arcfour-x86_64.pl revision 55553f719b521a0bb4deab6efc944cd30c1a56aa
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
# as my IA-64 implementation. On Opteron this resulted in modest 5%
# improvement [I had to test it], while final Intel P4 performance
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
# RC4_INT code-path. While if executed on Opteron, it's only 25%
# slower than the RC4_INT one [meaning that if CPU �-arch detection
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
# cloop1 boosts its performance by 80%! This loop appears to be optimal
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
#
# OpenSolaris OS modifications
#
# Sun elects to use this software under the BSD license.
#
# This source originates from OpenSSL file rc4-x86_64.pl at
# ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz
# (presumably for future OpenSSL release 0.9.8h), with these changes:
#
# 1. Added some comments, "use strict", and declared all variables.
#
# 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
# /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
#
# 3. Changed function name from RC4() to arcfour_crypt() and RC4_set_key()
# to arcfour_key_init(), and changed the parameter order for both to that
# used by OpenSolaris.
#
# 4. The current method of using cpuid feature bits 20 (NX) or 28 (HTT) from
# function OPENSSL_ia32_cpuid() to distinguish Intel/AMD does not work for
# some newer AMD64 processors, as these bits are set on both Intel EM64T
# processors and newer AMD64 processors. I replaced this with code to use CPUID
# instruction subfunction EAX=0 to determine if we're running on "GenuineIntel"
# or not. The result decides whether to use a
# * 1-byte key array (label .LRC4_CHAR, optimal on Intel EM64T) or a
# * 4-byte key array (Labels .Lloop1 and .Lloop8, optimal on AMD64).
#
# 5. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1) assemblers).
#
# 6. Removed Lcloop8 code (slower than Lcloop1 on EM64T and not used on AMD64).
#
use strict;
my ($code, $dat, $inp, $out, $len, $idx, $ido, $i, @XX, @TX, $YY, $TY);
my $output = shift;
open STDOUT,">$output";
#
# Parameters
#
# OpenSSL:
# void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
# unsigned char *outdata);
#$dat="%rdi"; # arg1
#$len="%rsi"; # arg2
#$inp="%rdx"; # arg3
#$out="%rcx"; # arg4
# OpenSolaris:
# void arcfour_crypt(ARCFour_key *key, uchar_t *in, uchar_t *out, size_t len);
$dat="%rdi"; # arg1
$inp="%rsi"; # arg2
$out="%rdx"; # arg3
$len="%rcx"; # arg4
#
# Register variables
#
# $XX[0] is key->i (aka key->x), $XX[1] is a temporary.
# $TX[0] and $TX[1] are temporaries.
# $YY is key->j (aka key->y).
# $TY is a temporary.
#
@XX=("%r8","%r10");
@TX=("%r9","%r11");
$YY="%r12";
$TY="%r13";
$code=<<___;
#if !defined(lint) && !defined(__lint)
.ident "%Z%%M% %I% %E% SMI"
#include <sys/asm_linkage.h>
ENTRY_NP(arcfour_crypt)
/* EXPORT DELETE START */
or $len,$len # If (len == 0) return
jne .Lentry
ret
.Lentry:
push %r12
push %r13
/ Set $dat to beginning of array, key->arr[0]
add \$8,$dat
/ Get key->j
movl -8($dat),$XX[0]#d
/ Get key->i
movl -4($dat),$YY#d
/
/ Use a 1-byte data array, on Intel P4 EM64T,
/ which is more efficient there,
/ or a 4-byte data array (for AMD AMD64).
/
/ If RC4_CHAR flag set (Intel EM64T), then use 1-byte array
cmpl \$-1,256($dat)
je .LRC4_CHAR
/ otherwise use 4-byte integer array (AMD64)
inc $XX[0]#b
movl ($dat,$XX[0],4),$TX[0]#d
test \$-8,$len
jz .Lloop1
jmp .Lloop8
.align 16
.Lloop8:
/
/ This code is for use with a 4-byte integer data array, which is
/ more efficient on AMD64 Athlon and Opteron-class processors.
/
___
for ($i=0;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
mov $XX[0],$XX[1]
movl ($dat,$YY,4),$TY#d
ror \$8,%rax # ror is redundant when $i=0
inc $XX[1]#b
movl ($dat,$XX[1],4),$TX[1]#d
cmp $XX[1],$YY
movl $TX[0]#d,($dat,$YY,4)
cmove $TX[0],$TX[1]
movl $TY#d,($dat,$XX[0],4)
add $TX[0]#b,$TY#b
movb ($dat,$TY,4),%al
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
ror \$8,%rax
sub \$8,$len
xor ($inp),%rax
add \$8,$inp
mov %rax,($out)
add \$8,$out
test \$-8,$len
jnz .Lloop8
cmp \$0,$len
jne .Lloop1
___
$code.=<<___;
.Lexit:
/
/ Cleanup and exit code
/
/ --i to undo ++i done at entry
sub \$1,$XX[0]#b
/ set key->i
movl $XX[0]#d,-8($dat)
/ set key->j
movl $YY#d,-4($dat)
pop %r13
pop %r12
ret
.align 16
.Lloop1:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
inc $inp
movb $TY#b,($out)
inc $out
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
/
/ This code is for use with a 1-byte integer data array, which is
/ more efficient on Intel P4 EM64T-class processors.
/
add \$1,$XX[0]#b
movzb ($dat,$XX[0]),$TX[0]#d
jmp .Lcloop1
.align 16
.Lcloop1:
add $TX[0]#b,$YY#b
movzb ($dat,$YY),$TY#d
movb $TX[0]#b,($dat,$YY)
movb $TY#b,($dat,$XX[0])
add $TX[0]#b,$TY#b
add \$1,$XX[0]#b
/ Intel Optimization (preload $TY and $XX[0]):
movzb $TY#b,$TY#d
movzb $XX[0]#b,$XX[0]#d
movzb ($dat,$TY),$TY#d
movzb ($dat,$XX[0]),$TX[0]#d
xorb ($inp),$TY#b
lea 1($inp),$inp
movb $TY#b,($out)
lea 1($out),$out
sub \$1,$len
jnz .Lcloop1
jmp .Lexit
/* EXPORT DELETE END */
ret
SET_SIZE(arcfour_crypt)
___
#
# Parameters
#
# OpenSSL:
# void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
#$dat="%rdi"; # arg1
#$len="%rsi"; # arg2
#$inp="%rdx"; # arg3
# OpenSolaris:
# void arcfour_key_init(ARCFour_key *key, uchar_t *keyval, int keyvallen);
$dat="%rdi"; # arg1
$inp="%rsi"; # arg2
$len="%rdx"; # arg3
# Temporaries
$idx="%r8";
$ido="%r9";
$code.=<<___;
/ int arcfour_crypt_on_intel(void);
.extern arcfour_crypt_on_intel
ENTRY_NP(arcfour_key_init)
/* EXPORT DELETE START */
/ Find out if we're running on Intel or something else (e.g., AMD64).
/ This sets %eax to 1 for Intel, otherwise 0.
push %rdi / Save arg1
push %rsi / Save arg2
push %rdx / Save arg3
call arcfour_crypt_on_intel
pop %rdx / Restore arg3
pop %rsi / Restore arg2
pop %rdi / Restore arg1
/ Set $dat to beginning of array, key->arr[0]
lea 8($dat),$dat
lea ($inp,$len),$inp
neg $len
mov $len,%rcx
/ Zeroed below, as %eax contains a flag from arcfour_crypt_on_intel():
/xor %eax,%eax
xor $ido,$ido
xor %r10,%r10
xor %r11,%r11
/
/ Use a 1-byte data array, on Intel P4 EM64T,
/ which is more efficient there,
/ or a 4-byte data array (for AMD AMD64).
/
cmp \$1,%eax / Test if Intel
mov \$0,%eax / Zero eax without modifying flags
je .Lc1stloop / If Intel then use a 1-byte array,
jmp .Lw1stloop / otherwise use a 4-byte array.
.align 16
.Lw1stloop:
/ AMD64 (4-byte array)
mov %eax,($dat,%rax,4)
add \$1,%al
jnc .Lw1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lw2ndloop:
mov ($dat,$ido,4),%r10d
add ($inp,$len,1),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx,4),%r11d
cmovz %rcx,$len
mov %r10d,($dat,$idx,4)
mov %r11d,($dat,$ido,4)
add \$1,$ido#b
jnc .Lw2ndloop
jmp .Lexit_key
.align 16
.Lc1stloop:
/ Intel EM64T (1-byte array)
mov %al,($dat,%rax)
add \$1,%al
jnc .Lc1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lc2ndloop:
mov ($dat,$ido),%r10b
add ($inp,$len),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx),%r11b
jnz .Lcnowrap
mov %rcx,$len
.Lcnowrap:
mov %r10b,($dat,$idx)
mov %r11b,($dat,$ido)
add \$1,$ido#b
jnc .Lc2ndloop
movl \$-1,256($dat)
.align 16
.Lexit_key:
xor %eax,%eax
mov %eax,-8($dat)
mov %eax,-4($dat)
/* EXPORT DELETE END */
ret
SET_SIZE(arcfour_key_init)
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
#else
/* LINTED */
/* Nothing to be linted in this file--it's pure assembly source. */
#endif /* !lint && !__lint */
___
$code =~ s/#([bwd])/$1/gm;
print $code;
close STDOUT;