR_THRESH_LOWER_CRIT;
if (nvlist_lookup_boolean_value(props,
SES_PROP_CRIT_OVER, &value) == 0 && value)
state |= TOPO_SENSOR_THRESH_UPPER_CRIT;
}
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_PROP_VAL_NAME,
TOPO_SENSOR_STATE) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_TYPE, TOPO_TYPE_UINT32) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_VAL, state) != 0) {
nvlist_free(nvl);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
*out = nvl;
return (0);
}
/*
* Read the status of a PSU. This is such a specialized operation that it has
* its own method instead of trying to piggyback on ses_sensor_state(). We
* use the following mapping to get to the standard topo power supply states:
*
* acfail -> INPUT_LOST
* dcfail -> INPUT_LOST
* undervoltage -> INPUT_RANGE
* overvoltage -> INPUT_RANGE_PRES
* overcurrent -> INPUT_RANGE_PRES
* overtemp -> (none)
*
* If we ever have a need for reading overtemp, we can expand the topo
* representation for power supplies, but at the moment this seems unnecessary.
*/
/*ARGSUSED*/
static int
ses_psu_state(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
nvlist_t *nvl, *props;
boolean_t value;
uint32_t state;
ses_node_t *np;
if ((np = ses_node_get(mod, tn)) == NULL) {
topo_mod_dprintf(mod, "failed to lookup ses node in 'mode' "
"method\n");
return (-1);
}
verify((props = ses_node_props(np)) != NULL);
state = 0;
if ((nvlist_lookup_boolean_value(props, SES_PSU_PROP_DC_FAIL,
&value) == 0 && value) ||
(nvlist_lookup_boolean_value(props, SES_PSU_PROP_AC_FAIL,
&value) == 0 && value))
state |= TOPO_SENSOR_STATE_POWER_SUPPLY_INPUT_LOST;
if (nvlist_lookup_boolean_value(props, SES_PSU_PROP_DC_UNDER_VOLTAGE,
&value) == 0 && value)
state |= TOPO_SENSOR_STATE_POWER_SUPPLY_INPUT_RANGE;
if ((nvlist_lookup_boolean_value(props, SES_PSU_PROP_DC_OVER_VOLTAGE,
&value) == 0 && value) ||
(nvlist_lookup_boolean_value(props, SES_PSU_PROP_DC_OVER_CURRENT,
&value) == 0 && value))
state |= TOPO_SENSOR_STATE_POWER_SUPPLY_INPUT_RANGE_PRES;
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_PROP_VAL_NAME,
TOPO_SENSOR_STATE) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_TYPE, TOPO_TYPE_UINT32) != 0 ||
nvlist_add_uint32(nvl, TOPO_PROP_VAL_VAL, state) != 0) {
nvlist_free(nvl);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
*out = nvl;
return (0);
}
/*
* Create a facility node, either a sensor or an indicator.
*/
static tnode_t *
ses_add_fac_common(topo_mod_t *mod, tnode_t *pnode, const char *name,
const char *type, uint64_t nodeid)
{
tnode_t *tn;
topo_pgroup_info_t pgi;
int err;
ses_enum_target_t *stp = topo_node_getspecific(pnode);
if ((tn = topo_node_facbind(mod, pnode, name, type)) == NULL) {
topo_mod_dprintf(mod, "failed to bind facility node %s\n",
name);
return (NULL);
}
stp->set_refcount++;
topo_node_setspecific(tn, stp);
pgi.tpi_name = TOPO_PGROUP_FACILITY;
pgi.tpi_namestab = TOPO_STABILITY_PRIVATE;
pgi.tpi_datastab = TOPO_STABILITY_PRIVATE;
pgi.tpi_version = 1;
if (topo_pgroup_create(tn, &pgi, &err) != 0) {
topo_mod_dprintf(mod, "failed to create facility property "
"group: %s\n", topo_strerror(err));
topo_node_unbind(tn);
return (NULL);
}
/*
* We need the node-id property for each facility node.
*/
pgi.tpi_name = TOPO_PGROUP_SES;
pgi.tpi_namestab = TOPO_STABILITY_PRIVATE;
pgi.tpi_datastab = TOPO_STABILITY_PRIVATE;
pgi.tpi_version = TOPO_VERSION;
if (topo_pgroup_create(tn, &pgi, &err) != 0) {
topo_mod_dprintf(mod, "failed to create ses property "
"group: %s\n", topo_strerror(err));
topo_node_unbind(tn);
return (NULL);
}
if (topo_prop_set_uint64(tn, TOPO_PGROUP_SES,
TOPO_PROP_NODE_ID, TOPO_PROP_IMMUTABLE,
nodeid, &err) != 0) {
topo_mod_dprintf(mod,
"failed to create property %s: %s\n",
TOPO_PROP_NODE_ID, topo_strerror(err));
topo_node_unbind(tn);
return (NULL);
}
return (tn);
}
/*
* Add an indicator. This can be represented by a single property, or by the
* union of two elements when SES is capable of distinguishing between
* requested failure and detected failure.
*/
static int
ses_add_indicator(topo_mod_t *mod, tnode_t *pnode, uint64_t nodeid,
int type, const char *name, const char *propname, const char *altprop)
{
tnode_t *tn;
int err;
nvlist_t *nvl;
/* create facility node and add methods */
if ((tn = ses_add_fac_common(mod, pnode, name,
TOPO_FAC_TYPE_INDICATOR, nodeid)) == NULL)
return (-1);
if (topo_method_register(mod, tn, ses_indicator_methods) < 0) {
topo_mod_dprintf(mod, "failed to register facility methods\n");
topo_node_unbind(tn);
return (-1);
}
/* set standard properties */
if (topo_prop_set_uint32(tn, TOPO_PGROUP_FACILITY,
TOPO_FACILITY_TYPE, TOPO_PROP_IMMUTABLE, type, &err) != 0) {
topo_mod_dprintf(mod,
"failed to set facility node properties: %s\n",
topo_strerror(err));
topo_node_unbind(tn);
return (-1);
}
/* 'mode' property */
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_METH_SES_MODE_PROP,
propname) != 0 ||
(altprop != NULL && nvlist_add_string(nvl,
TOPO_METH_SES_MODE_ALTPROP, altprop) != 0)) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to setup method arguments\n");
topo_node_unbind(tn);
return (topo_mod_seterrno(mod, EMOD_NOMEM));
}
if (topo_prop_method_register(tn, TOPO_PGROUP_FACILITY,
TOPO_LED_MODE, TOPO_TYPE_UINT32, "ses_indicator_mode",
nvl, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to register reading method: %s\n",
topo_strerror(err));
return (-1);
}
if (topo_prop_setmutable(tn, TOPO_PGROUP_FACILITY,
TOPO_LED_MODE, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to set property as mutable: %s\n",
topo_strerror(err));
return (-1);
}
nvlist_free(nvl);
return (0);
}
static tnode_t *
ses_add_sensor_common(topo_mod_t *mod, tnode_t *pnode, uint64_t nodeid,
const char *name, const char *class, int type)
{
tnode_t *tn;
int err;
/* create facility node and add methods */
if ((tn = ses_add_fac_common(mod, pnode, name,
TOPO_FAC_TYPE_SENSOR, nodeid)) == NULL)
return (NULL);
if (topo_method_register(mod, tn, ses_sensor_methods) < 0) {
topo_mod_dprintf(mod, "failed to register facility methods\n");
topo_node_unbind(tn);
return (NULL);
}
/* set standard properties */
if (topo_prop_set_string(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_CLASS, TOPO_PROP_IMMUTABLE,
class, &err) != 0 ||
topo_prop_set_uint32(tn, TOPO_PGROUP_FACILITY,
TOPO_FACILITY_TYPE, TOPO_PROP_IMMUTABLE,
type, &err) != 0) {
topo_mod_dprintf(mod,
"failed to set facility node properties: %s\n",
topo_strerror(err));
topo_node_unbind(tn);
return (NULL);
}
return (tn);
}
/*
* Add an analog (threshold) sensor to the enclosure. This is used for fan
* speed, voltage, current, and temperature sensors.
*/
static int
ses_add_sensor(topo_mod_t *mod, tnode_t *pnode, uint64_t nodeid,
const char *name, const ses_sensor_desc_t *sdp)
{
tnode_t *tn;
int err;
nvlist_t *nvl;
if ((tn = ses_add_sensor_common(mod, pnode, nodeid, name,
TOPO_SENSOR_CLASS_THRESHOLD, sdp->sd_type)) == NULL)
return (-1);
if (topo_prop_set_uint32(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_UNITS, TOPO_PROP_IMMUTABLE, sdp->sd_units, &err) != 0) {
topo_mod_dprintf(mod,
"failed to set facility node properties: %s\n",
topo_strerror(err));
topo_node_unbind(tn);
return (-1);
}
/* 'reading' property */
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_METH_SES_READING_PROP,
sdp->sd_propname) != 0 ||
(sdp->sd_multiplier != 0 &&
nvlist_add_double(nvl, TOPO_METH_SES_READING_MULT,
sdp->sd_multiplier) != 0)) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to setup method arguments\n");
topo_node_unbind(tn);
return (-1);
}
if (topo_prop_method_register(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_READING, TOPO_TYPE_DOUBLE, "ses_sensor_reading",
nvl, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to register reading method: %s\n",
topo_strerror(err));
return (-1);
}
nvlist_free(nvl);
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0) {
topo_mod_dprintf(mod, "failed to setup method arguments\n");
topo_node_unbind(tn);
return (-1);
}
/* 'state' property */
if (topo_prop_method_register(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_STATE, TOPO_TYPE_UINT32, "ses_sensor_state",
nvl, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to register state method: %s\n",
topo_strerror(err));
return (-1);
}
nvlist_free(nvl);
return (0);
}
/*
* Add a discrete sensor for simple boolean values. This is used to indicate
* externally-detected failures for fans, bays, and enclosures.
*/
static int
ses_add_discrete(topo_mod_t *mod, tnode_t *pnode, uint64_t nodeid,
const char *name, const char *prop)
{
tnode_t *tn;
int err;
nvlist_t *nvl;
if ((tn = ses_add_sensor_common(mod, pnode, nodeid, name,
TOPO_SENSOR_CLASS_DISCRETE,
TOPO_SENSOR_TYPE_GENERIC_STATE)) == NULL)
return (-1);
nvl = NULL;
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0 ||
nvlist_add_string(nvl, TOPO_METH_SES_STATE_PROP, prop) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to setup method arguments\n");
topo_node_unbind(tn);
return (-1);
}
/* 'state' property */
if (topo_prop_method_register(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_STATE, TOPO_TYPE_UINT32, "ses_sensor_state",
nvl, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to register state method: %s\n",
topo_strerror(err));
return (-1);
}
nvlist_free(nvl);
return (0);
}
/*ARGSUSED*/
static int
ses_add_psu_status(topo_mod_t *mod, tnode_t *pnode, uint64_t nodeid)
{
tnode_t *tn;
int err;
nvlist_t *nvl;
/* create facility node and add methods */
if ((tn = ses_add_sensor_common(mod, pnode, nodeid, "status",
TOPO_SENSOR_CLASS_DISCRETE,
TOPO_SENSOR_TYPE_POWER_SUPPLY)) == NULL)
return (-1);
if (topo_mod_nvalloc(mod, &nvl, NV_UNIQUE_NAME) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to setup method arguments\n");
topo_node_unbind(tn);
return (-1);
}
/* 'state' property */
if (topo_prop_method_register(tn, TOPO_PGROUP_FACILITY,
TOPO_SENSOR_STATE, TOPO_TYPE_UINT32, "ses_psu_state",
nvl, &err) != 0) {
nvlist_free(nvl);
topo_mod_dprintf(mod, "failed to register state method: %s\n",
topo_strerror(err));
return (-1);
}
nvlist_free(nvl);
return (0);
}
/*ARGSUSED*/
int
ses_node_enum_facility(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
ses_node_t *np;
nvlist_t *props;
uint64_t type, nodeid;
ses_sensor_desc_t sd = { 0 };
if ((np = ses_node_get(mod, tn)) == NULL)
return (-1);
assert(ses_node_type(np) == SES_NODE_ELEMENT);
nodeid = ses_node_id(np);
verify((props = ses_node_props(np)) != NULL);
verify(nvlist_lookup_uint64(props, SES_PROP_ELEMENT_TYPE, &type) == 0);
if (type != SES_ET_DEVICE && type != SES_ET_ARRAY_DEVICE &&
type != SES_ET_COOLING && type != SES_ET_POWER_SUPPLY)
return (0);
/*
* Every element supports an 'ident' indicator. All elements also
* support a 'fail' indicator, but the properties used to represent
* this condition differs between elements.
*/
if (ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_LOCATE, "ident",
SES_PROP_IDENT, NULL) != 0)
return (-1);
switch (type) {
case SES_ET_DEVICE:
case SES_ET_ARRAY_DEVICE:
/*
* Disks support an additional 'ok2rm' indicator, as well as
* externally detected 'fail' sensor.
*/
if (ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_SERVICE,
"fail", SES_DEV_PROP_FAULT_RQSTD,
SES_DEV_PROP_FAULT_SENSED) != 0 ||
ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_OK2RM,
"ok2rm", SES_PROP_RMV, SES_PROP_RMV) != 0 ||
ses_add_discrete(mod, tn, nodeid, "fault",
SES_DEV_PROP_FAULT_SENSED) != 0)
return (-1);
break;
case SES_ET_COOLING:
/*
* Add the fan speed sensor, and a discrete sensor for
* detecting failure.
*/
sd.sd_type = TOPO_SENSOR_TYPE_THRESHOLD_STATE;
sd.sd_units = TOPO_SENSOR_UNITS_RPM;
sd.sd_propname = SES_COOLING_PROP_FAN_SPEED;
if (ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_SERVICE,
"fail", SES_PROP_FAIL, NULL) != 0 ||
ses_add_sensor(mod, tn, nodeid, "speed", &sd) != 0 ||
ses_add_discrete(mod, tn, nodeid, "fault",
SES_PROP_OFF) != 0)
return (-1);
break;
case SES_ET_POWER_SUPPLY:
/*
* For power supplies, we have a number of different sensors:
* acfail, dcfail, overtemp, undervoltate, overvoltage,
* and overcurrent. Rather than expose these all as individual
* sensors, we lump them together into a 'status' sensor of
* type TOPO_SENSOR_TYPE_POWER_SUPPLY and export the
* appropriate status flags as defined by the libtopo standard.
*/
if (ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_SERVICE,
"fail", SES_PROP_FAIL, NULL) != 0)
return (-1);
if (ses_add_psu_status(mod, tn, nodeid) != 0)
return (-1);
break;
default:
return (0);
}
return (0);
}
/*
* Add enclosure-wide sensors (temperature, voltage, and current) beneath the
* given aggregate.
*/
static int
ses_add_enclosure_sensors(topo_mod_t *mod, tnode_t *tn, ses_node_t *agg,
uint64_t type)
{
ses_node_t *child;
const char *defaultname;
char *desc, *name;
char rawname[64];
nvlist_t *props, *aprops;
uint64_t index, nodeid;
ses_sensor_desc_t sd = { 0 };
size_t len;
switch (type) {
case SES_ET_TEMPERATURE_SENSOR:
sd.sd_type = TOPO_SENSOR_TYPE_TEMP;
sd.sd_units = TOPO_SENSOR_UNITS_DEGREES_C;
sd.sd_propname = SES_TEMP_PROP_TEMP;
defaultname = "temperature";
break;
case SES_ET_VOLTAGE_SENSOR:
sd.sd_type = TOPO_SENSOR_TYPE_VOLTAGE;
sd.sd_units = TOPO_SENSOR_UNITS_VOLTS;
sd.sd_propname = SES_VS_PROP_VOLTAGE_MV;
sd.sd_multiplier = 0.001;
defaultname = "voltage";
break;
case SES_ET_CURRENT_SENSOR:
sd.sd_type = TOPO_SENSOR_TYPE_CURRENT;
sd.sd_units = TOPO_SENSOR_UNITS_AMPS;
sd.sd_propname = SES_CS_PROP_CURRENT_MA;
sd.sd_multiplier = 0.001;
defaultname = "current";
break;
default:
return (0);
}
aprops = ses_node_props(agg);
for (child = ses_node_child(agg); child != NULL;
child = ses_node_sibling(child)) {
/*
* The only tricky part here is getting the name for the
* sensor, where we follow the algorithm of the standard
* elements.
*/
props = ses_node_props(child);
nodeid = ses_node_id(child);
if (nvlist_lookup_uint64(props, SES_PROP_ELEMENT_CLASS_INDEX,
&index) != 0)
continue;
if (nvlist_lookup_string(props, SES_PROP_DESCRIPTION,
&desc) == 0 && desc[0] != '\0') {
(void) strlcpy(rawname, desc, sizeof (rawname));
} else {
if (nvlist_lookup_string(aprops,
SES_PROP_CLASS_DESCRIPTION, &desc) != 0 ||
desc[0] == '\0')
desc = (char *)defaultname;
len = strlen(desc);
while (len > 0 && desc[len - 1] == ' ')
len--;
(void) snprintf(rawname, sizeof (rawname),
"%.*s %llu", len, desc, index);
}
if ((name = disk_auth_clean(mod, rawname)) == NULL)
return (-1);
if (ses_add_sensor(mod, tn, nodeid, name, &sd) != 0) {
topo_mod_strfree(mod, name);
return (-1);
}
topo_mod_strfree(mod, name);
}
return (0);
}
/*ARGSUSED*/
int
ses_enc_enum_facility(topo_mod_t *mod, tnode_t *tn, topo_version_t vers,
nvlist_t *in, nvlist_t **out)
{
ses_node_t *np, *agg;
nvlist_t *aprops;
uint64_t type, nodeid;
if ((np = ses_node_get(mod, tn)) == NULL)
return (-1);
assert(ses_node_type(np) == SES_NODE_ENCLOSURE);
nodeid = ses_node_id(np);
/*
* 'ident' and 'fail' LEDs, and 'fault' sensor.
*/
if (ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_LOCATE, "ident",
SES_PROP_IDENT, NULL) != 0 ||
ses_add_indicator(mod, tn, nodeid, TOPO_LED_TYPE_SERVICE, "fail",
SES_PROP_FAIL_REQ, SES_PROP_FAIL) != 0 ||
ses_add_discrete(mod, tn, nodeid, "fault", SES_PROP_FAIL) != 0)
return (-1);
/*
* Environmental sensors (temperature, voltage, current). We have no
* way of knowing if any of these sensors correspond to a particular
* element, so we just attach them to the enclosure as a whole. In the
* future, some vendor-specific libses plugin knowledge could let us
* make this correlation clearer.
*/
for (agg = ses_node_child(np); agg != NULL;
agg = ses_node_sibling(agg)) {
if (ses_node_type(agg) != SES_NODE_AGGREGATE)
continue;
verify((aprops = ses_node_props(agg)) != NULL);
if (nvlist_lookup_uint64(aprops, SES_PROP_ELEMENT_TYPE,
&type) != 0)
continue;
if (ses_add_enclosure_sensors(mod, tn, agg, type) != 0)
return (-1);
}
return (0);
}