rsa_impl.c revision 60722cc87944966611a21fa3bebb86e9b77e8e9c
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains RSA helper routines common to
* the PKCS11 soft token code and the kernel RSA code.
*/
#include <sys/types.h>
#include "rsa_impl.h"
#ifdef _KERNEL
#include <sys/param.h>
#else
#include <strings.h>
#include "softRandom.h"
#endif
/*
* DER encoding T of the DigestInfo values for MD5, SHA1, and SHA2
* from PKCS#1 v2.1: RSA Cryptography Standard Section 9.2 Note 1
*
* MD5: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10 || H
* SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H
* SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H.
* SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30 || H.
* SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H.
*
* Where H is the digested output from MD5 or SHA1. We define the constant
* byte array (the prefix) here and use it rather than doing the DER
* encoding of the OID in a separate routine.
*/
const CK_BYTE MD5_DER_PREFIX[MD5_DER_PREFIX_Len] = {0x30, 0x20, 0x30, 0x0c,
0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00,
0x04, 0x10};
const CK_BYTE SHA1_DER_PREFIX[SHA1_DER_PREFIX_Len] = {0x30, 0x21, 0x30,
0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14};
const CK_BYTE SHA1_DER_PREFIX_OID[SHA1_DER_PREFIX_OID_Len] = {0x30, 0x1f, 0x30,
0x07, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x04, 0x14};
const CK_BYTE SHA256_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x31, 0x30, 0x0d,
0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20};
const CK_BYTE SHA384_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x41, 0x30, 0x0d,
0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
0x00, 0x04, 0x30};
const CK_BYTE SHA512_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x51, 0x30, 0x0d,
0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40};
BIG_ERR_CODE
RSA_key_init(RSAkey *key, int psize, int qsize)
{
BIG_ERR_CODE err = BIG_OK;
/* EXPORT DELETE START */
int plen, qlen, nlen;
plen = (psize + 31) / 32;
qlen = (qsize + 31) / 32;
nlen = plen + qlen;
key->size = psize + qsize;
if ((err = big_init(&(key->p), plen)) != BIG_OK)
return (err);
if ((err = big_init(&(key->q), qlen)) != BIG_OK)
goto ret1;
if ((err = big_init(&(key->n), nlen)) != BIG_OK)
goto ret2;
if ((err = big_init(&(key->d), nlen)) != BIG_OK)
goto ret3;
if ((err = big_init(&(key->e), nlen)) != BIG_OK)
goto ret4;
if ((err = big_init(&(key->dmodpminus1), plen)) != BIG_OK)
goto ret5;
if ((err = big_init(&(key->dmodqminus1), qlen)) != BIG_OK)
goto ret6;
if ((err = big_init(&(key->pinvmodq), qlen)) != BIG_OK)
goto ret7;
if ((err = big_init(&(key->p_rr), plen)) != BIG_OK)
goto ret8;
if ((err = big_init(&(key->q_rr), qlen)) != BIG_OK)
goto ret9;
if ((err = big_init(&(key->n_rr), nlen)) != BIG_OK)
goto ret10;
return (BIG_OK);
ret10:
big_finish(&(key->q_rr));
ret9:
big_finish(&(key->p_rr));
ret8:
big_finish(&(key->pinvmodq));
ret7:
big_finish(&(key->dmodqminus1));
ret6:
big_finish(&(key->dmodpminus1));
ret5:
big_finish(&(key->e));
ret4:
big_finish(&(key->d));
ret3:
big_finish(&(key->n));
ret2:
big_finish(&(key->q));
ret1:
big_finish(&(key->p));
/* EXPORT DELETE END */
return (err);
}
void
RSA_key_finish(RSAkey *key)
{
/* EXPORT DELETE START */
big_finish(&(key->n_rr));
big_finish(&(key->q_rr));
big_finish(&(key->p_rr));
big_finish(&(key->pinvmodq));
big_finish(&(key->dmodqminus1));
big_finish(&(key->dmodpminus1));
big_finish(&(key->e));
big_finish(&(key->d));
big_finish(&(key->n));
big_finish(&(key->q));
big_finish(&(key->p));
/* EXPORT DELETE END */
}
/*
* To create a block type "02" encryption block for RSA PKCS encryption
* process.
*
* The RSA PKCS Padding before encryption is in the following format:
* +------+--------------------+----+-----------------------------+
* |0x0002| 8 bytes or more RN |0x00| DATA |
* +------+--------------------+----+-----------------------------+
*
*/
CK_RV
soft_encrypt_rsa_pkcs_encode(uint8_t *databuf,
size_t datalen, uint8_t *padbuf, size_t padbuflen)
{
/* EXPORT DELETE START */
size_t padlen;
CK_RV rv;
padlen = padbuflen - datalen;
if (padlen < MIN_PKCS1_PADLEN) {
return (CKR_DATA_LEN_RANGE);
}
/* Pad with 0x0002+non-zero pseudorandom numbers+0x00. */
padbuf[0] = 0x00;
padbuf[1] = 0x02;
#ifdef _KERNEL
rv = knzero_random_generator(padbuf + 2, padbuflen - 3);
#else
rv = soft_nzero_random_generator(padbuf + 2, padbuflen - 3);
#endif
if (rv != CKR_OK) {
return (rv);
}
padbuf[padlen - 1] = 0x00;
bcopy(databuf, padbuf + padlen, datalen);
/* EXPORT DELETE END */
return (CKR_OK);
}
/*
* The RSA PKCS Padding after decryption is in the following format:
* +------+--------------------+----+-----------------------------+
* |0x0002| 8 bytes or more RN |0x00| DATA |
* +------+--------------------+----+-----------------------------+
*
* 'padbuf' points to the recovered message which is the modulus
* length. As a result, 'plen' is changed to hold the actual data length.
*/
CK_RV
soft_decrypt_rsa_pkcs_decode(uint8_t *padbuf, int *plen)
{
/* EXPORT DELETE START */
int i;
/* Check to see if the recovered data is padded is 0x0002. */
if (padbuf[0] != 0x00 || padbuf[1] != 0x02) {
return (CKR_ENCRYPTED_DATA_INVALID);
}
/* Remove all the random bits up to 0x00 (= NULL char) */
for (i = 2; (*plen - i) > 0; i++) {
if (padbuf[i] == 0x00) {
i++;
if (i < MIN_PKCS1_PADLEN) {
return (CKR_ENCRYPTED_DATA_INVALID);
}
*plen -= i;
return (CKR_OK);
}
}
/* EXPORT DELETE END */
return (CKR_ENCRYPTED_DATA_INVALID);
}
/*
* To create a block type "01" block for RSA PKCS signature process.
*
* The RSA PKCS Padding before Signing is in the following format:
* +------+--------------+----+-----------------------------+
* |0x0001| 0xFFFF.......|0x00| DATA |
* +------+--------------+----+-----------------------------+
*/
CK_RV
soft_sign_rsa_pkcs_encode(uint8_t *pData, size_t dataLen, uint8_t *data,
size_t mbit_l)
{
/* EXPORT DELETE START */
size_t padlen;
padlen = mbit_l - dataLen;
if (padlen < MIN_PKCS1_PADLEN) {
return (CKR_DATA_LEN_RANGE);
}
padlen -= 3;
data[0] = 0x00;
data[1] = 0x01;
#ifdef _KERNEL
kmemset(data + 2, 0xFF, padlen);
#else
(void) memset(data + 2, 0xFF, padlen);
#endif
data[padlen + 2] = 0x00;
bcopy(pData, data + padlen + 3, dataLen);
/* EXPORT DELETE END */
return (CKR_OK);
}
CK_RV
soft_verify_rsa_pkcs_decode(uint8_t *data, int *mbit_l)
{
/* EXPORT DELETE START */
int i;
/* Check to see if the padding of recovered data starts with 0x0001. */
if ((data[0] != 0x00) || (data[1] != 0x01)) {
return (CKR_SIGNATURE_INVALID);
}
/* Check to see if the recovered data is padded with 0xFFF...00. */
for (i = 2; i < *mbit_l; i++) {
if (data[i] == 0x00) {
i++;
if (i < MIN_PKCS1_PADLEN) {
return (CKR_SIGNATURE_INVALID);
}
*mbit_l -= i;
return (CKR_OK);
} else if (data[i] != 0xFF) {
return (CKR_SIGNATURE_INVALID);
}
}
/* EXPORT DELETE END */
return (CKR_SIGNATURE_INVALID);
}