ntp_request.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* Copyright (c) 1996 by Sun Microsystems, Inc.
* All Rights Reserved.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* ntp_request.c - respond to information requests
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/types.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <sys/time.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_request.h"
#include "ntp_control.h"
#include "ntp_refclock.h"
#include "ntp_if.h"
#include "ntp_stdlib.h"
#ifdef KERNEL_PLL
# include <sys/timex.h>
# ifdef NTP_SYSCALLS_STD
# define ntp_gettime(t) syscall(SYS_ntp_gettime, (t))
# define ntp_adjtime(t) syscall(SYS_ntp_adjtime, (t))
# else /* NOT NTP_SYSCALLS_STD */
# ifdef HAVE___NTP_GETTIME
# define ntp_gettime(t) __ntp_gettime((t))
# endif
# ifdef HAVE___ADJTIMEX
# define ntp_adjtime(t) __adjtimex((t))
# endif
# endif /* NOT NTP_SYSCALLS_STD */
#endif /* KERNEL_PLL */
/*
* Structure to hold request procedure information
*/
#define NOAUTH 0
#define AUTH 1
#define NO_REQUEST (-1)
struct req_proc {
short request_code; /* defined request code */
short needs_auth; /* true when authentication needed */
short sizeofitem; /* size of request data item */
void (*handler) P((struct sockaddr_in *, struct interface *,
struct req_pkt *)); /* routine to handle request */
};
/*
* Universal request codes
*/
static struct req_proc univ_codes[] = {
{ NO_REQUEST, NOAUTH, 0, 0 }
};
static void req_ack P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static char * prepare_pkt P((struct sockaddr_in *, struct interface *, struct req_pkt *, u_int));
static char * more_pkt P((void));
static void flush_pkt P((void));
static void peer_list P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_list_sum P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void peer_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void sys_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void sys_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void mem_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void io_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void timer_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void loop_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_conf P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_unconf P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_sys_flag P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void clr_sys_flag P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void setclr_flags P((struct sockaddr_in *, struct interface *, struct req_pkt *, u_long));
static void list_restrict P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_resaddflags P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_ressubflags P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_unrestrict P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_restrict P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static void mon_getlist_0 P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void mon_getlist_1 P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_peer P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_key_reread P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void trust_key P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void untrust_key P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_trustkey P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static void get_auth_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void reset_auth_stats P((void));
static void req_get_traps P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void req_set_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void req_clr_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void do_setclr_trap P((struct sockaddr_in *, struct interface *, struct req_pkt *, int));
static void set_request_keyid P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_control_keyid P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void get_ctl_stats P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void get_leap_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#ifdef KERNEL_PLL
static void get_kernel_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
static void get_clock_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
static void set_clock_fudge P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* REFCLOCK */
#ifdef REFCLOCK
static void get_clkbug_info P((struct sockaddr_in *, struct interface *, struct req_pkt *));
#endif /* REFCLOCK */
/*
* Xntpd request codes
*/
static struct req_proc xntp_codes[] = {
{ REQ_PEER_LIST, NOAUTH, 0, peer_list },
{ REQ_PEER_LIST_SUM, NOAUTH, 0, peer_list_sum },
{ REQ_PEER_INFO, NOAUTH, sizeof(struct info_peer_list), peer_info },
{ REQ_PEER_STATS, NOAUTH, sizeof(struct info_peer_list), peer_stats },
{ REQ_SYS_INFO, NOAUTH, 0, sys_info },
{ REQ_SYS_STATS, NOAUTH, 0, sys_stats },
{ REQ_IO_STATS, NOAUTH, 0, io_stats },
{ REQ_MEM_STATS, NOAUTH, 0, mem_stats },
{ REQ_LOOP_INFO, NOAUTH, 0, loop_info },
{ REQ_TIMER_STATS, NOAUTH, 0, timer_stats },
{ REQ_CONFIG, AUTH, sizeof(struct conf_peer), do_conf },
{ REQ_UNCONFIG, AUTH, sizeof(struct conf_unpeer), do_unconf },
{ REQ_SET_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags), set_sys_flag },
{ REQ_CLR_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags), clr_sys_flag },
{ REQ_GET_RESTRICT, NOAUTH, 0, list_restrict },
{ REQ_RESADDFLAGS, AUTH, sizeof(struct conf_restrict), do_resaddflags },
{ REQ_RESSUBFLAGS, AUTH, sizeof(struct conf_restrict), do_ressubflags },
{ REQ_UNRESTRICT, AUTH, sizeof(struct conf_restrict), do_unrestrict },
{ REQ_MON_GETLIST, NOAUTH, 0, mon_getlist_0 },
{ REQ_MON_GETLIST_1, NOAUTH, 0, mon_getlist_1 },
{ REQ_RESET_STATS, AUTH, sizeof(struct reset_flags), reset_stats },
{ REQ_RESET_PEER, AUTH, sizeof(struct conf_unpeer), reset_peer },
{ REQ_REREAD_KEYS, AUTH, 0, do_key_reread },
{ REQ_TRUSTKEY, AUTH, sizeof(u_int32), trust_key },
{ REQ_UNTRUSTKEY, AUTH, sizeof(u_int32), untrust_key },
{ REQ_AUTHINFO, NOAUTH, 0, get_auth_info },
{ REQ_TRAPS, NOAUTH, 0, req_get_traps },
{ REQ_ADD_TRAP, AUTH, sizeof(struct conf_trap), req_set_trap },
{ REQ_CLR_TRAP, AUTH, sizeof(struct conf_trap), req_clr_trap },
{ REQ_REQUEST_KEY, AUTH, sizeof(u_int32), set_request_keyid },
{ REQ_CONTROL_KEY, AUTH, sizeof(u_int32), set_control_keyid },
{ REQ_GET_CTLSTATS, NOAUTH, 0, get_ctl_stats },
{ REQ_GET_LEAPINFO, NOAUTH, 0, get_leap_info },
#ifdef KERNEL_PLL
{ REQ_GET_KERNEL, NOAUTH, 0, get_kernel_info },
#endif
#ifdef REFCLOCK
{ REQ_GET_CLOCKINFO, NOAUTH, sizeof(u_int32), get_clock_info },
{ REQ_SET_CLKFUDGE, AUTH, sizeof(struct conf_fudge), set_clock_fudge },
{ REQ_GET_CLKBUGINFO, NOAUTH, sizeof(u_int32), get_clkbug_info },
#endif
{ NO_REQUEST, NOAUTH, 0, 0 }
};
/*
* Authentication keyid used to authenticate requests. Zero means we
* don't allow writing anything.
*/
u_int32 info_auth_keyid;
/*
* Statistic counters to keep track of requests and responses.
*/
u_long numrequests; /* number of requests we've received */
u_long numresppkts; /* number of resp packets sent with data */
u_long errorcounter[INFO_ERR_AUTH+1]; /* lazy way to count errors, indexed */
/* by the error code */
/*
* Imported from the I/O module
*/
extern struct interface *any_interface;
/*
* Imported from the main routines
*/
extern int debug;
/*
* Imported from the timer module
*/
extern u_long current_time;
/*
* Imported from ntp_loopfilter.c
*/
extern int pll_control;
extern int pll_enable;
extern int pps_control;
extern int pps_enable;
/*
* Imported from ntp_monitor.c
*/
extern int mon_enabled;
/*
* Imported from ntp_util.c
*/
extern int stats_control;
extern struct peer *peer_hash[];
extern struct peer *sys_peer;
#ifdef NTP_SYSCALLS_STD
# ifdef DECL_SYSCALL
extern int syscall P((int, void *, ...));
# endif /* DECL_SYSCALL */
#endif /* NTP_SYSCALLS_STD */
/*
* A hack. To keep the authentication module clear of xntp-ism's, we
* include a time reset variable for its stats here.
*/
static u_long auth_timereset;
/*
* Response packet used by these routines. Also some state information
* so that we can handle packet formatting within a common set of
* subroutines. Note we try to enter data in place whenever possible,
* but the need to set the more bit correctly means we occasionally
* use the extra buffer and copy.
*/
static struct resp_pkt rpkt;
static int seqno;
static int nitems;
static int itemsize;
static int databytes;
static char exbuf[RESP_DATA_SIZE];
static int usingexbuf;
static struct sockaddr_in *toaddr;
static struct interface *frominter;
/*
* init_request - initialize request data
*/
void
init_request()
{
int i;
numrequests = 0;
numresppkts = 0;
auth_timereset = 0;
info_auth_keyid = 0; /* by default, can't do this */
for (i = 0; i < sizeof(errorcounter)/sizeof(errorcounter[0]); i++)
errorcounter[i] = 0;
}
/*
* req_ack - acknowledge request with no data
*/
static void
req_ack(srcadr, inter, inpkt, errcode)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
int errcode;
{
/*
* fill in the fields
*/
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0);
rpkt.auth_seq = AUTH_SEQ(0, 0);
rpkt.implementation = inpkt->implementation;
rpkt.request = inpkt->request;
rpkt.err_nitems = ERR_NITEMS(errcode, 0);
rpkt.mbz_itemsize = MBZ_ITEMSIZE(0);
/*
* send packet and bump counters
*/
sendpkt(srcadr, inter, -1, (struct pkt *)&rpkt, RESP_HEADER_SIZE);
errorcounter[errcode]++;
}
/*
* prepare_pkt - prepare response packet for transmission, return pointer
* to storage for data item.
*/
static char *
prepare_pkt(srcadr, inter, pkt, structsize)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *pkt;
u_int structsize;
{
#ifdef DEBUG
if (debug > 3)
printf("request: preparing pkt\n");
#endif
/*
* Fill in the implementation, reqest and itemsize fields
* since these won't change.
*/
rpkt.implementation = pkt->implementation;
rpkt.request = pkt->request;
rpkt.mbz_itemsize = MBZ_ITEMSIZE(structsize);
/*
* Compute the static data needed to carry on.
*/
toaddr = srcadr;
frominter = inter;
seqno = 0;
nitems = 0;
itemsize = structsize;
databytes = 0;
usingexbuf = 0;
/*
* return the beginning of the packet buffer.
*/
return &rpkt.data[0];
}
/*
* more_pkt - return a data pointer for a new item.
*/
static char *
more_pkt()
{
/*
* If we were using the extra buffer, send the packet.
*/
if (usingexbuf) {
#ifdef DEBUG
if (debug > 2)
printf("request: sending pkt\n");
#endif
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, MORE_BIT);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE+databytes);
numresppkts++;
/*
* Copy data out of exbuf into the packet.
*/
memmove(&rpkt.data[0], exbuf, itemsize);
seqno++;
databytes = 0;
nitems = 0;
usingexbuf = 0;
}
databytes += itemsize;
nitems++;
if (databytes + itemsize <= RESP_DATA_SIZE) {
#ifdef DEBUG
if (debug > 3)
printf("request: giving him more data\n");
#endif
/*
* More room in packet. Give him the
* next address.
*/
return &rpkt.data[databytes];
} else {
/*
* No room in packet. Give him the extra
* buffer unless this was the last in the sequence.
*/
#ifdef DEBUG
if (debug > 3)
printf("request: into extra buffer\n");
#endif
if (seqno == MAXSEQ)
return (char *)0;
else {
usingexbuf = 1;
return exbuf;
}
}
}
/*
* flush_pkt - we're done, return remaining information.
*/
static void
flush_pkt()
{
#ifdef DEBUG
if (debug > 2)
printf("request: flushing packet, %d items\n", nitems);
#endif
/*
* Must send the last packet. If nothing in here and nothing
* has been sent, send an error saying no data to be found.
*/
if (seqno == 0 && nitems == 0)
req_ack(toaddr, frominter, (struct req_pkt *)&rpkt,
INFO_ERR_NODATA);
else {
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE+databytes);
numresppkts++;
}
}
/*
* process_private - process private mode (7) packets
*/
void
process_private(rbufp, mod_okay)
struct recvbuf *rbufp;
int mod_okay;
{
struct req_pkt *inpkt;
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_proc *proc;
/*
* Initialize pointers, for convenience
*/
inpkt = (struct req_pkt *)&rbufp->recv_pkt;
srcadr = &rbufp->recv_srcadr;
inter = rbufp->dstadr;
#ifdef DEBUG
if (debug > 2)
printf("prepare_pkt: impl %d req %d\n",
inpkt->implementation, inpkt->request);
#endif
/*
* Do some sanity checks on the packet. Return a format
* error if it fails.
*/
if (ISRESPONSE(inpkt->rm_vn_mode)
|| ISMORE(inpkt->rm_vn_mode)
|| INFO_VERSION(inpkt->rm_vn_mode) > NTP_VERSION
|| INFO_VERSION(inpkt->rm_vn_mode) < NTP_OLDVERSION
|| INFO_SEQ(inpkt->auth_seq) != 0
|| INFO_ERR(inpkt->err_nitems) != 0
|| INFO_MBZ(inpkt->mbz_itemsize) != 0
|| rbufp->recv_length > REQ_LEN_MAC
|| rbufp->recv_length < REQ_LEN_NOMAC) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Get the appropriate procedure list to search.
*/
if (inpkt->implementation == IMPL_UNIV)
proc = univ_codes;
else if (inpkt->implementation == IMPL_XNTPD)
proc = xntp_codes;
else {
req_ack(srcadr, inter, inpkt, INFO_ERR_IMPL);
return;
}
/*
* Search the list for the request codes. If it isn't one
* we know, return an error.
*/
while (proc->request_code != NO_REQUEST) {
if (proc->request_code == (short) inpkt->request)
break;
proc++;
}
if (proc->request_code == NO_REQUEST) {
req_ack(srcadr, inter, inpkt, INFO_ERR_REQ);
return;
}
#ifdef DEBUG
if (debug > 3)
printf("found request in tables\n");
#endif
/*
* If we need to authenticate, do so. Note that an
* authenticatable packet must include a mac field, must
* have used key info_auth_keyid and must have included
* a time stamp in the appropriate field. The time stamp
* must be within INFO_TS_MAXSKEW of the receive
* time stamp.
*/
if (proc->needs_auth) {
l_fp ftmp;
/*
* If this guy is restricted from doing this, don't let him
* If wrong key was used, or packet doesn't have mac, return.
*/
if (!INFO_IS_AUTH(inpkt->auth_seq) || info_auth_keyid == 0
|| ntohl(inpkt->keyid) != info_auth_keyid) {
#ifdef DEBUG
if (debug > 4)
printf("failed auth %d info_auth_keyid %lu pkt keyid %lu\n",
INFO_IS_AUTH(inpkt->auth_seq),
(u_long)info_auth_keyid,
(u_long)ntohl(inpkt->keyid));
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
if (rbufp->recv_length > REQ_LEN_MAC) {
#ifdef DEBUG
if (debug > 4)
printf("bad pkt length %d\n",
rbufp->recv_length);
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (!mod_okay || !authhavekey(info_auth_keyid)) {
#ifdef DEBUG
if (debug > 4)
printf("failed auth mod_okay %d\n", mod_okay);
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* calculate absolute time difference between xmit time stamp
* and receive time stamp. If too large, too bad.
*/
NTOHL_FP(&inpkt->tstamp, &ftmp);
L_SUB(&ftmp, &rbufp->recv_time);
if (L_ISNEG(&ftmp))
L_NEG(&ftmp);
if (ftmp.l_ui >= INFO_TS_MAXSKEW_UI) {
/*
* He's a loser. Tell him.
*/
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* So far so good. See if decryption works out okay.
*/
if (!authdecrypt(info_auth_keyid, (u_int32 *)inpkt,
REQ_LEN_NOMAC)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
}
/*
* If we need data, check to see if we have some. If we
* don't, check to see that there is none (picky, picky).
*/
if (INFO_ITEMSIZE(inpkt->mbz_itemsize) != proc->sizeofitem) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (proc->sizeofitem != 0)
if (proc->sizeofitem*INFO_NITEMS(inpkt->err_nitems)
> sizeof(inpkt->data)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
#ifdef DEBUG
if (debug > 3)
printf("process_private: all okay, into handler\n");
#endif
/*
* Packet is okay. Call the handler to send him data.
*/
(proc->handler)(srcadr, inter, inpkt);
}
/*
* peer_list - send a list of the peers
*/
static void
peer_list(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_peer_list *ip;
register struct peer *pp;
register int i;
ip = (struct info_peer_list *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_list));
for (i = 0; i < HASH_SIZE && ip != 0; i++) {
pp = peer_hash[i];
while (pp != 0 && ip != 0) {
ip->address = pp->srcadr.sin_addr.s_addr;
ip->port = pp->srcadr.sin_port;
ip->hmode = pp->hmode;
ip->flags = 0;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->candidate != 0)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->select != 0)
ip->flags |= INFO_FLAG_SHORTLIST;
ip = (struct info_peer_list *)more_pkt();
pp = pp->next;
}
}
flush_pkt();
}
/*
* peer_list_sum - return extended peer list
*/
static void
peer_list_sum(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_peer_summary *ips;
register struct peer *pp;
register int i;
#ifdef DEBUG
if (debug > 2)
printf("wants peer list summary\n");
#endif
ips = (struct info_peer_summary *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_summary));
for (i = 0; i < HASH_SIZE && ips != 0; i++) {
pp = peer_hash[i];
while (pp != 0 && ips != 0) {
#ifdef DEBUG
if (debug > 3)
printf("sum: got one\n");
#endif
ips->dstadr = (pp->processed) ?
pp->cast_flags == MDF_BCAST ?
pp->dstadr->bcast.sin_addr.s_addr:
pp->cast_flags ?
pp->dstadr->sin.sin_addr.s_addr ?
pp->dstadr->sin.sin_addr.s_addr:
pp->dstadr->bcast.sin_addr.s_addr:
1 : 5;
ips->srcadr = pp->srcadr.sin_addr.s_addr;
ips->srcport = pp->srcadr.sin_port;
ips->stratum = pp->stratum;
ips->hpoll = pp->hpoll;
ips->ppoll = pp->ppoll;
ips->reach = pp->reach;
ips->flags = 0;
if (pp == sys_peer)
ips->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ips->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ips->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ips->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ips->flags |= INFO_FLAG_PREFER;
if (pp->candidate != 0)
ips->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->select != 0)
ips->flags |= INFO_FLAG_SHORTLIST;
ips->hmode = pp->hmode;
ips->delay = HTONS_FP(pp->delay);
HTONL_FP(&pp->offset, &ips->offset);
ips->dispersion = HTONS_FP(pp->dispersion);
pp = pp->next;
ips = (struct info_peer_summary *)more_pkt();
}
}
flush_pkt();
}
/*
* peer_info - send information for one or more peers
*/
static void
peer_info (srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_peer_list *ipl;
register struct peer *pp;
register struct info_peer *ip;
register int items;
register int i, j;
struct sockaddr_in addr;
extern struct peer *sys_peer;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
items = INFO_NITEMS(inpkt->err_nitems);
ipl = (struct info_peer_list *) inpkt->data;
ip = (struct info_peer *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer));
while (items-- > 0 && ip != 0) {
addr.sin_port = ipl->port;
addr.sin_addr.s_addr = ipl->address;
ipl++;
if ((pp = findexistingpeer(&addr, (struct peer *)0)) == 0)
continue;
ip->dstadr = (pp->processed) ?
pp->cast_flags == MDF_BCAST ?
pp->dstadr->bcast.sin_addr.s_addr:
pp->cast_flags ?
pp->dstadr->sin.sin_addr.s_addr ?
pp->dstadr->sin.sin_addr.s_addr:
pp->dstadr->bcast.sin_addr.s_addr:
2 : 6;
ip->srcadr = NSRCADR(&pp->srcadr);
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ip->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->candidate != 0)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->select != 0)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->leap = pp->leap;
ip->hmode = pp->hmode;
ip->keyid = pp->keyid;
ip->pkeyid = pp->pkeyid;
ip->stratum = pp->stratum;
ip->ppoll = pp->ppoll;
ip->hpoll = pp->hpoll;
ip->precision = pp->precision;
ip->version = pp->version;
ip->valid = pp->valid;
ip->reach = pp->reach;
ip->unreach = pp->unreach;
ip->flash = pp->flash;
ip->estbdelay = HTONS_FP(pp->estbdelay);
ip->ttl = pp->ttl;
ip->associd = htons(pp->associd);
ip->rootdelay = HTONS_FP(pp->rootdelay);
ip->rootdispersion = HTONS_FP(pp->rootdispersion);
ip->refid = pp->refid;
ip->timer = htonl((u_int32)(pp->event_timer.event_time - current_time));
HTONL_FP(&pp->reftime, &ip->reftime);
HTONL_FP(&pp->org, &ip->org);
HTONL_FP(&pp->rec, &ip->rec);
HTONL_FP(&pp->xmt, &ip->xmt);
j = pp->filter_nextpt - 1;
for (i = 0; i < NTP_SHIFT; i++, j--) {
if (j < 0)
j = NTP_SHIFT-1;
ip->filtdelay[i] = HTONS_FP(pp->filter_delay[j]);
HTONL_FP(&pp->filter_offset[j], &ip->filtoffset[i]);
ip->order[i] = (pp->filter_nextpt+NTP_SHIFT-1)
- pp->filter_order[i];
if (ip->order[i] >= NTP_SHIFT)
ip->order[i] -= NTP_SHIFT;
}
HTONL_FP(&pp->offset, &ip->offset);
ip->delay = HTONS_FP(pp->delay);
ip->dispersion = HTONS_FP(pp->dispersion);
ip->selectdisp = HTONS_FP(pp->selectdisp);
ip = (struct info_peer *)more_pkt();
}
flush_pkt();
}
/*
* peer_stats - send statistics for one or more peers
*/
static void
peer_stats (srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_peer_list *ipl;
register struct peer *pp;
register struct info_peer_stats *ip;
register int items;
struct sockaddr_in addr;
extern struct peer *sys_peer;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
items = INFO_NITEMS(inpkt->err_nitems);
ipl = (struct info_peer_list *) inpkt->data;
ip = (struct info_peer_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_peer_stats));
while (items-- > 0 && ip != 0) {
addr.sin_port = ipl->port;
addr.sin_addr.s_addr = ipl->address;
ipl++;
if ((pp = findexistingpeer(&addr, (struct peer *)0)) == 0)
continue;
ip->dstadr = (pp->processed) ?
pp->cast_flags == MDF_BCAST ?
pp->dstadr->bcast.sin_addr.s_addr:
pp->cast_flags ?
pp->dstadr->sin.sin_addr.s_addr ?
pp->dstadr->sin.sin_addr.s_addr:
pp->dstadr->bcast.sin_addr.s_addr:
3 : 7;
ip->srcadr = NSRCADR(&pp->srcadr);
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_AUTHENABLE)
ip->flags |= INFO_FLAG_AUTHENABLE;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->candidate != 0)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->select != 0)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->timereceived = htonl((u_int32)(current_time - pp->timereceived));
ip->timetosend
= htonl((u_int32)(pp->event_timer.event_time - current_time));
ip->timereachable = htonl((u_int32)(current_time - pp->timereachable));
ip->sent = htonl((u_int32)pp->sent);
ip->processed = htonl((u_int32)pp->processed);
ip->badauth = htonl((u_int32)pp->badauth);
ip->bogusorg = htonl((u_int32)pp->bogusorg);
ip->oldpkt = htonl((u_int32)pp->oldpkt);
ip->seldisp = htonl((u_int32)pp->seldisptoolarge);
ip->selbroken = htonl((u_int32)pp->selbroken);
ip->candidate = pp->candidate;
ip = (struct info_peer_stats *)more_pkt();
}
flush_pkt();
}
/*
* sys_info - return system info
*/
static void
sys_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_sys *is;
/*
* Importations from the protocol module
*/
extern u_char sys_leap;
extern u_char sys_stratum;
extern s_char sys_precision;
extern s_fp sys_rootdelay;
extern u_fp sys_rootdispersion;
extern u_int32 sys_refid;
extern l_fp sys_reftime;
extern u_char sys_poll;
extern struct peer *sys_peer;
extern int sys_bclient;
extern s_fp sys_bdelay;
extern int sys_authenticate;
extern l_fp sys_authdelay;
extern u_fp clock_stability;
extern s_fp clock_frequency;
is = (struct info_sys *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_sys));
if (sys_peer != 0) {
is->peer = NSRCADR(&sys_peer->srcadr);
is->peer_mode = sys_peer->hmode;
} else {
is->peer = 0;
is->peer_mode = 0;
}
is->leap = sys_leap;
is->stratum = sys_stratum;
is->precision = sys_precision;
is->rootdelay = htonl(sys_rootdelay);
is->rootdispersion = htonl(sys_rootdispersion);
is->frequency = htonl(clock_frequency);
is->stability = htonl(clock_stability);
is->refid = sys_refid;
HTONL_FP(&sys_reftime, &is->reftime);
is->poll = sys_poll;
is->flags = 0;
if (sys_bclient)
is->flags |= INFO_FLAG_BCLIENT;
if (sys_authenticate)
is->flags |= INFO_FLAG_AUTHENTICATE;
if (pll_enable)
is->flags |= INFO_FLAG_PLL;
if (pps_enable)
is->flags |= INFO_FLAG_PPS;
if (pll_control)
is->flags |= INFO_FLAG_PLL_SYNC;
if (pps_control)
is->flags |= INFO_FLAG_PPS_SYNC;
if (mon_enabled != MON_OFF)
is->flags |= INFO_FLAG_MONITOR;
if (stats_control)
is->flags |= INFO_FLAG_FILEGEN;
is->bdelay = HTONS_FP(sys_bdelay);
HTONL_UF(sys_authdelay.l_f, &is->authdelay);
(void) more_pkt();
flush_pkt();
}
/*
* sys_stats - return system statistics
*/
static void
sys_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_sys_stats *ss;
/*
* Importations from the protocol module
*/
extern u_long sys_stattime;
extern u_long sys_badstratum;
extern u_long sys_oldversionpkt;
extern u_long sys_newversionpkt;
extern u_long sys_unknownversion;
extern u_long sys_badlength;
extern u_long sys_processed;
extern u_long sys_badauth;
extern u_long sys_limitrejected;
ss = (struct info_sys_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_sys_stats));
ss->timeup = htonl((u_int32)current_time);
ss->timereset = htonl((u_int32)(current_time - sys_stattime));
ss->badstratum = htonl((u_int32)sys_badstratum);
ss->oldversionpkt = htonl((u_int32)sys_oldversionpkt);
ss->newversionpkt = htonl((u_int32)sys_newversionpkt);
ss->unknownversion = htonl((u_int32)sys_unknownversion);
ss->badlength = htonl((u_int32)sys_badlength);
ss->processed = htonl((u_int32)sys_processed);
ss->badauth = htonl((u_int32)sys_badauth);
ss->limitrejected = htonl((u_int32)sys_limitrejected);
(void) more_pkt();
flush_pkt();
}
/*
* mem_stats - return memory statistics
*/
static void
mem_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_mem_stats *ms;
register int i;
/*
* Importations from the peer module
*/
extern int peer_hash_count[HASH_SIZE];
extern int peer_free_count;
extern u_long peer_timereset;
extern u_long findpeer_calls;
extern u_long peer_allocations;
extern u_long peer_demobilizations;
extern int total_peer_structs;
ms = (struct info_mem_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_mem_stats));
ms->timereset = htonl((u_int32)(current_time - peer_timereset));
ms->totalpeermem = htons((u_short)total_peer_structs);
ms->freepeermem = htons((u_short)peer_free_count);
ms->findpeer_calls = htonl((u_int32)findpeer_calls);
ms->allocations = htonl((u_int32)peer_allocations);
ms->demobilizations = htonl((u_int32)peer_demobilizations);
for (i = 0; i < HASH_SIZE; i++) {
if (peer_hash_count[i] > 255)
ms->hashcount[i] = 255;
else
ms->hashcount[i] = (u_char)peer_hash_count[i];
}
(void) more_pkt();
flush_pkt();
}
/*
* io_stats - return io statistics
*/
static void
io_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_io_stats *io;
/*
* Importations from the io module
*/
extern u_long io_timereset;
volatile extern u_long full_recvbufs;
volatile extern u_long free_recvbufs;
extern u_long total_recvbufs;
extern u_long lowater_additions;
volatile extern u_long packets_dropped;
volatile extern u_long packets_ignored;
volatile extern u_long packets_received;
extern u_long packets_sent;
extern u_long packets_notsent;
volatile extern u_long handler_calls;
volatile extern u_long handler_pkts;
io = (struct info_io_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_io_stats));
io->timereset = htonl((u_int32)(current_time - io_timereset));
io->totalrecvbufs = htons((u_short) total_recvbufs);
io->freerecvbufs = htons((u_short) free_recvbufs);
io->fullrecvbufs = htons((u_short) full_recvbufs);
io->lowwater = htons((u_short) lowater_additions);
io->dropped = htonl((u_int32)packets_dropped);
io->ignored = htonl((u_int32)packets_ignored);
io->received = htonl((u_int32)packets_received);
io->sent = htonl((u_int32)packets_sent);
io->notsent = htonl((u_int32)packets_notsent);
io->interrupts = htonl((u_int32)handler_calls);
io->int_received = htonl((u_int32)handler_pkts);
(void) more_pkt();
flush_pkt();
}
/*
* timer_stats - return timer statistics
*/
static void
timer_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_timer_stats *ts;
/*
* Importations from the timer module
*/
extern u_long alarm_overflow;
extern u_long timer_timereset;
extern u_long timer_overflows;
extern u_long timer_xmtcalls;
ts = (struct info_timer_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_timer_stats));
ts->timereset = htonl((u_int32)(current_time - timer_timereset));
ts->alarms = htonl((u_int32)alarm_overflow);
ts->overflows = htonl((u_int32)timer_overflows);
ts->xmtcalls = htonl((u_int32)timer_xmtcalls);
(void) more_pkt();
flush_pkt();
}
/*
* loop_info - return the current state of the loop filter
*/
static void
loop_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_loop *li;
l_fp tmp;
/*
* Importations from the loop filter module
*/
extern l_fp last_offset;
extern s_fp drift_comp;
extern int tc_counter;
extern u_long last_time;
li = (struct info_loop *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_loop));
HTONL_FP(&last_offset, &li->last_offset);
FPTOLFP(drift_comp, &tmp);
HTONL_FP(&tmp, &li->drift_comp);
li->compliance = htonl((u_int32)tc_counter);
li->watchdog_timer = htonl((u_int32)(current_time - last_time));
(void) more_pkt();
flush_pkt();
}
/*
* do_conf - add a peer to the configuration list
*/
static void
do_conf(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct conf_peer *cp;
register int items;
struct sockaddr_in peeraddr;
int fl;
/*
* Do a check of everything to see that it looks
* okay. If not, complain about it. Note we are
* very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_peer *)inpkt->data;
fl = 0;
while (items-- > 0 && !fl) {
if (cp->version > NTP_VERSION
|| cp->version < NTP_OLDVERSION)
fl = 1;
if (cp->hmode != MODE_ACTIVE
&& cp->hmode != MODE_CLIENT
&& cp->hmode != MODE_BROADCAST)
fl = 1;
if (cp->flags & ~(CONF_FLAG_AUTHENABLE | CONF_FLAG_PREFER))
fl = 1;
cp++;
}
if (fl) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Looks okay, try it out
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_peer *)inpkt->data;
memset((char *)&peeraddr, 0, sizeof(struct sockaddr_in));
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
/*
* Make sure the address is valid
*/
#ifdef REFCLOCK
if (!ISREFCLOCKADR(&peeraddr) && ISBADADR(&peeraddr)) {
#else
if (ISBADADR(&peeraddr)) {
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
while (items-- > 0) {
fl = 0;
if (cp->flags & CONF_FLAG_AUTHENABLE)
fl |= FLAG_AUTHENABLE;
if (cp->flags & CONF_FLAG_PREFER)
fl |= FLAG_PREFER;
peeraddr.sin_addr.s_addr = cp->peeraddr;
/* XXX W2DO? minpoll/maxpoll arguments ??? */
if (peer_config(&peeraddr, (struct interface *)0,
cp->hmode, cp->version, cp->minpoll, cp->maxpoll,
fl, cp->ttl, cp->keyid) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_unconf - remove a peer from the configuration list
*/
static void
do_unconf(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct conf_unpeer *cp;
register int items;
register struct peer *peer;
struct sockaddr_in peeraddr;
int bad, found;
/*
* This is a bit unstructured, but I like to be careful.
* We check to see that every peer exists and is actually
* configured. If so, we remove them. If not, we return
* an error.
*/
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
found = 0;
peer = (struct peer *)0;
while (!found) {
peer = findexistingpeer(&peeraddr, peer);
if (peer == (struct peer *)0)
break;
if (peer->flags & FLAG_CONFIG)
found = 1;
}
if (!found)
bad = 1;
cp++;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/*
* Now do it in earnest.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
while (items-- > 0) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer_unconfig(&peeraddr, (struct interface *)0);
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_sys_flag - set system flags
*/
static void
set_sys_flag(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
setclr_flags(srcadr, inter, inpkt, 1);
}
/*
* clr_sys_flag - clear system flags
*/
static void
clr_sys_flag(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
setclr_flags(srcadr, inter, inpkt, 0);
}
/*
* setclr_flags - do the grunge work of flag setting/clearing
*/
static void
setclr_flags(srcadr, inter, inpkt, set)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
u_long set;
{
register u_long flags;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
flags = ((struct conf_sys_flags *)inpkt->data)->flags;
if (flags & ~(SYS_FLAG_BCLIENT | SYS_FLAG_AUTHENTICATE |
SYS_FLAG_PLL | SYS_FLAG_PPS | SYS_FLAG_MONITOR |
SYS_FLAG_FILEGEN)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (flags & SYS_FLAG_BCLIENT)
proto_config(PROTO_BROADCLIENT, set);
if (flags & SYS_FLAG_AUTHENTICATE)
proto_config(PROTO_AUTHENTICATE, set);
if (flags & SYS_FLAG_PLL)
proto_config(PROTO_PLL, set);
if (flags & SYS_FLAG_PPS)
proto_config(PROTO_PPS, set);
if (flags & SYS_FLAG_MONITOR)
proto_config(PROTO_MONITOR, set);
if (flags & SYS_FLAG_FILEGEN)
proto_config(PROTO_FILEGEN, set);
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* list_restrict - return the restrict list
*/
static void
list_restrict(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_restrict *ir;
register struct restrictlist *rl;
extern struct restrictlist *restrictlist;
#ifdef DEBUG
if (debug > 2)
printf("wants peer list summary\n");
#endif
ir = (struct info_restrict *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_restrict));
for (rl = restrictlist; rl != 0 && ir != 0; rl = rl->next) {
ir->addr = htonl(rl->addr);
ir->mask = htonl(rl->mask);
ir->count = htonl((u_int32)rl->count);
ir->flags = htons(rl->flags);
ir->mflags = htons(rl->mflags);
ir = (struct info_restrict *)more_pkt();
}
flush_pkt();
}
/*
* do_resaddflags - add flags to a restrict entry (or create one)
*/
static void
do_resaddflags(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_restrict(srcadr, inter, inpkt, RESTRICT_FLAGS);
}
/*
* do_ressubflags - remove flags from a restrict entry
*/
static void
do_ressubflags(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_restrict(srcadr, inter, inpkt, RESTRICT_UNFLAG);
}
/*
* do_unrestrict - remove a restrict entry from the list
*/
static void
do_unrestrict(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_restrict(srcadr, inter, inpkt, RESTRICT_REMOVE);
}
/*
* do_restrict - do the dirty stuff of dealing with restrictions
*/
static void
do_restrict(srcadr, inter, inpkt, op)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
int op;
{
register struct conf_restrict *cr;
register int items;
struct sockaddr_in matchaddr;
struct sockaddr_in matchmask;
int bad;
/*
* Do a check of the flags to make sure that only
* the NTPPORT flag is set, if any. If not, complain
* about it. Note we are very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cr = (struct conf_restrict *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
if (cr->mflags & ~(RESM_NTPONLY))
bad = 1;
if (cr->flags & ~(RES_ALLFLAGS))
bad = 1;
if (cr->addr == htonl(INADDR_ANY) && cr->mask != htonl(INADDR_ANY))
bad = 1;
cr++;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Looks okay, try it out
*/
items = INFO_NITEMS(inpkt->err_nitems);
cr = (struct conf_restrict *)inpkt->data;
memset((char *)&matchaddr, 0, sizeof(struct sockaddr_in));
memset((char *)&matchmask, 0, sizeof(struct sockaddr_in));
matchaddr.sin_family = AF_INET;
matchmask.sin_family = AF_INET;
while (items-- > 0) {
matchaddr.sin_addr.s_addr = cr->addr;
matchmask.sin_addr.s_addr = cr->mask;
hack_restrict(op, &matchaddr, &matchmask, cr->mflags,
cr->flags);
cr++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* mon_getlist - return monitor data
*/
static void
mon_getlist_0(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_monitor *im;
register struct mon_data *md;
extern struct mon_data mon_mru_list;
extern int mon_enabled;
#ifdef DEBUG
if (debug > 2)
printf("wants monitor 0 list\n");
#endif
if (!mon_enabled) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
im = (struct info_monitor *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_monitor));
for (md = mon_mru_list.mru_next; md != &mon_mru_list && im != 0;
md = md->mru_next) {
im->lasttime = htonl((u_int32)(current_time - md->lasttime));
im->firsttime = htonl((u_int32)(current_time - md->firsttime));
if (md->lastdrop)
im->lastdrop = htonl((u_int32)(current_time - md->lastdrop));
else
im->lastdrop = 0;
im->count = htonl((u_int32)md->count);
im->addr = md->rmtadr;
im->port = md->rmtport;
im->mode = md->mode;
im->version = md->version;
im = (struct info_monitor *)more_pkt();
}
flush_pkt();
}
/*
* mon_getlist - return monitor data
*/
static void
mon_getlist_1(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_monitor_1 *im;
register struct mon_data *md;
extern struct mon_data mon_mru_list;
extern int mon_enabled;
#ifdef DEBUG
if (debug > 2)
printf("wants monitor 1 list\n");
#endif
if (!mon_enabled) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
im = (struct info_monitor_1 *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_monitor_1));
for (md = mon_mru_list.mru_next; md != &mon_mru_list && im != 0;
md = md->mru_next) {
im->lasttime = htonl((u_int32)(current_time - md->lasttime));
im->firsttime = htonl((u_int32)(current_time - md->firsttime));
if (md->lastdrop)
im->lastdrop = htonl((u_int32)(current_time - md->lastdrop));
else
im->lastdrop = 0;
im->count = htonl((u_int32)md->count);
im->addr = md->rmtadr;
im->daddr =
(md->cast_flags == MDF_BCAST)
? md->interface->bcast.sin_addr.s_addr
: (md->cast_flags
? (md->interface->sin.sin_addr.s_addr
? md->interface->sin.sin_addr.s_addr
: md->interface->bcast.sin_addr.s_addr
)
: 4);
im->flags = md->cast_flags;
im->port = md->rmtport;
im->mode = md->mode;
im->version = md->version;
im = (struct info_monitor_1 *)more_pkt();
}
flush_pkt();
}
/*
* Module entry points and the flags they correspond with
*/
struct reset_entry {
int flag; /* flag this corresponds to */
void (*handler) P((void)); /* routine to handle request */
};
struct reset_entry reset_entries[] = {
{ RESET_FLAG_ALLPEERS, peer_all_reset },
{ RESET_FLAG_IO, io_clr_stats },
{ RESET_FLAG_SYS, proto_clr_stats },
{ RESET_FLAG_MEM, peer_clr_stats },
{ RESET_FLAG_TIMER, timer_clr_stats },
{ RESET_FLAG_AUTH, reset_auth_stats },
{ RESET_FLAG_CTL, ctl_clr_stats },
{ 0, 0 }
};
/*
* reset_stats - reset statistic counters here and there
*/
static void
reset_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
u_long flags;
struct reset_entry *rent;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
flags = ((struct reset_flags *)inpkt->data)->flags;
if (flags & ~RESET_ALLFLAGS) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
for (rent = reset_entries; rent->flag != 0; rent++) {
if (flags & rent->flag)
(rent->handler)();
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* reset_peer - clear a peer's statistics
*/
static void
reset_peer(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct conf_unpeer *cp;
register int items;
register struct peer *peer;
struct sockaddr_in peeraddr;
int bad;
/*
* We check first to see that every peer exists. If not,
* we return an error.
*/
peeraddr.sin_family = AF_INET;
peeraddr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
bad = 0;
while (items-- > 0 && !bad) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer = findexistingpeer(&peeraddr, (struct peer *)0);
if (peer == (struct peer *)0)
bad++;
cp++;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/*
* Now do it in earnest.
*/
items = INFO_NITEMS(inpkt->err_nitems);
cp = (struct conf_unpeer *)inpkt->data;
while (items-- > 0) {
peeraddr.sin_addr.s_addr = cp->peeraddr;
peer = findexistingpeer(&peeraddr, (struct peer *)0);
peer_reset(peer);
cp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_key_reread - reread the encryption key file
*/
static void
do_key_reread(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
rereadkeys();
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* trust_key - make one or more keys trusted
*/
static void
trust_key(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_trustkey(srcadr, inter, inpkt, 1);
}
/*
* untrust_key - make one or more keys untrusted
*/
static void
untrust_key(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_trustkey(srcadr, inter, inpkt, 0);
}
/*
* do_trustkey - make keys either trustable or untrustable
*/
static void
do_trustkey(srcadr, inter, inpkt, trust)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
int trust;
{
register u_int32 *kp;
register int items;
items = INFO_NITEMS(inpkt->err_nitems);
kp = (u_int32 *)inpkt->data;
while (items-- > 0) {
authtrust(*kp, trust);
kp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* get_auth_info - return some stats concerning the authentication module
*/
static void
get_auth_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_auth *ia;
/*
* Importations from the authentication module
*/
extern u_long authnumkeys;
extern u_long authnumfreekeys;
extern u_long authkeylookups;
extern u_long authkeynotfound;
extern u_long authencryptions;
extern u_long authdecryptions;
extern u_long authkeyuncached;
ia = (struct info_auth *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_auth));
ia->numkeys = htonl((u_int32)authnumkeys);
ia->numfreekeys = htonl((u_int32)authnumfreekeys);
ia->keylookups = htonl((u_int32)authkeylookups);
ia->keynotfound = htonl((u_int32)authkeynotfound);
ia->encryptions = htonl((u_int32)authencryptions);
ia->decryptions = htonl((u_int32)authdecryptions);
ia->keyuncached = htonl((u_int32)authkeyuncached);
ia->timereset = htonl((u_int32)(current_time - auth_timereset));
(void) more_pkt();
flush_pkt();
}
/*
* reset_auth_stats - reset the authentication stat counters. Done here
* to keep xntp-isms out of the authentication module
*/
static void
reset_auth_stats()
{
/*
* Importations from the authentication module
*/
extern u_long authkeylookups;
extern u_long authkeynotfound;
extern u_long authencryptions;
extern u_long authdecryptions;
extern u_long authkeyuncached;
authkeylookups = 0;
authkeynotfound = 0;
authencryptions = 0;
authdecryptions = 0;
authkeyuncached = 0;
auth_timereset = current_time;
}
/*
* req_get_traps - return information about current trap holders
*/
static void
req_get_traps(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_trap *it;
register struct ctl_trap *tr;
register int i;
/*
* Imported from the control module
*/
extern struct ctl_trap ctl_trap[];
extern int num_ctl_traps;
if (num_ctl_traps == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
it = (struct info_trap *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_trap));
for (i = 0, tr = ctl_trap; i < CTL_MAXTRAPS; i++, tr++) {
if (tr->tr_flags & TRAP_INUSE) {
if (tr->tr_localaddr == any_interface)
it->local_address = 0;
else
it->local_address
= NSRCADR(&tr->tr_localaddr->sin);
it->trap_address = NSRCADR(&tr->tr_addr);
it->trap_port = NSRCPORT(&tr->tr_addr);
it->sequence = htons(tr->tr_sequence);
it->settime = htonl((u_int32)(current_time - tr->tr_settime));
it->origtime = htonl((u_int32)(current_time - tr->tr_origtime));
it->resets = htonl((u_int32)tr->tr_resets);
it->flags = htonl((u_int32)tr->tr_flags);
it = (struct info_trap *)more_pkt();
}
}
flush_pkt();
}
/*
* req_set_trap - configure a trap
*/
static void
req_set_trap(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_setclr_trap(srcadr, inter, inpkt, 1);
}
/*
* req_clr_trap - unconfigure a trap
*/
static void
req_clr_trap(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
do_setclr_trap(srcadr, inter, inpkt, 0);
}
/*
* do_setclr_trap - do the grunge work of (un)configuring a trap
*/
static void
do_setclr_trap(srcadr, inter, inpkt, set)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
int set;
{
register struct conf_trap *ct;
register struct interface *linter;
int res;
struct sockaddr_in laddr;
/*
* Prepare sockaddr_in structure
*/
memset((char *)&laddr, 0, sizeof laddr);
laddr.sin_family = AF_INET;
laddr.sin_port = ntohs(NTP_PORT);
/*
* Restrict ourselves to one item only. This eliminates
* the error reporting problem.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
ct = (struct conf_trap *)inpkt->data;
/*
* Look for the local interface. If none, use the default.
*/
if (ct->local_address == 0) {
linter = any_interface;
} else {
laddr.sin_addr.s_addr = ct->local_address;
linter = findinterface(&laddr);
if (linter == NULL) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
}
laddr.sin_addr.s_addr = ct->trap_address;
if (ct->trap_port != 0)
laddr.sin_port = ct->trap_port;
else
laddr.sin_port = htons(TRAPPORT);
if (set) {
res = ctlsettrap(&laddr, linter, 0,
INFO_VERSION(inpkt->rm_vn_mode));
} else {
res = ctlclrtrap(&laddr, linter, 0);
}
if (!res) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
} else {
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
return;
}
/*
* set_request_keyid - set the keyid used to authenticate requests
*/
static void
set_request_keyid(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
u_int32 keyid;
/*
* Restrict ourselves to one item only.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
keyid = ntohl(*((u_int32 *)(inpkt->data)));
info_auth_keyid = keyid;
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_control_keyid - set the keyid used to authenticate requests
*/
static void
set_control_keyid(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
u_int32 keyid;
extern u_int32 ctl_auth_keyid;
/*
* Restrict ourselves to one item only.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
keyid = ntohl(*((u_int32 *)(inpkt->data)));
ctl_auth_keyid = keyid;
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* get_ctl_stats - return some stats concerning the control message module
*/
static void
get_ctl_stats(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_control *ic;
/*
* Importations from the control module
*/
extern u_long ctltimereset;
extern u_long numctlreq;
extern u_long numctlbadpkts;
extern u_long numctlresponses;
extern u_long numctlfrags;
extern u_long numctlerrors;
extern u_long numctltooshort;
extern u_long numctlinputresp;
extern u_long numctlinputfrag;
extern u_long numctlinputerr;
extern u_long numctlbadoffset;
extern u_long numctlbadversion;
extern u_long numctldatatooshort;
extern u_long numctlbadop;
extern u_long numasyncmsgs;
ic = (struct info_control *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_control));
ic->ctltimereset = htonl((u_int32)(current_time - ctltimereset));
ic->numctlreq = htonl((u_int32)numctlreq);
ic->numctlbadpkts = htonl((u_int32)numctlbadpkts);
ic->numctlresponses = htonl((u_int32)numctlresponses);
ic->numctlfrags = htonl((u_int32)numctlfrags);
ic->numctlerrors = htonl((u_int32)numctlerrors);
ic->numctltooshort = htonl((u_int32)numctltooshort);
ic->numctlinputresp = htonl((u_int32)numctlinputresp);
ic->numctlinputfrag = htonl((u_int32)numctlinputfrag);
ic->numctlinputerr = htonl((u_int32)numctlinputerr);
ic->numctlbadoffset = htonl((u_int32)numctlbadoffset);
ic->numctlbadversion = htonl((u_int32)numctlbadversion);
ic->numctldatatooshort = htonl((u_int32)numctldatatooshort);
ic->numctlbadop = htonl((u_int32)numctlbadop);
ic->numasyncmsgs = htonl((u_int32)numasyncmsgs);
(void) more_pkt();
flush_pkt();
}
/*
* get_leap_info - return some stats concerning the control message module
*/
static void
get_leap_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_leap *il;
/*
* Imported from the protocol module
*/
extern u_char sys_leap;
/*
* Importations from the leap module
*/
extern u_char leap_indicator;
extern u_char leap_warning;
extern u_char leapbits;
extern u_long leap_timer;
extern u_long leap_processcalls;
extern u_long leap_notclose;
extern u_long leap_monthofleap;
extern u_long leap_dayofleap;
extern u_long leap_hoursfromleap;
extern u_long leap_happened;
il = (struct info_leap *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_leap));
il->sys_leap = sys_leap;
il->leap_indicator = leap_indicator;
il->leap_warning = leap_warning;
il->leap_bits = (leapbits & INFO_LEAP_MASK)
| ((leap_indicator != LEAP_NOWARNING) ? INFO_LEAP_OVERRIDE : 0);
il->leap_timer = htonl((u_int32)(leap_timer - current_time));
il->leap_processcalls = htonl((u_int32)leap_processcalls);
il->leap_notclose = htonl((u_int32)leap_notclose);
il->leap_monthofleap = htonl((u_int32)leap_monthofleap);
il->leap_dayofleap = htonl((u_int32)leap_dayofleap);
il->leap_hoursfromleap = htonl((u_int32)leap_hoursfromleap);
il->leap_happened = htonl((u_int32)leap_happened);
(void) more_pkt();
flush_pkt();
}
#ifdef KERNEL_PLL
/*
* get_kernel_info - get kernel pll/pps information
*/
static void
get_kernel_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_kernel *ik;
struct timex ntx;
if (!pll_control) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
memset((char *)&ntx, 0, sizeof(ntx));
if (ntp_adjtime(&ntx) < 0)
{
msyslog(LOG_ERR, "get_kernel_info: ntp_adjtime() failed: %m");
}
ik = (struct info_kernel *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_kernel));
/*
* pll variables
*/
ik->offset = htonl((u_int32)ntx.offset);
ik->freq = htonl((u_int32)ntx.freq);
ik->maxerror = htonl((u_int32)ntx.maxerror);
ik->esterror = htonl((u_int32)ntx.esterror);
ik->status = htons(ntx.status);
ik->constant = htonl((u_int32)ntx.constant);
ik->precision = htonl((u_int32)ntx.precision);
ik->tolerance = htonl((u_int32)ntx.tolerance);
/*
* pps variables
*/
ik->ppsfreq = htonl((u_int32)ntx.ppsfreq);
ik->jitter = htonl((u_int32)ntx.jitter);
ik->shift = htons(ntx.shift);
ik->stabil = htonl((u_int32)ntx.stabil);
ik->jitcnt = htonl((u_int32)ntx.jitcnt);
ik->calcnt = htonl((u_int32)ntx.calcnt);
ik->errcnt = htonl((u_int32)ntx.errcnt);
ik->stbcnt = htonl((u_int32)ntx.stbcnt);
(void) more_pkt();
flush_pkt();
}
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
/*
* get_clock_info - get info about a clock
*/
static void
get_clock_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct info_clock *ic;
register u_int32 *clkaddr;
register int items;
struct refclockstat clock;
struct sockaddr_in addr;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = (u_int32 *) inpkt->data;
ic = (struct info_clock *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clock));
while (items-- > 0) {
addr.sin_addr.s_addr = *clkaddr++;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
clock.kv_list = (struct ctl_var *)0;
refclock_control(&addr, (struct refclockstat *)0, &clock);
ic->clockadr = addr.sin_addr.s_addr;
ic->type = clock.type;
ic->flags = clock.flags;
ic->lastevent = clock.lastevent;
ic->currentstatus = clock.currentstatus;
ic->polls = htonl((u_int32)clock.polls);
ic->noresponse = htonl((u_int32)clock.noresponse);
ic->badformat = htonl((u_int32)clock.badformat);
ic->baddata = htonl((u_int32)clock.baddata);
ic->timestarted = htonl((u_int32)clock.timereset);
HTONL_FP(&clock.fudgetime1, &ic->fudgetime1);
HTONL_FP(&clock.fudgetime2, &ic->fudgetime2);
ic->fudgeval1 = htonl((u_int32)clock.fudgeval1);
ic->fudgeval2 = htonl((u_int32)clock.fudgeval2);
free_varlist(clock.kv_list);
ic = (struct info_clock *)more_pkt();
}
flush_pkt();
}
/*
* set_clock_fudge - get a clock's fudge factors
*/
static void
set_clock_fudge(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register struct conf_fudge *cf;
register int items;
struct refclockstat clock;
struct sockaddr_in addr;
memset((char *)&addr, 0, sizeof addr);
memset((char *)&clock, 0, sizeof clock);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
cf = (struct conf_fudge *) inpkt->data;
while (items-- > 0) {
addr.sin_addr.s_addr = cf->clockadr;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
switch(ntohl(cf->which)) {
case FUDGE_TIME1:
NTOHL_FP(&cf->fudgetime, &clock.fudgetime1);
clock.haveflags = CLK_HAVETIME1;
break;
case FUDGE_TIME2:
NTOHL_FP(&cf->fudgetime, &clock.fudgetime2);
clock.haveflags = CLK_HAVETIME2;
break;
case FUDGE_VAL1:
clock.fudgeval1 = ntohl(cf->fudgeval_flags);
clock.haveflags = CLK_HAVEVAL1;
break;
case FUDGE_VAL2:
clock.fudgeval2 = ntohl(cf->fudgeval_flags);
clock.haveflags = CLK_HAVEVAL2;
break;
case FUDGE_FLAGS:
clock.flags = (u_char) ntohl(cf->fudgeval_flags) & 0xf;
clock.haveflags =
(CLK_HAVEFLAG1|CLK_HAVEFLAG2|CLK_HAVEFLAG3|CLK_HAVEFLAG4);
break;
default:
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
refclock_control(&addr, &clock, (struct refclockstat *)0);
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
#endif
#ifdef REFCLOCK
/*
* get_clkbug_info - get debugging info about a clock
*/
static void
get_clkbug_info(srcadr, inter, inpkt)
struct sockaddr_in *srcadr;
struct interface *inter;
struct req_pkt *inpkt;
{
register int i;
register struct info_clkbug *ic;
register u_int32 *clkaddr;
register int items;
struct refclockbug bug;
struct sockaddr_in addr;
memset((char *)&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons(NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = (u_int32 *) inpkt->data;
ic = (struct info_clkbug *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clkbug));
while (items-- > 0) {
addr.sin_addr.s_addr = *clkaddr++;
if (!ISREFCLOCKADR(&addr) ||
findexistingpeer(&addr, (struct peer *)0) == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
memset((char *)&bug, 0, sizeof bug);
refclock_buginfo(&addr, &bug);
if (bug.nvalues == 0 && bug.ntimes == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
ic->clockadr = addr.sin_addr.s_addr;
i = bug.nvalues;
if (i > NUMCBUGVALUES)
i = NUMCBUGVALUES;
ic->nvalues = (u_char)i;
ic->svalues = htons((u_short) (bug.svalues & ((1<<i)-1)));
while (--i >= 0)
ic->values[i] = htonl(bug.values[i]);
i = bug.ntimes;
if (i > NUMCBUGTIMES)
i = NUMCBUGTIMES;
ic->ntimes = (u_char)i;
ic->stimes = htonl(bug.stimes);
while (--i >= 0) {
HTONL_FP(&bug.times[i], &ic->times[i]);
}
ic = (struct info_clkbug *)more_pkt();
}
flush_pkt();
}
#endif