rc_node.c revision d3186a0ed1990f6e0670c8e5b9b730e73984d3f5
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* rc_node.c - object management primitives
*
* This layer manages entities, their data structure, its locking, iterators,
* transactions, and change notification requests. Entities (scopes,
* services, instances, snapshots, snaplevels, property groups, "composed"
* property groups (see composition below), and properties) are represented by
* rc_node_t's and are kept in the cache_hash hash table. (Property values
* are kept in the rn_values member of the respective property -- not as
* separate objects.) Iterators are represented by rc_node_iter_t's.
* Transactions are represented by rc_node_tx_t's and are only allocated as
* part of repcache_tx_t's in the client layer (client.c). Change
* notification requests are represented by rc_notify_t structures and are
* described below.
*
* The entity tree is rooted at rc_scope, which rc_node_init() initializes to
* the "localhost" scope. The tree is filled in from the database on-demand
* by rc_node_fill_children(), usually from rc_iter_create() since iterators
* are the only way to find the children of an entity.
*
* Each rc_node_t is protected by its rn_lock member. Operations which can
* take too long, however, should serialize on an RC_NODE_WAITING_FLAGS bit in
* rn_flags with the rc_node_{hold,rele}_flag() functions. And since pointers
* to rc_node_t's are allowed, rn_refs is a reference count maintained by
* rc_node_{hold,rele}(). See configd.h for locking order information.
*
* When a node (property group or snapshot) is updated, a new node takes the
* place of the old node in the global hash, and the old node is hung off of
* the rn_former list of the new node. At the same time, all of its children
* have their rn_parent_ref pointer set, and any holds they have are reflected
* in the old node's rn_other_refs count. This is automatically kept up
* to date, until the final reference to the subgraph is dropped, at which
* point the node is unrefed and destroyed, along with all of its children.
*
* Locking rules: To dereference an rc_node_t * (usually to lock it), you must
* have a hold (rc_node_hold()) on it or otherwise be sure that it hasn't been
* rc_node_destroy()ed (hold a lock on its parent or child, hold a flag,
* etc.). Once you have locked an rc_node_t you must check its rn_flags for
* RC_NODE_DEAD before you can use it. This is usually done with the
* rc_node_{wait,hold}_flag() functions (often via the rc_node_check_*()
* functions & RC_NODE_*() macros), which fail if the object has died.
*
* An ITER_START for a non-ENTITY_VALUE induces an rc_node_fill_children()
* call via rc_node_setup_iter() to populate the rn_children uu_list of the
* rc_node_t * in question and a call to uu_list_walk_start() on that list. For
* ITER_READ, rc_iter_next() uses uu_list_walk_next() to find the next
* apropriate child.
*
* An ITER_START for an ENTITY_VALUE makes sure the node has its values
* filled, and sets up the iterator. An ITER_READ_VALUE just copies out
* the proper values and updates the offset information.
*
* When a property group gets changed by a transaction, it sticks around as
* a child of its replacement property group, but is removed from the parent.
*
* To allow aliases, snapshots are implemented with a level of indirection.
* A snapshot rc_node_t has a snapid which refers to an rc_snapshot_t in
* snapshot.c which contains the authoritative snaplevel information. The
* snapid is "assigned" by rc_attach_snapshot().
*
* We provide the client layer with rc_node_ptr_t's to reference objects.
* Objects referred to by them are automatically held & released by
* rc_node_assign() & rc_node_clear(). The RC_NODE_PTR_*() macros are used at
* client.c entry points to read the pointers. They fetch the pointer to the
* object, return (from the function) if it is dead, and lock, hold, or hold
* a flag of the object.
*/
/*
* Permission checking is authorization-based: some operations may only
* proceed if the user has been assigned at least one of a set of
* authorization strings. The set of enabling authorizations depends on the
* operation and the target object. The set of authorizations assigned to
* a user is determined by reading /etc/security/policy.conf, querying the
* user_attr database, and possibly querying the prof_attr database, as per
* chkauthattr() in libsecdb.
*
* The fastest way to decide whether the two sets intersect is by entering the
* strings into a hash table and detecting collisions, which takes linear time
* in the total size of the sets. Except for the authorization patterns which
* may be assigned to users, which without advanced pattern-matching
* algorithms will take O(n) in the number of enabling authorizations, per
* pattern.
*
* We can achieve some practical speed-ups by noting that if we enter all of
* the authorizations from one of the sets into the hash table we can merely
* check the elements of the second set for existence without adding them.
* This reduces memory requirements and hash table clutter. The enabling set
* is well suited for this because it is internal to configd (for now, at
* least). Combine this with short-circuiting and we can even minimize the
* number of queries to the security databases (user_attr & prof_attr).
*
* To force this usage onto clients we provide functions for adding
* authorizations to the enabling set of a permission context structure
* (perm_add_*()) and one to decide whether the the user associated with the
* current door call client possesses any of them (perm_granted()).
*
* At some point, a generic version of this should move to libsecdb.
*/
/*
* Composition is the combination of sets of properties. The sets are ordered
* and properties in higher sets obscure properties of the same name in lower
* sets. Here we present a composed view of an instance's properties as the
* union of its properties and its service's properties. Similarly the
* properties of snaplevels are combined to form a composed view of the
* properties of a snapshot (which should match the composed view of the
* properties of the instance when the snapshot was taken).
*
* In terms of the client interface, the client may request that a property
* group iterator for an instance or snapshot be composed. Property groups
* traversed by such an iterator may not have the target entity as a parent.
* Similarly, the properties traversed by a property iterator for those
* property groups may not have the property groups iterated as parents.
*
* Implementation requires that iterators for instances and snapshots be
* composition-savvy, and that we have a "composed property group" entity
* which represents the composition of a number of property groups. Iteration
* over "composed property groups" yields properties which may have different
* parents, but for all other operations a composed property group behaves
* like the top-most property group it represents.
*
* The implementation is based on the rn_cchain[] array of rc_node_t pointers
* in rc_node_t. For instances, the pointers point to the instance and its
* parent service. For snapshots they point to the child snaplevels, and for
* composed property groups they point to property groups. A composed
* iterator carries an index into rn_cchain[]. Thus most of the magic ends up
* int the rc_iter_*() code.
*/
#include <assert.h>
#include <atomic.h>
#include <errno.h>
#include <libuutil.h>
#include <libscf.h>
#include <libscf_priv.h>
#include <prof_attr.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/types.h>
#include <unistd.h>
#include <user_attr.h>
#include "configd.h"
#define AUTH_PREFIX "solaris.smf."
#define AUTH_MANAGE AUTH_PREFIX "manage"
#define AUTH_MODIFY AUTH_PREFIX "modify"
#define AUTH_MODIFY_PREFIX AUTH_MODIFY "."
#define AUTH_PG_ACTIONS SCF_PG_RESTARTER_ACTIONS
#define AUTH_PG_ACTIONS_TYPE SCF_PG_RESTARTER_ACTIONS_TYPE
#define AUTH_PG_GENERAL SCF_PG_GENERAL
#define AUTH_PG_GENERAL_TYPE SCF_PG_GENERAL_TYPE
#define AUTH_PG_GENERAL_OVR SCF_PG_GENERAL_OVR
#define AUTH_PG_GENERAL_OVR_TYPE SCF_PG_GENERAL_OVR_TYPE
#define AUTH_PROP_ACTION "action_authorization"
#define AUTH_PROP_ENABLED "enabled"
#define AUTH_PROP_MODIFY "modify_authorization"
#define AUTH_PROP_VALUE "value_authorization"
/* libsecdb should take care of this. */
#define RBAC_AUTH_SEP ","
#define MAX_VALID_CHILDREN 3
typedef struct rc_type_info {
uint32_t rt_type; /* matches array index */
uint32_t rt_num_ids;
uint32_t rt_name_flags;
uint32_t rt_valid_children[MAX_VALID_CHILDREN];
} rc_type_info_t;
#define RT_NO_NAME -1U
static rc_type_info_t rc_types[] = {
{REP_PROTOCOL_ENTITY_NONE, 0, RT_NO_NAME},
{REP_PROTOCOL_ENTITY_SCOPE, 0, 0,
{REP_PROTOCOL_ENTITY_SERVICE, REP_PROTOCOL_ENTITY_SCOPE}},
{REP_PROTOCOL_ENTITY_SERVICE, 0, UU_NAME_DOMAIN | UU_NAME_PATH,
{REP_PROTOCOL_ENTITY_INSTANCE, REP_PROTOCOL_ENTITY_PROPERTYGRP}},
{REP_PROTOCOL_ENTITY_INSTANCE, 1, UU_NAME_DOMAIN,
{REP_PROTOCOL_ENTITY_SNAPSHOT, REP_PROTOCOL_ENTITY_PROPERTYGRP}},
{REP_PROTOCOL_ENTITY_SNAPSHOT, 2, UU_NAME_DOMAIN,
{REP_PROTOCOL_ENTITY_SNAPLEVEL, REP_PROTOCOL_ENTITY_PROPERTYGRP}},
{REP_PROTOCOL_ENTITY_SNAPLEVEL, 4, RT_NO_NAME,
{REP_PROTOCOL_ENTITY_PROPERTYGRP}},
{REP_PROTOCOL_ENTITY_PROPERTYGRP, 5, UU_NAME_DOMAIN,
{REP_PROTOCOL_ENTITY_PROPERTY}},
{REP_PROTOCOL_ENTITY_CPROPERTYGRP, 0, UU_NAME_DOMAIN,
{REP_PROTOCOL_ENTITY_PROPERTY}},
{REP_PROTOCOL_ENTITY_PROPERTY, 7, UU_NAME_DOMAIN},
{-1UL}
};
#define NUM_TYPES ((sizeof (rc_types) / sizeof (*rc_types)))
/* Element of a permcheck_t hash table. */
struct pc_elt {
struct pc_elt *pce_next;
char pce_auth[1];
};
/* An authorization set hash table. */
typedef struct {
struct pc_elt **pc_buckets;
uint_t pc_bnum; /* number of buckets */
uint_t pc_enum; /* number of elements */
} permcheck_t;
static uu_list_pool_t *rc_children_pool;
static uu_list_pool_t *rc_pg_notify_pool;
static uu_list_pool_t *rc_notify_pool;
static uu_list_pool_t *rc_notify_info_pool;
static rc_node_t *rc_scope;
static pthread_mutex_t rc_pg_notify_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t rc_pg_notify_cv = PTHREAD_COND_INITIALIZER;
static uint_t rc_notify_in_use; /* blocks removals */
static pthread_mutex_t perm_lock = PTHREAD_MUTEX_INITIALIZER;
static void rc_node_unrefed(rc_node_t *np);
/*
* We support an arbitrary number of clients interested in events for certain
* types of changes. Each client is represented by an rc_notify_info_t, and
* all clients are chained onto the rc_notify_info_list.
*
* The rc_notify_list is the global notification list. Each entry is of
* type rc_notify_t, which is embedded in one of three other structures:
*
* rc_node_t property group update notification
* rc_notify_delete_t object deletion notification
* rc_notify_info_t notification clients
*
* Which type of object is determined by which pointer in the rc_notify_t is
* non-NULL.
*
* New notifications and clients are added to the end of the list.
* Notifications no-one is interested in are never added to the list.
*
* Clients use their position in the list to track which notifications they
* have not yet reported. As they process notifications, they move forward
* in the list past them. There is always a client at the beginning of the
* list -- as he moves past notifications, he removes them from the list and
* cleans them up.
*
* The rc_pg_notify_lock protects all notification state. The rc_pg_notify_cv
* is used for global signalling, and each client has a cv which he waits for
* events of interest on.
*/
static uu_list_t *rc_notify_info_list;
static uu_list_t *rc_notify_list;
#define HASH_SIZE 512
#define HASH_MASK (HASH_SIZE - 1)
#pragma align 64(cache_hash)
static cache_bucket_t cache_hash[HASH_SIZE];
#define CACHE_BUCKET(h) (&cache_hash[(h) & HASH_MASK])
static uint32_t
rc_node_hash(rc_node_lookup_t *lp)
{
uint32_t type = lp->rl_type;
uint32_t backend = lp->rl_backend;
uint32_t mainid = lp->rl_main_id;
uint32_t *ids = lp->rl_ids;
rc_type_info_t *tp = &rc_types[type];
uint32_t num_ids;
uint32_t left;
uint32_t hash;
assert(backend == BACKEND_TYPE_NORMAL ||
backend == BACKEND_TYPE_NONPERSIST);
assert(type > 0 && type < NUM_TYPES);
num_ids = tp->rt_num_ids;
left = MAX_IDS - num_ids;
assert(num_ids <= MAX_IDS);
hash = type * 7 + mainid * 5 + backend;
while (num_ids-- > 0)
hash = hash * 11 + *ids++ * 7;
/*
* the rest should be zeroed
*/
while (left-- > 0)
assert(*ids++ == 0);
return (hash);
}
static int
rc_node_match(rc_node_t *np, rc_node_lookup_t *l)
{
rc_node_lookup_t *r = &np->rn_id;
rc_type_info_t *tp;
uint32_t type;
uint32_t num_ids;
if (r->rl_main_id != l->rl_main_id)
return (0);
type = r->rl_type;
if (type != l->rl_type)
return (0);
assert(type > 0 && type < NUM_TYPES);
tp = &rc_types[r->rl_type];
num_ids = tp->rt_num_ids;
assert(num_ids <= MAX_IDS);
while (num_ids-- > 0)
if (r->rl_ids[num_ids] != l->rl_ids[num_ids])
return (0);
return (1);
}
/*
* the "other" references on a node are maintained in an atomically
* updated refcount, rn_other_refs. This can be bumped from arbitrary
* context, and tracks references to a possibly out-of-date node's children.
*
* To prevent the node from disappearing between the final drop of
* rn_other_refs and the unref handling, rn_other_refs_held is bumped on
* 0->1 transitions and decremented (with the node lock held) on 1->0
* transitions.
*/
static void
rc_node_hold_other(rc_node_t *np)
{
if (atomic_add_32_nv(&np->rn_other_refs, 1) == 1) {
atomic_add_32(&np->rn_other_refs_held, 1);
assert(np->rn_other_refs_held > 0);
}
assert(np->rn_other_refs > 0);
}
/*
* No node locks may be held
*/
static void
rc_node_rele_other(rc_node_t *np)
{
assert(np->rn_other_refs > 0);
if (atomic_add_32_nv(&np->rn_other_refs, -1) == 0) {
(void) pthread_mutex_lock(&np->rn_lock);
assert(np->rn_other_refs_held > 0);
if (atomic_add_32_nv(&np->rn_other_refs_held, -1) == 0 &&
np->rn_refs == 0 && (np->rn_flags & RC_NODE_OLD))
rc_node_unrefed(np);
else
(void) pthread_mutex_unlock(&np->rn_lock);
}
}
static void
rc_node_hold_locked(rc_node_t *np)
{
assert(MUTEX_HELD(&np->rn_lock));
if (np->rn_refs == 0 && (np->rn_flags & RC_NODE_PARENT_REF))
rc_node_hold_other(np->rn_parent_ref);
np->rn_refs++;
assert(np->rn_refs > 0);
}
static void
rc_node_hold(rc_node_t *np)
{
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_hold_locked(np);
(void) pthread_mutex_unlock(&np->rn_lock);
}
static void
rc_node_rele_locked(rc_node_t *np)
{
int unref = 0;
rc_node_t *par_ref = NULL;
assert(MUTEX_HELD(&np->rn_lock));
assert(np->rn_refs > 0);
if (--np->rn_refs == 0) {
if (np->rn_flags & RC_NODE_PARENT_REF)
par_ref = np->rn_parent_ref;
/*
* Composed property groups are only as good as their
* references.
*/
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP)
np->rn_flags |= RC_NODE_DEAD;
if ((np->rn_flags & (RC_NODE_DEAD|RC_NODE_OLD)) &&
np->rn_other_refs == 0 && np->rn_other_refs_held == 0)
unref = 1;
}
if (unref)
rc_node_unrefed(np);
else
(void) pthread_mutex_unlock(&np->rn_lock);
if (par_ref != NULL)
rc_node_rele_other(par_ref);
}
void
rc_node_rele(rc_node_t *np)
{
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_locked(np);
}
static cache_bucket_t *
cache_hold(uint32_t h)
{
cache_bucket_t *bp = CACHE_BUCKET(h);
(void) pthread_mutex_lock(&bp->cb_lock);
return (bp);
}
static void
cache_release(cache_bucket_t *bp)
{
(void) pthread_mutex_unlock(&bp->cb_lock);
}
static rc_node_t *
cache_lookup_unlocked(cache_bucket_t *bp, rc_node_lookup_t *lp)
{
uint32_t h = rc_node_hash(lp);
rc_node_t *np;
assert(MUTEX_HELD(&bp->cb_lock));
assert(bp == CACHE_BUCKET(h));
for (np = bp->cb_head; np != NULL; np = np->rn_hash_next) {
if (np->rn_hash == h && rc_node_match(np, lp)) {
rc_node_hold(np);
return (np);
}
}
return (NULL);
}
static rc_node_t *
cache_lookup(rc_node_lookup_t *lp)
{
uint32_t h;
cache_bucket_t *bp;
rc_node_t *np;
h = rc_node_hash(lp);
bp = cache_hold(h);
np = cache_lookup_unlocked(bp, lp);
cache_release(bp);
return (np);
}
static void
cache_insert_unlocked(cache_bucket_t *bp, rc_node_t *np)
{
assert(MUTEX_HELD(&bp->cb_lock));
assert(np->rn_hash == rc_node_hash(&np->rn_id));
assert(bp == CACHE_BUCKET(np->rn_hash));
assert(np->rn_hash_next == NULL);
np->rn_hash_next = bp->cb_head;
bp->cb_head = np;
}
static void
cache_remove_unlocked(cache_bucket_t *bp, rc_node_t *np)
{
rc_node_t **npp;
assert(MUTEX_HELD(&bp->cb_lock));
assert(np->rn_hash == rc_node_hash(&np->rn_id));
assert(bp == CACHE_BUCKET(np->rn_hash));
for (npp = &bp->cb_head; *npp != NULL; npp = &(*npp)->rn_hash_next)
if (*npp == np)
break;
assert(*npp == np);
*npp = np->rn_hash_next;
np->rn_hash_next = NULL;
}
/*
* verify that the 'parent' type can have a child typed 'child'
* Fails with
* _INVALID_TYPE - argument is invalid
* _TYPE_MISMATCH - parent type cannot have children of type child
*/
static int
rc_check_parent_child(uint32_t parent, uint32_t child)
{
int idx;
uint32_t type;
if (parent == 0 || parent >= NUM_TYPES ||
child == 0 || child >= NUM_TYPES)
return (REP_PROTOCOL_FAIL_INVALID_TYPE); /* invalid types */
for (idx = 0; idx < MAX_VALID_CHILDREN; idx++) {
type = rc_types[parent].rt_valid_children[idx];
if (type == child)
return (REP_PROTOCOL_SUCCESS);
}
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
/*
* Fails with
* _INVALID_TYPE - type is invalid
* _BAD_REQUEST - name is an invalid name for a node of type type
*/
int
rc_check_type_name(uint32_t type, const char *name)
{
if (type == 0 || type >= NUM_TYPES)
return (REP_PROTOCOL_FAIL_INVALID_TYPE); /* invalid types */
if (uu_check_name(name, rc_types[type].rt_name_flags) == -1)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
return (REP_PROTOCOL_SUCCESS);
}
static int
rc_check_pgtype_name(const char *name)
{
if (uu_check_name(name, UU_NAME_DOMAIN) == -1)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
return (REP_PROTOCOL_SUCCESS);
}
static int
rc_notify_info_interested(rc_notify_info_t *rnip, rc_notify_t *np)
{
rc_node_t *nnp = np->rcn_node;
int i;
assert(MUTEX_HELD(&rc_pg_notify_lock));
if (np->rcn_delete != NULL) {
assert(np->rcn_info == NULL && np->rcn_node == NULL);
return (1); /* everyone likes deletes */
}
if (np->rcn_node == NULL) {
assert(np->rcn_info != NULL || np->rcn_delete != NULL);
return (0);
}
assert(np->rcn_info == NULL);
for (i = 0; i < RC_NOTIFY_MAX_NAMES; i++) {
if (rnip->rni_namelist[i] != NULL) {
if (strcmp(nnp->rn_name, rnip->rni_namelist[i]) == 0)
return (1);
}
if (rnip->rni_typelist[i] != NULL) {
if (strcmp(nnp->rn_type, rnip->rni_typelist[i]) == 0)
return (1);
}
}
return (0);
}
static void
rc_notify_insert_node(rc_node_t *nnp)
{
rc_notify_t *np = &nnp->rn_notify;
rc_notify_info_t *nip;
int found = 0;
assert(np->rcn_info == NULL);
if (nnp->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP)
return;
(void) pthread_mutex_lock(&rc_pg_notify_lock);
np->rcn_node = nnp;
for (nip = uu_list_first(rc_notify_info_list); nip != NULL;
nip = uu_list_next(rc_notify_info_list, nip)) {
if (rc_notify_info_interested(nip, np)) {
(void) pthread_cond_broadcast(&nip->rni_cv);
found++;
}
}
if (found)
(void) uu_list_insert_before(rc_notify_list, NULL, np);
else
np->rcn_node = NULL;
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
}
static void
rc_notify_deletion(rc_notify_delete_t *ndp, const char *service,
const char *instance, const char *pg)
{
rc_notify_info_t *nip;
uu_list_node_init(&ndp->rnd_notify, &ndp->rnd_notify.rcn_list_node,
rc_notify_pool);
ndp->rnd_notify.rcn_delete = ndp;
(void) snprintf(ndp->rnd_fmri, sizeof (ndp->rnd_fmri),
"svc:/%s%s%s%s%s", service,
(instance != NULL)? ":" : "", (instance != NULL)? instance : "",
(pg != NULL)? "/:properties/" : "", (pg != NULL)? pg : "");
/*
* add to notification list, notify watchers
*/
(void) pthread_mutex_lock(&rc_pg_notify_lock);
for (nip = uu_list_first(rc_notify_info_list); nip != NULL;
nip = uu_list_next(rc_notify_info_list, nip))
(void) pthread_cond_broadcast(&nip->rni_cv);
(void) uu_list_insert_before(rc_notify_list, NULL, ndp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
}
static void
rc_notify_remove_node(rc_node_t *nnp)
{
rc_notify_t *np = &nnp->rn_notify;
assert(np->rcn_info == NULL);
assert(!MUTEX_HELD(&nnp->rn_lock));
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while (np->rcn_node != NULL) {
if (rc_notify_in_use) {
(void) pthread_cond_wait(&rc_pg_notify_cv,
&rc_pg_notify_lock);
continue;
}
(void) uu_list_remove(rc_notify_list, np);
np->rcn_node = NULL;
break;
}
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
}
static void
rc_notify_remove_locked(rc_notify_t *np)
{
assert(MUTEX_HELD(&rc_pg_notify_lock));
assert(rc_notify_in_use == 0);
(void) uu_list_remove(rc_notify_list, np);
if (np->rcn_node) {
np->rcn_node = NULL;
} else if (np->rcn_delete) {
uu_free(np->rcn_delete);
} else {
assert(0); /* CAN'T HAPPEN */
}
}
/*
* Permission checking functions. See comment atop this file.
*/
#ifndef NATIVE_BUILD
static permcheck_t *
pc_create()
{
permcheck_t *p;
p = uu_zalloc(sizeof (*p));
if (p == NULL)
return (NULL);
p->pc_bnum = 8; /* Normal case will only have 2 elts. */
p->pc_buckets = uu_zalloc(sizeof (*p->pc_buckets) * p->pc_bnum);
if (p->pc_buckets == NULL) {
uu_free(p);
return (NULL);
}
p->pc_enum = 0;
return (p);
}
static void
pc_free(permcheck_t *pcp)
{
uint_t i;
struct pc_elt *ep, *next;
for (i = 0; i < pcp->pc_bnum; ++i) {
for (ep = pcp->pc_buckets[i]; ep != NULL; ep = next) {
next = ep->pce_next;
free(ep);
}
}
free(pcp->pc_buckets);
free(pcp);
}
static uint32_t
pc_hash(const char *auth)
{
uint32_t h = 0, g;
const char *p;
/*
* Generic hash function from uts/common/os/modhash.c.
*/
for (p = auth; *p != '\0'; ++p) {
h = (h << 4) + *p;
g = (h & 0xf0000000);
if (g != 0) {
h ^= (g >> 24);
h ^= g;
}
}
return (h);
}
static int
pc_exists(const permcheck_t *pcp, const char *auth)
{
uint32_t h;
struct pc_elt *ep;
h = pc_hash(auth);
for (ep = pcp->pc_buckets[h & (pcp->pc_bnum - 1)];
ep != NULL;
ep = ep->pce_next) {
if (strcmp(auth, ep->pce_auth) == 0)
return (1);
}
return (0);
}
static int
pc_match(const permcheck_t *pcp, const char *pattern)
{
uint_t i;
struct pc_elt *ep;
for (i = 0; i < pcp->pc_bnum; ++i) {
for (ep = pcp->pc_buckets[i]; ep != NULL; ep = ep->pce_next) {
if (_auth_match(pattern, ep->pce_auth))
return (1);
}
}
return (0);
}
static int
pc_grow(permcheck_t *pcp)
{
uint_t new_bnum, i, j;
struct pc_elt **new_buckets;
struct pc_elt *ep, *next;
new_bnum = pcp->pc_bnum * 2;
if (new_bnum < pcp->pc_bnum)
/* Homey don't play that. */
return (-1);
new_buckets = uu_zalloc(sizeof (*new_buckets) * new_bnum);
if (new_buckets == NULL)
return (-1);
for (i = 0; i < pcp->pc_bnum; ++i) {
for (ep = pcp->pc_buckets[i]; ep != NULL; ep = next) {
next = ep->pce_next;
j = pc_hash(ep->pce_auth) & (new_bnum - 1);
ep->pce_next = new_buckets[j];
new_buckets[j] = ep;
}
}
uu_free(pcp->pc_buckets);
pcp->pc_buckets = new_buckets;
pcp->pc_bnum = new_bnum;
return (0);
}
static int
pc_add(permcheck_t *pcp, const char *auth)
{
struct pc_elt *ep;
uint_t i;
ep = uu_zalloc(offsetof(struct pc_elt, pce_auth) + strlen(auth) + 1);
if (ep == NULL)
return (-1);
/* Grow if pc_enum / pc_bnum > 3/4. */
if (pcp->pc_enum * 4 > 3 * pcp->pc_bnum)
/* Failure is not a stopper; we'll try again next time. */
(void) pc_grow(pcp);
(void) strcpy(ep->pce_auth, auth);
i = pc_hash(auth) & (pcp->pc_bnum - 1);
ep->pce_next = pcp->pc_buckets[i];
pcp->pc_buckets[i] = ep;
++pcp->pc_enum;
return (0);
}
/*
* For the type of a property group, return the authorization which may be
* used to modify it.
*/
static const char *
perm_auth_for_pgtype(const char *pgtype)
{
if (strcmp(pgtype, SCF_GROUP_METHOD) == 0)
return (AUTH_MODIFY_PREFIX "method");
else if (strcmp(pgtype, SCF_GROUP_DEPENDENCY) == 0)
return (AUTH_MODIFY_PREFIX "dependency");
else if (strcmp(pgtype, SCF_GROUP_APPLICATION) == 0)
return (AUTH_MODIFY_PREFIX "application");
else if (strcmp(pgtype, SCF_GROUP_FRAMEWORK) == 0)
return (AUTH_MODIFY_PREFIX "framework");
else
return (NULL);
}
/*
* Fails with
* _NO_RESOURCES - out of memory
*/
static int
perm_add_enabling(permcheck_t *pcp, const char *auth)
{
return (pc_add(pcp, auth) == 0 ? REP_PROTOCOL_SUCCESS :
REP_PROTOCOL_FAIL_NO_RESOURCES);
}
/* Note that perm_add_enabling_values() is defined below. */
/*
* perm_granted() returns 1 if the current door caller has one of the enabling
* authorizations in pcp, 0 if it doesn't, and -1 if an error (usually lack of
* memory) occurs. check_auth_list() checks an RBAC_AUTH_SEP-separated list
* of authorizations for existance in pcp, and check_prof_list() checks the
* authorizations granted to an RBAC_AUTH_SEP-separated list of profiles.
*/
static int
check_auth_list(const permcheck_t *pcp, char *authlist)
{
char *auth, *lasts;
int ret;
for (auth = (char *)strtok_r(authlist, RBAC_AUTH_SEP, &lasts);
auth != NULL;
auth = (char *)strtok_r(NULL, RBAC_AUTH_SEP, &lasts)) {
if (strchr(auth, KV_WILDCHAR) == NULL)
ret = pc_exists(pcp, auth);
else
ret = pc_match(pcp, auth);
if (ret)
return (ret);
}
return (0);
}
static int
check_prof_list(const permcheck_t *pcp, char *proflist)
{
char *prof, *lasts, *authlist, *subproflist;
profattr_t *pap;
int ret = 0;
for (prof = strtok_r(proflist, RBAC_AUTH_SEP, &lasts);
prof != NULL;
prof = strtok_r(NULL, RBAC_AUTH_SEP, &lasts)) {
pap = getprofnam(prof);
if (pap == NULL)
continue;
authlist = kva_match(pap->attr, PROFATTR_AUTHS_KW);
if (authlist != NULL)
ret = check_auth_list(pcp, authlist);
if (!ret) {
subproflist = kva_match(pap->attr, PROFATTR_PROFS_KW);
if (subproflist != NULL)
/* depth check to avoid invinite recursion? */
ret = check_prof_list(pcp, subproflist);
}
free_profattr(pap);
if (ret)
return (ret);
}
return (ret);
}
static int
perm_granted(const permcheck_t *pcp)
{
ucred_t *uc;
int ret = 0;
uid_t uid;
userattr_t *uap;
char *authlist, *userattr_authlist, *proflist, *def_prof = NULL;
/*
* Get generic authorizations from policy.conf
*
* Note that _get_auth_policy is not threadsafe, so we single-thread
* access to it.
*/
(void) pthread_mutex_lock(&perm_lock);
ret = _get_auth_policy(&authlist, &def_prof);
(void) pthread_mutex_unlock(&perm_lock);
if (ret != 0)
return (-1);
if (authlist != NULL) {
ret = check_auth_list(pcp, authlist);
if (ret) {
_free_auth_policy(authlist, def_prof);
return (ret);
}
}
/*
* Put off checking def_prof for later in an attempt to consolidate
* prof_attr accesses.
*/
/* Get the uid */
if ((uc = get_ucred()) == NULL) {
_free_auth_policy(authlist, def_prof);
if (errno == EINVAL) {
/*
* Client is no longer waiting for our response (e.g.,
* it received a signal & resumed with EINTR).
* Punting with door_return() would be nice but we
* need to release all of the locks & references we
* hold. And we must report failure to the client
* layer to keep it from ignoring retries as
* already-done (idempotency & all that). None of the
* error codes fit very well, so we might as well
* force the return of _PERMISSION_DENIED since we
* couldn't determine the user.
*/
return (0);
}
assert(0);
abort();
}
uid = ucred_geteuid(uc);
assert(uid != -1);
uap = getuseruid(uid);
if (uap != NULL) {
/* Get the authorizations from user_attr. */
userattr_authlist = kva_match(uap->attr, USERATTR_AUTHS_KW);
if (userattr_authlist != NULL)
ret = check_auth_list(pcp, userattr_authlist);
}
if (!ret && def_prof != NULL) {
/* Check generic profiles. */
ret = check_prof_list(pcp, def_prof);
}
if (!ret && uap != NULL) {
proflist = kva_match(uap->attr, USERATTR_PROFILES_KW);
if (proflist != NULL)
ret = check_prof_list(pcp, proflist);
}
_free_auth_policy(authlist, def_prof);
if (uap != NULL)
free_userattr(uap);
return (ret);
}
#endif /* NATIVE_BUILD */
/*
* flags in RC_NODE_WAITING_FLAGS are broadcast when unset, and are used to
* serialize certain actions, and to wait for certain operations to complete
*
* The waiting flags are:
* RC_NODE_CHILDREN_CHANGING
* The child list is being built or changed (due to creation
* or deletion). All iterators pause.
*
* RC_NODE_USING_PARENT
* Someone is actively using the parent pointer, so we can't
* be removed from the parent list.
*
* RC_NODE_CREATING_CHILD
* A child is being created -- locks out other creations, to
* prevent insert-insert races.
*
* RC_NODE_IN_TX
* This object is running a transaction.
*
* RC_NODE_DYING
* This node might be dying. Always set as a set, using
* RC_NODE_DYING_FLAGS (which is everything but
* RC_NODE_USING_PARENT)
*/
static int
rc_node_hold_flag(rc_node_t *np, uint32_t flag)
{
assert(MUTEX_HELD(&np->rn_lock));
assert((flag & ~RC_NODE_WAITING_FLAGS) == 0);
while (!(np->rn_flags & RC_NODE_DEAD) && (np->rn_flags & flag)) {
(void) pthread_cond_wait(&np->rn_cv, &np->rn_lock);
}
if (np->rn_flags & RC_NODE_DEAD)
return (0);
np->rn_flags |= flag;
return (1);
}
static void
rc_node_rele_flag(rc_node_t *np, uint32_t flag)
{
assert((flag & ~RC_NODE_WAITING_FLAGS) == 0);
assert(MUTEX_HELD(&np->rn_lock));
assert((np->rn_flags & flag) == flag);
np->rn_flags &= ~flag;
(void) pthread_cond_broadcast(&np->rn_cv);
}
/*
* wait until a particular flag has cleared. Fails if the object dies.
*/
static int
rc_node_wait_flag(rc_node_t *np, uint32_t flag)
{
assert(MUTEX_HELD(&np->rn_lock));
while (!(np->rn_flags & RC_NODE_DEAD) && (np->rn_flags & flag))
(void) pthread_cond_wait(&np->rn_cv, &np->rn_lock);
return (!(np->rn_flags & RC_NODE_DEAD));
}
/*
* On entry, np's lock must be held, and this thread must be holding
* RC_NODE_USING_PARENT. On return, both of them are released.
*
* If the return value is NULL, np either does not have a parent, or
* the parent has been marked DEAD.
*
* If the return value is non-NULL, it is the parent of np, and both
* its lock and the requested flags are held.
*/
static rc_node_t *
rc_node_hold_parent_flag(rc_node_t *np, uint32_t flag)
{
rc_node_t *pp;
assert(MUTEX_HELD(&np->rn_lock));
assert(np->rn_flags & RC_NODE_USING_PARENT);
if ((pp = np->rn_parent) == NULL) {
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
(void) pthread_mutex_unlock(&np->rn_lock);
return (NULL);
}
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pp->rn_lock);
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
(void) pthread_mutex_unlock(&np->rn_lock);
if (!rc_node_hold_flag(pp, flag)) {
(void) pthread_mutex_unlock(&pp->rn_lock);
return (NULL);
}
return (pp);
}
rc_node_t *
rc_node_alloc(void)
{
rc_node_t *np = uu_zalloc(sizeof (*np));
if (np == NULL)
return (NULL);
(void) pthread_mutex_init(&np->rn_lock, NULL);
(void) pthread_cond_init(&np->rn_cv, NULL);
np->rn_children = uu_list_create(rc_children_pool, np, 0);
np->rn_pg_notify_list = uu_list_create(rc_pg_notify_pool, np, 0);
uu_list_node_init(np, &np->rn_sibling_node, rc_children_pool);
uu_list_node_init(&np->rn_notify, &np->rn_notify.rcn_list_node,
rc_notify_pool);
return (np);
}
void
rc_node_destroy(rc_node_t *np)
{
int i;
if (np->rn_flags & RC_NODE_UNREFED)
return; /* being handled elsewhere */
assert(np->rn_refs == 0 && np->rn_other_refs == 0);
assert(np->rn_former == NULL);
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
/* Release the holds from rc_iter_next(). */
for (i = 0; i < COMPOSITION_DEPTH; ++i) {
/* rn_cchain[i] may be NULL for empty snapshots. */
if (np->rn_cchain[i] != NULL)
rc_node_rele(np->rn_cchain[i]);
}
}
if (np->rn_name != NULL)
free((void *)np->rn_name);
np->rn_name = NULL;
if (np->rn_type != NULL)
free((void *)np->rn_type);
np->rn_type = NULL;
if (np->rn_values != NULL)
object_free_values(np->rn_values, np->rn_valtype,
np->rn_values_count, np->rn_values_size);
np->rn_values = NULL;
if (np->rn_snaplevel != NULL)
rc_snaplevel_rele(np->rn_snaplevel);
np->rn_snaplevel = NULL;
uu_list_node_fini(np, &np->rn_sibling_node, rc_children_pool);
uu_list_node_fini(&np->rn_notify, &np->rn_notify.rcn_list_node,
rc_notify_pool);
assert(uu_list_first(np->rn_children) == NULL);
uu_list_destroy(np->rn_children);
uu_list_destroy(np->rn_pg_notify_list);
(void) pthread_mutex_destroy(&np->rn_lock);
(void) pthread_cond_destroy(&np->rn_cv);
uu_free(np);
}
/*
* Link in a child node.
*
* Because of the lock ordering, cp has to already be in the hash table with
* its lock dropped before we get it. To prevent anyone from noticing that
* it is parentless, the creation code sets the RC_NODE_USING_PARENT. Once
* we've linked it in, we release the flag.
*/
static void
rc_node_link_child(rc_node_t *np, rc_node_t *cp)
{
assert(!MUTEX_HELD(&np->rn_lock));
assert(!MUTEX_HELD(&cp->rn_lock));
(void) pthread_mutex_lock(&np->rn_lock);
(void) pthread_mutex_lock(&cp->rn_lock);
assert(!(cp->rn_flags & RC_NODE_IN_PARENT) &&
(cp->rn_flags & RC_NODE_USING_PARENT));
assert(rc_check_parent_child(np->rn_id.rl_type, cp->rn_id.rl_type) ==
REP_PROTOCOL_SUCCESS);
cp->rn_parent = np;
cp->rn_flags |= RC_NODE_IN_PARENT;
(void) uu_list_insert_before(np->rn_children, NULL, cp);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_rele_flag(cp, RC_NODE_USING_PARENT);
(void) pthread_mutex_unlock(&cp->rn_lock);
}
/*
* Sets the rn_parent_ref field of all the children of np to pp -- always
* initially invoked as rc_node_setup_parent_ref(np, np), we then recurse.
*
* This is used when we mark a node RC_NODE_OLD, so that when the object and
* its children are no longer referenced, they will all be deleted as a unit.
*/
static void
rc_node_setup_parent_ref(rc_node_t *np, rc_node_t *pp)
{
rc_node_t *cp;
assert(MUTEX_HELD(&np->rn_lock));
for (cp = uu_list_first(np->rn_children); cp != NULL;
cp = uu_list_next(np->rn_children, cp)) {
(void) pthread_mutex_lock(&cp->rn_lock);
if (cp->rn_flags & RC_NODE_PARENT_REF) {
assert(cp->rn_parent_ref == pp);
} else {
assert(cp->rn_parent_ref == NULL);
cp->rn_flags |= RC_NODE_PARENT_REF;
cp->rn_parent_ref = pp;
if (cp->rn_refs != 0)
rc_node_hold_other(pp);
}
rc_node_setup_parent_ref(cp, pp); /* recurse */
(void) pthread_mutex_unlock(&cp->rn_lock);
}
}
/*
* Atomically replace 'np' with 'newp', with a parent of 'pp'.
*
* Requirements:
* *no* node locks may be held.
* pp must be held with RC_NODE_CHILDREN_CHANGING
* newp and np must be held with RC_NODE_IN_TX
* np must be marked RC_NODE_IN_PARENT, newp must not be
* np must be marked RC_NODE_OLD
*
* Afterwards:
* pp's RC_NODE_CHILDREN_CHANGING is dropped
* newp and np's RC_NODE_IN_TX is dropped
* newp->rn_former = np;
* newp is RC_NODE_IN_PARENT, np is not.
* interested notify subscribers have been notified of newp's new status.
*/
static void
rc_node_relink_child(rc_node_t *pp, rc_node_t *np, rc_node_t *newp)
{
cache_bucket_t *bp;
/*
* First, swap np and nnp in the cache. newp's RC_NODE_IN_TX flag
* keeps rc_node_update() from seeing it until we are done.
*/
bp = cache_hold(newp->rn_hash);
cache_remove_unlocked(bp, np);
cache_insert_unlocked(bp, newp);
cache_release(bp);
/*
* replace np with newp in pp's list, and attach it to newp's rn_former
* link.
*/
(void) pthread_mutex_lock(&pp->rn_lock);
assert(pp->rn_flags & RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_lock(&newp->rn_lock);
assert(!(newp->rn_flags & RC_NODE_IN_PARENT));
assert(newp->rn_flags & RC_NODE_IN_TX);
(void) pthread_mutex_lock(&np->rn_lock);
assert(np->rn_flags & RC_NODE_IN_PARENT);
assert(np->rn_flags & RC_NODE_OLD);
assert(np->rn_flags & RC_NODE_IN_TX);
newp->rn_parent = pp;
newp->rn_flags |= RC_NODE_IN_PARENT;
/*
* Note that we carefully add newp before removing np -- this
* keeps iterators on the list from missing us.
*/
(void) uu_list_insert_after(pp->rn_children, np, newp);
(void) uu_list_remove(pp->rn_children, np);
/*
* re-set np
*/
newp->rn_former = np;
np->rn_parent = NULL;
np->rn_flags &= ~RC_NODE_IN_PARENT;
np->rn_flags |= RC_NODE_ON_FORMER;
rc_notify_insert_node(newp);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
rc_node_rele_flag(newp, RC_NODE_USING_PARENT | RC_NODE_IN_TX);
(void) pthread_mutex_unlock(&newp->rn_lock);
rc_node_setup_parent_ref(np, np);
rc_node_rele_flag(np, RC_NODE_IN_TX);
(void) pthread_mutex_unlock(&np->rn_lock);
}
/*
* makes sure a node with lookup 'nip', name 'name', and parent 'pp' exists.
* 'cp' is used (and returned) if the node does not yet exist. If it does
* exist, 'cp' is freed, and the existent node is returned instead.
*/
rc_node_t *
rc_node_setup(rc_node_t *cp, rc_node_lookup_t *nip, const char *name,
rc_node_t *pp)
{
rc_node_t *np;
cache_bucket_t *bp;
uint32_t h = rc_node_hash(nip);
assert(cp->rn_refs == 0);
bp = cache_hold(h);
if ((np = cache_lookup_unlocked(bp, nip)) != NULL) {
cache_release(bp);
/*
* make sure it matches our expectations
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
assert(np->rn_parent == pp);
assert(memcmp(&np->rn_id, nip, sizeof (*nip)) == 0);
assert(strcmp(np->rn_name, name) == 0);
assert(np->rn_type == NULL);
assert(np->rn_flags & RC_NODE_IN_PARENT);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(cp);
return (np);
}
/*
* No one is there -- create a new node.
*/
np = cp;
rc_node_hold(np);
np->rn_id = *nip;
np->rn_hash = h;
np->rn_name = strdup(name);
np->rn_flags |= RC_NODE_USING_PARENT;
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_INSTANCE) {
#if COMPOSITION_DEPTH == 2
np->rn_cchain[0] = np;
np->rn_cchain[1] = pp;
#else
#error This code must be updated.
#endif
}
cache_insert_unlocked(bp, np);
cache_release(bp); /* we are now visible */
rc_node_link_child(pp, np);
return (np);
}
/*
* makes sure a snapshot with lookup 'nip', name 'name', and parent 'pp' exists.
* 'cp' is used (and returned) if the node does not yet exist. If it does
* exist, 'cp' is freed, and the existent node is returned instead.
*/
rc_node_t *
rc_node_setup_snapshot(rc_node_t *cp, rc_node_lookup_t *nip, const char *name,
uint32_t snap_id, rc_node_t *pp)
{
rc_node_t *np;
cache_bucket_t *bp;
uint32_t h = rc_node_hash(nip);
assert(cp->rn_refs == 0);
bp = cache_hold(h);
if ((np = cache_lookup_unlocked(bp, nip)) != NULL) {
cache_release(bp);
/*
* make sure it matches our expectations
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
assert(np->rn_parent == pp);
assert(memcmp(&np->rn_id, nip, sizeof (*nip)) == 0);
assert(strcmp(np->rn_name, name) == 0);
assert(np->rn_type == NULL);
assert(np->rn_flags & RC_NODE_IN_PARENT);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(cp);
return (np);
}
/*
* No one is there -- create a new node.
*/
np = cp;
rc_node_hold(np);
np->rn_id = *nip;
np->rn_hash = h;
np->rn_name = strdup(name);
np->rn_snapshot_id = snap_id;
np->rn_flags |= RC_NODE_USING_PARENT;
cache_insert_unlocked(bp, np);
cache_release(bp); /* we are now visible */
rc_node_link_child(pp, np);
return (np);
}
/*
* makes sure a snaplevel with lookup 'nip' and parent 'pp' exists. 'cp' is
* used (and returned) if the node does not yet exist. If it does exist, 'cp'
* is freed, and the existent node is returned instead.
*/
rc_node_t *
rc_node_setup_snaplevel(rc_node_t *cp, rc_node_lookup_t *nip,
rc_snaplevel_t *lvl, rc_node_t *pp)
{
rc_node_t *np;
cache_bucket_t *bp;
uint32_t h = rc_node_hash(nip);
assert(cp->rn_refs == 0);
bp = cache_hold(h);
if ((np = cache_lookup_unlocked(bp, nip)) != NULL) {
cache_release(bp);
/*
* make sure it matches our expectations
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
assert(np->rn_parent == pp);
assert(memcmp(&np->rn_id, nip, sizeof (*nip)) == 0);
assert(np->rn_name == NULL);
assert(np->rn_type == NULL);
assert(np->rn_flags & RC_NODE_IN_PARENT);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(cp);
return (np);
}
/*
* No one is there -- create a new node.
*/
np = cp;
rc_node_hold(np); /* released in snapshot_fill_children() */
np->rn_id = *nip;
np->rn_hash = h;
rc_snaplevel_hold(lvl);
np->rn_snaplevel = lvl;
np->rn_flags |= RC_NODE_USING_PARENT;
cache_insert_unlocked(bp, np);
cache_release(bp); /* we are now visible */
/* Add this snaplevel to the snapshot's composition chain. */
assert(pp->rn_cchain[lvl->rsl_level_num - 1] == NULL);
pp->rn_cchain[lvl->rsl_level_num - 1] = np;
rc_node_link_child(pp, np);
return (np);
}
/*
* Returns NULL if strdup() fails.
*/
rc_node_t *
rc_node_setup_pg(rc_node_t *cp, rc_node_lookup_t *nip, const char *name,
const char *type, uint32_t flags, uint32_t gen_id, rc_node_t *pp)
{
rc_node_t *np;
cache_bucket_t *bp;
uint32_t h = rc_node_hash(nip);
bp = cache_hold(h);
if ((np = cache_lookup_unlocked(bp, nip)) != NULL) {
cache_release(bp);
/*
* make sure it matches our expectations (don't check
* the generation number or parent, since someone could
* have gotten a transaction through while we weren't
* looking)
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
assert(memcmp(&np->rn_id, nip, sizeof (*nip)) == 0);
assert(strcmp(np->rn_name, name) == 0);
assert(strcmp(np->rn_type, type) == 0);
assert(np->rn_pgflags == flags);
assert(np->rn_flags & RC_NODE_IN_PARENT);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(cp);
return (np);
}
np = cp;
rc_node_hold(np); /* released in fill_pg_callback() */
np->rn_id = *nip;
np->rn_hash = h;
np->rn_name = strdup(name);
if (np->rn_name == NULL) {
rc_node_rele(np);
return (NULL);
}
np->rn_type = strdup(type);
if (np->rn_type == NULL) {
free((void *)np->rn_name);
rc_node_rele(np);
return (NULL);
}
np->rn_pgflags = flags;
np->rn_gen_id = gen_id;
np->rn_flags |= RC_NODE_USING_PARENT;
cache_insert_unlocked(bp, np);
cache_release(bp); /* we are now visible */
rc_node_link_child(pp, np);
return (np);
}
#if COMPOSITION_DEPTH == 2
/*
* Initialize a "composed property group" which represents the composition of
* property groups pg1 & pg2. It is ephemeral: once created & returned for an
* ITER_READ request, keeping it out of cache_hash and any child lists
* prevents it from being looked up. Operations besides iteration are passed
* through to pg1.
*
* pg1 & pg2 should be held before entering this function. They will be
* released in rc_node_destroy().
*/
static int
rc_node_setup_cpg(rc_node_t *cpg, rc_node_t *pg1, rc_node_t *pg2)
{
if (strcmp(pg1->rn_type, pg2->rn_type) != 0)
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
cpg->rn_id.rl_type = REP_PROTOCOL_ENTITY_CPROPERTYGRP;
cpg->rn_name = strdup(pg1->rn_name);
if (cpg->rn_name == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
cpg->rn_cchain[0] = pg1;
cpg->rn_cchain[1] = pg2;
return (REP_PROTOCOL_SUCCESS);
}
#else
#error This code must be updated.
#endif
/*
* Fails with _NO_RESOURCES.
*/
int
rc_node_create_property(rc_node_t *pp, rc_node_lookup_t *nip,
const char *name, rep_protocol_value_type_t type,
const char *vals, size_t count, size_t size)
{
rc_node_t *np;
cache_bucket_t *bp;
uint32_t h = rc_node_hash(nip);
bp = cache_hold(h);
if ((np = cache_lookup_unlocked(bp, nip)) != NULL) {
cache_release(bp);
/*
* make sure it matches our expectations
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
assert(np->rn_parent == pp);
assert(memcmp(&np->rn_id, nip, sizeof (*nip)) == 0);
assert(strcmp(np->rn_name, name) == 0);
assert(np->rn_valtype == type);
assert(np->rn_values_count == count);
assert(np->rn_values_size == size);
assert(vals == NULL ||
memcmp(np->rn_values, vals, size) == 0);
assert(np->rn_flags & RC_NODE_IN_PARENT);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
}
rc_node_rele_locked(np);
object_free_values(vals, type, count, size);
return (REP_PROTOCOL_SUCCESS);
}
/*
* No one is there -- create a new node.
*/
np = rc_node_alloc();
if (np == NULL) {
cache_release(bp);
object_free_values(vals, type, count, size);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
np->rn_id = *nip;
np->rn_hash = h;
np->rn_name = strdup(name);
if (np->rn_name == NULL) {
cache_release(bp);
object_free_values(vals, type, count, size);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
np->rn_valtype = type;
np->rn_values = vals;
np->rn_values_count = count;
np->rn_values_size = size;
np->rn_flags |= RC_NODE_USING_PARENT;
cache_insert_unlocked(bp, np);
cache_release(bp); /* we are now visible */
rc_node_link_child(pp, np);
return (REP_PROTOCOL_SUCCESS);
}
int
rc_node_init(void)
{
rc_node_t *np;
cache_bucket_t *bp;
rc_children_pool = uu_list_pool_create("rc_children_pool",
sizeof (rc_node_t), offsetof(rc_node_t, rn_sibling_node),
NULL, UU_LIST_POOL_DEBUG);
rc_pg_notify_pool = uu_list_pool_create("rc_pg_notify_pool",
sizeof (rc_node_pg_notify_t),
offsetof(rc_node_pg_notify_t, rnpn_node),
NULL, UU_LIST_POOL_DEBUG);
rc_notify_pool = uu_list_pool_create("rc_notify_pool",
sizeof (rc_notify_t), offsetof(rc_notify_t, rcn_list_node),
NULL, UU_LIST_POOL_DEBUG);
rc_notify_info_pool = uu_list_pool_create("rc_notify_info_pool",
sizeof (rc_notify_info_t),
offsetof(rc_notify_info_t, rni_list_node),
NULL, UU_LIST_POOL_DEBUG);
if (rc_children_pool == NULL || rc_pg_notify_pool == NULL ||
rc_notify_pool == NULL || rc_notify_info_pool == NULL)
uu_die("out of memory");
rc_notify_list = uu_list_create(rc_notify_pool,
&rc_notify_list, 0);
rc_notify_info_list = uu_list_create(rc_notify_info_pool,
&rc_notify_info_list, 0);
if (rc_notify_list == NULL || rc_notify_info_list == NULL)
uu_die("out of memory");
if ((np = rc_node_alloc()) == NULL)
uu_die("out of memory");
rc_node_hold(np);
np->rn_id.rl_type = REP_PROTOCOL_ENTITY_SCOPE;
np->rn_id.rl_backend = BACKEND_TYPE_NORMAL;
np->rn_hash = rc_node_hash(&np->rn_id);
np->rn_name = "localhost";
bp = cache_hold(np->rn_hash);
cache_insert_unlocked(bp, np);
cache_release(bp);
rc_scope = np;
return (1);
}
/*
* Fails with
* _INVALID_TYPE - type is invalid
* _TYPE_MISMATCH - np doesn't carry children of type type
* _DELETED - np has been deleted
* _NO_RESOURCES
*/
static int
rc_node_fill_children(rc_node_t *np, uint32_t type)
{
int rc;
assert(MUTEX_HELD(&np->rn_lock));
if ((rc = rc_check_parent_child(np->rn_id.rl_type, type)) !=
REP_PROTOCOL_SUCCESS)
return (rc);
if (!rc_node_hold_flag(np, RC_NODE_CHILDREN_CHANGING))
return (REP_PROTOCOL_FAIL_DELETED);
if (np->rn_flags & RC_NODE_HAS_CHILDREN) {
rc_node_rele_flag(np, RC_NODE_CHILDREN_CHANGING);
return (REP_PROTOCOL_SUCCESS);
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc = object_fill_children(np);
(void) pthread_mutex_lock(&np->rn_lock);
if (rc == REP_PROTOCOL_SUCCESS) {
np->rn_flags |= RC_NODE_HAS_CHILDREN;
}
rc_node_rele_flag(np, RC_NODE_CHILDREN_CHANGING);
return (rc);
}
/*
* Returns
* _INVALID_TYPE - type is invalid
* _TYPE_MISMATCH - np doesn't carry children of type type
* _DELETED - np has been deleted
* _NO_RESOURCES
* _SUCCESS - if *cpp is not NULL, it is held
*/
static int
rc_node_find_named_child(rc_node_t *np, const char *name, uint32_t type,
rc_node_t **cpp)
{
int ret;
rc_node_t *cp;
assert(MUTEX_HELD(&np->rn_lock));
assert(np->rn_id.rl_type != REP_PROTOCOL_ENTITY_CPROPERTYGRP);
ret = rc_node_fill_children(np, type);
if (ret != REP_PROTOCOL_SUCCESS)
return (ret);
for (cp = uu_list_first(np->rn_children);
cp != NULL;
cp = uu_list_next(np->rn_children, cp)) {
if (cp->rn_id.rl_type == type && strcmp(cp->rn_name, name) == 0)
break;
}
if (cp != NULL)
rc_node_hold(cp);
*cpp = cp;
return (REP_PROTOCOL_SUCCESS);
}
#ifndef NATIVE_BUILD
static int rc_node_parent(rc_node_t *, rc_node_t **);
/*
* If the propname property exists in pg, and it is of type string, add its
* values as authorizations to pcp. pg must not be locked on entry, and it is
* returned unlocked. Returns
* _DELETED - pg was deleted
* _NO_RESOURCES
* _NOT_FOUND - pg has no property named propname
* _SUCCESS
*/
static int
perm_add_pg_prop_values(permcheck_t *pcp, rc_node_t *pg, const char *propname)
{
rc_node_t *prop;
int result;
uint_t count;
const char *cp;
assert(!MUTEX_HELD(&pg->rn_lock));
assert(pg->rn_id.rl_type == REP_PROTOCOL_ENTITY_PROPERTYGRP);
assert(pg->rn_id.rl_ids[ID_SNAPSHOT] == 0);
(void) pthread_mutex_lock(&pg->rn_lock);
result = rc_node_find_named_child(pg, propname,
REP_PROTOCOL_ENTITY_PROPERTY, &prop);
(void) pthread_mutex_unlock(&pg->rn_lock);
if (result != REP_PROTOCOL_SUCCESS) {
switch (result) {
case REP_PROTOCOL_FAIL_DELETED:
case REP_PROTOCOL_FAIL_NO_RESOURCES:
return (result);
case REP_PROTOCOL_FAIL_INVALID_TYPE:
case REP_PROTOCOL_FAIL_TYPE_MISMATCH:
default:
bad_error("rc_node_find_named_child", result);
}
}
if (prop == NULL)
return (REP_PROTOCOL_FAIL_NOT_FOUND);
/* rn_valtype is immutable, so no locking. */
if (prop->rn_valtype != REP_PROTOCOL_TYPE_STRING) {
rc_node_rele(prop);
return (REP_PROTOCOL_SUCCESS);
}
(void) pthread_mutex_lock(&prop->rn_lock);
for (count = prop->rn_values_count, cp = prop->rn_values;
count > 0;
--count) {
result = perm_add_enabling(pcp, cp);
if (result != REP_PROTOCOL_SUCCESS)
break;
cp = strchr(cp, '\0') + 1;
}
rc_node_rele_locked(prop);
return (result);
}
/*
* Assuming that ent is a service or instance node, if the pgname property
* group has type pgtype, and it has a propname property with string type, add
* its values as authorizations to pcp. If pgtype is NULL, it is not checked.
* Returns
* _SUCCESS
* _DELETED - ent was deleted
* _NO_RESOURCES - no resources
* _NOT_FOUND - ent does not have pgname pg or propname property
*/
static int
perm_add_ent_prop_values(permcheck_t *pcp, rc_node_t *ent, const char *pgname,
const char *pgtype, const char *propname)
{
int r;
rc_node_t *pg;
assert(!MUTEX_HELD(&ent->rn_lock));
(void) pthread_mutex_lock(&ent->rn_lock);
r = rc_node_find_named_child(ent, pgname,
REP_PROTOCOL_ENTITY_PROPERTYGRP, &pg);
(void) pthread_mutex_unlock(&ent->rn_lock);
switch (r) {
case REP_PROTOCOL_SUCCESS:
break;
case REP_PROTOCOL_FAIL_DELETED:
case REP_PROTOCOL_FAIL_NO_RESOURCES:
return (r);
default:
bad_error("rc_node_find_named_child", r);
}
if (pg == NULL)
return (REP_PROTOCOL_FAIL_NOT_FOUND);
if (pgtype == NULL || strcmp(pg->rn_type, pgtype) == 0) {
r = perm_add_pg_prop_values(pcp, pg, propname);
switch (r) {
case REP_PROTOCOL_FAIL_DELETED:
r = REP_PROTOCOL_FAIL_NOT_FOUND;
break;
case REP_PROTOCOL_FAIL_NO_RESOURCES:
case REP_PROTOCOL_SUCCESS:
case REP_PROTOCOL_FAIL_NOT_FOUND:
break;
default:
bad_error("perm_add_pg_prop_values", r);
}
}
rc_node_rele(pg);
return (r);
}
/*
* If pg has a property named propname, and it string typed, add its values as
* authorizations to pcp. If pg has no such property, and its parent is an
* instance, walk up to the service and try doing the same with the property
* of the same name from the property group of the same name. Returns
* _SUCCESS
* _NO_RESOURCES
* _DELETED - pg (or an ancestor) was deleted
*/
static int
perm_add_enabling_values(permcheck_t *pcp, rc_node_t *pg, const char *propname)
{
int r;
r = perm_add_pg_prop_values(pcp, pg, propname);
if (r == REP_PROTOCOL_FAIL_NOT_FOUND) {
char pgname[REP_PROTOCOL_NAME_LEN + 1];
rc_node_t *inst, *svc;
size_t sz;
assert(!MUTEX_HELD(&pg->rn_lock));
if (pg->rn_id.rl_ids[ID_INSTANCE] == 0) {
/* not an instance pg */
return (REP_PROTOCOL_SUCCESS);
}
sz = strlcpy(pgname, pg->rn_name, sizeof (pgname));
assert(sz < sizeof (pgname));
/* get pg's parent */
r = rc_node_parent(pg, &inst);
if (r != REP_PROTOCOL_SUCCESS) {
assert(r == REP_PROTOCOL_FAIL_DELETED);
return (r);
}
assert(inst->rn_id.rl_type == REP_PROTOCOL_ENTITY_INSTANCE);
/* get instance's parent */
r = rc_node_parent(inst, &svc);
rc_node_rele(inst);
if (r != REP_PROTOCOL_SUCCESS) {
assert(r == REP_PROTOCOL_FAIL_DELETED);
return (r);
}
assert(svc->rn_id.rl_type == REP_PROTOCOL_ENTITY_SERVICE);
r = perm_add_ent_prop_values(pcp, svc, pgname, NULL, propname);
rc_node_rele(svc);
if (r == REP_PROTOCOL_FAIL_NOT_FOUND)
r = REP_PROTOCOL_SUCCESS;
}
return (r);
}
/*
* Call perm_add_enabling_values() for the "action_authorization" property of
* the "general" property group of inst. Returns
* _DELETED - inst (or an ancestor) was deleted
* _NO_RESOURCES
* _SUCCESS
*/
static int
perm_add_inst_action_auth(permcheck_t *pcp, rc_node_t *inst)
{
int r;
rc_node_t *svc;
assert(inst->rn_id.rl_type == REP_PROTOCOL_ENTITY_INSTANCE);
r = perm_add_ent_prop_values(pcp, inst, AUTH_PG_GENERAL,
AUTH_PG_GENERAL_TYPE, AUTH_PROP_ACTION);
if (r != REP_PROTOCOL_FAIL_NOT_FOUND)
return (r);
r = rc_node_parent(inst, &svc);
if (r != REP_PROTOCOL_SUCCESS) {
assert(r == REP_PROTOCOL_FAIL_DELETED);
return (r);
}
r = perm_add_ent_prop_values(pcp, svc, AUTH_PG_GENERAL,
AUTH_PG_GENERAL_TYPE, AUTH_PROP_ACTION);
return (r == REP_PROTOCOL_FAIL_NOT_FOUND ? REP_PROTOCOL_SUCCESS : r);
}
#endif /* NATIVE_BUILD */
void
rc_node_ptr_init(rc_node_ptr_t *out)
{
out->rnp_node = NULL;
out->rnp_authorized = 0;
out->rnp_deleted = 0;
}
static void
rc_node_assign(rc_node_ptr_t *out, rc_node_t *val)
{
rc_node_t *cur = out->rnp_node;
if (val != NULL)
rc_node_hold(val);
out->rnp_node = val;
if (cur != NULL)
rc_node_rele(cur);
out->rnp_authorized = 0;
out->rnp_deleted = 0;
}
void
rc_node_clear(rc_node_ptr_t *out, int deleted)
{
rc_node_assign(out, NULL);
out->rnp_deleted = deleted;
}
void
rc_node_ptr_assign(rc_node_ptr_t *out, const rc_node_ptr_t *val)
{
rc_node_assign(out, val->rnp_node);
}
/*
* rc_node_check()/RC_NODE_CHECK()
* generic "entry" checks, run before the use of an rc_node pointer.
*
* Fails with
* _NOT_SET
* _DELETED
*/
static int
rc_node_check_and_lock(rc_node_t *np)
{
int result = REP_PROTOCOL_SUCCESS;
if (np == NULL)
return (REP_PROTOCOL_FAIL_NOT_SET);
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_wait_flag(np, RC_NODE_DYING)) {
result = REP_PROTOCOL_FAIL_DELETED;
(void) pthread_mutex_unlock(&np->rn_lock);
}
return (result);
}
/*
* Fails with
* _NOT_SET - ptr is reset
* _DELETED - node has been deleted
*/
static rc_node_t *
rc_node_ptr_check_and_lock(rc_node_ptr_t *npp, int *res)
{
rc_node_t *np = npp->rnp_node;
if (np == NULL) {
if (npp->rnp_deleted)
*res = REP_PROTOCOL_FAIL_DELETED;
else
*res = REP_PROTOCOL_FAIL_NOT_SET;
return (NULL);
}
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_wait_flag(np, RC_NODE_DYING)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_clear(npp, 1);
*res = REP_PROTOCOL_FAIL_DELETED;
return (NULL);
}
return (np);
}
#define RC_NODE_CHECK_AND_LOCK(n) { \
int rc__res; \
if ((rc__res = rc_node_check_and_lock(n)) != REP_PROTOCOL_SUCCESS) \
return (rc__res); \
}
#define RC_NODE_CHECK(n) { \
RC_NODE_CHECK_AND_LOCK(n); \
(void) pthread_mutex_unlock(&(n)->rn_lock); \
}
#define RC_NODE_CHECK_AND_HOLD(n) { \
RC_NODE_CHECK_AND_LOCK(n); \
rc_node_hold_locked(n); \
(void) pthread_mutex_unlock(&(n)->rn_lock); \
}
#define RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp) { \
int rc__res; \
if (((np) = rc_node_ptr_check_and_lock(npp, &rc__res)) == NULL) \
return (rc__res); \
}
#define RC_NODE_PTR_GET_CHECK(np, npp) { \
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp); \
(void) pthread_mutex_unlock(&(np)->rn_lock); \
}
#define RC_NODE_PTR_GET_CHECK_AND_HOLD(np, npp) { \
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp); \
rc_node_hold_locked(np); \
(void) pthread_mutex_unlock(&(np)->rn_lock); \
}
#define HOLD_FLAG_OR_RETURN(np, flag) { \
assert(MUTEX_HELD(&(np)->rn_lock)); \
assert(!((np)->rn_flags & RC_NODE_DEAD)); \
if (!rc_node_hold_flag((np), flag)) { \
(void) pthread_mutex_unlock(&(np)->rn_lock); \
return (REP_PROTOCOL_FAIL_DELETED); \
} \
}
#define HOLD_PTR_FLAG_OR_RETURN(np, npp, flag) { \
assert(MUTEX_HELD(&(np)->rn_lock)); \
assert(!((np)->rn_flags & RC_NODE_DEAD)); \
if (!rc_node_hold_flag((np), flag)) { \
(void) pthread_mutex_unlock(&(np)->rn_lock); \
assert((np) == (npp)->rnp_node); \
rc_node_clear(npp, 1); \
return (REP_PROTOCOL_FAIL_DELETED); \
} \
}
int
rc_local_scope(uint32_t type, rc_node_ptr_t *out)
{
if (type != REP_PROTOCOL_ENTITY_SCOPE) {
rc_node_clear(out, 0);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
/*
* the main scope never gets destroyed
*/
rc_node_assign(out, rc_scope);
return (REP_PROTOCOL_SUCCESS);
}
/*
* Fails with
* _NOT_SET - npp is not set
* _DELETED - the node npp pointed at has been deleted
* _TYPE_MISMATCH - type is not _SCOPE
* _NOT_FOUND - scope has no parent
*/
static int
rc_scope_parent_scope(rc_node_ptr_t *npp, uint32_t type, rc_node_ptr_t *out)
{
rc_node_t *np;
rc_node_clear(out, 0);
RC_NODE_PTR_GET_CHECK(np, npp);
if (type != REP_PROTOCOL_ENTITY_SCOPE)
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
return (REP_PROTOCOL_FAIL_NOT_FOUND);
}
/*
* Fails with
* _NOT_SET
* _DELETED
* _NOT_APPLICABLE
* _NOT_FOUND
* _BAD_REQUEST
* _TRUNCATED
*/
int
rc_node_name(rc_node_ptr_t *npp, char *buf, size_t sz, uint32_t answertype,
size_t *sz_out)
{
size_t actual;
rc_node_t *np;
assert(sz == *sz_out);
RC_NODE_PTR_GET_CHECK(np, npp);
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
np = np->rn_cchain[0];
RC_NODE_CHECK(np);
}
switch (answertype) {
case RP_ENTITY_NAME_NAME:
if (np->rn_name == NULL)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
actual = strlcpy(buf, np->rn_name, sz);
break;
case RP_ENTITY_NAME_PGTYPE:
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
actual = strlcpy(buf, np->rn_type, sz);
break;
case RP_ENTITY_NAME_PGFLAGS:
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
actual = snprintf(buf, sz, "%d", np->rn_pgflags);
break;
case RP_ENTITY_NAME_SNAPLEVEL_SCOPE:
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
actual = strlcpy(buf, np->rn_snaplevel->rsl_scope, sz);
break;
case RP_ENTITY_NAME_SNAPLEVEL_SERVICE:
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
actual = strlcpy(buf, np->rn_snaplevel->rsl_service, sz);
break;
case RP_ENTITY_NAME_SNAPLEVEL_INSTANCE:
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL)
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
if (np->rn_snaplevel->rsl_instance == NULL)
return (REP_PROTOCOL_FAIL_NOT_FOUND);
actual = strlcpy(buf, np->rn_snaplevel->rsl_instance, sz);
break;
default:
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
if (actual >= sz)
return (REP_PROTOCOL_FAIL_TRUNCATED);
*sz_out = actual;
return (REP_PROTOCOL_SUCCESS);
}
int
rc_node_get_property_type(rc_node_ptr_t *npp, rep_protocol_value_type_t *out)
{
rc_node_t *np;
RC_NODE_PTR_GET_CHECK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTY)
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
*out = np->rn_valtype;
return (REP_PROTOCOL_SUCCESS);
}
/*
* Get np's parent. If np is deleted, returns _DELETED. Otherwise puts a hold
* on the parent, returns a pointer to it in *out, and returns _SUCCESS.
*/
static int
rc_node_parent(rc_node_t *np, rc_node_t **out)
{
rc_node_t *pnp;
rc_node_t *np_orig;
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
RC_NODE_CHECK_AND_LOCK(np);
} else {
np = np->rn_cchain[0];
RC_NODE_CHECK_AND_LOCK(np);
}
np_orig = np;
rc_node_hold_locked(np); /* simplifies the remainder */
for (;;) {
if (!rc_node_wait_flag(np,
RC_NODE_IN_TX | RC_NODE_USING_PARENT)) {
rc_node_rele_locked(np);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (!(np->rn_flags & RC_NODE_OLD))
break;
rc_node_rele_locked(np);
np = cache_lookup(&np_orig->rn_id);
assert(np != np_orig);
if (np == NULL)
goto deleted;
(void) pthread_mutex_lock(&np->rn_lock);
}
/* guaranteed to succeed without dropping the lock */
if (!rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
(void) pthread_mutex_unlock(&np->rn_lock);
*out = NULL;
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_DELETED);
}
assert(np->rn_parent != NULL);
pnp = np->rn_parent;
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pnp->rn_lock);
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_hold_locked(pnp);
(void) pthread_mutex_unlock(&pnp->rn_lock);
rc_node_rele(np);
*out = pnp;
return (REP_PROTOCOL_SUCCESS);
deleted:
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_DELETED);
}
/*
* Fails with
* _NOT_SET
* _DELETED
*/
static int
rc_node_ptr_parent(rc_node_ptr_t *npp, rc_node_t **out)
{
rc_node_t *np;
RC_NODE_PTR_GET_CHECK(np, npp);
return (rc_node_parent(np, out));
}
/*
* Fails with
* _NOT_SET - npp is not set
* _DELETED - the node npp pointed at has been deleted
* _TYPE_MISMATCH - npp's node's parent is not of type type
*
* If npp points to a scope, can also fail with
* _NOT_FOUND - scope has no parent
*/
int
rc_node_get_parent(rc_node_ptr_t *npp, uint32_t type, rc_node_ptr_t *out)
{
rc_node_t *pnp;
int rc;
if (npp->rnp_node != NULL &&
npp->rnp_node->rn_id.rl_type == REP_PROTOCOL_ENTITY_SCOPE)
return (rc_scope_parent_scope(npp, type, out));
if ((rc = rc_node_ptr_parent(npp, &pnp)) != REP_PROTOCOL_SUCCESS) {
rc_node_clear(out, 0);
return (rc);
}
if (type != pnp->rn_id.rl_type) {
rc_node_rele(pnp);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
rc_node_assign(out, pnp);
rc_node_rele(pnp);
return (REP_PROTOCOL_SUCCESS);
}
int
rc_node_parent_type(rc_node_ptr_t *npp, uint32_t *type_out)
{
rc_node_t *pnp;
int rc;
if (npp->rnp_node != NULL &&
npp->rnp_node->rn_id.rl_type == REP_PROTOCOL_ENTITY_SCOPE) {
*type_out = REP_PROTOCOL_ENTITY_SCOPE;
return (REP_PROTOCOL_SUCCESS);
}
if ((rc = rc_node_ptr_parent(npp, &pnp)) != REP_PROTOCOL_SUCCESS)
return (rc);
*type_out = pnp->rn_id.rl_type;
rc_node_rele(pnp);
return (REP_PROTOCOL_SUCCESS);
}
/*
* Fails with
* _INVALID_TYPE - type is invalid
* _TYPE_MISMATCH - np doesn't carry children of type type
* _DELETED - np has been deleted
* _NOT_FOUND - no child with that name/type combo found
* _NO_RESOURCES
* _BACKEND_ACCESS
*/
int
rc_node_get_child(rc_node_ptr_t *npp, const char *name, uint32_t type,
rc_node_ptr_t *outp)
{
rc_node_t *np, *cp;
rc_node_t *child = NULL;
int ret, idx;
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if ((ret = rc_check_type_name(type, name)) == REP_PROTOCOL_SUCCESS) {
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
ret = rc_node_find_named_child(np, name, type, &child);
} else {
(void) pthread_mutex_unlock(&np->rn_lock);
ret = REP_PROTOCOL_SUCCESS;
for (idx = 0; idx < COMPOSITION_DEPTH; idx++) {
cp = np->rn_cchain[idx];
if (cp == NULL)
break;
RC_NODE_CHECK_AND_LOCK(cp);
ret = rc_node_find_named_child(cp, name, type,
&child);
(void) pthread_mutex_unlock(&cp->rn_lock);
/*
* loop only if we succeeded, but no child of
* the correct name was found.
*/
if (ret != REP_PROTOCOL_SUCCESS ||
child != NULL)
break;
}
(void) pthread_mutex_lock(&np->rn_lock);
}
}
(void) pthread_mutex_unlock(&np->rn_lock);
if (ret == REP_PROTOCOL_SUCCESS) {
rc_node_assign(outp, child);
if (child != NULL)
rc_node_rele(child);
else
ret = REP_PROTOCOL_FAIL_NOT_FOUND;
} else {
rc_node_assign(outp, NULL);
}
return (ret);
}
int
rc_node_update(rc_node_ptr_t *npp)
{
cache_bucket_t *bp;
rc_node_t *np = npp->rnp_node;
rc_node_t *nnp;
rc_node_t *cpg = NULL;
if (np != NULL &&
np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
/*
* If we're updating a composed property group, actually
* update the top-level property group & return the
* appropriate value. But leave *nnp pointing at us.
*/
cpg = np;
np = np->rn_cchain[0];
}
RC_NODE_CHECK(np);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP &&
np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
for (;;) {
bp = cache_hold(np->rn_hash);
nnp = cache_lookup_unlocked(bp, &np->rn_id);
if (nnp == NULL) {
cache_release(bp);
rc_node_clear(npp, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
/*
* grab the lock before dropping the cache bucket, so
* that no one else can sneak in
*/
(void) pthread_mutex_lock(&nnp->rn_lock);
cache_release(bp);
if (!(nnp->rn_flags & RC_NODE_IN_TX) ||
!rc_node_wait_flag(nnp, RC_NODE_IN_TX))
break;
rc_node_rele_locked(nnp);
}
/*
* If it is dead, we want to update it so that it will continue to
* report being dead.
*/
if (nnp->rn_flags & RC_NODE_DEAD) {
(void) pthread_mutex_unlock(&nnp->rn_lock);
if (nnp != np && cpg == NULL)
rc_node_assign(npp, nnp); /* updated */
rc_node_rele(nnp);
return (REP_PROTOCOL_FAIL_DELETED);
}
assert(!(nnp->rn_flags & RC_NODE_OLD));
(void) pthread_mutex_unlock(&nnp->rn_lock);
if (nnp != np && cpg == NULL)
rc_node_assign(npp, nnp); /* updated */
rc_node_rele(nnp);
return ((nnp == np)? REP_PROTOCOL_SUCCESS : REP_PROTOCOL_DONE);
}
/*
* does a generic modification check, for creation, deletion, and snapshot
* management only. Property group transactions have different checks.
*/
int
rc_node_modify_permission_check(void)
{
int rc = REP_PROTOCOL_SUCCESS;
permcheck_t *pcp;
int granted;
if (!client_is_privileged()) {
#ifdef NATIVE_BUILD
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#else
pcp = pc_create();
if (pcp != NULL) {
rc = perm_add_enabling(pcp, AUTH_MODIFY);
if (rc == REP_PROTOCOL_SUCCESS) {
granted = perm_granted(pcp);
if (granted < 0)
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
pc_free(pcp);
} else {
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
if (rc == REP_PROTOCOL_SUCCESS && !granted)
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#endif /* NATIVE_BUILD */
}
return (rc);
}
/*
* Fails with
* _DELETED - node has been deleted
* _NOT_SET - npp is reset
* _NOT_APPLICABLE - type is _PROPERTYGRP
* _INVALID_TYPE - node is corrupt or type is invalid
* _TYPE_MISMATCH - node cannot have children of type type
* _BAD_REQUEST - name is invalid
* cannot create children for this type of node
* _NO_RESOURCES - out of memory, or could not allocate new id
* _PERMISSION_DENIED
* _BACKEND_ACCESS
* _BACKEND_READONLY
* _EXISTS - child already exists
*/
int
rc_node_create_child(rc_node_ptr_t *npp, uint32_t type, const char *name,
rc_node_ptr_t *cpp)
{
rc_node_t *np;
rc_node_t *cp = NULL;
int rc;
rc_node_clear(cpp, 0);
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
/*
* there is a separate interface for creating property groups
*/
if (type == REP_PROTOCOL_ENTITY_PROPERTYGRP) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
}
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
(void) pthread_mutex_unlock(&np->rn_lock);
np = np->rn_cchain[0];
RC_NODE_CHECK_AND_LOCK(np);
}
if ((rc = rc_check_parent_child(np->rn_id.rl_type, type)) !=
REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
if ((rc = rc_check_type_name(type, name)) != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
if ((rc = rc_node_modify_permission_check()) != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
HOLD_PTR_FLAG_OR_RETURN(np, npp, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
rc = object_create(np, type, name, &cp);
assert(rc != REP_PROTOCOL_FAIL_NOT_APPLICABLE);
if (rc == REP_PROTOCOL_SUCCESS) {
rc_node_assign(cpp, cp);
rc_node_rele(cp);
}
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
int
rc_node_create_child_pg(rc_node_ptr_t *npp, uint32_t type, const char *name,
const char *pgtype, uint32_t flags, rc_node_ptr_t *cpp)
{
rc_node_t *np;
rc_node_t *cp;
int rc;
permcheck_t *pcp;
int granted;
rc_node_clear(cpp, 0);
/* verify flags is valid */
if (flags & ~SCF_PG_FLAG_NONPERSISTENT)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
RC_NODE_PTR_GET_CHECK_AND_HOLD(np, npp);
if (type != REP_PROTOCOL_ENTITY_PROPERTYGRP) {
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
}
if ((rc = rc_check_parent_child(np->rn_id.rl_type, type)) !=
REP_PROTOCOL_SUCCESS) {
rc_node_rele(np);
return (rc);
}
if ((rc = rc_check_type_name(type, name)) != REP_PROTOCOL_SUCCESS ||
(rc = rc_check_pgtype_name(pgtype)) != REP_PROTOCOL_SUCCESS) {
rc_node_rele(np);
return (rc);
}
if (!client_is_privileged()) {
#ifdef NATIVE_BUILD
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#else
/* Must have .smf.modify or smf.modify.<type> authorization */
pcp = pc_create();
if (pcp != NULL) {
rc = perm_add_enabling(pcp, AUTH_MODIFY);
if (rc == REP_PROTOCOL_SUCCESS) {
const char * const auth =
perm_auth_for_pgtype(pgtype);
if (auth != NULL)
rc = perm_add_enabling(pcp, auth);
}
/*
* .manage or $action_authorization can be used to
* create the actions pg and the general_ovr pg.
*/
if (rc == REP_PROTOCOL_SUCCESS &&
(flags & SCF_PG_FLAG_NONPERSISTENT) != 0 &&
np->rn_id.rl_type == REP_PROTOCOL_ENTITY_INSTANCE &&
((strcmp(name, AUTH_PG_ACTIONS) == 0 &&
strcmp(pgtype, AUTH_PG_ACTIONS_TYPE) == 0) ||
(strcmp(name, AUTH_PG_GENERAL_OVR) == 0 &&
strcmp(pgtype, AUTH_PG_GENERAL_OVR_TYPE) == 0))) {
rc = perm_add_enabling(pcp, AUTH_MANAGE);
if (rc == REP_PROTOCOL_SUCCESS)
rc = perm_add_inst_action_auth(pcp, np);
}
if (rc == REP_PROTOCOL_SUCCESS) {
granted = perm_granted(pcp);
if (granted < 0)
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
pc_free(pcp);
} else {
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
if (rc == REP_PROTOCOL_SUCCESS && !granted)
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#endif /* NATIVE_BUILD */
if (rc != REP_PROTOCOL_SUCCESS) {
rc_node_rele(np);
return (rc);
}
}
(void) pthread_mutex_lock(&np->rn_lock);
HOLD_PTR_FLAG_OR_RETURN(np, npp, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
rc = object_create_pg(np, type, name, pgtype, flags, &cp);
if (rc == REP_PROTOCOL_SUCCESS) {
rc_node_assign(cpp, cp);
rc_node_rele(cp);
}
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
static void
rc_pg_notify_fire(rc_node_pg_notify_t *pnp)
{
assert(MUTEX_HELD(&rc_pg_notify_lock));
if (pnp->rnpn_pg != NULL) {
uu_list_remove(pnp->rnpn_pg->rn_pg_notify_list, pnp);
(void) close(pnp->rnpn_fd);
pnp->rnpn_pg = NULL;
pnp->rnpn_fd = -1;
} else {
assert(pnp->rnpn_fd == -1);
}
}
static void
rc_notify_node_delete(rc_notify_delete_t *ndp, rc_node_t *np_arg)
{
rc_node_t *svc = NULL;
rc_node_t *inst = NULL;
rc_node_t *pg = NULL;
rc_node_t *np = np_arg;
rc_node_t *nnp;
while (svc == NULL) {
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
(void) pthread_mutex_unlock(&np->rn_lock);
goto cleanup;
}
nnp = np->rn_parent;
rc_node_hold_locked(np); /* hold it in place */
switch (np->rn_id.rl_type) {
case REP_PROTOCOL_ENTITY_PROPERTYGRP:
assert(pg == NULL);
pg = np;
break;
case REP_PROTOCOL_ENTITY_INSTANCE:
assert(inst == NULL);
inst = np;
break;
case REP_PROTOCOL_ENTITY_SERVICE:
assert(svc == NULL);
svc = np;
break;
default:
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
rc_node_rele_locked(np);
goto cleanup;
}
(void) pthread_mutex_unlock(&np->rn_lock);
np = nnp;
if (np == NULL)
goto cleanup;
}
rc_notify_deletion(ndp,
svc->rn_name,
inst != NULL ? inst->rn_name : NULL,
pg != NULL ? pg->rn_name : NULL);
ndp = NULL;
cleanup:
if (ndp != NULL)
uu_free(ndp);
for (;;) {
if (svc != NULL) {
np = svc;
svc = NULL;
} else if (inst != NULL) {
np = inst;
inst = NULL;
} else if (pg != NULL) {
np = pg;
pg = NULL;
} else
break;
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
rc_node_rele_locked(np);
}
}
/*
* N.B.: this function drops np->rn_lock on the way out.
*/
static void
rc_node_delete_hold(rc_node_t *np, int andformer)
{
rc_node_t *cp;
again:
assert(MUTEX_HELD(&np->rn_lock));
assert((np->rn_flags & RC_NODE_DYING_FLAGS) == RC_NODE_DYING_FLAGS);
for (cp = uu_list_first(np->rn_children); cp != NULL;
cp = uu_list_next(np->rn_children, cp)) {
(void) pthread_mutex_lock(&cp->rn_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
if (!rc_node_hold_flag(cp, RC_NODE_DYING_FLAGS)) {
/*
* already marked as dead -- can't happen, since that
* would require setting RC_NODE_CHILDREN_CHANGING
* in np, and we're holding that...
*/
abort();
}
rc_node_delete_hold(cp, andformer); /* recurse, drop lock */
(void) pthread_mutex_lock(&np->rn_lock);
}
if (andformer && (cp = np->rn_former) != NULL) {
(void) pthread_mutex_lock(&cp->rn_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
if (!rc_node_hold_flag(cp, RC_NODE_DYING_FLAGS))
abort(); /* can't happen, see above */
np = cp;
goto again; /* tail-recurse down rn_former */
}
(void) pthread_mutex_unlock(&np->rn_lock);
}
/*
* N.B.: this function drops np->rn_lock on the way out.
*/
static void
rc_node_delete_rele(rc_node_t *np, int andformer)
{
rc_node_t *cp;
again:
assert(MUTEX_HELD(&np->rn_lock));
assert((np->rn_flags & RC_NODE_DYING_FLAGS) == RC_NODE_DYING_FLAGS);
for (cp = uu_list_first(np->rn_children); cp != NULL;
cp = uu_list_next(np->rn_children, cp)) {
(void) pthread_mutex_lock(&cp->rn_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_delete_rele(cp, andformer); /* recurse, drop lock */
(void) pthread_mutex_lock(&np->rn_lock);
}
if (andformer && (cp = np->rn_former) != NULL) {
(void) pthread_mutex_lock(&cp->rn_lock);
rc_node_rele_flag(np, RC_NODE_DYING_FLAGS);
(void) pthread_mutex_unlock(&np->rn_lock);
np = cp;
goto again; /* tail-recurse down rn_former */
}
rc_node_rele_flag(np, RC_NODE_DYING_FLAGS);
(void) pthread_mutex_unlock(&np->rn_lock);
}
static void
rc_node_finish_delete(rc_node_t *cp)
{
cache_bucket_t *bp;
rc_node_pg_notify_t *pnp;
assert(MUTEX_HELD(&cp->rn_lock));
if (!(cp->rn_flags & RC_NODE_OLD)) {
assert(cp->rn_flags & RC_NODE_IN_PARENT);
if (!rc_node_wait_flag(cp, RC_NODE_USING_PARENT)) {
abort(); /* can't happen, see above */
}
cp->rn_flags &= ~RC_NODE_IN_PARENT;
cp->rn_parent = NULL;
}
cp->rn_flags |= RC_NODE_DEAD;
/*
* If this node is not out-dated, we need to remove it from
* the notify list and cache hash table.
*/
if (!(cp->rn_flags & RC_NODE_OLD)) {
assert(cp->rn_refs > 0); /* can't go away yet */
(void) pthread_mutex_unlock(&cp->rn_lock);
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while ((pnp = uu_list_first(cp->rn_pg_notify_list)) != NULL)
rc_pg_notify_fire(pnp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
rc_notify_remove_node(cp);
bp = cache_hold(cp->rn_hash);
(void) pthread_mutex_lock(&cp->rn_lock);
cache_remove_unlocked(bp, cp);
cache_release(bp);
}
}
/*
* N.B.: this function drops np->rn_lock and a reference on the way out.
*/
static void
rc_node_delete_children(rc_node_t *np, int andformer)
{
rc_node_t *cp;
again:
assert(np->rn_refs > 0);
assert(MUTEX_HELD(&np->rn_lock));
assert(np->rn_flags & RC_NODE_DEAD);
while ((cp = uu_list_first(np->rn_children)) != NULL) {
uu_list_remove(np->rn_children, cp);
(void) pthread_mutex_lock(&cp->rn_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_hold_locked(cp); /* hold while we recurse */
rc_node_finish_delete(cp);
rc_node_delete_children(cp, andformer); /* drops lock + ref */
(void) pthread_mutex_lock(&np->rn_lock);
}
/*
* when we drop cp's lock, all the children will be gone, so we
* can release DYING_FLAGS.
*/
rc_node_rele_flag(np, RC_NODE_DYING_FLAGS);
if (andformer && (cp = np->rn_former) != NULL) {
np->rn_former = NULL; /* unlink */
(void) pthread_mutex_lock(&cp->rn_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
np->rn_flags &= ~RC_NODE_ON_FORMER;
rc_node_hold_locked(cp); /* hold while we loop */
rc_node_finish_delete(cp);
rc_node_rele(np); /* drop the old reference */
np = cp;
goto again; /* tail-recurse down rn_former */
}
rc_node_rele_locked(np);
}
static void
rc_node_unrefed(rc_node_t *np)
{
int unrefed;
rc_node_t *pp, *cur;
assert(MUTEX_HELD(&np->rn_lock));
assert(np->rn_refs == 0);
assert(np->rn_other_refs == 0);
assert(np->rn_other_refs_held == 0);
if (np->rn_flags & RC_NODE_DEAD) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(np);
return;
}
assert(np->rn_flags & RC_NODE_OLD);
if (np->rn_flags & RC_NODE_UNREFED) {
(void) pthread_mutex_unlock(&np->rn_lock);
return;
}
np->rn_flags |= RC_NODE_UNREFED;
(void) pthread_mutex_unlock(&np->rn_lock);
/*
* find the current in-hash object, and grab it's RC_NODE_IN_TX
* flag. That protects the entire rn_former chain.
*/
for (;;) {
pp = cache_lookup(&np->rn_id);
if (pp == NULL) {
(void) pthread_mutex_lock(&np->rn_lock);
if (np->rn_flags & RC_NODE_DEAD)
goto died;
/*
* We are trying to unreference this node, but the
* owner of the former list does not exist. It must
* be the case that another thread is deleting this
* entire sub-branch, but has not yet reached us.
* We will in short order be deleted.
*/
np->rn_flags &= ~RC_NODE_UNREFED;
(void) pthread_mutex_unlock(&np->rn_lock);
return;
}
if (pp == np) {
/*
* no longer unreferenced
*/
(void) pthread_mutex_lock(&np->rn_lock);
np->rn_flags &= ~RC_NODE_UNREFED;
rc_node_rele_locked(np);
return;
}
(void) pthread_mutex_lock(&pp->rn_lock);
if ((pp->rn_flags & RC_NODE_OLD) ||
!rc_node_hold_flag(pp, RC_NODE_IN_TX)) {
rc_node_rele_locked(pp);
continue;
}
if (!(pp->rn_flags & RC_NODE_OLD)) {
(void) pthread_mutex_unlock(&pp->rn_lock);
break;
}
rc_node_rele_flag(pp, RC_NODE_IN_TX);
rc_node_rele_locked(pp);
}
(void) pthread_mutex_lock(&np->rn_lock);
if (!(np->rn_flags & (RC_NODE_OLD | RC_NODE_DEAD)) ||
np->rn_refs != 0 || np->rn_other_refs != 0 ||
np->rn_other_refs_held != 0) {
np->rn_flags &= ~RC_NODE_UNREFED;
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_IN_TX);
rc_node_rele_locked(pp);
return;
}
if (!rc_node_hold_flag(np, RC_NODE_DYING_FLAGS)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_rele_flag(pp, RC_NODE_IN_TX);
rc_node_rele_locked(pp);
(void) pthread_mutex_lock(&np->rn_lock);
goto died;
}
rc_node_delete_hold(np, 0);
(void) pthread_mutex_lock(&np->rn_lock);
if (!(np->rn_flags & RC_NODE_OLD) ||
np->rn_refs != 0 || np->rn_other_refs != 0 ||
np->rn_other_refs_held != 0) {
np->rn_flags &= ~RC_NODE_UNREFED;
rc_node_delete_rele(np, 0);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_IN_TX);
rc_node_rele_locked(pp);
return;
}
np->rn_flags |= RC_NODE_DEAD;
rc_node_hold_locked(np);
rc_node_delete_children(np, 0);
/*
* It's gone -- remove it from the former chain and destroy it.
*/
(void) pthread_mutex_lock(&pp->rn_lock);
for (cur = pp; cur != NULL && cur->rn_former != np;
cur = cur->rn_former)
;
assert(cur != NULL && cur != np);
cur->rn_former = np->rn_former;
np->rn_former = NULL;
rc_node_rele_flag(pp, RC_NODE_IN_TX);
rc_node_rele_locked(pp);
(void) pthread_mutex_lock(&np->rn_lock);
assert(np->rn_flags & RC_NODE_ON_FORMER);
np->rn_flags &= ~(RC_NODE_UNREFED | RC_NODE_ON_FORMER);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(np);
return;
died:
np->rn_flags &= ~RC_NODE_UNREFED;
unrefed = (np->rn_refs == 0 && np->rn_other_refs == 0 &&
np->rn_other_refs_held == 0);
(void) pthread_mutex_unlock(&np->rn_lock);
if (unrefed)
rc_node_destroy(np);
}
/*
* Fails with
* _NOT_SET
* _DELETED
* _BAD_REQUEST
* _PERMISSION_DENIED
* _NO_RESOURCES
* and whatever object_delete() fails with.
*/
int
rc_node_delete(rc_node_ptr_t *npp)
{
rc_node_t *np, *np_orig;
rc_node_t *pp = NULL;
int rc;
rc_node_pg_notify_t *pnp;
cache_bucket_t *bp;
rc_notify_delete_t *ndp;
permcheck_t *pcp;
int granted;
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
switch (np->rn_id.rl_type) {
case REP_PROTOCOL_ENTITY_SERVICE:
case REP_PROTOCOL_ENTITY_INSTANCE:
case REP_PROTOCOL_ENTITY_SNAPSHOT:
break; /* deletable */
case REP_PROTOCOL_ENTITY_SCOPE:
case REP_PROTOCOL_ENTITY_SNAPLEVEL:
/* Scopes and snaplevels are indelible. */
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
case REP_PROTOCOL_ENTITY_CPROPERTYGRP:
(void) pthread_mutex_unlock(&np->rn_lock);
np = np->rn_cchain[0];
RC_NODE_CHECK_AND_LOCK(np);
break;
case REP_PROTOCOL_ENTITY_PROPERTYGRP:
if (np->rn_id.rl_ids[ID_SNAPSHOT] == 0)
break;
/* Snapshot property groups are indelible. */
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_PERMISSION_DENIED);
case REP_PROTOCOL_ENTITY_PROPERTY:
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
default:
assert(0);
abort();
break;
}
np_orig = np;
rc_node_hold_locked(np); /* simplifies rest of the code */
again:
/*
* The following loop is to deal with the fact that snapshots and
* property groups are moving targets -- changes to them result
* in a new "child" node. Since we can only delete from the top node,
* we have to loop until we have a non-RC_NODE_OLD version.
*/
for (;;) {
if (!rc_node_wait_flag(np,
RC_NODE_IN_TX | RC_NODE_USING_PARENT)) {
rc_node_rele_locked(np);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (np->rn_flags & RC_NODE_OLD) {
rc_node_rele_locked(np);
np = cache_lookup(&np_orig->rn_id);
assert(np != np_orig);
if (np == NULL) {
rc = REP_PROTOCOL_FAIL_DELETED;
goto fail;
}
(void) pthread_mutex_lock(&np->rn_lock);
continue;
}
if (!rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
rc_node_rele_locked(np);
rc_node_clear(npp, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
/*
* Mark our parent as children changing. this call drops our
* lock and the RC_NODE_USING_PARENT flag, and returns with
* pp's lock held
*/
pp = rc_node_hold_parent_flag(np, RC_NODE_CHILDREN_CHANGING);
if (pp == NULL) {
/* our parent is gone, we're going next... */
rc_node_rele(np);
rc_node_clear(npp, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
rc_node_hold_locked(pp); /* hold for later */
(void) pthread_mutex_unlock(&pp->rn_lock);
(void) pthread_mutex_lock(&np->rn_lock);
if (!(np->rn_flags & RC_NODE_OLD))
break; /* not old -- we're done */
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
rc_node_rele_locked(pp);
(void) pthread_mutex_lock(&np->rn_lock);
continue; /* loop around and try again */
}
/*
* Everyone out of the pool -- we grab everything but
* RC_NODE_USING_PARENT (including RC_NODE_DYING) to keep
* any changes from occurring while we are attempting to
* delete the node.
*/
if (!rc_node_hold_flag(np, RC_NODE_DYING_FLAGS)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc = REP_PROTOCOL_FAIL_DELETED;
goto fail;
}
assert(!(np->rn_flags & RC_NODE_OLD));
if (!client_is_privileged()) {
/* permission check */
(void) pthread_mutex_unlock(&np->rn_lock);
#ifdef NATIVE_BUILD
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#else
pcp = pc_create();
if (pcp != NULL) {
rc = perm_add_enabling(pcp, AUTH_MODIFY);
/* add .smf.modify.<type> for pgs. */
if (rc == REP_PROTOCOL_SUCCESS && np->rn_id.rl_type ==
REP_PROTOCOL_ENTITY_PROPERTYGRP) {
const char * const auth =
perm_auth_for_pgtype(np->rn_type);
if (auth != NULL)
rc = perm_add_enabling(pcp, auth);
}
if (rc == REP_PROTOCOL_SUCCESS) {
granted = perm_granted(pcp);
if (granted < 0)
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
pc_free(pcp);
} else {
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
if (rc == REP_PROTOCOL_SUCCESS && !granted)
rc = REP_PROTOCOL_FAIL_PERMISSION_DENIED;
#endif /* NATIVE_BUILD */
if (rc != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_DYING_FLAGS);
(void) pthread_mutex_unlock(&np->rn_lock);
goto fail;
}
(void) pthread_mutex_lock(&np->rn_lock);
}
ndp = uu_zalloc(sizeof (*ndp));
if (ndp == NULL) {
rc_node_rele_flag(np, RC_NODE_DYING_FLAGS);
(void) pthread_mutex_unlock(&np->rn_lock);
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
goto fail;
}
rc_node_delete_hold(np, 1); /* hold entire subgraph, drop lock */
rc = object_delete(np);
if (rc != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_delete_rele(np, 1); /* drops lock */
uu_free(ndp);
goto fail;
}
/*
* Now, delicately unlink and delete the object.
*
* Create the delete notification, atomically remove
* from the hash table and set the NODE_DEAD flag, and
* remove from the parent's children list.
*/
rc_notify_node_delete(ndp, np); /* frees or uses ndp */
bp = cache_hold(np->rn_hash);
(void) pthread_mutex_lock(&np->rn_lock);
cache_remove_unlocked(bp, np);
cache_release(bp);
np->rn_flags |= RC_NODE_DEAD;
if (pp != NULL) {
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pp->rn_lock);
(void) pthread_mutex_lock(&np->rn_lock);
uu_list_remove(pp->rn_children, np);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
np->rn_flags &= ~RC_NODE_IN_PARENT;
}
/*
* finally, propagate death to our children, handle notifications,
* and release our hold.
*/
rc_node_hold_locked(np); /* hold for delete */
rc_node_delete_children(np, 1); /* drops DYING_FLAGS, lock, ref */
rc_node_clear(npp, 1);
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while ((pnp = uu_list_first(np->rn_pg_notify_list)) != NULL)
rc_pg_notify_fire(pnp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
rc_notify_remove_node(np);
rc_node_rele(np);
return (rc);
fail:
rc_node_rele(np);
if (rc == REP_PROTOCOL_FAIL_DELETED)
rc_node_clear(npp, 1);
if (pp != NULL) {
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
rc_node_rele_locked(pp); /* drop ref and lock */
}
return (rc);
}
int
rc_node_next_snaplevel(rc_node_ptr_t *npp, rc_node_ptr_t *cpp)
{
rc_node_t *np;
rc_node_t *cp, *pp;
int res;
rc_node_clear(cpp, 0);
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT &&
np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
}
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_SNAPSHOT) {
if ((res = rc_node_fill_children(np,
REP_PROTOCOL_ENTITY_SNAPLEVEL)) != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (res);
}
for (cp = uu_list_first(np->rn_children);
cp != NULL;
cp = uu_list_next(np->rn_children, cp)) {
if (cp->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL)
continue;
rc_node_hold(cp);
break;
}
(void) pthread_mutex_unlock(&np->rn_lock);
} else {
HOLD_PTR_FLAG_OR_RETURN(np, npp, RC_NODE_USING_PARENT);
/*
* mark our parent as children changing. This call drops our
* lock and the RC_NODE_USING_PARENT flag, and returns with
* pp's lock held
*/
pp = rc_node_hold_parent_flag(np, RC_NODE_CHILDREN_CHANGING);
if (pp == NULL) {
/* our parent is gone, we're going next... */
rc_node_clear(npp, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
/*
* find the next snaplevel
*/
cp = np;
while ((cp = uu_list_next(pp->rn_children, cp)) != NULL &&
cp->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPLEVEL)
;
/* it must match the snaplevel list */
assert((cp == NULL && np->rn_snaplevel->rsl_next == NULL) ||
(cp != NULL && np->rn_snaplevel->rsl_next ==
cp->rn_snaplevel));
if (cp != NULL)
rc_node_hold(cp);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
}
rc_node_assign(cpp, cp);
if (cp != NULL) {
rc_node_rele(cp);
return (REP_PROTOCOL_SUCCESS);
}
return (REP_PROTOCOL_FAIL_NOT_FOUND);
}
/*
* This call takes a snapshot (np) and either:
* an existing snapid (to be associated with np), or
* a non-NULL parentp (from which a new snapshot is taken, and associated
* with np)
*
* To do the association, np is duplicated, the duplicate is made to
* represent the new snapid, and np is replaced with the new rc_node_t on
* np's parent's child list. np is placed on the new node's rn_former list,
* and replaces np in cache_hash (so rc_node_update() will find the new one).
*/
static int
rc_attach_snapshot(rc_node_t *np, uint32_t snapid, rc_node_t *parentp)
{
rc_node_t *np_orig;
rc_node_t *nnp, *prev;
rc_node_t *pp;
int rc;
if (parentp != NULL)
assert(snapid == 0);
assert(MUTEX_HELD(&np->rn_lock));
if ((rc = rc_node_modify_permission_check()) != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
np_orig = np;
rc_node_hold_locked(np); /* simplifies the remainder */
/*
* get the latest node, holding RC_NODE_IN_TX to keep the rn_former
* list from changing.
*/
for (;;) {
if (!(np->rn_flags & RC_NODE_OLD)) {
if (!rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
goto again;
}
pp = rc_node_hold_parent_flag(np,
RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_lock(&np->rn_lock);
if (pp == NULL) {
goto again;
}
if (np->rn_flags & RC_NODE_OLD) {
rc_node_rele_flag(pp,
RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
goto again;
}
(void) pthread_mutex_unlock(&pp->rn_lock);
if (!rc_node_hold_flag(np, RC_NODE_IN_TX)) {
/*
* Can't happen, since we're holding our
* parent's CHILDREN_CHANGING flag...
*/
abort();
}
break; /* everything's ready */
}
again:
rc_node_rele_locked(np);
np = cache_lookup(&np_orig->rn_id);
if (np == NULL)
return (REP_PROTOCOL_FAIL_DELETED);
(void) pthread_mutex_lock(&np->rn_lock);
}
if (parentp != NULL) {
if (pp != parentp) {
rc = REP_PROTOCOL_FAIL_BAD_REQUEST;
goto fail;
}
nnp = NULL;
} else {
/*
* look for a former node with the snapid we need.
*/
if (np->rn_snapshot_id == snapid) {
rc_node_rele_flag(np, RC_NODE_IN_TX);
rc_node_rele_locked(np);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
return (REP_PROTOCOL_SUCCESS); /* nothing to do */
}
prev = np;
while ((nnp = prev->rn_former) != NULL) {
if (nnp->rn_snapshot_id == snapid) {
rc_node_hold(nnp);
break; /* existing node with that id */
}
prev = nnp;
}
}
if (nnp == NULL) {
prev = NULL;
nnp = rc_node_alloc();
if (nnp == NULL) {
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
goto fail;
}
nnp->rn_id = np->rn_id; /* structure assignment */
nnp->rn_hash = np->rn_hash;
nnp->rn_name = strdup(np->rn_name);
nnp->rn_snapshot_id = snapid;
nnp->rn_flags = RC_NODE_IN_TX | RC_NODE_USING_PARENT;
if (nnp->rn_name == NULL) {
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
goto fail;
}
}
(void) pthread_mutex_unlock(&np->rn_lock);
rc = object_snapshot_attach(&np->rn_id, &snapid, (parentp != NULL));
if (parentp != NULL)
nnp->rn_snapshot_id = snapid; /* fill in new snapid */
else
assert(nnp->rn_snapshot_id == snapid);
(void) pthread_mutex_lock(&np->rn_lock);
if (rc != REP_PROTOCOL_SUCCESS)
goto fail;
/*
* fix up the former chain
*/
if (prev != NULL) {
prev->rn_former = nnp->rn_former;
(void) pthread_mutex_lock(&nnp->rn_lock);
nnp->rn_flags &= ~RC_NODE_ON_FORMER;
nnp->rn_former = NULL;
(void) pthread_mutex_unlock(&nnp->rn_lock);
}
np->rn_flags |= RC_NODE_OLD;
(void) pthread_mutex_unlock(&np->rn_lock);
/*
* replace np with nnp
*/
rc_node_relink_child(pp, np, nnp);
rc_node_rele(np);
return (REP_PROTOCOL_SUCCESS);
fail:
rc_node_rele_flag(np, RC_NODE_IN_TX);
rc_node_rele_locked(np);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
if (nnp != NULL) {
if (prev == NULL)
rc_node_destroy(nnp);
else
rc_node_rele(nnp);
}
return (rc);
}
int
rc_snapshot_take_new(rc_node_ptr_t *npp, const char *svcname,
const char *instname, const char *name, rc_node_ptr_t *outpp)
{
rc_node_t *np;
rc_node_t *outp = NULL;
int rc;
rc_node_clear(outpp, 0);
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_INSTANCE) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
rc = rc_check_type_name(REP_PROTOCOL_ENTITY_SNAPSHOT, name);
if (rc != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
if (svcname != NULL && (rc =
rc_check_type_name(REP_PROTOCOL_ENTITY_SERVICE, svcname)) !=
REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
if (instname != NULL && (rc =
rc_check_type_name(REP_PROTOCOL_ENTITY_INSTANCE, instname)) !=
REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
if ((rc = rc_node_modify_permission_check()) != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
HOLD_PTR_FLAG_OR_RETURN(np, npp, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
rc = object_snapshot_take_new(np, svcname, instname, name, &outp);
if (rc == REP_PROTOCOL_SUCCESS) {
rc_node_assign(outpp, outp);
rc_node_rele(outp);
}
(void) pthread_mutex_lock(&np->rn_lock);
rc_node_rele_flag(np, RC_NODE_CREATING_CHILD);
(void) pthread_mutex_unlock(&np->rn_lock);
return (rc);
}
int
rc_snapshot_take_attach(rc_node_ptr_t *npp, rc_node_ptr_t *outpp)
{
rc_node_t *np, *outp;
RC_NODE_PTR_GET_CHECK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_INSTANCE) {
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
RC_NODE_PTR_GET_CHECK_AND_LOCK(outp, outpp);
if (outp->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT) {
(void) pthread_mutex_unlock(&outp->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
return (rc_attach_snapshot(outp, 0, np)); /* drops outp's lock */
}
int
rc_snapshot_attach(rc_node_ptr_t *npp, rc_node_ptr_t *cpp)
{
rc_node_t *np;
rc_node_t *cp;
uint32_t snapid;
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
snapid = np->rn_snapshot_id;
(void) pthread_mutex_unlock(&np->rn_lock);
RC_NODE_PTR_GET_CHECK_AND_LOCK(cp, cpp);
if (cp->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT) {
(void) pthread_mutex_unlock(&cp->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
return (rc_attach_snapshot(cp, snapid, NULL)); /* drops cp's lock */
}
/*
* Iteration
*/
static int
rc_iter_filter_name(rc_node_t *np, void *s)
{
const char *name = s;
return (strcmp(np->rn_name, name) == 0);
}
static int
rc_iter_filter_type(rc_node_t *np, void *s)
{
const char *type = s;
return (np->rn_type != NULL && strcmp(np->rn_type, type) == 0);
}
/*ARGSUSED*/
static int
rc_iter_null_filter(rc_node_t *np, void *s)
{
return (1);
}
/*
* Allocate & initialize an rc_node_iter_t structure. Essentially, ensure
* np->rn_children is populated and call uu_list_walk_start(np->rn_children).
* If successful, leaves a hold on np & increments np->rn_other_refs
*
* If composed is true, then set up for iteration across the top level of np's
* composition chain. If successful, leaves a hold on np and increments
* rn_other_refs for the top level of np's composition chain.
*
* Fails with
* _NO_RESOURCES
* _INVALID_TYPE
* _TYPE_MISMATCH - np cannot carry type children
* _DELETED
*/
static int
rc_iter_create(rc_node_iter_t **resp, rc_node_t *np, uint32_t type,
rc_iter_filter_func *filter, void *arg, boolean_t composed)
{
rc_node_iter_t *nip;
int res;
assert(*resp == NULL);
nip = uu_zalloc(sizeof (*nip));
if (nip == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
/* np is held by the client's rc_node_ptr_t */
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP)
composed = 1;
if (!composed) {
(void) pthread_mutex_lock(&np->rn_lock);
if ((res = rc_node_fill_children(np, type)) !=
REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
uu_free(nip);
return (res);
}
nip->rni_clevel = -1;
nip->rni_iter = uu_list_walk_start(np->rn_children,
UU_WALK_ROBUST);
if (nip->rni_iter != NULL) {
nip->rni_iter_node = np;
rc_node_hold_other(np);
} else {
(void) pthread_mutex_unlock(&np->rn_lock);
uu_free(nip);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
(void) pthread_mutex_unlock(&np->rn_lock);
} else {
rc_node_t *ent;
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_SNAPSHOT) {
/* rn_cchain isn't valid until children are loaded. */
(void) pthread_mutex_lock(&np->rn_lock);
res = rc_node_fill_children(np,
REP_PROTOCOL_ENTITY_SNAPLEVEL);
(void) pthread_mutex_unlock(&np->rn_lock);
if (res != REP_PROTOCOL_SUCCESS) {
uu_free(nip);
return (res);
}
/* Check for an empty snapshot. */
if (np->rn_cchain[0] == NULL)
goto empty;
}
/* Start at the top of the composition chain. */
for (nip->rni_clevel = 0; ; ++nip->rni_clevel) {
if (nip->rni_clevel >= COMPOSITION_DEPTH) {
/* Empty composition chain. */
empty:
nip->rni_clevel = -1;
nip->rni_iter = NULL;
/* It's ok, iter_next() will return _DONE. */
goto out;
}
ent = np->rn_cchain[nip->rni_clevel];
assert(ent != NULL);
if (rc_node_check_and_lock(ent) == REP_PROTOCOL_SUCCESS)
break;
/* Someone deleted it, so try the next one. */
}
res = rc_node_fill_children(ent, type);
if (res == REP_PROTOCOL_SUCCESS) {
nip->rni_iter = uu_list_walk_start(ent->rn_children,
UU_WALK_ROBUST);
if (nip->rni_iter == NULL)
res = REP_PROTOCOL_FAIL_NO_RESOURCES;
else {
nip->rni_iter_node = ent;
rc_node_hold_other(ent);
}
}
if (res != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&ent->rn_lock);
uu_free(nip);
return (res);
}
(void) pthread_mutex_unlock(&ent->rn_lock);
}
out:
rc_node_hold(np); /* released by rc_iter_end() */
nip->rni_parent = np;
nip->rni_type = type;
nip->rni_filter = (filter != NULL)? filter : rc_iter_null_filter;
nip->rni_filter_arg = arg;
*resp = nip;
return (REP_PROTOCOL_SUCCESS);
}
static void
rc_iter_end(rc_node_iter_t *iter)
{
rc_node_t *np = iter->rni_parent;
if (iter->rni_clevel >= 0)
np = np->rn_cchain[iter->rni_clevel];
assert(MUTEX_HELD(&np->rn_lock));
if (iter->rni_iter != NULL)
uu_list_walk_end(iter->rni_iter);
iter->rni_iter = NULL;
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_rele(iter->rni_parent);
if (iter->rni_iter_node != NULL)
rc_node_rele_other(iter->rni_iter_node);
}
/*
* Fails with
* _NOT_SET - npp is reset
* _DELETED - npp's node has been deleted
* _NOT_APPLICABLE - npp's node is not a property
* _NO_RESOURCES - out of memory
*/
static int
rc_node_setup_value_iter(rc_node_ptr_t *npp, rc_node_iter_t **iterp)
{
rc_node_t *np;
rc_node_iter_t *nip;
assert(*iterp == NULL);
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTY) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_APPLICABLE);
}
nip = uu_zalloc(sizeof (*nip));
if (nip == NULL) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
nip->rni_parent = np;
nip->rni_iter = NULL;
nip->rni_clevel = -1;
nip->rni_type = REP_PROTOCOL_ENTITY_VALUE;
nip->rni_offset = 0;
nip->rni_last_offset = 0;
rc_node_hold_locked(np);
*iterp = nip;
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_SUCCESS);
}
/*
* Returns:
* _NOT_SET - npp is reset
* _DELETED - npp's node has been deleted
* _TYPE_MISMATCH - npp's node is not a property
* _NOT_FOUND - property has no values
* _TRUNCATED - property has >1 values (first is written into out)
* _SUCCESS - property has 1 value (which is written into out)
*
* We shorten *sz_out to not include anything after the final '\0'.
*/
int
rc_node_get_property_value(rc_node_ptr_t *npp,
struct rep_protocol_value_response *out, size_t *sz_out)
{
rc_node_t *np;
size_t w;
int ret;
assert(*sz_out == sizeof (*out));
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTY) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
if (np->rn_values_size == 0) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_FOUND);
}
out->rpr_type = np->rn_valtype;
w = strlcpy(out->rpr_value, &np->rn_values[0],
sizeof (out->rpr_value));
if (w >= sizeof (out->rpr_value))
backend_panic("value too large");
*sz_out = offsetof(struct rep_protocol_value_response,
rpr_value[w + 1]);
ret = (np->rn_values_count != 1)? REP_PROTOCOL_FAIL_TRUNCATED :
REP_PROTOCOL_SUCCESS;
(void) pthread_mutex_unlock(&np->rn_lock);
return (ret);
}
int
rc_iter_next_value(rc_node_iter_t *iter,
struct rep_protocol_value_response *out, size_t *sz_out, int repeat)
{
rc_node_t *np = iter->rni_parent;
const char *vals;
size_t len;
size_t start;
size_t w;
rep_protocol_responseid_t result;
assert(*sz_out == sizeof (*out));
(void) memset(out, '\0', *sz_out);
if (iter->rni_type != REP_PROTOCOL_ENTITY_VALUE)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
RC_NODE_CHECK_AND_LOCK(np);
vals = np->rn_values;
len = np->rn_values_size;
out->rpr_type = np->rn_valtype;
start = (repeat)? iter->rni_last_offset : iter->rni_offset;
if (len == 0 || start >= len) {
result = REP_PROTOCOL_DONE;
*sz_out -= sizeof (out->rpr_value);
} else {
w = strlcpy(out->rpr_value, &vals[start],
sizeof (out->rpr_value));
if (w >= sizeof (out->rpr_value))
backend_panic("value too large");
*sz_out = offsetof(struct rep_protocol_value_response,
rpr_value[w + 1]);
/*
* update the offsets if we're not repeating
*/
if (!repeat) {
iter->rni_last_offset = iter->rni_offset;
iter->rni_offset += (w + 1);
}
result = REP_PROTOCOL_SUCCESS;
}
(void) pthread_mutex_unlock(&np->rn_lock);
return (result);
}
/*
* Entry point for ITER_START from client.c. Validate the arguments & call
* rc_iter_create().
*
* Fails with
* _NOT_SET
* _DELETED
* _TYPE_MISMATCH - np cannot carry type children
* _BAD_REQUEST - flags is invalid
* pattern is invalid
* _NO_RESOURCES
* _INVALID_TYPE
* _TYPE_MISMATCH - *npp cannot have children of type
* _BACKEND_ACCESS
*/
int
rc_node_setup_iter(rc_node_ptr_t *npp, rc_node_iter_t **iterp,
uint32_t type, uint32_t flags, const char *pattern)
{
rc_node_t *np;
rc_iter_filter_func *f = NULL;
int rc;
RC_NODE_PTR_GET_CHECK(np, npp);
if (pattern != NULL && pattern[0] == '\0')
pattern = NULL;
if (type == REP_PROTOCOL_ENTITY_VALUE) {
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTY)
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
if (flags != RP_ITER_START_ALL || pattern != NULL)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
rc = rc_node_setup_value_iter(npp, iterp);
assert(rc != REP_PROTOCOL_FAIL_NOT_APPLICABLE);
return (rc);
}
if ((rc = rc_check_parent_child(np->rn_id.rl_type, type)) !=
REP_PROTOCOL_SUCCESS)
return (rc);
if (((flags & RP_ITER_START_FILT_MASK) == RP_ITER_START_ALL) ^
(pattern == NULL))
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
/* Composition only works for instances & snapshots. */
if ((flags & RP_ITER_START_COMPOSED) &&
(np->rn_id.rl_type != REP_PROTOCOL_ENTITY_INSTANCE &&
np->rn_id.rl_type != REP_PROTOCOL_ENTITY_SNAPSHOT))
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
if (pattern != NULL) {
if ((rc = rc_check_type_name(type, pattern)) !=
REP_PROTOCOL_SUCCESS)
return (rc);
pattern = strdup(pattern);
if (pattern == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
switch (flags & RP_ITER_START_FILT_MASK) {
case RP_ITER_START_ALL:
f = NULL;
break;
case RP_ITER_START_EXACT:
f = rc_iter_filter_name;
break;
case RP_ITER_START_PGTYPE:
if (type != REP_PROTOCOL_ENTITY_PROPERTYGRP) {
free((void *)pattern);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
f = rc_iter_filter_type;
break;
default:
free((void *)pattern);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
rc = rc_iter_create(iterp, np, type, f, (void *)pattern,
flags & RP_ITER_START_COMPOSED);
if (rc != REP_PROTOCOL_SUCCESS && pattern != NULL)
free((void *)pattern);
return (rc);
}
/*
* Do uu_list_walk_next(iter->rni_iter) until we find a child which matches
* the filter.
* For composed iterators, then check to see if there's an overlapping entity
* (see embedded comments). If we reach the end of the list, start over at
* the next level.
*
* Returns
* _BAD_REQUEST - iter walks values
* _TYPE_MISMATCH - iter does not walk type entities
* _DELETED - parent was deleted
* _NO_RESOURCES
* _INVALID_TYPE - type is invalid
* _DONE
* _SUCCESS
*
* For composed property group iterators, can also return
* _TYPE_MISMATCH - parent cannot have type children
*/
int
rc_iter_next(rc_node_iter_t *iter, rc_node_ptr_t *out, uint32_t type)
{
rc_node_t *np = iter->rni_parent;
rc_node_t *res;
int rc;
if (iter->rni_type == REP_PROTOCOL_ENTITY_VALUE)
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
if (iter->rni_iter == NULL) {
rc_node_clear(out, 0);
return (REP_PROTOCOL_DONE);
}
if (iter->rni_type != type) {
rc_node_clear(out, 0);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
(void) pthread_mutex_lock(&np->rn_lock); /* held by _iter_create() */
if (!rc_node_wait_flag(np, RC_NODE_CHILDREN_CHANGING)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_clear(out, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (iter->rni_clevel >= 0) {
/* Composed iterator. Iterate over appropriate level. */
(void) pthread_mutex_unlock(&np->rn_lock);
np = np->rn_cchain[iter->rni_clevel];
/*
* If iter->rni_parent is an instance or a snapshot, np must
* be valid since iter holds iter->rni_parent & possible
* levels (service, instance, snaplevel) cannot be destroyed
* while rni_parent is held. If iter->rni_parent is
* a composed property group then rc_node_setup_cpg() put
* a hold on np.
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_wait_flag(np, RC_NODE_CHILDREN_CHANGING)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_clear(out, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
}
assert(np->rn_flags & RC_NODE_HAS_CHILDREN);
for (;;) {
res = uu_list_walk_next(iter->rni_iter);
if (res == NULL) {
rc_node_t *parent = iter->rni_parent;
#if COMPOSITION_DEPTH == 2
if (iter->rni_clevel < 0 || iter->rni_clevel == 1) {
/* release walker and lock */
rc_iter_end(iter);
break;
}
/* Stop walking current level. */
uu_list_walk_end(iter->rni_iter);
iter->rni_iter = NULL;
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_rele_other(iter->rni_iter_node);
iter->rni_iter_node = NULL;
/* Start walking next level. */
++iter->rni_clevel;
np = parent->rn_cchain[iter->rni_clevel];
assert(np != NULL);
#else
#error This code must be updated.
#endif
(void) pthread_mutex_lock(&np->rn_lock);
rc = rc_node_fill_children(np, iter->rni_type);
if (rc == REP_PROTOCOL_SUCCESS) {
iter->rni_iter =
uu_list_walk_start(np->rn_children,
UU_WALK_ROBUST);
if (iter->rni_iter == NULL)
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
else {
iter->rni_iter_node = np;
rc_node_hold_other(np);
}
}
if (rc != REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_clear(out, 0);
return (rc);
}
continue;
}
if (res->rn_id.rl_type != type ||
!iter->rni_filter(res, iter->rni_filter_arg))
continue;
/*
* If we're composed and not at the top level, check to see if
* there's an entity at a higher level with the same name. If
* so, skip this one.
*/
if (iter->rni_clevel > 0) {
rc_node_t *ent = iter->rni_parent->rn_cchain[0];
rc_node_t *pg;
#if COMPOSITION_DEPTH == 2
assert(iter->rni_clevel == 1);
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&ent->rn_lock);
rc = rc_node_find_named_child(ent, res->rn_name, type,
&pg);
if (rc == REP_PROTOCOL_SUCCESS && pg != NULL)
rc_node_rele(pg);
(void) pthread_mutex_unlock(&ent->rn_lock);
if (rc != REP_PROTOCOL_SUCCESS) {
rc_node_clear(out, 0);
return (rc);
}
(void) pthread_mutex_lock(&np->rn_lock);
/* Make sure np isn't being deleted all of a sudden. */
if (!rc_node_wait_flag(np, RC_NODE_DYING)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_clear(out, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (pg != NULL)
/* Keep going. */
continue;
#else
#error This code must be updated.
#endif
}
/*
* If we're composed, iterating over property groups, and not
* at the bottom level, check to see if there's a pg at lower
* level with the same name. If so, return a cpg.
*/
if (iter->rni_clevel >= 0 &&
type == REP_PROTOCOL_ENTITY_PROPERTYGRP &&
iter->rni_clevel < COMPOSITION_DEPTH - 1) {
#if COMPOSITION_DEPTH == 2
rc_node_t *pg;
rc_node_t *ent = iter->rni_parent->rn_cchain[1];
rc_node_hold(res); /* While we drop np->rn_lock */
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&ent->rn_lock);
rc = rc_node_find_named_child(ent, res->rn_name, type,
&pg);
/* holds pg if not NULL */
(void) pthread_mutex_unlock(&ent->rn_lock);
if (rc != REP_PROTOCOL_SUCCESS) {
rc_node_rele(res);
rc_node_clear(out, 0);
return (rc);
}
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_wait_flag(np, RC_NODE_DYING)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_rele(res);
if (pg != NULL)
rc_node_rele(pg);
rc_node_clear(out, 1);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (pg == NULL) {
rc_node_rele(res);
} else {
rc_node_t *cpg;
/* Keep res held for rc_node_setup_cpg(). */
cpg = rc_node_alloc();
if (cpg == NULL) {
(void) pthread_mutex_unlock(
&np->rn_lock);
rc_node_rele(res);
rc_node_rele(pg);
rc_node_clear(out, 0);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
switch (rc_node_setup_cpg(cpg, res, pg)) {
case REP_PROTOCOL_SUCCESS:
res = cpg;
break;
case REP_PROTOCOL_FAIL_TYPE_MISMATCH:
/* Nevermind. */
rc_node_destroy(cpg);
rc_node_rele(pg);
rc_node_rele(res);
break;
case REP_PROTOCOL_FAIL_NO_RESOURCES:
rc_node_destroy(cpg);
(void) pthread_mutex_unlock(
&np->rn_lock);
rc_node_rele(res);
rc_node_rele(pg);
rc_node_clear(out, 0);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
default:
assert(0);
abort();
}
}
#else
#error This code must be updated.
#endif
}
rc_node_hold(res);
(void) pthread_mutex_unlock(&np->rn_lock);
break;
}
rc_node_assign(out, res);
if (res == NULL)
return (REP_PROTOCOL_DONE);
rc_node_rele(res);
return (REP_PROTOCOL_SUCCESS);
}
void
rc_iter_destroy(rc_node_iter_t **nipp)
{
rc_node_iter_t *nip = *nipp;
rc_node_t *np;
if (nip == NULL)
return; /* already freed */
np = nip->rni_parent;
if (nip->rni_filter_arg != NULL)
free(nip->rni_filter_arg);
nip->rni_filter_arg = NULL;
if (nip->rni_type == REP_PROTOCOL_ENTITY_VALUE ||
nip->rni_iter != NULL) {
if (nip->rni_clevel < 0)
(void) pthread_mutex_lock(&np->rn_lock);
else
(void) pthread_mutex_lock(
&np->rn_cchain[nip->rni_clevel]->rn_lock);
rc_iter_end(nip); /* release walker and lock */
}
nip->rni_parent = NULL;
uu_free(nip);
*nipp = NULL;
}
int
rc_node_setup_tx(rc_node_ptr_t *npp, rc_node_ptr_t *txp)
{
rc_node_t *np;
permcheck_t *pcp;
int ret;
int authorized = 0;
RC_NODE_PTR_GET_CHECK_AND_HOLD(np, npp);
if (np->rn_id.rl_type == REP_PROTOCOL_ENTITY_CPROPERTYGRP) {
rc_node_rele(np);
np = np->rn_cchain[0];
RC_NODE_CHECK_AND_HOLD(np);
}
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP) {
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_TYPE_MISMATCH);
}
if (np->rn_id.rl_ids[ID_SNAPSHOT] != 0) {
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_PERMISSION_DENIED);
}
if (client_is_privileged())
goto skip_checks;
#ifdef NATIVE_BUILD
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_PERMISSION_DENIED);
#else
/* permission check */
pcp = pc_create();
if (pcp == NULL) {
rc_node_rele(np);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
if (np->rn_id.rl_ids[ID_INSTANCE] != 0 && /* instance pg */
((strcmp(np->rn_name, AUTH_PG_ACTIONS) == 0 &&
strcmp(np->rn_type, AUTH_PG_ACTIONS_TYPE) == 0) ||
(strcmp(np->rn_name, AUTH_PG_GENERAL_OVR) == 0 &&
strcmp(np->rn_type, AUTH_PG_GENERAL_OVR_TYPE) == 0))) {
rc_node_t *instn;
/* solaris.smf.manage can be used. */
ret = perm_add_enabling(pcp, AUTH_MANAGE);
if (ret != REP_PROTOCOL_SUCCESS) {
pc_free(pcp);
rc_node_rele(np);
return (ret);
}
/* general/action_authorization values can be used. */
ret = rc_node_parent(np, &instn);
if (ret != REP_PROTOCOL_SUCCESS) {
assert(ret == REP_PROTOCOL_FAIL_DELETED);
rc_node_rele(np);
pc_free(pcp);
return (REP_PROTOCOL_FAIL_DELETED);
}
assert(instn->rn_id.rl_type == REP_PROTOCOL_ENTITY_INSTANCE);
ret = perm_add_inst_action_auth(pcp, instn);
rc_node_rele(instn);
switch (ret) {
case REP_PROTOCOL_SUCCESS:
break;
case REP_PROTOCOL_FAIL_DELETED:
case REP_PROTOCOL_FAIL_NO_RESOURCES:
rc_node_rele(np);
pc_free(pcp);
return (ret);
default:
bad_error("perm_add_inst_action_auth", ret);
}
if (strcmp(np->rn_name, AUTH_PG_ACTIONS) == 0)
authorized = 1; /* Don't check on commit. */
} else {
ret = perm_add_enabling(pcp, AUTH_MODIFY);
if (ret == REP_PROTOCOL_SUCCESS) {
/* propertygroup-type-specific authorization */
/* no locking because rn_type won't change anyway */
const char * const auth =
perm_auth_for_pgtype(np->rn_type);
if (auth != NULL)
ret = perm_add_enabling(pcp, auth);
}
if (ret == REP_PROTOCOL_SUCCESS)
/* propertygroup/transaction-type-specific auths */
ret =
perm_add_enabling_values(pcp, np, AUTH_PROP_VALUE);
if (ret == REP_PROTOCOL_SUCCESS)
ret =
perm_add_enabling_values(pcp, np, AUTH_PROP_MODIFY);
/* AUTH_MANAGE can manipulate general/AUTH_PROP_ACTION */
if (ret == REP_PROTOCOL_SUCCESS &&
strcmp(np->rn_name, AUTH_PG_GENERAL) == 0 &&
strcmp(np->rn_type, AUTH_PG_GENERAL_TYPE) == 0)
ret = perm_add_enabling(pcp, AUTH_MANAGE);
if (ret != REP_PROTOCOL_SUCCESS) {
pc_free(pcp);
rc_node_rele(np);
return (ret);
}
}
ret = perm_granted(pcp);
if (ret != 1) {
pc_free(pcp);
rc_node_rele(np);
return (ret == 0 ? REP_PROTOCOL_FAIL_PERMISSION_DENIED :
REP_PROTOCOL_FAIL_NO_RESOURCES);
}
pc_free(pcp);
#endif /* NATIVE_BUILD */
skip_checks:
rc_node_assign(txp, np);
txp->rnp_authorized = authorized;
rc_node_rele(np);
return (REP_PROTOCOL_SUCCESS);
}
/*
* Return 1 if the given transaction commands only modify the values of
* properties other than "modify_authorization". Return -1 if any of the
* commands are invalid, and 0 otherwise.
*/
static int
tx_allow_value(const void *cmds_arg, size_t cmds_sz, rc_node_t *pg)
{
const struct rep_protocol_transaction_cmd *cmds;
uintptr_t loc;
uint32_t sz;
rc_node_t *prop;
boolean_t ok;
assert(!MUTEX_HELD(&pg->rn_lock));
loc = (uintptr_t)cmds_arg;
while (cmds_sz > 0) {
cmds = (struct rep_protocol_transaction_cmd *)loc;
if (cmds_sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = cmds->rptc_size;
if (sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = TX_SIZE(sz);
if (sz > cmds_sz)
return (-1);
switch (cmds[0].rptc_action) {
case REP_PROTOCOL_TX_ENTRY_CLEAR:
break;
case REP_PROTOCOL_TX_ENTRY_REPLACE:
/* Check type */
(void) pthread_mutex_lock(&pg->rn_lock);
if (rc_node_find_named_child(pg,
(const char *)cmds[0].rptc_data,
REP_PROTOCOL_ENTITY_PROPERTY, &prop) ==
REP_PROTOCOL_SUCCESS) {
ok = (prop != NULL &&
prop->rn_valtype == cmds[0].rptc_type);
} else {
/* Return more particular error? */
ok = B_FALSE;
}
(void) pthread_mutex_unlock(&pg->rn_lock);
if (ok)
break;
return (0);
default:
return (0);
}
if (strcmp((const char *)cmds[0].rptc_data, AUTH_PROP_MODIFY)
== 0)
return (0);
loc += sz;
cmds_sz -= sz;
}
return (1);
}
/*
* Return 1 if any of the given transaction commands affect
* "action_authorization". Return -1 if any of the commands are invalid and
* 0 in all other cases.
*/
static int
tx_modifies_action(const void *cmds_arg, size_t cmds_sz)
{
const struct rep_protocol_transaction_cmd *cmds;
uintptr_t loc;
uint32_t sz;
loc = (uintptr_t)cmds_arg;
while (cmds_sz > 0) {
cmds = (struct rep_protocol_transaction_cmd *)loc;
if (cmds_sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = cmds->rptc_size;
if (sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = TX_SIZE(sz);
if (sz > cmds_sz)
return (-1);
if (strcmp((const char *)cmds[0].rptc_data, AUTH_PROP_ACTION)
== 0)
return (1);
loc += sz;
cmds_sz -= sz;
}
return (0);
}
/*
* Returns 1 if the transaction commands only modify properties named
* 'enabled'.
*/
static int
tx_only_enabled(const void *cmds_arg, size_t cmds_sz)
{
const struct rep_protocol_transaction_cmd *cmd;
uintptr_t loc;
uint32_t sz;
loc = (uintptr_t)cmds_arg;
while (cmds_sz > 0) {
cmd = (struct rep_protocol_transaction_cmd *)loc;
if (cmds_sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = cmd->rptc_size;
if (sz <= REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE)
return (-1);
sz = TX_SIZE(sz);
if (sz > cmds_sz)
return (-1);
if (strcmp((const char *)cmd->rptc_data, AUTH_PROP_ENABLED)
!= 0)
return (0);
loc += sz;
cmds_sz -= sz;
}
return (1);
}
int
rc_tx_commit(rc_node_ptr_t *txp, const void *cmds, size_t cmds_sz)
{
rc_node_t *np = txp->rnp_node;
rc_node_t *pp;
rc_node_t *nnp;
rc_node_pg_notify_t *pnp;
int rc;
permcheck_t *pcp;
int granted, normal;
RC_NODE_CHECK(np);
if (!client_is_privileged() && !txp->rnp_authorized) {
#ifdef NATIVE_BUILD
return (REP_PROTOCOL_FAIL_PERMISSION_DENIED);
#else
/* permission check: depends on contents of transaction */
pcp = pc_create();
if (pcp == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
/* If normal is cleared, we won't do the normal checks. */
normal = 1;
rc = REP_PROTOCOL_SUCCESS;
if (strcmp(np->rn_name, AUTH_PG_GENERAL) == 0 &&
strcmp(np->rn_type, AUTH_PG_GENERAL_TYPE) == 0) {
/* Touching general[framework]/action_authorization? */
rc = tx_modifies_action(cmds, cmds_sz);
if (rc == -1) {
pc_free(pcp);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
if (rc) {
/* Yes: only AUTH_MANAGE can be used. */
rc = perm_add_enabling(pcp, AUTH_MANAGE);
normal = 0;
} else {
rc = REP_PROTOCOL_SUCCESS;
}
} else if (np->rn_id.rl_ids[ID_INSTANCE] != 0 &&
strcmp(np->rn_name, AUTH_PG_GENERAL_OVR) == 0 &&
strcmp(np->rn_type, AUTH_PG_GENERAL_OVR_TYPE) == 0) {
rc_node_t *instn;
rc = tx_only_enabled(cmds, cmds_sz);
if (rc == -1) {
pc_free(pcp);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
if (rc) {
rc = rc_node_parent(np, &instn);
if (rc != REP_PROTOCOL_SUCCESS) {
assert(rc == REP_PROTOCOL_FAIL_DELETED);
pc_free(pcp);
return (rc);
}
assert(instn->rn_id.rl_type ==
REP_PROTOCOL_ENTITY_INSTANCE);
rc = perm_add_inst_action_auth(pcp, instn);
rc_node_rele(instn);
switch (rc) {
case REP_PROTOCOL_SUCCESS:
break;
case REP_PROTOCOL_FAIL_DELETED:
case REP_PROTOCOL_FAIL_NO_RESOURCES:
pc_free(pcp);
return (rc);
default:
bad_error("perm_add_inst_action_auth",
rc);
}
} else {
rc = REP_PROTOCOL_SUCCESS;
}
}
if (rc == REP_PROTOCOL_SUCCESS && normal) {
rc = perm_add_enabling(pcp, AUTH_MODIFY);
if (rc == REP_PROTOCOL_SUCCESS) {
/* Add pgtype-specific authorization. */
const char * const auth =
perm_auth_for_pgtype(np->rn_type);
if (auth != NULL)
rc = perm_add_enabling(pcp, auth);
}
/* Add pg-specific modify_authorization auths. */
if (rc == REP_PROTOCOL_SUCCESS)
rc = perm_add_enabling_values(pcp, np,
AUTH_PROP_MODIFY);
/* If value_authorization values are ok, add them. */
if (rc == REP_PROTOCOL_SUCCESS) {
rc = tx_allow_value(cmds, cmds_sz, np);
if (rc == -1)
rc = REP_PROTOCOL_FAIL_BAD_REQUEST;
else if (rc)
rc = perm_add_enabling_values(pcp, np,
AUTH_PROP_VALUE);
}
}
if (rc == REP_PROTOCOL_SUCCESS) {
granted = perm_granted(pcp);
if (granted < 0)
rc = REP_PROTOCOL_FAIL_NO_RESOURCES;
}
pc_free(pcp);
if (rc != REP_PROTOCOL_SUCCESS)
return (rc);
if (!granted)
return (REP_PROTOCOL_FAIL_PERMISSION_DENIED);
#endif /* NATIVE_BUILD */
}
nnp = rc_node_alloc();
if (nnp == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
nnp->rn_id = np->rn_id; /* structure assignment */
nnp->rn_hash = np->rn_hash;
nnp->rn_name = strdup(np->rn_name);
nnp->rn_type = strdup(np->rn_type);
nnp->rn_pgflags = np->rn_pgflags;
nnp->rn_flags = RC_NODE_IN_TX | RC_NODE_USING_PARENT;
if (nnp->rn_name == NULL || nnp->rn_type == NULL) {
rc_node_destroy(nnp);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
(void) pthread_mutex_lock(&np->rn_lock);
/*
* We must have all of the old properties in the cache, or the
* database deletions could cause inconsistencies.
*/
if ((rc = rc_node_fill_children(np, REP_PROTOCOL_ENTITY_PROPERTY)) !=
REP_PROTOCOL_SUCCESS) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(nnp);
return (rc);
}
if (!rc_node_hold_flag(np, RC_NODE_USING_PARENT)) {
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(nnp);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (np->rn_flags & RC_NODE_OLD) {
rc_node_rele_flag(np, RC_NODE_USING_PARENT);
(void) pthread_mutex_unlock(&np->rn_lock);
rc_node_destroy(nnp);
return (REP_PROTOCOL_FAIL_NOT_LATEST);
}
pp = rc_node_hold_parent_flag(np, RC_NODE_CHILDREN_CHANGING);
if (pp == NULL) {
/* our parent is gone, we're going next... */
rc_node_destroy(nnp);
(void) pthread_mutex_lock(&np->rn_lock);
if (np->rn_flags & RC_NODE_OLD) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_LATEST);
}
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_DELETED);
}
(void) pthread_mutex_unlock(&pp->rn_lock);
/*
* prepare for the transaction
*/
(void) pthread_mutex_lock(&np->rn_lock);
if (!rc_node_hold_flag(np, RC_NODE_IN_TX)) {
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
rc_node_destroy(nnp);
return (REP_PROTOCOL_FAIL_DELETED);
}
nnp->rn_gen_id = np->rn_gen_id;
(void) pthread_mutex_unlock(&np->rn_lock);
/* Sets nnp->rn_gen_id on success. */
rc = object_tx_commit(&np->rn_id, cmds, cmds_sz, &nnp->rn_gen_id);
(void) pthread_mutex_lock(&np->rn_lock);
if (rc != REP_PROTOCOL_SUCCESS) {
rc_node_rele_flag(np, RC_NODE_IN_TX);
(void) pthread_mutex_unlock(&np->rn_lock);
(void) pthread_mutex_lock(&pp->rn_lock);
rc_node_rele_flag(pp, RC_NODE_CHILDREN_CHANGING);
(void) pthread_mutex_unlock(&pp->rn_lock);
rc_node_destroy(nnp);
rc_node_clear(txp, 0);
if (rc == REP_PROTOCOL_DONE)
rc = REP_PROTOCOL_SUCCESS; /* successful empty tx */
return (rc);
}
/*
* Notify waiters
*/
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while ((pnp = uu_list_first(np->rn_pg_notify_list)) != NULL)
rc_pg_notify_fire(pnp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
np->rn_flags |= RC_NODE_OLD;
(void) pthread_mutex_unlock(&np->rn_lock);
rc_notify_remove_node(np);
/*
* replace np with nnp
*/
rc_node_relink_child(pp, np, nnp);
/*
* all done -- clear the transaction.
*/
rc_node_clear(txp, 0);
return (REP_PROTOCOL_SUCCESS);
}
void
rc_pg_notify_init(rc_node_pg_notify_t *pnp)
{
uu_list_node_init(pnp, &pnp->rnpn_node, rc_pg_notify_pool);
pnp->rnpn_pg = NULL;
pnp->rnpn_fd = -1;
}
int
rc_pg_notify_setup(rc_node_pg_notify_t *pnp, rc_node_ptr_t *npp, int fd)
{
rc_node_t *np;
RC_NODE_PTR_GET_CHECK_AND_LOCK(np, npp);
if (np->rn_id.rl_type != REP_PROTOCOL_ENTITY_PROPERTYGRP) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_BAD_REQUEST);
}
/*
* wait for any transaction in progress to complete
*/
if (!rc_node_wait_flag(np, RC_NODE_IN_TX)) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_DELETED);
}
if (np->rn_flags & RC_NODE_OLD) {
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_FAIL_NOT_LATEST);
}
(void) pthread_mutex_lock(&rc_pg_notify_lock);
rc_pg_notify_fire(pnp);
pnp->rnpn_pg = np;
pnp->rnpn_fd = fd;
(void) uu_list_insert_after(np->rn_pg_notify_list, NULL, pnp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
(void) pthread_mutex_unlock(&np->rn_lock);
return (REP_PROTOCOL_SUCCESS);
}
void
rc_pg_notify_fini(rc_node_pg_notify_t *pnp)
{
(void) pthread_mutex_lock(&rc_pg_notify_lock);
rc_pg_notify_fire(pnp);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
uu_list_node_fini(pnp, &pnp->rnpn_node, rc_pg_notify_pool);
}
void
rc_notify_info_init(rc_notify_info_t *rnip)
{
int i;
uu_list_node_init(rnip, &rnip->rni_list_node, rc_notify_info_pool);
uu_list_node_init(&rnip->rni_notify, &rnip->rni_notify.rcn_list_node,
rc_notify_pool);
rnip->rni_notify.rcn_node = NULL;
rnip->rni_notify.rcn_info = rnip;
bzero(rnip->rni_namelist, sizeof (rnip->rni_namelist));
bzero(rnip->rni_typelist, sizeof (rnip->rni_typelist));
(void) pthread_cond_init(&rnip->rni_cv, NULL);
for (i = 0; i < RC_NOTIFY_MAX_NAMES; i++) {
rnip->rni_namelist[i] = NULL;
rnip->rni_typelist[i] = NULL;
}
}
static void
rc_notify_info_insert_locked(rc_notify_info_t *rnip)
{
assert(MUTEX_HELD(&rc_pg_notify_lock));
assert(!(rnip->rni_flags & RC_NOTIFY_ACTIVE));
rnip->rni_flags |= RC_NOTIFY_ACTIVE;
(void) uu_list_insert_after(rc_notify_info_list, NULL, rnip);
(void) uu_list_insert_before(rc_notify_list, NULL, &rnip->rni_notify);
}
static void
rc_notify_info_remove_locked(rc_notify_info_t *rnip)
{
rc_notify_t *me = &rnip->rni_notify;
rc_notify_t *np;
assert(MUTEX_HELD(&rc_pg_notify_lock));
assert(rnip->rni_flags & RC_NOTIFY_ACTIVE);
assert(!(rnip->rni_flags & RC_NOTIFY_DRAIN));
rnip->rni_flags |= RC_NOTIFY_DRAIN;
(void) pthread_cond_broadcast(&rnip->rni_cv);
(void) uu_list_remove(rc_notify_info_list, rnip);
/*
* clean up any notifications at the beginning of the list
*/
if (uu_list_first(rc_notify_list) == me) {
while ((np = uu_list_next(rc_notify_list, me)) != NULL &&
np->rcn_info == NULL)
rc_notify_remove_locked(np);
}
(void) uu_list_remove(rc_notify_list, me);
while (rnip->rni_waiters) {
(void) pthread_cond_broadcast(&rc_pg_notify_cv);
(void) pthread_cond_broadcast(&rnip->rni_cv);
(void) pthread_cond_wait(&rnip->rni_cv, &rc_pg_notify_lock);
}
rnip->rni_flags &= ~(RC_NOTIFY_DRAIN | RC_NOTIFY_ACTIVE);
}
static int
rc_notify_info_add_watch(rc_notify_info_t *rnip, const char **arr,
const char *name)
{
int i;
int rc;
char *f;
rc = rc_check_type_name(REP_PROTOCOL_ENTITY_PROPERTYGRP, name);
if (rc != REP_PROTOCOL_SUCCESS)
return (rc);
f = strdup(name);
if (f == NULL)
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while (rnip->rni_flags & RC_NOTIFY_EMPTYING)
(void) pthread_cond_wait(&rnip->rni_cv, &rc_pg_notify_lock);
for (i = 0; i < RC_NOTIFY_MAX_NAMES; i++)
if (arr[i] == NULL)
break;
if (i == RC_NOTIFY_MAX_NAMES) {
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
free(f);
return (REP_PROTOCOL_FAIL_NO_RESOURCES);
}
arr[i] = f;
if (!(rnip->rni_flags & RC_NOTIFY_ACTIVE))
rc_notify_info_insert_locked(rnip);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
return (REP_PROTOCOL_SUCCESS);
}
int
rc_notify_info_add_name(rc_notify_info_t *rnip, const char *name)
{
return (rc_notify_info_add_watch(rnip, rnip->rni_namelist, name));
}
int
rc_notify_info_add_type(rc_notify_info_t *rnip, const char *type)
{
return (rc_notify_info_add_watch(rnip, rnip->rni_typelist, type));
}
/*
* Wait for and report an event of interest to rnip, a notification client
*/
int
rc_notify_info_wait(rc_notify_info_t *rnip, rc_node_ptr_t *out,
char *outp, size_t sz)
{
rc_notify_t *np;
rc_notify_t *me = &rnip->rni_notify;
rc_node_t *nnp;
rc_notify_delete_t *ndp;
int am_first_info;
if (sz > 0)
outp[0] = 0;
(void) pthread_mutex_lock(&rc_pg_notify_lock);
while ((rnip->rni_flags & (RC_NOTIFY_ACTIVE | RC_NOTIFY_DRAIN)) ==
RC_NOTIFY_ACTIVE) {
/*
* If I'm first on the notify list, it is my job to
* clean up any notifications I pass by. I can't do that
* if someone is blocking the list from removals, so I
* have to wait until they have all drained.
*/
am_first_info = (uu_list_first(rc_notify_list) == me);
if (am_first_info && rc_notify_in_use) {
rnip->rni_waiters++;
(void) pthread_cond_wait(&rc_pg_notify_cv,
&rc_pg_notify_lock);
rnip->rni_waiters--;
continue;
}
/*
* Search the list for a node of interest.
*/
np = uu_list_next(rc_notify_list, me);
while (np != NULL && !rc_notify_info_interested(rnip, np)) {
rc_notify_t *next = uu_list_next(rc_notify_list, np);
if (am_first_info) {
if (np->rcn_info) {
/*
* Passing another client -- stop
* cleaning up notifications
*/
am_first_info = 0;
} else {
rc_notify_remove_locked(np);
}
}
np = next;
}
/*
* Nothing of interest -- wait for notification
*/
if (np == NULL) {
rnip->rni_waiters++;
(void) pthread_cond_wait(&rnip->rni_cv,
&rc_pg_notify_lock);
rnip->rni_waiters--;
continue;
}
/*
* found something to report -- move myself after the
* notification and process it.
*/
(void) uu_list_remove(rc_notify_list, me);
(void) uu_list_insert_after(rc_notify_list, np, me);
if ((ndp = np->rcn_delete) != NULL) {
(void) strlcpy(outp, ndp->rnd_fmri, sz);
if (am_first_info)
rc_notify_remove_locked(np);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
rc_node_clear(out, 0);
return (REP_PROTOCOL_SUCCESS);
}
nnp = np->rcn_node;
assert(nnp != NULL);
/*
* We can't bump nnp's reference count without grabbing its
* lock, and rc_pg_notify_lock is a leaf lock. So we
* temporarily block all removals to keep nnp from
* disappearing.
*/
rc_notify_in_use++;
assert(rc_notify_in_use > 0);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
rc_node_assign(out, nnp);
(void) pthread_mutex_lock(&rc_pg_notify_lock);
assert(rc_notify_in_use > 0);
rc_notify_in_use--;
if (am_first_info)
rc_notify_remove_locked(np);
if (rc_notify_in_use == 0)
(void) pthread_cond_broadcast(&rc_pg_notify_cv);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
return (REP_PROTOCOL_SUCCESS);
}
/*
* If we're the last one out, let people know it's clear.
*/
if (rnip->rni_waiters == 0)
(void) pthread_cond_broadcast(&rnip->rni_cv);
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
return (REP_PROTOCOL_DONE);
}
static void
rc_notify_info_reset(rc_notify_info_t *rnip)
{
int i;
(void) pthread_mutex_lock(&rc_pg_notify_lock);
if (rnip->rni_flags & RC_NOTIFY_ACTIVE)
rc_notify_info_remove_locked(rnip);
assert(!(rnip->rni_flags & (RC_NOTIFY_DRAIN | RC_NOTIFY_EMPTYING)));
rnip->rni_flags |= RC_NOTIFY_EMPTYING;
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
for (i = 0; i < RC_NOTIFY_MAX_NAMES; i++) {
if (rnip->rni_namelist[i] != NULL) {
free((void *)rnip->rni_namelist[i]);
rnip->rni_namelist[i] = NULL;
}
if (rnip->rni_typelist[i] != NULL) {
free((void *)rnip->rni_typelist[i]);
rnip->rni_typelist[i] = NULL;
}
}
(void) pthread_mutex_lock(&rc_pg_notify_lock);
rnip->rni_flags &= ~RC_NOTIFY_EMPTYING;
(void) pthread_mutex_unlock(&rc_pg_notify_lock);
}
void
rc_notify_info_fini(rc_notify_info_t *rnip)
{
rc_notify_info_reset(rnip);
uu_list_node_fini(rnip, &rnip->rni_list_node, rc_notify_info_pool);
uu_list_node_fini(&rnip->rni_notify, &rnip->rni_notify.rcn_list_node,
rc_notify_pool);
}