md5_amd64.pl revision 160abee025ef30c34521b981edd40ffcaab560aa
#!/usr/bin/perl -w
use strict;
my $code .= <<EOF;
#if !defined(lint) && !defined(__lint)
/
/ MD5 optimized for AMD64.
/
/ Author: Marc Bevand <bevand_m (at) epita.fr>
/ Licence: I hereby disclaim the copyright on this code and place it
/ in the public domain.
/
.ident "%Z%%M% %I% %E% SMI"
/
/ The following is Marc Bevand's MD5 implementation optimized for
/ AMD64. It has been lifted intact, except for changing the comment
/ character, adding comments, and a kludge to generate valid "lea"
/ instructions that are not generated by the Solaris "as" assembler
/ (CR 6628627).
/
/ typedef struct {
/ uint32_t state[4]; /* state (ABCD) */
/ uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
/ union {
/ uint8_t buf8[64]; /* undigested input */
/ uint32_t buf32[16]; /* realigned input */
/ } buf_un;
/ } MD5_CTX;
/
/ void md5_block_asm_host_order(MD5_CTX *ctx, const void *inpp,
/ unsigned int input_length_in_blocks);
/
/ Registers used:
/ rax A r8 old A
/ rbx B r9 old B
/ rcx C r10 tmp
/ rdx D r11 tmp
/ rsi ptr r12 tmp
/ rdi end r13 -
/ rbp - r14 old C
/ rsp stack r15 old D
/
EOF
sub lea_offset_register_r10d_ebx
# Workaround for a Solaris "gas" assembler bug where compiling the source
# errors out and does not generate a valid "lea" instruction. Specifically,
# lea OFFSET(REGISTER,%r10d),REGISTER
#
# For Solaris as, "as -a32" must be used to compile this.
# For Solaris gas 2.15, this errors out with this message:
# Error: `0xf57c0faf(%eax,%r10d)' is not a valid 64 bit base/index expression
# This should be fixed in Solaris gas 2.16.
# It assembles with the Linux "as --64" gas 2.17 assembler and runs OK.
#
# For the ONBLD NV tools, the aw wrapper script fails when -a32 is used:
# /ws/onnv-tools/onbld/bin/i386/aw -xarch=amd64 -P -a32 -o lea.o lea.s
# aw: as->gas mapping failed at or near arg '-a32'
#
# For more information, see CRs 6644870 and 6628627.
# Note2: Solaris "as" uses "/" for comments; Linux "as" uses "#" for comments.
{
use Switch;
my ($offset, $register, $comment) = @_;
# Failed "lea" instruction.
# This instruction errors out from the Solaris as assembler.
# It assembles with the Linux "as --64" assembler and runs OK.
$code .= " / lea $offset($register,%r10d),$register"
. " $comment\n";
# Workaround #1 (not used)
# One workaround is to generate two "add" instructions that are
# functionally equivalent to "lea." The problem is this workaround
# is about 4.5% slower than a lea, so is not used.
#$code .= " add %r10d,$register\n";
#$code .= " add \&0x%0x,$offset\n";
# Workaround #2 (used)
# This workaround hand-generates hex machine code for lea.
$code .= " / Solaris as assembly bug CR 6628627 errors out for\n";
$code .= " / the above, so we specify the machine code in hex:\n";
$code .= " .byte 0x67,0x42,0x8d / lea offset(reg,%r10d),reg\n";
switch ($register) {
case "%eax" { $code .= " .byte 0x84,0x10 / reg=%eax\n"; }
case "%ebx" { $code .= " .byte 0x9c,0x13 / reg=%ebx\n"; }
case "%ecx" { $code .= " .byte 0x8c,0x11 / reg=%ecx\n"; }
case "%edx" { $code .= " .byte 0x94,0x12 / reg=%edx\n"; }
else { $code .= "ERROR: unknown register $register\n"; }
}
$code .= " .long $offset / offset\n";
}
# round1_step() does:
# dst = x + ((dst + F(x,y,z) + X[k] + T_i) <<< s)
# %r10d = X[k_next]
# %r11d = z' (copy of z for the next step)
# Each round1_step() takes about 5.3 clocks (9 instructions, 1.7 IPC)
sub round1_step
{
my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
$code .= " mov 0*4(%rsi), %r10d /* (NEXT STEP) X[0] */\n" if ($pos == -1);
$code .= " mov %edx, %r11d /* (NEXT STEP) z' = %edx */\n" if ($pos == -1);
$code .= " xor $y, %r11d /* y ^ ... */\n";
#lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
lea_offset_register_r10d_ebx($T_i, $dst, "/* Const + dst + ... */");
$code .= <<EOF;
and $x, %r11d /* x & ... */
xor $z, %r11d /* z ^ ... */
mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
add %r11d, $dst /* dst += ... */
rol \$$s, $dst /* dst <<< s */
mov $y, %r11d /* (NEXT STEP) z' = $y */
add $x, $dst /* dst += x */
EOF
}
# round2_step() does:
# dst = x + ((dst + G(x,y,z) + X[k] + T_i) <<< s)
# %r10d = X[k_next]
# %r11d = z' (copy of z for the next step)
# %r12d = z' (copy of z for the next step)
# Each round2_step() takes about 5.4 clocks (11 instructions, 2.0 IPC)
sub round2_step
{
my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
$code .= " mov 1*4(%rsi), %r10d /* (NEXT STEP) X[1] */\n" if ($pos == -1);
$code .= " mov %edx, %r11d /* (NEXT STEP) z' = %edx */\n" if ($pos == -1);
$code .= " mov %edx, %r12d /* (NEXT STEP) z' = %edx */\n" if ($pos == -1);
$code .= " not %r11d /* not z */\n";
#lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
lea_offset_register_r10d_ebx($T_i, $dst, "/* Const + dst + ... */");
$code .= <<EOF;
and $x, %r12d /* x & z */
and $y, %r11d /* y & (not z) */
mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
or %r11d, %r12d /* (y & (not z)) | (x & z) */
mov $y, %r11d /* (NEXT STEP) z' = $y */
add %r12d, $dst /* dst += ... */
mov $y, %r12d /* (NEXT STEP) z' = $y */
rol \$$s, $dst /* dst <<< s */
add $x, $dst /* dst += x */
EOF
}
# round3_step() does:
# dst = x + ((dst + H(x,y,z) + X[k] + T_i) <<< s)
# %r10d = X[k_next]
# %r11d = y' (copy of y for the next step)
# Each round3_step() takes about 4.2 clocks (8 instructions, 1.9 IPC)
sub round3_step
{
my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
$code .= " mov 5*4(%rsi), %r10d /* (NEXT STEP) X[5] */\n" if ($pos == -1);
$code .= " mov %ecx, %r11d /* (NEXT STEP) y' = %ecx */\n" if ($pos == -1);
#lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
lea_offset_register_r10d_ebx($T_i, $dst, "/* Const + dst + ... */");
$code .= <<EOF;
mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
xor $z, %r11d /* z ^ ... */
xor $x, %r11d /* x ^ ... */
add %r11d, $dst /* dst += ... */
rol \$$s, $dst /* dst <<< s */
mov $x, %r11d /* (NEXT STEP) y' = $x */
add $x, $dst /* dst += x */
EOF
}
# round4_step() does:
# dst = x + ((dst + I(x,y,z) + X[k] + T_i) <<< s)
# %r10d = X[k_next]
# %r11d = not z' (copy of not z for the next step)
# Each round4_step() takes about 5.2 clocks (9 instructions, 1.7 IPC)
sub round4_step
{
my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
$code .= " mov 0*4(%rsi), %r10d /* (NEXT STEP) X[0] */\n" if ($pos == -1);
$code .= " mov \$0xffffffff, %r11d\n" if ($pos == -1);
$code .= " xor %edx, %r11d /* (NEXT STEP) not z' = not %edx*/\n"
if ($pos == -1);
#lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
lea_offset_register_r10d_ebx($T_i, $dst, "/* Const + dst + ... */");
$code .= <<EOF;
or $x, %r11d /* x | ... */
xor $y, %r11d /* y ^ ... */
add %r11d, $dst /* dst += ... */
mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
mov \$0xffffffff, %r11d
rol \$$s, $dst /* dst <<< s */
xor $y, %r11d /* (NEXT STEP) not z' = not $y */
add $x, $dst /* dst += x */
EOF
}
#
# Execution begins here.
#
my $output = shift;
open STDOUT,">$output" or die "can't open $output: $!";
$code .= <<EOF;
#include <sys/asm_linkage.h>
ENTRY_NP(md5_block_asm_host_order)
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
/ rdi = arg #1 (ctx, MD5_CTX pointer)
/ rsi = arg #2 (ptr, data pointer)
/ rdx = arg #3 (nbr, number of 64-byte blocks to process)
mov %rdi, %rbp / rbp = ctx
shl \$6, %rdx / rdx = nbr in bytes
lea (%rsi,%rdx), %rdi / rdi = end
mov 0*4(%rbp), %eax / eax = ctx->A
mov 1*4(%rbp), %ebx / ebx = ctx->B
mov 2*4(%rbp), %ecx / ecx = ctx->C
mov 3*4(%rbp), %edx / edx = ctx->D
push %rbp / save ctx
/ end is 'rdi'
/ ptr is 'rsi'
/ A is 'eax'
/ B is 'ebx'
/ C is 'ecx'
/ D is 'edx'
cmp %rdi, %rsi / cmp end with ptr
je 1f / jmp if ptr == end
/ BEGIN of loop over 64-byte blocks
2: / save old values of A, B, C, D
mov %eax, %r8d
mov %ebx, %r9d
mov %ecx, %r14d
mov %edx, %r15d
EOF
round1_step(-1,'%eax','%ebx','%ecx','%edx', '1','0xd76aa478', '7');
round1_step( 0,'%edx','%eax','%ebx','%ecx', '2','0xe8c7b756','12');
round1_step( 0,'%ecx','%edx','%eax','%ebx', '3','0x242070db','17');
round1_step( 0,'%ebx','%ecx','%edx','%eax', '4','0xc1bdceee','22');
round1_step( 0,'%eax','%ebx','%ecx','%edx', '5','0xf57c0faf', '7');
round1_step( 0,'%edx','%eax','%ebx','%ecx', '6','0x4787c62a','12');
round1_step( 0,'%ecx','%edx','%eax','%ebx', '7','0xa8304613','17');
round1_step( 0,'%ebx','%ecx','%edx','%eax', '8','0xfd469501','22');
round1_step( 0,'%eax','%ebx','%ecx','%edx', '9','0x698098d8', '7');
round1_step( 0,'%edx','%eax','%ebx','%ecx','10','0x8b44f7af','12');
round1_step( 0,'%ecx','%edx','%eax','%ebx','11','0xffff5bb1','17');
round1_step( 0,'%ebx','%ecx','%edx','%eax','12','0x895cd7be','22');
round1_step( 0,'%eax','%ebx','%ecx','%edx','13','0x6b901122', '7');
round1_step( 0,'%edx','%eax','%ebx','%ecx','14','0xfd987193','12');
round1_step( 0,'%ecx','%edx','%eax','%ebx','15','0xa679438e','17');
round1_step( 1,'%ebx','%ecx','%edx','%eax', '0','0x49b40821','22');
round2_step(-1,'%eax','%ebx','%ecx','%edx', '6','0xf61e2562', '5');
round2_step( 0,'%edx','%eax','%ebx','%ecx','11','0xc040b340', '9');
round2_step( 0,'%ecx','%edx','%eax','%ebx', '0','0x265e5a51','14');
round2_step( 0,'%ebx','%ecx','%edx','%eax', '5','0xe9b6c7aa','20');
round2_step( 0,'%eax','%ebx','%ecx','%edx','10','0xd62f105d', '5');
round2_step( 0,'%edx','%eax','%ebx','%ecx','15', '0x2441453', '9');
round2_step( 0,'%ecx','%edx','%eax','%ebx', '4','0xd8a1e681','14');
round2_step( 0,'%ebx','%ecx','%edx','%eax', '9','0xe7d3fbc8','20');
round2_step( 0,'%eax','%ebx','%ecx','%edx','14','0x21e1cde6', '5');
round2_step( 0,'%edx','%eax','%ebx','%ecx', '3','0xc33707d6', '9');
round2_step( 0,'%ecx','%edx','%eax','%ebx', '8','0xf4d50d87','14');
round2_step( 0,'%ebx','%ecx','%edx','%eax','13','0x455a14ed','20');
round2_step( 0,'%eax','%ebx','%ecx','%edx', '2','0xa9e3e905', '5');
round2_step( 0,'%edx','%eax','%ebx','%ecx', '7','0xfcefa3f8', '9');
round2_step( 0,'%ecx','%edx','%eax','%ebx','12','0x676f02d9','14');
round2_step( 1,'%ebx','%ecx','%edx','%eax', '0','0x8d2a4c8a','20');
round3_step(-1,'%eax','%ebx','%ecx','%edx', '8','0xfffa3942', '4');
round3_step( 0,'%edx','%eax','%ebx','%ecx','11','0x8771f681','11');
round3_step( 0,'%ecx','%edx','%eax','%ebx','14','0x6d9d6122','16');
round3_step( 0,'%ebx','%ecx','%edx','%eax', '1','0xfde5380c','23');
round3_step( 0,'%eax','%ebx','%ecx','%edx', '4','0xa4beea44', '4');
round3_step( 0,'%edx','%eax','%ebx','%ecx', '7','0x4bdecfa9','11');
round3_step( 0,'%ecx','%edx','%eax','%ebx','10','0xf6bb4b60','16');
round3_step( 0,'%ebx','%ecx','%edx','%eax','13','0xbebfbc70','23');
round3_step( 0,'%eax','%ebx','%ecx','%edx', '0','0x289b7ec6', '4');
round3_step( 0,'%edx','%eax','%ebx','%ecx', '3','0xeaa127fa','11');
round3_step( 0,'%ecx','%edx','%eax','%ebx', '6','0xd4ef3085','16');
round3_step( 0,'%ebx','%ecx','%edx','%eax', '9', '0x4881d05','23');
round3_step( 0,'%eax','%ebx','%ecx','%edx','12','0xd9d4d039', '4');
round3_step( 0,'%edx','%eax','%ebx','%ecx','15','0xe6db99e5','11');
round3_step( 0,'%ecx','%edx','%eax','%ebx', '2','0x1fa27cf8','16');
round3_step( 1,'%ebx','%ecx','%edx','%eax', '0','0xc4ac5665','23');
round4_step(-1,'%eax','%ebx','%ecx','%edx', '7','0xf4292244', '6');
round4_step( 0,'%edx','%eax','%ebx','%ecx','14','0x432aff97','10');
round4_step( 0,'%ecx','%edx','%eax','%ebx', '5','0xab9423a7','15');
round4_step( 0,'%ebx','%ecx','%edx','%eax','12','0xfc93a039','21');
round4_step( 0,'%eax','%ebx','%ecx','%edx', '3','0x655b59c3', '6');
round4_step( 0,'%edx','%eax','%ebx','%ecx','10','0x8f0ccc92','10');
round4_step( 0,'%ecx','%edx','%eax','%ebx', '1','0xffeff47d','15');
round4_step( 0,'%ebx','%ecx','%edx','%eax', '8','0x85845dd1','21');
round4_step( 0,'%eax','%ebx','%ecx','%edx','15','0x6fa87e4f', '6');
round4_step( 0,'%edx','%eax','%ebx','%ecx', '6','0xfe2ce6e0','10');
round4_step( 0,'%ecx','%edx','%eax','%ebx','13','0xa3014314','15');
round4_step( 0,'%ebx','%ecx','%edx','%eax', '4','0x4e0811a1','21');
round4_step( 0,'%eax','%ebx','%ecx','%edx','11','0xf7537e82', '6');
round4_step( 0,'%edx','%eax','%ebx','%ecx', '2','0xbd3af235','10');
round4_step( 0,'%ecx','%edx','%eax','%ebx', '9','0x2ad7d2bb','15');
round4_step( 1,'%ebx','%ecx','%edx','%eax', '0','0xeb86d391','21');
$code .= <<EOF;
/ add old values of A, B, C, D
add %r8d, %eax
add %r9d, %ebx
add %r14d, %ecx
add %r15d, %edx
/ loop control
add \$64, %rsi / ptr += 64
cmp %rdi, %rsi / cmp end with ptr
jb 2b / jmp if ptr < end
/ END of loop over 64-byte blocks
1: pop %rbp / restore ctx
mov %eax, 0*4(%rbp) / ctx->A = A
mov %ebx, 1*4(%rbp) / ctx->B = B
mov %ecx, 2*4(%rbp) / ctx->C = C
mov %edx, 3*4(%rbp) / ctx->D = D
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
SET_SIZE(md5_block_asm_host_order)
#else
/* LINTED */
/* Nothing to be linted in this file--it's pure assembly source. */
#endif /* !lint && !__lint */
EOF
print $code;