md5.c revision 8de5c4f463386063e184a851437d58080c6c626c
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Cleaned-up and optimized version of MD5, based on the reference
* implementation provided in RFC 1321. See RSA Copyright information
* below.
*/
/*
* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
*/
/*
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
* rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*/
#ifndef _KERNEL
#include <stdint.h>
#endif /* _KERNEL */
#include <sys/types.h>
#include <sys/md5.h>
#include <sys/md5_consts.h> /* MD5_CONST() optimization */
#include "md5_byteswap.h"
#if !defined(_KERNEL) || defined(_BOOT)
#include <strings.h>
#endif /* !_KERNEL || _BOOT */
#ifdef _KERNEL
#include <sys/systm.h>
#endif /* _KERNEL */
static void Encode(uint8_t *, const uint32_t *, size_t);
#if !defined(__amd64)
static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *,
const uint8_t [64]);
#else
void md5_block_asm_host_order(MD5_CTX *ctx, const void *inpp,
unsigned int input_length_in_blocks);
#endif /* !defined(__amd64) */
static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
/*
* F, G, H and I are the basic MD5 functions.
*/
#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
#define G(b, c, d) (((b) & (d)) | ((c) & (~d)))
#define H(b, c, d) ((b) ^ (c) ^ (d))
#define I(b, c, d) ((c) ^ ((b) | (~d)))
/*
* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) \
(((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))
/*
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
* Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) { \
(a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
/*
* Loading 32-bit constants on a RISC is expensive since it involves both a
* `sethi' and an `or'. thus, we instead have the compiler generate `ld's to
* load the constants from an array called `md5_consts'. however, on intel
* (and other CISC processors), it is cheaper to load the constant
* directly. thus, the c code in MD5Transform() uses the macro MD5_CONST()
* which either expands to a constant or an array reference, depending on the
* architecture the code is being compiled for.
*
* Right now, i386 and amd64 are the CISC exceptions.
* If we get another CISC ISA, we'll have to change the ifdef.
*/
#if defined(__i386) || defined(__amd64)
#define MD5_CONST(x) (MD5_CONST_ ## x)
#define MD5_CONST_e(x) MD5_CONST(x)
#define MD5_CONST_o(x) MD5_CONST(x)
#else
/*
* sparc/RISC optimization:
*
* while it is somewhat counter-intuitive, on sparc (and presumably other RISC
* machines), it is more efficient to place all the constants used in this
* function in an array and load the values out of the array than to manually
* load the constants. this is because setting a register to a 32-bit value
* takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
* value from memory only takes one `ld' (or `lduw' on v9). while this
* increases memory usage, the compiler can find enough other things to do
* while waiting to keep the pipeline does not stall. additionally, it is
* likely that many of these constants are cached so that later accesses do
* not even go out to the bus.
*
* this array is declared `static' to keep the compiler from having to
* bcopy() this array onto the stack frame of MD5Transform() each time it is
* called -- which is unacceptably expensive.
*
* the `const' is to ensure that callers are good citizens and do not try to
* munge the array. since these routines are going to be called from inside
* multithreaded kernelland, this is a good safety check. -- `constants' will
* end up in .rodata.
*
* unfortunately, loading from an array in this manner hurts performance under
* intel (and presumably other CISC machines). so, there is a macro,
* MD5_CONST(), used in MD5Transform(), that either expands to a reference to
* this array, or to the actual constant, depending on what platform this code
* is compiled for.
*/
#ifdef sun4v
/*
* Going to load these consts in 8B chunks, so need to enforce 8B alignment
*/
/* CSTYLED */
#pragma align 64 (md5_consts)
#define _MD5_CHECK_ALIGNMENT
#endif /* sun4v */
static const uint32_t md5_consts[] = {
MD5_CONST_0, MD5_CONST_1, MD5_CONST_2, MD5_CONST_3,
MD5_CONST_4, MD5_CONST_5, MD5_CONST_6, MD5_CONST_7,
MD5_CONST_8, MD5_CONST_9, MD5_CONST_10, MD5_CONST_11,
MD5_CONST_12, MD5_CONST_13, MD5_CONST_14, MD5_CONST_15,
MD5_CONST_16, MD5_CONST_17, MD5_CONST_18, MD5_CONST_19,
MD5_CONST_20, MD5_CONST_21, MD5_CONST_22, MD5_CONST_23,
MD5_CONST_24, MD5_CONST_25, MD5_CONST_26, MD5_CONST_27,
MD5_CONST_28, MD5_CONST_29, MD5_CONST_30, MD5_CONST_31,
MD5_CONST_32, MD5_CONST_33, MD5_CONST_34, MD5_CONST_35,
MD5_CONST_36, MD5_CONST_37, MD5_CONST_38, MD5_CONST_39,
MD5_CONST_40, MD5_CONST_41, MD5_CONST_42, MD5_CONST_43,
MD5_CONST_44, MD5_CONST_45, MD5_CONST_46, MD5_CONST_47,
MD5_CONST_48, MD5_CONST_49, MD5_CONST_50, MD5_CONST_51,
MD5_CONST_52, MD5_CONST_53, MD5_CONST_54, MD5_CONST_55,
MD5_CONST_56, MD5_CONST_57, MD5_CONST_58, MD5_CONST_59,
MD5_CONST_60, MD5_CONST_61, MD5_CONST_62, MD5_CONST_63
};
#ifdef sun4v
/*
* To reduce the number of loads, load consts in 64-bit
* chunks and then split.
*
* No need to mask upper 32-bits, as just interested in
* low 32-bits (saves an & operation and means that this
* optimization doesn't increases the icount.
*/
#define MD5_CONST_e(x) (md5_consts64[x/2] >> 32)
#define MD5_CONST_o(x) (md5_consts64[x/2])
#else
#define MD5_CONST_e(x) (md5_consts[x])
#define MD5_CONST_o(x) (md5_consts[x])
#endif /* sun4v */
#endif
/*
* MD5Init()
*
* purpose: initializes the md5 context and begins and md5 digest operation
* input: MD5_CTX * : the context to initialize.
* output: void
*/
void
MD5Init(MD5_CTX *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
/* load magic initialization constants */
ctx->state[0] = MD5_INIT_CONST_1;
ctx->state[1] = MD5_INIT_CONST_2;
ctx->state[2] = MD5_INIT_CONST_3;
ctx->state[3] = MD5_INIT_CONST_4;
}
/*
* MD5Update()
*
* purpose: continues an md5 digest operation, using the message block
* to update the context.
* input: MD5_CTX * : the context to update
* uint8_t * : the message block
* uint32_t : the length of the message block in bytes
* output: void
*
* MD5 crunches in 64-byte blocks. All numeric constants here are related to
* that property of MD5.
*/
void
MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len)
{
uint32_t i, buf_index, buf_len;
#ifdef sun4v
uint32_t old_asi;
#endif /* sun4v */
#if defined(__amd64)
uint32_t block_count;
#endif /* !defined(__amd64) */
const unsigned char *input = (const unsigned char *)inpp;
/* compute (number of bytes computed so far) mod 64 */
buf_index = (ctx->count[0] >> 3) & 0x3F;
/* update number of bits hashed into this MD5 computation so far */
if ((ctx->count[0] += (input_len << 3)) < (input_len << 3))
ctx->count[1]++;
ctx->count[1] += (input_len >> 29);
buf_len = 64 - buf_index;
/* transform as many times as possible */
i = 0;
if (input_len >= buf_len) {
/*
* general optimization:
*
* only do initial bcopy() and MD5Transform() if
* buf_index != 0. if buf_index == 0, we're just
* wasting our time doing the bcopy() since there
* wasn't any data left over from a previous call to
* MD5Update().
*/
#ifdef sun4v
/*
* For N1 use %asi register. However, costly to repeatedly set
* in MD5Transform. Therefore, set once here.
* Should probably restore the old value afterwards...
*/
old_asi = get_little();
set_little(0x88);
#endif /* sun4v */
if (buf_index) {
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
#if !defined(__amd64)
MD5Transform(ctx->state[0], ctx->state[1],
ctx->state[2], ctx->state[3], ctx,
ctx->buf_un.buf8);
#else
md5_block_asm_host_order(ctx, ctx->buf_un.buf8, 1);
#endif /* !defined(__amd64) */
i = buf_len;
}
#if !defined(__amd64)
for (; i + 63 < input_len; i += 64)
MD5Transform(ctx->state[0], ctx->state[1],
ctx->state[2], ctx->state[3], ctx, &input[i]);
#else
block_count = (input_len - i) >> 6;
if (block_count > 0) {
md5_block_asm_host_order(ctx, &input[i], block_count);
i += block_count << 6;
}
#endif /* !defined(__amd64) */
#ifdef sun4v
/*
* Restore old %ASI value
*/
set_little(old_asi);
#endif /* sun4v */
/*
* general optimization:
*
* if i and input_len are the same, return now instead
* of calling bcopy(), since the bcopy() in this
* case will be an expensive nop.
*/
if (input_len == i)
return;
buf_index = 0;
}
/* buffer remaining input */
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}
/*
* MD5Final()
*
* purpose: ends an md5 digest operation, finalizing the message digest and
* zeroing the context.
* input: uchar_t * : a buffer to store the digest in
* : The function actually uses void* because many
* : callers pass things other than uchar_t here.
* MD5_CTX * : the context to finalize, save, and zero
* output: void
*/
void
MD5Final(void *digest, MD5_CTX *ctx)
{
uint8_t bitcount_le[sizeof (ctx->count)];
uint32_t index = (ctx->count[0] >> 3) & 0x3f;
/* store bit count, little endian */
Encode(bitcount_le, ctx->count, sizeof (bitcount_le));
/* pad out to 56 mod 64 */
MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
/* append length (before padding) */
MD5Update(ctx, bitcount_le, sizeof (bitcount_le));
/* store state in digest */
Encode(digest, ctx->state, sizeof (ctx->state));
/* zeroize sensitive information */
bzero(ctx, sizeof (*ctx));
}
#ifndef _KERNEL
void
md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)
{
MD5_CTX context;
MD5Init(&context);
MD5Update(&context, input, inlen);
MD5Final(output, &context);
}
#endif /* !_KERNEL */
#if !defined(__amd64)
/*
* sparc register window optimization:
*
* `a', `b', `c', and `d' are passed into MD5Transform explicitly
* since it increases the number of registers available to the
* compiler. under this scheme, these variables can be held in
* %i0 - %i3, which leaves more local and out registers available.
*/
/*
* MD5Transform()
*
* purpose: md5 transformation -- updates the digest based on `block'
* input: uint32_t : bytes 1 - 4 of the digest
* uint32_t : bytes 5 - 8 of the digest
* uint32_t : bytes 9 - 12 of the digest
* uint32_t : bytes 12 - 16 of the digest
* MD5_CTX * : the context to update
* uint8_t [64]: the block to use to update the digest
* output: void
*/
static void
MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d,
MD5_CTX *ctx, const uint8_t block[64])
{
/*
* general optimization:
*
* use individual integers instead of using an array. this is a
* win, although the amount it wins by seems to vary quite a bit.
*/
register uint32_t x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7;
register uint32_t x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15;
#ifdef sun4v
unsigned long long *md5_consts64;
/* LINTED E_BAD_PTR_CAST_ALIGN */
md5_consts64 = (unsigned long long *) md5_consts;
#endif /* sun4v */
/*
* general optimization:
*
* the compiler (at least SC4.2/5.x) generates better code if
* variable use is localized. in this case, swapping the integers in
* this order allows `x_0 'to be swapped nearest to its first use in
* FF(), and likewise for `x_1' and up. note that the compiler
* prefers this to doing each swap right before the FF() that
* uses it.
*/
/*
* sparc v9/v8plus optimization:
*
* if `block' is already aligned on a 4-byte boundary, use the
* optimized load_little_32() directly. otherwise, bcopy()
* into a buffer that *is* aligned on a 4-byte boundary and
* then do the load_little_32() on that buffer. benchmarks
* have shown that using the bcopy() is better than loading
* the bytes individually and doing the endian-swap by hand.
*
* even though it's quite tempting to assign to do:
*
* blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
*
* and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
* SC4.2/5.x) *does not* like that, so please resist the urge.
*/
#ifdef _MD5_CHECK_ALIGNMENT
if ((uintptr_t)block & 0x3) { /* not 4-byte aligned? */
bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
#ifdef sun4v
x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32);
x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32);
x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32);
x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32);
x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32);
x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32);
x_9 = LOAD_LITTLE_32_9(ctx->buf_un.buf32);
x_8 = LOAD_LITTLE_32_8(ctx->buf_un.buf32);
x_7 = LOAD_LITTLE_32_7(ctx->buf_un.buf32);
x_6 = LOAD_LITTLE_32_6(ctx->buf_un.buf32);
x_5 = LOAD_LITTLE_32_5(ctx->buf_un.buf32);
x_4 = LOAD_LITTLE_32_4(ctx->buf_un.buf32);
x_3 = LOAD_LITTLE_32_3(ctx->buf_un.buf32);
x_2 = LOAD_LITTLE_32_2(ctx->buf_un.buf32);
x_1 = LOAD_LITTLE_32_1(ctx->buf_un.buf32);
x_0 = LOAD_LITTLE_32_0(ctx->buf_un.buf32);
#else
x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15);
x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14);
x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13);
x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12);
x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11);
x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10);
x_9 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 9);
x_8 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 8);
x_7 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 7);
x_6 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 6);
x_5 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 5);
x_4 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 4);
x_3 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 3);
x_2 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 2);
x_1 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 1);
x_0 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 0);
#endif /* sun4v */
} else
#endif
{
#ifdef sun4v
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_15 = LOAD_LITTLE_32_f(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_14 = LOAD_LITTLE_32_e(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_13 = LOAD_LITTLE_32_d(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_12 = LOAD_LITTLE_32_c(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_11 = LOAD_LITTLE_32_b(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_10 = LOAD_LITTLE_32_a(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_9 = LOAD_LITTLE_32_9(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_8 = LOAD_LITTLE_32_8(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_7 = LOAD_LITTLE_32_7(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_6 = LOAD_LITTLE_32_6(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_5 = LOAD_LITTLE_32_5(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_4 = LOAD_LITTLE_32_4(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_3 = LOAD_LITTLE_32_3(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_2 = LOAD_LITTLE_32_2(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_1 = LOAD_LITTLE_32_1(block);
/* LINTED E_BAD_PTR_CAST_ALIGN */
x_0 = LOAD_LITTLE_32_0(block);
#else
x_15 = LOAD_LITTLE_32(block + 60);
x_14 = LOAD_LITTLE_32(block + 56);
x_13 = LOAD_LITTLE_32(block + 52);
x_12 = LOAD_LITTLE_32(block + 48);
x_11 = LOAD_LITTLE_32(block + 44);
x_10 = LOAD_LITTLE_32(block + 40);
x_9 = LOAD_LITTLE_32(block + 36);
x_8 = LOAD_LITTLE_32(block + 32);
x_7 = LOAD_LITTLE_32(block + 28);
x_6 = LOAD_LITTLE_32(block + 24);
x_5 = LOAD_LITTLE_32(block + 20);
x_4 = LOAD_LITTLE_32(block + 16);
x_3 = LOAD_LITTLE_32(block + 12);
x_2 = LOAD_LITTLE_32(block + 8);
x_1 = LOAD_LITTLE_32(block + 4);
x_0 = LOAD_LITTLE_32(block + 0);
#endif /* sun4v */
}
/* round 1 */
FF(a, b, c, d, x_0, MD5_SHIFT_11, MD5_CONST_e(0)); /* 1 */
FF(d, a, b, c, x_1, MD5_SHIFT_12, MD5_CONST_o(1)); /* 2 */
FF(c, d, a, b, x_2, MD5_SHIFT_13, MD5_CONST_e(2)); /* 3 */
FF(b, c, d, a, x_3, MD5_SHIFT_14, MD5_CONST_o(3)); /* 4 */
FF(a, b, c, d, x_4, MD5_SHIFT_11, MD5_CONST_e(4)); /* 5 */
FF(d, a, b, c, x_5, MD5_SHIFT_12, MD5_CONST_o(5)); /* 6 */
FF(c, d, a, b, x_6, MD5_SHIFT_13, MD5_CONST_e(6)); /* 7 */
FF(b, c, d, a, x_7, MD5_SHIFT_14, MD5_CONST_o(7)); /* 8 */
FF(a, b, c, d, x_8, MD5_SHIFT_11, MD5_CONST_e(8)); /* 9 */
FF(d, a, b, c, x_9, MD5_SHIFT_12, MD5_CONST_o(9)); /* 10 */
FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */
FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */
FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */
FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */
FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */
FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */
/* round 2 */
GG(a, b, c, d, x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */
GG(d, a, b, c, x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */
GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */
GG(b, c, d, a, x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */
GG(a, b, c, d, x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */
GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */
GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */
GG(b, c, d, a, x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */
GG(a, b, c, d, x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */
GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */
GG(c, d, a, b, x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */
GG(b, c, d, a, x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */
GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */
GG(d, a, b, c, x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */
GG(c, d, a, b, x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */
GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */
/* round 3 */
HH(a, b, c, d, x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */
HH(d, a, b, c, x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */
HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */
HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */
HH(a, b, c, d, x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */
HH(d, a, b, c, x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */
HH(c, d, a, b, x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */
HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */
HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */
HH(d, a, b, c, x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */
HH(c, d, a, b, x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */
HH(b, c, d, a, x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */
HH(a, b, c, d, x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */
HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */
HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */
HH(b, c, d, a, x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */
/* round 4 */
II(a, b, c, d, x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */
II(d, a, b, c, x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */
II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */
II(b, c, d, a, x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */
II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */
II(d, a, b, c, x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */
II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */
II(b, c, d, a, x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */
II(a, b, c, d, x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */
II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */
II(c, d, a, b, x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */
II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */
II(a, b, c, d, x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */
II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */
II(c, d, a, b, x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */
II(b, c, d, a, x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
/*
* zeroize sensitive information -- compiler will optimize
* this out if everything is kept in registers
*/
x_0 = x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_8 = 0;
x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0;
}
#endif /* !defined(__amd64) */
/*
* Encode()
*
* purpose: to convert a list of numbers from big endian to little endian
* input: uint8_t * : place to store the converted little endian numbers
* uint32_t * : place to get numbers to convert from
* size_t : the length of the input in bytes
* output: void
*/
static void
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
size_t input_len)
{
size_t i, j;
for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) {
#ifdef _LITTLE_ENDIAN
#ifdef _MD5_CHECK_ALIGNMENT
if ((uintptr_t)output & 0x3) /* Not 4-byte aligned */
bcopy(input + i, output + j, 4);
else *(uint32_t *)(output + j) = input[i];
#else
/*LINTED E_BAD_PTR_CAST_ALIGN*/
*(uint32_t *)(output + j) = input[i];
#endif /* _MD5_CHECK_ALIGNMENT */
#else /* big endian -- will work on little endian, but slowly */
output[j] = input[i] & 0xff;
output[j + 1] = (input[i] >> 8) & 0xff;
output[j + 2] = (input[i] >> 16) & 0xff;
output[j + 3] = (input[i] >> 24) & 0xff;
#endif
}
}