radix.c revision f4b3ec61df05330d25f55a36b975b4d7519fdeb1
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.5 (Berkeley) 5/19/95
* $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23
* imp Exp $
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#include <sys/types.h>
#ifndef _RADIX_H_
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#else
#include <assert.h>
#define ASSERT assert
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <strings.h>
#endif /* _KERNEL */
#include <net/radix.h>
#endif
#ifndef _KERNEL
void
panic(const char *str)
{
fprintf(stderr, "Panic - %s\n", str);
abort();
}
#endif /* _KERNEL */
static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
static int rn_walktree_mt(struct radix_node_head *, walktree_f_t *,
void *, lockf_t, lockf_t);
static struct radix_node
*rn_insert(void *, struct radix_node_head *, int *,
struct radix_node [2]),
*rn_newpair(void *, int, struct radix_node[2]),
*rn_search(void *, struct radix_node *),
*rn_search_m(void *, struct radix_node *, void *),
*rn_lookup(void *, void *, struct radix_node_head *),
*rn_match(void *, struct radix_node_head *),
*rn_match_args(void *, struct radix_node_head *, match_leaf_t *,
void *),
*rn_addmask(void *, int, int),
*rn_addroute(void *, void *, struct radix_node_head *,
struct radix_node [2]),
*rn_delete(void *, void *, struct radix_node_head *);
static boolean_t rn_refines(void *, void *);
#define MAX_KEYLEN 16
static int max_keylen = MAX_KEYLEN;
#ifdef _KERNEL
static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */
static struct kmem_cache *radix_node_cache;
#else
static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */
#endif /* _KERNEL */
static struct radix_mask *rn_mkfreelist;
static struct radix_node_head *mask_rnhead;
/*
* Work area -- the following point to 2 buffers of size max_keylen,
* allocated in this order in a block of memory malloc'ed by rn_init.
* A third buffer of size MAX_KEYLEN is allocated from the stack.
*/
static char *rn_zeros, *rn_ones;
#define MKGet(m) R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask))
#define MKFree(m) Free(m, radix_mask_cache)
#define rn_masktop (mask_rnhead->rnh_treetop)
static boolean_t rn_lexobetter(void *m_arg, void *n_arg);
static struct radix_mask *
rn_new_radix_mask(struct radix_node *tt,
struct radix_mask *next);
static boolean_t
rn_satisfies_leaf(char *trial, struct radix_node *leaf,
int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg);
#define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_bit at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_bit - 1.
* (We say the index of n is rn_bit.)
*
* There is at least one descendant which has a one bit at position rn_bit,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_bit, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explict mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
/*
* Most of the functions in this code assume that the key/mask arguments
* are sockaddr-like structures, where the first byte is an uchar_t
* indicating the size of the entire structure.
*
* To make the assumption more explicit, we use the LEN() macro to access
* this field. It is safe to pass an expression with side effects
* to LEN() as the argument is evaluated only once.
*/
#define LEN(x) (*(const uchar_t *)(x))
/*
* Search a node in the tree matching the key.
*/
static struct radix_node *
rn_search(v_arg, head)
void *v_arg;
struct radix_node *head;
{
struct radix_node *x;
caddr_t v;
for (x = head, v = v_arg; x->rn_bit >= 0; ) {
if (x->rn_bmask & v[x->rn_offset])
x = x->rn_right;
else
x = x->rn_left;
}
return (x);
}
/*
* Same as above, but with an additional mask.
*/
static struct radix_node *
rn_search_m(v_arg, head, m_arg)
struct radix_node *head;
void *v_arg, *m_arg;
{
struct radix_node *x;
caddr_t v = v_arg, m = m_arg;
for (x = head; x->rn_bit >= 0; ) {
if ((x->rn_bmask & m[x->rn_offset]) &&
(x->rn_bmask & v[x->rn_offset]))
x = x->rn_right;
else
x = x->rn_left;
}
return (x);
}
/*
* Returns true if there are no bits set in n_arg that are zero in
* m_arg and the masks aren't equal. In other words, it returns true
* when m_arg is a finer-granularity netmask -- it represents a subset
* of the destinations implied by n_arg.
*/
static boolean_t
rn_refines(m_arg, n_arg)
void *m_arg, *n_arg;
{
caddr_t m = m_arg, n = n_arg;
caddr_t lim = n + LEN(n), lim2 = lim;
int longer = LEN(n++) - (int)LEN(m++);
boolean_t masks_are_equal = B_TRUE;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return (0);
if (*n++ != *m++)
masks_are_equal = B_FALSE;
}
while (n < lim2)
if (*n++)
return (B_FALSE);
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return (B_TRUE);
return (!masks_are_equal);
}
static struct radix_node *
rn_lookup(v_arg, m_arg, head)
void *v_arg, *m_arg;
struct radix_node_head *head;
{
struct radix_node *x;
caddr_t netmask = NULL;
if (m_arg) {
x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
if (x == NULL)
return (NULL);
netmask = x->rn_key;
}
x = rn_match(v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return (x);
}
/*
* Returns true if address 'trial' has no bits differing from the
* leaf's key when compared under the leaf's mask. In other words,
* returns true when 'trial' matches leaf.
* In addition, if a rn_leaf_fn is passed in, that is used to find
* a match on conditions defined by the caller of rn_match. This is
* used by the kernel ftable to match on IRE_MATCH_* conditions.
*/
static boolean_t
rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg)
caddr_t trial;
struct radix_node *leaf;
int skip;
match_leaf_t *rn_leaf_fn;
void *rn_leaf_arg;
{
char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
char *cplim;
int length = min(LEN(cp), LEN(cp2));
if (cp3 == 0)
cp3 = rn_ones;
else
length = min(length, LEN(cp3));
cplim = cp + length;
cp3 += skip;
cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return (B_FALSE);
return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg));
}
static struct radix_node *
rn_match(v_arg, head)
void *v_arg;
struct radix_node_head *head;
{
return (rn_match_args(v_arg, head, NULL, NULL));
}
static struct radix_node *
rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg)
void *v_arg;
struct radix_node_head *head;
match_leaf_t *rn_leaf_fn;
void *rn_leaf_arg;
{
caddr_t v = v_arg;
struct radix_node *t = head->rnh_treetop, *x;
caddr_t cp = v, cp2;
caddr_t cplim;
struct radix_node *saved_t, *top = t;
int off = t->rn_offset, vlen = LEN(cp), matched_off;
int test, b, rn_bit;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_bit >= 0; ) {
if (t->rn_bmask & cp[t->rn_offset])
t = t->rn_right;
else
t = t->rn_left;
}
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (t->rn_mask)
vlen = LEN(t->rn_mask);
cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto keydiff;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*
* Never return the root node itself, it seems to cause a
* lot of confusion.
*/
if (t->rn_flags & RNF_ROOT)
t = t->rn_dupedkey;
if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
return (t);
} else {
/*
* Although we found an exact match on the key, rn_leaf_fn
* is looking for some other criteria as well. Continue
* looking as if the exact match failed.
*/
if (t->rn_parent->rn_flags & RNF_ROOT) {
/* hit the top. have to give up */
return (NULL);
}
b = 0;
goto keeplooking;
}
keydiff:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0; )
b--;
keeplooking:
matched_off = cp - v;
b += matched_off << 3;
rn_bit = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
if ((saved_t = t)->rn_mask == 0)
t = t->rn_dupedkey;
for (; t != NULL; t = t->rn_dupedkey) {
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if ((rn_bit <= t->rn_bit) &&
RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
return (t);
}
} else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn,
rn_leaf_arg)) {
return (t);
}
}
t = saved_t;
/* start searching up the tree */
do {
struct radix_mask *m;
t = t->rn_parent;
m = t->rn_mklist;
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
while (m) {
if (m->rm_flags & RNF_NORMAL) {
if ((rn_bit <= m->rm_bit) &&
RN_MATCHF(m->rm_leaf, rn_leaf_fn,
rn_leaf_arg)) {
return (m->rm_leaf);
}
} else {
off = min(t->rn_offset, matched_off);
x = rn_search_m(v, t, m->rm_mask);
while (x != NULL && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x && rn_satisfies_leaf(v, x, off,
rn_leaf_fn, rn_leaf_arg)) {
return (x);
}
}
m = m->rm_mklist;
}
} while (t != top);
return (0);
}
/*
* Whenever we add a new leaf to the tree, we also add a parent node,
* so we allocate them as an array of two elements: the first one must be
* the leaf (see RNTORT() in route.c), the second one is the parent.
* This routine initializes the relevant fields of the nodes, so that
* the leaf is the left child of the parent node, and both nodes have
* (almost) all all fields filled as appropriate.
* The function returns a pointer to the parent node.
*/
static struct radix_node *
rn_newpair(v, b, nodes)
void *v;
int b;
struct radix_node nodes[2];
{
struct radix_node *tt = nodes, *t = tt + 1;
t->rn_bit = b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_left = tt;
t->rn_offset = b >> 3;
/*
* t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey
* and tt->rn_bmask must have been zeroed by caller.
*/
tt->rn_bit = -1;
tt->rn_key = v;
tt->rn_parent = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
tt->rn_mklist = t->rn_mklist = 0;
return (t);
}
static struct radix_node *
rn_insert(v_arg, head, dupentry, nodes)
void *v_arg;
struct radix_node_head *head;
int *dupentry;
struct radix_node nodes[2];
{
caddr_t v = v_arg;
struct radix_node *top = head->rnh_treetop;
int head_off = top->rn_offset, vlen = (int)LEN(v);
struct radix_node *t = rn_search(v_arg, top);
caddr_t cp = v + head_off;
int b;
struct radix_node *tt;
/*
* Find first bit at which v and t->rn_key differ
*/
{
caddr_t cp2 = t->rn_key + head_off;
int cmp_res;
caddr_t cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return (t);
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
struct radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_offset] & x->rn_bmask)
x = x->rn_right;
else
x = x->rn_left;
} while (b > (unsigned)x->rn_bit);
/* x->rn_bit < b && x->rn_bit >= 0 */
t = rn_newpair(v_arg, b, nodes);
tt = t->rn_left;
if ((cp[p->rn_offset] & p->rn_bmask) == 0)
p->rn_left = t;
else
p->rn_right = t;
x->rn_parent = t;
t->rn_parent = p;
if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
t->rn_right = x;
} else {
t->rn_right = tt;
t->rn_left = x;
}
}
return (tt);
}
static struct radix_node *
rn_addmask(n_arg, search, skip)
int search, skip;
void *n_arg;
{
caddr_t netmask = (caddr_t)n_arg;
struct radix_node *x;
caddr_t cp, cplim;
int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
struct radix_node *saved_x;
int last_zeroed = 0;
char addmask_key[MAX_KEYLEN];
if ((mlen = LEN(netmask)) > max_keylen)
mlen = max_keylen;
if (skip == 0)
skip = 1;
if (mlen <= skip)
return (mask_rnhead->rnh_nodes);
if (skip > 1)
bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
if ((m0 = mlen) > skip)
bcopy(netmask + skip, addmask_key + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; )
cp--;
mlen = cp - addmask_key;
if (mlen <= skip) {
if (m0 >= last_zeroed)
last_zeroed = mlen;
return (mask_rnhead->rnh_nodes);
}
if (m0 < last_zeroed)
bzero(addmask_key + m0, last_zeroed - m0);
*addmask_key = last_zeroed = mlen;
x = rn_search(addmask_key, rn_masktop);
if (bcmp(addmask_key, x->rn_key, mlen) != 0)
x = 0;
if (x || search)
return (x);
R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x));
if ((saved_x = x) == 0)
return (0);
netmask = cp = (caddr_t)(x + 2);
bcopy(addmask_key, cp, mlen);
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
#ifdef _KERNEL
cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree");
#else
syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree");
#endif /* _KERNEL */
Free(saved_x, radix_node_cache);
return (x);
}
/*
* Calculate index of mask, and check for normalcy.
* First find the first byte with a 0 bit, then if there are
* more bits left (remember we already trimmed the trailing 0's),
* the pattern must be one of those in normal_chars[], or we have
* a non-contiguous mask.
*/
cplim = netmask + mlen;
isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; )
cp++;
if (cp != cplim) {
static uint8_t normal_chars[] = {
0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != normal_chars[b] || cp != (cplim - 1))
isnormal = 0;
}
b += (cp - netmask) << 3;
x->rn_bit = -1 - b;
if (isnormal)
x->rn_flags |= RNF_NORMAL;
return (x);
}
/* arbitrary ordering for non-contiguous masks */
static boolean_t
rn_lexobetter(m_arg, n_arg)
void *m_arg, *n_arg;
{
uchar_t *mp = m_arg, *np = n_arg, *lim;
if (LEN(mp) > LEN(np))
/* not really, but need to check longer one first */
return (B_TRUE);
if (LEN(mp) == LEN(np))
for (lim = mp + LEN(mp); mp < lim; )
if (*mp++ > *np++)
return (B_TRUE);
return (B_FALSE);
}
static struct radix_mask *
rn_new_radix_mask(tt, next)
struct radix_node *tt;
struct radix_mask *next;
{
struct radix_mask *m;
MKGet(m);
if (m == 0) {
#ifndef _KERNEL
syslog(LOG_ERR, "Mask for route not entered\n");
#endif /* _KERNEL */
return (0);
}
bzero(m, sizeof (*m));
m->rm_bit = tt->rn_bit;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return (m);
}
static struct radix_node *
rn_addroute(v_arg, n_arg, head, treenodes)
void *v_arg, *n_arg;
struct radix_node_head *head;
struct radix_node treenodes[2];
{
caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
struct radix_node *t, *x = 0, *tt;
struct radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
int keyduplicated;
caddr_t mmask;
struct radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
return (0);
b_leaf = x->rn_bit;
b = -1 - x->rn_bit;
netmask = x->rn_key;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
if (tt->rn_mask == netmask)
return (0);
if (netmask == 0 ||
(tt->rn_mask &&
/* index (netmask) > node */
((b_leaf < tt->rn_bit) ||
rn_refines(netmask, tt->rn_mask) ||
rn_lexobetter(netmask, tt->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*
* We also reverse, or doubly link the list through the
* parent pointer.
*/
if (tt == saved_tt) {
struct radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_parent = x = t->rn_parent;
t->rn_parent = tt; /* parent */
if (x->rn_left == t)
x->rn_left = tt;
else
x->rn_right = tt;
saved_tt = tt; x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
/* Set rn_parent value for tt and tt->rn_dupedkey */
tt->rn_parent = t;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_parent = tt;
}
tt->rn_key = v;
tt->rn_bit = -1;
tt->rn_flags = RNF_ACTIVE;
}
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_bit = x->rn_bit;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_parent;
if (keyduplicated)
goto key_exists;
b_leaf = -1 - t->rn_bit;
if (t->rn_right == saved_tt)
x = t->rn_left;
else
x = t->rn_right;
/* Promote general routes from below */
if (x->rn_bit < 0) {
for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
*mp = m = rn_new_radix_mask(x, 0);
if (m)
mp = &m->rm_mklist;
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m->rm_bit >= b_leaf)
break;
t->rn_mklist = m; *mp = 0;
}
key_exists:
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (b > t->rn_bit))
return (tt); /* can't lift at all */
b_leaf = tt->rn_bit;
do {
x = t;
t = t->rn_parent;
} while (b <= t->rn_bit && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
if (m->rm_bit < b_leaf)
continue;
if (m->rm_bit > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
mmask = m->rm_leaf->rn_mask;
if (tt->rn_flags & RNF_NORMAL) {
#ifdef _KERNEL
cmn_err(CE_WARN, "Non-unique normal route, "
"mask not entered\n");
#else
syslog(LOG_ERR, "Non-unique normal route, "
"mask not entered\n");
#endif /* _KERNEL */
return (tt);
}
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return (tt);
}
if (rn_refines(netmask, mmask) ||
rn_lexobetter(netmask, mmask))
break;
}
*mp = rn_new_radix_mask(tt, *mp);
return (tt);
}
static struct radix_node *
rn_delete(v_arg, netmask_arg, head)
void *v_arg, *netmask_arg;
struct radix_node_head *head;
{
struct radix_node *t, *p, *x, *tt;
struct radix_mask *m, *saved_m, **mp;
struct radix_node *dupedkey, *saved_tt, *top;
caddr_t v, netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = rn_search(v, x);
head_off = x->rn_offset;
vlen = LEN(v);
saved_tt = tt;
top = x;
if (tt == 0 ||
bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
return (0);
/*
* Delete our route from mask lists.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 1, head_off)) == 0)
return (0);
netmask = x->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == 0)
return (0);
}
if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
goto on1;
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
#ifdef _KERNEL
cmn_err(CE_WARN,
"rn_delete: inconsistent annotation\n");
#else
syslog(LOG_ERR, "rn_delete: inconsistent annotation\n");
#endif /* _KERNEL */
return (0); /* dangling ref could cause disaster */
}
} else {
if (m->rm_mask != tt->rn_mask) {
#ifdef _KERNEL
cmn_err(CE_WARN,
"rn_delete: inconsistent annotation 2\n");
#else
syslog(LOG_ERR,
"rn_delete: inconsistent annotation 2\n");
#endif /* _KERNEL */
goto on1;
}
if (--m->rm_refs >= 0)
goto on1;
}
b = -1 - tt->rn_bit;
t = saved_tt->rn_parent;
if (b > t->rn_bit)
goto on1; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_parent;
} while (b <= t->rn_bit && x != top);
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
MKFree(m);
break;
}
if (m == 0) {
#ifdef _KERNEL
cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n");
#else
syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n");
#endif /* _KERNEL */
if (tt->rn_flags & RNF_NORMAL)
return (0); /* Dangling ref to us */
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return (0);
t = tt->rn_parent;
dupedkey = saved_tt->rn_dupedkey;
if (dupedkey) {
/*
* Here, tt is the deletion target and
* saved_tt is the head of the dupekey chain.
*/
if (tt == saved_tt) {
/* remove from head of chain */
x = dupedkey; x->rn_parent = t;
if (t->rn_left == tt)
t->rn_left = x;
else
t->rn_right = x;
} else {
/* find node in front of tt on the chain */
for (x = p = saved_tt; p && p->rn_dupedkey != tt; )
p = p->rn_dupedkey;
if (p) {
p->rn_dupedkey = tt->rn_dupedkey;
if (tt->rn_dupedkey) /* parent */
tt->rn_dupedkey->rn_parent = p;
/* parent */
} else
#ifdef _KERNEL
cmn_err(CE_WARN,
"rn_delete: couldn't find us\n");
#else
syslog(LOG_ERR,
"rn_delete: couldn't find us\n");
#endif /* _KERNEL */
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
*++x = *t;
p = t->rn_parent;
if (p->rn_left == t)
p->rn_left = x;
else
p->rn_right = x;
x->rn_left->rn_parent = x;
x->rn_right->rn_parent = x;
}
goto out;
}
if (t->rn_left == tt)
x = t->rn_right;
else
x = t->rn_left;
p = t->rn_parent;
if (p->rn_right == t)
p->rn_right = x;
else
p->rn_left = x;
x->rn_parent = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_bit >= 0) {
for (mp = &x->rn_mklist; (m = *mp) != NULL; )
mp = &m->rm_mklist;
*mp = t->rn_mklist;
} else {
/*
* If there are any key,mask pairs in a sibling
* duped-key chain, some subset will appear sorted
* in the same order attached to our mklist
*/
for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
if (m == x->rn_mklist) {
struct radix_mask *mm = m->rm_mklist;
x->rn_mklist = 0;
if (--(m->rm_refs) < 0)
MKFree(m);
m = mm;
}
if (m)
#ifdef _KERNEL
cmn_err(CE_WARN,
"rn_delete: Orphaned Mask %p at %p\n",
(void *)m, (void *)x);
#else
syslog(LOG_ERR,
"rn_delete: Orphaned Mask %p at %p\n",
(void *)m, (void *)x);
#endif /* _KERNEL */
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
*t = *x;
t->rn_left->rn_parent = t;
t->rn_right->rn_parent = t;
p = x->rn_parent;
if (p->rn_left == x)
p->rn_left = t;
else
p->rn_right = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
/*
* Walk the radix tree; For the kernel routing table, we hold additional
* refs on the ire_bucket to ensure that the walk function f() does not
* run into trashed memory. The kernel routing table is identified by
* a rnh_treetop that has RNF_SUNW_FT set in the rn_flags.
* Note that all refs takein in rn_walktree are released before it returns,
* so that f() will need to take any additional references on memory
* to be passed back to the caller of rn_walktree.
*/
static int
rn_walktree(h, f, w)
struct radix_node_head *h;
walktree_f_t *f;
void *w;
{
return (rn_walktree_mt(h, f, w, NULL, NULL));
}
static int
rn_walktree_mt(h, f, w, lockf, unlockf)
struct radix_node_head *h;
walktree_f_t *f;
void *w;
lockf_t lockf, unlockf;
{
int error;
struct radix_node *base, *next;
struct radix_node *rn = h->rnh_treetop;
boolean_t is_mt = B_FALSE;
if (lockf != NULL) {
ASSERT(unlockf != NULL);
is_mt = B_TRUE;
}
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
RADIX_NODE_HEAD_RLOCK(h);
/* First time through node, go left */
while (rn->rn_bit >= 0) {
rn = rn->rn_left;
}
if (is_mt)
(*lockf)(rn);
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_parent->rn_right == rn &&
(rn->rn_flags & RNF_ROOT) == 0) {
rn = rn->rn_parent;
}
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) {
rn = rn->rn_left;
}
next = rn;
if (is_mt && next != NULL)
(*lockf)(next);
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (is_mt && base != NULL)
(*lockf)(base);
RADIX_NODE_HEAD_UNLOCK(h);
if (!(rn->rn_flags & RNF_ROOT) &&
(error = (*f)(rn, w))) {
if (is_mt) {
(*unlockf)(rn);
if (base != NULL)
(*unlockf)(base);
if (next != NULL)
(*unlockf)(next);
}
return (error);
}
if (is_mt)
(*unlockf)(rn);
RADIX_NODE_HEAD_RLOCK(h);
}
rn = next;
if (rn->rn_flags & RNF_ROOT) {
RADIX_NODE_HEAD_UNLOCK(h);
/*
* no ref to release, since we never take a ref
* on the root node- it can't be deleted.
*/
return (0);
}
}
/* NOTREACHED */
}
/*
* Allocate and initialize an empty tree. This has 3 nodes, which are
* part of the radix_node_head (in the order <left,root,right>) and are
* marked RNF_ROOT so they cannot be freed.
* The leaves have all-zero and all-one keys, with significant
* bits starting at 'off'.
* Return 1 on success, 0 on error.
*/
int
rn_inithead(head, off)
void **head;
int off;
{
struct radix_node_head *rnh;
struct radix_node *t, *tt, *ttt;
if (*head)
return (1);
R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh));
if (rnh == 0)
return (0);
#ifdef _KERNEL
RADIX_NODE_HEAD_LOCK_INIT(rnh);
#endif
*head = rnh;
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_right = ttt;
t->rn_parent = t;
tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_bit = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_matchaddr_args = rn_match_args;
rnh->rnh_lookup = rn_lookup;
rnh->rnh_walktree = rn_walktree;
rnh->rnh_walktree_mt = rn_walktree_mt;
rnh->rnh_walktree_from = NULL; /* not implemented */
rnh->rnh_treetop = t;
return (1);
}
void
rn_init()
{
char *cp, *cplim;
#ifdef _KERNEL
radix_mask_cache = kmem_cache_create("radix_mask",
sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0);
radix_node_cache = kmem_cache_create("radix_node",
max_keylen + 2 * sizeof (struct radix_node),
0, NULL, NULL, NULL, NULL, NULL, 0);
#endif /* _KERNEL */
R_ZallocSleep(rn_zeros, char *, 2 * max_keylen);
ASSERT(rn_zeros != NULL);
bzero(rn_zeros, 2 * max_keylen);
rn_ones = cp = rn_zeros + max_keylen;
cplim = rn_ones + max_keylen;
while (cp < cplim)
*cp++ = -1;
if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
panic("rn_init: could not init mask_rnhead ");
}
int
rn_freenode(n, p)
struct radix_node *n;
void *p;
{
struct radix_node_head *rnh = p;
struct radix_node *d;
d = rnh->rnh_deladdr(n->rn_key, NULL, rnh);
if (d != NULL) {
Free(d, radix_node_cache);
}
return (0);
}
void
rn_freehead(rnh)
struct radix_node_head *rnh;
{
(void) rn_walktree(rnh, rn_freenode, rnh);
rnh->rnh_addaddr = NULL;
rnh->rnh_deladdr = NULL;
rnh->rnh_matchaddr = NULL;
rnh->rnh_lookup = NULL;
rnh->rnh_walktree = NULL;
#ifdef _KERNEL
RADIX_NODE_HEAD_DESTROY(rnh);
FreeHead(rnh, sizeof (*rnh));
#else
Free(rnh, NULL);
#endif /* _KERNEL */
}
void
rn_fini()
{
struct radix_mask *m;
if (rn_zeros != NULL) {
#ifdef _KERNEL
FreeHead(rn_zeros, 2 * max_keylen);
#else
Free(rn_zeros, NULL);
#endif
rn_zeros = NULL;
}
if (mask_rnhead != NULL) {
rn_freehead(mask_rnhead);
mask_rnhead = NULL;
}
while ((m = rn_mkfreelist) != NULL) {
rn_mkfreelist = m->rm_mklist;
Free(m, NULL);
}
}