dlfcns.c revision 08278a5e91755ccdb5850c19d21d42fb2e16b50e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*/
/*
* Programmatic interface to the run_time linker.
*/
#include <sys/debug.h>
#include <stdio.h>
#include <string.h>
#include <dlfcn.h>
#include <synch.h>
#include <limits.h>
#include <debug.h>
#include "_rtld.h"
#include "_audit.h"
#include "_elf.h"
#include "_inline.h"
#include "msg.h"
/*
* Determine who called us - given a pc determine in which object it resides.
*
* For dlopen() the link map of the caller must be passed to load_so() so that
* the appropriate search rules (4.x or 5.0) are used to locate any
* dependencies. Also, if we've been called from a 4.x module it may be
* necessary to fix the specified pathname so that it conforms with the 5.0 elf
* rules.
*
* For dlsym() the link map of the caller is used to determine RTLD_NEXT
* requests, together with requests based off of a dlopen(0).
* For dladdr() this routines provides a generic means of scanning all loaded
* segments.
*/
Rt_map *
_caller(caddr_t cpc, int flags)
{
Lm_list *lml;
Aliste idx1;
for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
Aliste idx2;
Lm_cntl *lmc;
for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
Rt_map *lmp;
for (lmp = lmc->lc_head; lmp;
lmp = NEXT_RT_MAP(lmp)) {
if (find_segment(cpc, lmp))
return (lmp);
}
}
}
/*
* No mapping can be determined. If asked for a default, assume this
* is from the executable.
*/
if (flags & CL_EXECDEF)
return ((Rt_map *)lml_main.lm_head);
return (0);
}
#pragma weak _dlerror = dlerror
/*
* External entry for dlerror(3dl). Returns a pointer to the string describing
* the last occurring error. The last occurring error is cleared.
*/
char *
dlerror()
{
char *error;
Rt_map *clmp;
int entry;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
error = lasterr;
lasterr = NULL;
if (entry)
leave(LIST(clmp), 0);
return (error);
}
/*
* Add a dependency as a group descriptor to a group handle. Returns 0 on
* failure. On success, returns the group descriptor, and if alep is non-NULL
* the *alep is set to ALE_EXISTS if the dependency already exists, or to
* ALE_CREATE if the dependency is newly created.
*/
Grp_desc *
hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep)
{
Grp_desc *gdp;
Aliste idx;
int ale = ALE_CREATE;
uint_t oflags;
/*
* Make sure this dependency hasn't already been recorded.
*/
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
if (gdp->gd_depend == lmp) {
ale = ALE_EXISTS;
break;
}
}
if (ale == ALE_CREATE) {
Grp_desc gd;
/*
* Create a new handle descriptor.
*/
gd.gd_depend = lmp;
gd.gd_flags = 0;
/*
* Indicate this object is a part of this handles group.
*/
if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL)
return (NULL);
/*
* Append the new dependency to this handle.
*/
if ((gdp = alist_append(&ghp->gh_depends, &gd,
sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL)
return (NULL);
}
oflags = gdp->gd_flags;
gdp->gd_flags |= dflags;
if (DBG_ENABLED) {
if (ale == ALE_CREATE)
DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD,
gdp->gd_flags));
else if (gdp->gd_flags != oflags)
DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE,
gdp->gd_flags));
}
if (alep)
*alep = ale;
return (gdp);
}
/*
* Create a handle.
*
* rlmp - represents the reference link-map for which the handle is being
* created.
* clmp - represents the caller who is requesting the handle.
* hflags - provide group handle flags (GPH_*) that affect the use of the
* handle, such as dlopen(0), or use or use of RTLD_FIRST.
* rdflags - provide group dependency flags for the reference link-map rlmp,
* such as whether the dependency can be used for dlsym(), can be
* relocated against, or whether this objects dependencies should
* be processed.
* cdflags - provide group dependency flags for the caller.
*/
Grp_hdl *
hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags,
uint_t rdflags, uint_t cdflags)
{
Grp_hdl *ghp = NULL, *aghp;
APlist **alpp;
Aliste idx;
/*
* For dlopen(0) the handle is maintained as part of the link-map list,
* otherwise the handle is associated with the reference link-map.
*/
if (hflags & GPH_ZERO)
alpp = &(lml->lm_handle);
else
alpp = &(HANDLES(rlmp));
/*
* Objects can contain multiple handles depending on the handle flags
* supplied. Most RTLD flags pertain to the object itself and the
* bindings that it can achieve. Multiple handles for these flags
* don't make sense. But if the flag determines how the handle might
* be used, then multiple handles may exist. Presently this only makes
* sense for RTLD_FIRST. Determine if an appropriate handle already
* exists.
*/
for (APLIST_TRAVERSE(*alpp, idx, aghp)) {
if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) {
ghp = aghp;
break;
}
}
if (ghp == NULL) {
uint_t ndx;
/*
* If this is the first request for this handle, allocate and
* initialize a new handle.
*/
DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE));
if ((ghp = malloc(sizeof (Grp_hdl))) == NULL)
return (NULL);
/*
* Associate the handle with the link-map list or the reference
* link-map as appropriate.
*/
if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) {
free(ghp);
return (NULL);
}
/*
* Record the existence of this handle for future verification.
*/
/* LINTED */
ndx = (uintptr_t)ghp % HDLIST_SZ;
if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) {
(void) aplist_delete_value(*alpp, ghp);
free(ghp);
return (NULL);
}
ghp->gh_depends = NULL;
ghp->gh_refcnt = 1;
ghp->gh_flags = hflags;
/*
* A dlopen(0) handle is identified by the GPH_ZERO flag, the
* head of the link-map list is defined as the owner. There is
* no need to maintain a list of dependencies, for when this
* handle is used (for dlsym()) a dynamic search through the
* entire link-map list provides for searching all objects with
* GLOBAL visibility.
*/
if (hflags & GPH_ZERO) {
ghp->gh_ownlmp = lml->lm_head;
ghp->gh_ownlml = lml;
} else {
ghp->gh_ownlmp = rlmp;
ghp->gh_ownlml = LIST(rlmp);
if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL)
return (NULL);
/*
* If this new handle is a private handle, there's no
* need to track the caller, so we're done.
*/
if (hflags & GPH_PRIVATE)
return (ghp);
/*
* If this new handle is public, and isn't a special
* handle representing ld.so.1, indicate that a local
* group now exists. This state allows singleton
* searches to be optimized.
*/
if ((hflags & GPH_LDSO) == 0)
LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST;
}
} else {
/*
* If a handle already exists, bump its reference count.
*
* If the previous reference count was 0, then this is a handle
* that an earlier call to dlclose() was unable to remove. Such
* handles are put on the orphan list. As this handle is back
* in use, it must be removed from the orphan list.
*
* Note, handles associated with a link-map list itself (i.e.
* dlopen(0)) can have a reference count of 0. However, these
* handles are never deleted, and therefore are never moved to
* the orphan list.
*/
if ((ghp->gh_refcnt++ == 0) &&
((ghp->gh_flags & GPH_ZERO) == 0)) {
uint_t ndx;
/* LINTED */
ndx = (uintptr_t)ghp % HDLIST_SZ;
(void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp);
(void) aplist_append(&hdl_alp[ndx], ghp,
AL_CNT_HANDLES);
if (DBG_ENABLED) {
Aliste idx;
Grp_desc *gdp;
DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST));
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp))
DBG_CALL(Dbg_file_hdl_action(ghp,
gdp->gd_depend, DBG_DEP_REINST, 0));
}
}
/*
* If we've been asked to create a private handle, there's no
* need to track the caller.
*/
if (hflags & GPH_PRIVATE) {
/*
* Negate the reference count increment.
*/
ghp->gh_refcnt--;
return (ghp);
} else {
/*
* If a private handle already exists, promote this
* handle to public by initializing both the reference
* count and the handle flags.
*/
if (ghp->gh_flags & GPH_PRIVATE) {
ghp->gh_refcnt = 1;
ghp->gh_flags &= ~GPH_PRIVATE;
ghp->gh_flags |= hflags;
}
}
}
/*
* Keep track of the parent (caller). As this object can be referenced
* by different parents, this processing is carried out every time a
* handle is requested.
*/
if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL))
return (NULL);
return (ghp);
}
/*
* Initialize a handle that has been created for an object that is already
* loaded. The handle is initialized with the present dependencies of that
* object. Once this initialization has occurred, any new objects that might
* be loaded as dependencies (lazy-loading) are added to the handle as each new
* object is loaded.
*/
int
hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote)
{
Aliste idx;
Grp_desc *gdp;
/*
* If the handle has already been initialized, and the initial object's
* mode hasn't been promoted, there's no need to recompute the modes of
* any dependencies. If the object we've added has just been opened,
* the objects dependencies will not yet have been processed. These
* dependencies will be added on later calls to load_one(). Otherwise,
* this object already exists, so add all of its dependencies to the
* handle were operating on.
*/
if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) ||
((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) {
ghp->gh_flags |= GPH_INITIAL;
return (1);
}
DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
Rt_map *lmp = gdp->gd_depend;
Aliste idx1;
Bnd_desc *bdp;
/*
* If this dependency doesn't indicate that its dependencies
* should be added to a handle, ignore it. This case identifies
* a parent of a dlopen(RTLD_PARENT) request.
*/
if ((gdp->gd_flags & GPD_ADDEPS) == 0)
continue;
for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) {
Rt_map *dlmp = bdp->b_depend;
if ((bdp->b_flags & BND_NEEDED) == 0)
continue;
if (hdl_add(ghp, dlmp,
(GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL)
return (0);
(void) update_mode(dlmp, MODE(dlmp), mode);
}
}
ghp->gh_flags |= GPH_INITIAL;
return (1);
}
/*
* Sanity check a program-provided handle.
*/
static int
hdl_validate(Grp_hdl *ghp)
{
Aliste idx;
Grp_hdl *lghp;
uint_t ndx;
/* LINTED */
ndx = (uintptr_t)ghp % HDLIST_SZ;
for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) {
if ((lghp == ghp) && (ghp->gh_refcnt != 0))
return (1);
}
return (0);
}
/*
* Core dlclose activity.
*/
int
dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml)
{
int error;
/*
* If we're already at atexit() there's no point processing further,
* all objects have already been tsorted for fini processing.
*/
if (rtld_flags & RT_FL_ATEXIT)
return (0);
/*
* Diagnose what we're up to.
*/
if (ghp->gh_flags & GPH_ZERO) {
DBG_CALL(Dbg_file_dlclose(LIST(clmp), MSG_ORIG(MSG_STR_ZERO),
DBG_DLCLOSE_IGNORE));
} else {
DBG_CALL(Dbg_file_dlclose(LIST(clmp), NAME(ghp->gh_ownlmp),
DBG_DLCLOSE_NULL));
}
/*
* Decrement reference count of this object.
*/
if (--(ghp->gh_refcnt))
return (0);
/*
* If this handle is special (dlopen(0)), then leave it around - it
* has little overhead.
*/
if (ghp->gh_flags & GPH_ZERO)
return (0);
/*
* This handle is no longer being referenced, remove it. If this handle
* is part of an alternative link-map list, determine if the whole list
* can be removed also.
*/
error = remove_hdl(ghp, clmp, NULL);
if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)
remove_lml(lml);
return (error);
}
/*
* Internal dlclose activity. Called from user level or directly for internal
* error cleanup.
*/
int
dlclose_intn(Grp_hdl *ghp, Rt_map *clmp)
{
Rt_map *nlmp = NULL;
Lm_list *olml = NULL;
int error;
/*
* Although we're deleting object(s) it's quite possible that additional
* objects get loaded from running the .fini section(s) of the objects
* being deleted. These objects will have been added to the same
* link-map list as those objects being deleted. Remember this list
* for later investigation.
*/
olml = ghp->gh_ownlml;
error = dlclose_core(ghp, clmp, olml);
/*
* Determine whether the original link-map list still exists. In the
* case of a dlclose of an alternative (dlmopen) link-map the whole
* list may have been removed.
*/
if (olml) {
Aliste idx;
Lm_list *lml;
for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
if (olml == lml) {
nlmp = olml->lm_head;
break;
}
}
}
load_completion(nlmp);
return (error);
}
/*
* Argument checking for dlclose. Only called via external entry.
*/
static int
dlclose_check(void *handle, Rt_map *clmp)
{
Grp_hdl *ghp = (Grp_hdl *)handle;
if (hdl_validate(ghp) == 0) {
eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
EC_NATPTR(handle));
return (1);
}
return (dlclose_intn(ghp, clmp));
}
#pragma weak _dlclose = dlclose
/*
* External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise.
*/
int
dlclose(void *handle)
{
int error, entry;
Rt_map *clmp;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
error = dlclose_check(handle, clmp);
if (entry)
leave(LIST(clmp), 0);
return (error);
}
static uint_t lmid = 0;
/*
* The addition of new link-map lists is assumed to be in small quantities.
* Here, we assign a unique link-map id for diagnostic use. Simply update the
* running link-map count until we max out.
*/
int
newlmid(Lm_list *lml)
{
char buffer[MSG_LMID_ALT_SIZE + 12];
if (lmid == UINT_MAX) {
lml->lm_lmid = UINT_MAX;
(void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED),
MSG_LMID_ALT_SIZE + 12);
} else {
lml->lm_lmid = lmid++;
(void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12,
MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT),
lml->lm_lmid);
}
if ((lml->lm_lmidstr = strdup(buffer)) == NULL)
return (0);
return (1);
}
/*
* Core dlopen activity.
*/
static Grp_hdl *
dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode,
Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl)
{
Alist *palp = NULL;
Rt_map *nlmp;
Grp_hdl *ghp;
Aliste olmco, nlmco;
DBG_CALL(Dbg_file_dlopen(clmp,
(path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode));
/*
* Having diagnosed the originally defined modes, assign any defaults
* or corrections.
*/
if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) &&
((mode & RTLD_NOLOAD) == 0))
mode |= (RTLD_GROUP | RTLD_WORLD);
if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) {
mode &= ~RTLD_NOW;
mode |= RTLD_LAZY;
}
/*
* If the path specified is null then we're operating on global
* objects. Associate a dummy handle with the link-map list.
*/
if (path == NULL) {
Grp_hdl *ghp;
uint_t hflags, rdflags, cdflags;
int promote = 0;
/*
* Establish any flags for the handle (Grp_hdl).
*
* - This is a dummy, public, handle (0) that provides for a
* dynamic search of all global objects within the process.
* - Use of the RTLD_FIRST mode indicates that only the first
* dependency on the handle (the referenced object) can be
* used to satisfy dlsym() requests.
*/
hflags = (GPH_PUBLIC | GPH_ZERO);
if (mode & RTLD_FIRST)
hflags |= GPH_FIRST;
/*
* Establish the flags for the referenced dependency descriptor
* (Grp_desc).
*
* - The referenced object is available for dlsym().
* - The referenced object is available to relocate against.
* - The referenced object should have it's dependencies
* added to this handle.
*/
rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS);
/*
* Establish the flags for this callers dependency descriptor
* (Grp_desc).
*
* - The explicit creation of a handle creates a descriptor
* for the referenced object and the parent (caller).
* - Use of the RTLD_PARENT flag indicates that the parent
* can be relocated against.
*/
cdflags = GPD_PARENT;
if (mode & RTLD_PARENT)
cdflags |= GPD_RELOC;
if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags,
cdflags)) == NULL)
return (NULL);
/*
* Traverse the main link-map control list, updating the mode
* of any objects as necessary. Call the relocation engine if
* this mode promotes the existing state of any relocations.
* crle()'s first pass loads all objects necessary for building
* a configuration file, however none of them are relocated.
* crle()'s second pass relocates objects in preparation for
* dldump()'ing using dlopen(0, RTLD_NOW).
*/
if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN)
return (ghp);
for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
if (((MODE(nlmp) & RTLD_GLOBAL) == 0) ||
(FLAGS(nlmp) & FLG_RT_DELETE))
continue;
if (update_mode(nlmp, MODE(nlmp), mode))
promote = 1;
}
if (promote)
(void) relocate_lmc(lml, ALIST_OFF_DATA, clmp,
lml->lm_head, in_nfavl);
return (ghp);
}
/*
* Fix the pathname. If this object expands to multiple paths (ie.
* $ISALIST or $HWCAP have been used), then make sure the user has also
* furnished the RTLD_FIRST flag. As yet, we don't support opening
* more than one object at a time, so enforcing the RTLD_FIRST flag
* provides flexibility should we be able to support dlopening more
* than one object in the future.
*/
if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == NULL)
return (NULL);
if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) {
remove_plist(&palp, 1);
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5));
return (NULL);
}
/*
* Establish a link-map control list for this request, and load the
* associated object.
*/
if ((nlmco = create_cntl(lml, 1)) == NULL) {
remove_plist(&palp, 1);
return (NULL);
}
olmco = nlmco;
nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL),
&ghp, in_nfavl);
/*
* Remove any expanded pathname infrastructure, and if the dependency
* couldn't be loaded, cleanup.
*/
remove_plist(&palp, 1);
if (nlmp == NULL) {
remove_cntl(lml, olmco);
return (NULL);
}
/*
* If loading an auditor was requested, and the auditor already existed,
* then the link-map returned will be to the original auditor. The new
* link-map list that was initially created, and the associated link-map
* control list are no longer needed. As the auditor is already loaded,
* we're probably done, but fall through in case additional relocations
* would be triggered by the mode of the caller.
*/
if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) {
remove_cntl(lml, olmco);
lml = LIST(nlmp);
olmco = 0;
nlmco = ALIST_OFF_DATA;
}
/*
* Finish processing the objects associated with this request.
*/
if (((nlmp = analyze_lmc(lml, nlmco, nlmp, in_nfavl)) == NULL) ||
(relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) {
ghp = NULL;
nlmp = NULL;
}
/*
* If the dlopen has failed, clean up any objects that might have been
* loaded successfully on this new link-map control list.
*/
if (olmco && (nlmp == NULL))
remove_lmc(lml, clmp, olmco, path);
/*
* Finally, remove any temporary link-map control list. Note, if this
* operation successfully established a new link-map list, then a base
* link-map control list will have been created, which must remain.
*/
if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM)))
remove_cntl(lml, olmco);
return (ghp);
}
/*
* dlopen() and dlsym() operations are the means by which a process can
* test for the existence of required dependencies. If the necessary
* dependencies don't exist, then associated functionality can't be used.
* However, the lack of dependencies can be fixed, and the dlopen() and
* dlsym() requests can be repeated. As we use a "not-found" AVL tree to
* cache any failed full path loads, secondary dlopen() and dlsym() requests
* will fail, even if the dependencies have been installed.
*
* dlopen() and dlsym() retry any failures by removing the "not-found" AVL
* tree. Should any dependencies be found, their names are added to the
* FullPath AVL tree. This routine removes any new "not-found" AVL tree,
* so that the dlopen() or dlsym() can replace the original "not-found" tree.
*/
inline static void
nfavl_remove(avl_tree_t *avlt)
{
PathNode *pnp;
void *cookie = NULL;
if (avlt) {
while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL)
free(pnp);
avl_destroy(avlt);
free(avlt);
}
}
/*
* Internal dlopen() activity. Called from user level or directly for internal
* opens that require a handle.
*/
Grp_hdl *
dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp,
uint_t flags, uint_t orig)
{
Lm_list *olml = lml;
Rt_map *dlmp = NULL;
Grp_hdl *ghp;
int in_nfavl = 0;
/*
* Check for magic link-map list values:
*
* LM_ID_BASE: Operate on the PRIMARY (executables) link map
* LM_ID_LDSO: Operation on ld.so.1's link map
* LM_ID_NEWLM: Create a new link-map.
*/
if (lml == (Lm_list *)LM_ID_NEWLM) {
if ((lml = calloc(sizeof (Lm_list), 1)) == NULL)
return (NULL);
/*
* Establish the new link-map flags from the callers and those
* explicitly provided.
*/
lml->lm_tflags = LIST(clmp)->lm_tflags;
if (flags & FLG_RT_AUDIT) {
/*
* Unset any auditing flags - an auditor shouldn't be
* audited. Insure all audit dependencies are loaded.
*/
lml->lm_tflags &= ~LML_TFLG_AUD_MASK;
lml->lm_tflags |=
(LML_TFLG_NOLAZYLD | LML_TFLG_LOADFLTR);
lml->lm_flags |= LML_FLG_NOAUDIT;
}
if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) {
free(lml);
return (NULL);
}
if (newlmid(lml) == 0) {
(void) aplist_delete_value(dynlm_list, lml);
free(lml);
return (NULL);
}
} else if ((uintptr_t)lml < LM_ID_NUM) {
if ((uintptr_t)lml == LM_ID_BASE)
lml = &lml_main;
else if ((uintptr_t)lml == LM_ID_LDSO)
lml = &lml_rtld;
}
/*
* Open the required object on the associated link-map list.
*/
ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl);
/*
* If the object could not be found it is possible that the "not-found"
* AVL tree had indicated that the file does not exist. In case the
* file system has changed since this "not-found" recording was made,
* retry the dlopen() with a clean "not-found" AVL tree.
*/
if ((ghp == NULL) && in_nfavl) {
avl_tree_t *oavlt = nfavl;
nfavl = NULL;
ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig,
NULL);
/*
* If the file is found, then its full path name will have been
* registered in the FullPath AVL tree. Remove any new
* "not-found" AVL information, and restore the former AVL tree.
*/
nfavl_remove(nfavl);
nfavl = oavlt;
}
/*
* Establish the new link-map from which .init processing will begin.
* Ignore .init firing when constructing a configuration file (crle(1)).
*/
if (ghp && ((mode & RTLD_CONFGEN) == 0))
dlmp = ghp->gh_ownlmp;
/*
* If loading an auditor was requested, and the auditor already existed,
* then the link-map returned will be to the original auditor. Remove
* the link-map control list that was created for this request.
*/
if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) {
remove_lml(lml);
lml = LIST(dlmp);
}
/*
* If this load failed, remove any alternative link-map list.
*/
if ((ghp == NULL) &&
((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) {
remove_lml(lml);
lml = NULL;
}
/*
* Finish this load request. If objects were loaded, .init processing
* is computed. Finally, the debuggers are informed of the link-map
* lists being stable.
*/
load_completion(dlmp);
return (ghp);
}
/*
* Argument checking for dlopen. Only called via external entry.
*/
static Grp_hdl *
dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp)
{
/*
* Verify that a valid pathname has been supplied.
*/
if (path && (*path == '\0')) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
return (0);
}
/*
* Historically we've always verified the mode is either RTLD_NOW or
* RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM
* requires a specific pathname, and use of RTLD_PARENT is meaningless.
*/
if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1));
return (0);
}
if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2));
return (0);
}
if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3));
return (0);
}
if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4));
return (0);
}
return (dlmopen_intn(lml, path, mode, clmp, 0, 0));
}
#pragma weak _dlopen = dlopen
/*
* External entry for dlopen(3dl). On success, returns a pointer (handle) to
* the structure containing information about the newly added object, ie. can
* be used by dlsym(). On failure, returns a null pointer.
*/
void *
dlopen(const char *path, int mode)
{
int entry;
Rt_map *clmp;
Grp_hdl *ghp;
Lm_list *lml;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
lml = LIST(clmp);
ghp = dlmopen_check(lml, path, mode, clmp);
if (entry)
leave(lml, 0);
return ((void *)ghp);
}
#pragma weak _dlmopen = dlmopen
/*
* External entry for dlmopen(3dl).
*/
void *
dlmopen(Lmid_t lmid, const char *path, int mode)
{
int entry;
Rt_map *clmp;
Grp_hdl *ghp;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp);
if (entry)
leave(LIST(clmp), 0);
return ((void *)ghp);
}
/*
* Handle processing for dlsym.
*/
int
dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo,
int *in_nfavl)
{
Rt_map *nlmp, * lmp = ghp->gh_ownlmp;
Rt_map *clmp = slp->sl_cmap;
const char *name = slp->sl_name;
Slookup sl = *slp;
sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC);
/*
* Continue processing a dlsym request. Lookup the required symbol in
* each link-map specified by the handle.
*
* To leverage off of lazy loading, dlsym() requests can result in two
* passes. The first descends the link-maps of any objects already in
* the address space. If the symbol isn't located, and lazy
* dependencies still exist, then a second pass is made to load these
* dependencies if applicable. This model means that in the case where
* a symbol exists in more than one object, the one located may not be
* constant - this is the standard issue with lazy loading. In addition,
* attempting to locate a symbol that doesn't exist will result in the
* loading of all lazy dependencies on the given handle, which can
* defeat some of the advantages of lazy loading (look out JVM).
*/
if (ghp->gh_flags & GPH_ZERO) {
Lm_list *lml;
uint_t lazy = 0;
/*
* If this symbol lookup is triggered from a dlopen(0) handle,
* traverse the present link-map list looking for promiscuous
* entries.
*/
for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
/*
* If this handle indicates we're only to look in the
* first object check whether we're done.
*/
if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST))
return (0);
if (!(MODE(nlmp) & RTLD_GLOBAL))
continue;
if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
((FLAGS(clmp) & FLG_RT_DELETE) == 0))
continue;
sl.sl_imap = nlmp;
if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
return (1);
/*
* Keep track of any global pending lazy loads.
*/
lazy += LAZY(nlmp);
}
/*
* If we're unable to locate the symbol and this link-map list
* still has pending lazy dependencies, start loading them in an
* attempt to exhaust the search. Note that as we're already
* traversing a dynamic linked list of link-maps there's no
* need for elf_lazy_find_sym() to descend the link-maps itself.
*/
lml = LIST(lmp);
if (lazy) {
DBG_CALL(Dbg_syms_lazy_rescan(lml, name));
sl.sl_flags |= LKUP_NODESCENT;
for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp))
continue;
if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
((FLAGS(clmp) & FLG_RT_DELETE) == 0))
continue;
sl.sl_imap = nlmp;
if (elf_lazy_find_sym(&sl, srp, binfo,
in_nfavl))
return (1);
}
}
} else {
/*
* Traverse the dlopen() handle searching all presently loaded
* link-maps.
*/
Grp_desc *gdp;
Aliste idx;
uint_t lazy = 0;
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
nlmp = gdp->gd_depend;
if ((gdp->gd_flags & GPD_DLSYM) == 0)
continue;
sl.sl_imap = nlmp;
if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
return (1);
if (ghp->gh_flags & GPH_FIRST)
return (0);
/*
* Keep track of any pending lazy loads associated
* with this handle.
*/
lazy += LAZY(nlmp);
}
/*
* If we're unable to locate the symbol and this handle still
* has pending lazy dependencies, start loading the lazy
* dependencies, in an attempt to exhaust the search.
*/
if (lazy) {
DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name));
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
nlmp = gdp->gd_depend;
if (((gdp->gd_flags & GPD_DLSYM) == 0) ||
(LAZY(nlmp) == 0))
continue;
sl.sl_imap = nlmp;
if (elf_lazy_find_sym(&sl, srp, binfo,
in_nfavl))
return (1);
}
}
}
return (0);
}
/*
* Core dlsym activity. Selects symbol lookup method from handle.
*/
static void *
dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp,
int *in_nfavl)
{
Sym *sym = NULL;
int ret = 0;
Syminfo *sip;
Slookup sl;
Sresult sr;
uint_t binfo;
/*
* Initialize the symbol lookup data structure.
*
* Standard relocations are evaluated using the symbol index of the
* associated relocation symbol. This index provides for loading
* any lazy dependency and establishing a direct binding if necessary.
* If a dlsym() operation originates from an object that contains a
* symbol table entry for the same name, then we need to establish the
* symbol index so that any dependency requirements can be triggered.
*
* Therefore, the first symbol lookup that is carried out is for the
* symbol name within the calling object. If this symbol exists, the
* symbols index is computed, added to the Slookup data, and thus used
* to seed the real symbol lookup.
*/
SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name),
0, 0, 0, LKUP_SYMNDX);
SRESULT_INIT(sr, name);
if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(&sl, &sr, &binfo, NULL)) {
sym = sr.sr_sym;
sl.sl_rsymndx = (((ulong_t)sym -
(ulong_t)SYMTAB(clmp)) / SYMENT(clmp));
sl.sl_rsym = sym;
}
SRESULT_INIT(sr, name);
if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) {
Rt_map *hlmp = LIST(clmp)->lm_head;
/*
* If a symbol reference is known, and that reference indicates
* that the symbol is a singleton, then the search for the
* symbol must follow the default search path.
*/
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl, 0,
DBG_DLSYM_SINGLETON));
sl.sl_imap = hlmp;
sl.sl_flags = LKUP_SPEC;
if (handle == RTLD_PROBE)
sl.sl_flags |= LKUP_NOFALLBACK;
ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
} else if (handle == RTLD_NEXT) {
Rt_map *nlmp;
/*
* If this handle is RTLD_NEXT determine whether a lazy load
* from the caller might provide the next object. This mimics
* the lazy loading initialization normally carried out by
* lookup_sym(), however here, we must do this up-front, as
* lookup_sym() will be used to inspect the next object.
*/
if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) {
/* LINTED */
sip = (Syminfo *)((char *)sip +
(sl.sl_rsymndx * SYMINENT(clmp)));
if ((sip->si_flags & SYMINFO_FLG_DIRECT) &&
(sip->si_boundto < SYMINFO_BT_LOWRESERVE))
(void) elf_lazy_load(clmp, &sl,
sip->si_boundto, name, 0, NULL, in_nfavl);
/*
* Clear the symbol index, so as not to confuse
* lookup_sym() of the next object.
*/
sl.sl_rsymndx = 0;
sl.sl_rsym = NULL;
}
/*
* If the handle is RTLD_NEXT start searching in the next link
* map from the callers. Determine permissions from the
* present link map. Indicate to lookup_sym() that we're on an
* RTLD_NEXT request so that it will use the callers link map to
* start any possible lazy dependency loading.
*/
sl.sl_imap = nlmp = NEXT_RT_MAP(clmp);
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl,
(nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)),
DBG_DLSYM_NEXT));
if (nlmp == NULL)
return (0);
sl.sl_flags = LKUP_NEXT;
ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
} else if (handle == RTLD_SELF) {
/*
* If the handle is RTLD_SELF start searching from the caller.
*/
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl, NAME(clmp),
DBG_DLSYM_SELF));
sl.sl_imap = clmp;
sl.sl_flags = (LKUP_SPEC | LKUP_SELF);
ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
} else if (handle == RTLD_DEFAULT) {
Rt_map *hlmp = LIST(clmp)->lm_head;
/*
* If the handle is RTLD_DEFAULT mimic the standard symbol
* lookup as would be triggered by a relocation.
*/
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl, 0,
DBG_DLSYM_DEFAULT));
sl.sl_imap = hlmp;
sl.sl_flags = LKUP_SPEC;
ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
} else if (handle == RTLD_PROBE) {
Rt_map *hlmp = LIST(clmp)->lm_head;
/*
* If the handle is RTLD_PROBE, mimic the standard symbol
* lookup as would be triggered by a relocation, however do
* not fall back to a lazy loading rescan if the symbol can't be
* found within the currently loaded objects. Note, a lazy
* loaded dependency required by the caller might still get
* loaded to satisfy this request, but no exhaustive lazy load
* rescan is carried out.
*/
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl, 0,
DBG_DLSYM_PROBE));
sl.sl_imap = hlmp;
sl.sl_flags = (LKUP_SPEC | LKUP_NOFALLBACK);
ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
} else {
Grp_hdl *ghp = (Grp_hdl *)handle;
/*
* Look in the shared object specified by the handle and in all
* of its dependencies.
*/
DBG_CALL(Dbg_syms_dlsym(clmp, name, in_nfavl,
NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF));
ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl);
}
if (ret && ((sym = sr.sr_sym) != NULL)) {
Lm_list *lml = LIST(clmp);
Addr addr = sym->st_value;
*dlmp = sr.sr_dmap;
if (!(FLAGS(*dlmp) & FLG_RT_FIXED))
addr += ADDR(*dlmp);
/*
* Indicate that the defining object is now used.
*/
if (*dlmp != clmp)
FLAGS1(*dlmp) |= FL1_RT_USED;
DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE,
*dlmp, addr, sym->st_value, sr.sr_name, binfo));
if ((lml->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_SYMBIND) {
uint_t sb_flags = LA_SYMB_DLSYM;
/* LINTED */
uint_t symndx = (uint_t)(((Xword)sym -
(Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp));
addr = audit_symbind(clmp, *dlmp, sym, symndx, addr,
&sb_flags);
}
return ((void *)addr);
}
return (NULL);
}
/*
* Internal dlsym activity. Called from user level or directly for internal
* symbol lookup.
*/
void *
dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
{
Rt_map *llmp = NULL;
void *error;
Aliste idx;
Grp_desc *gdp;
int in_nfavl = 0;
/*
* While looking for symbols it's quite possible that additional objects
* get loaded from lazy loading. These objects will have been added to
* the same link-map list as those objects on the handle. Remember this
* list for later investigation.
*/
if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) ||
(handle == RTLD_SELF) || (handle == RTLD_PROBE))
llmp = LIST(clmp)->lm_tail;
else {
Grp_hdl *ghp = (Grp_hdl *)handle;
if (ghp->gh_ownlmp)
llmp = LIST(ghp->gh_ownlmp)->lm_tail;
else {
for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
if ((llmp =
LIST(gdp->gd_depend)->lm_tail) != NULL)
break;
}
}
}
error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl);
/*
* If the symbol could not be found it is possible that the "not-found"
* AVL tree had indicated that a required file does not exist. In case
* the file system has changed since this "not-found" recording was
* made, retry the dlsym() with a clean "not-found" AVL tree.
*/
if ((error == NULL) && in_nfavl) {
avl_tree_t *oavlt = nfavl;
nfavl = NULL;
error = dlsym_core(handle, name, clmp, dlmp, NULL);
/*
* If the symbol is found, then any file that was loaded will
* have had its full path name registered in the FullPath AVL
* tree. Remove any new "not-found" AVL information, and
* restore the former AVL tree.
*/
nfavl_remove(nfavl);
nfavl = oavlt;
}
if (error == NULL) {
/*
* Cache the error message, as Java tends to fall through this
* code many times.
*/
if (nosym_str == NULL)
nosym_str = MSG_INTL(MSG_GEN_NOSYM);
eprintf(LIST(clmp), ERR_FATAL, nosym_str, name);
}
load_completion(llmp);
return (error);
}
/*
* Argument checking for dlsym. Only called via external entry.
*/
static void *
dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
{
/*
* Verify the arguments.
*/
if (name == NULL) {
eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM));
return (NULL);
}
if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) &&
(handle != RTLD_SELF) && (handle != RTLD_PROBE) &&
(hdl_validate((Grp_hdl *)handle) == 0)) {
eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
EC_NATPTR(handle));
return (NULL);
}
return (dlsym_intn(handle, name, clmp, dlmp));
}
#pragma weak _dlsym = dlsym
/*
* External entry for dlsym(). On success, returns the address of the specified
* symbol. On error returns a null.
*/
void *
dlsym(void *handle, const char *name)
{
int entry;
Rt_map *clmp, *dlmp = NULL;
void *addr;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
addr = dlsym_check(handle, name, clmp, &dlmp);
if (entry) {
if (dlmp)
is_dep_init(dlmp, clmp);
leave(LIST(clmp), 0);
}
return (addr);
}
/*
* Core dladdr activity.
*/
static void
dladdr_core(Rt_map *clmp, void *addr, Dl_info_t *dlip, void **info, int flags)
{
/*
* Set up generic information and any defaults.
*/
dlip->dli_fname = PATHNAME(clmp);
dlip->dli_fbase = (void *)ADDR(clmp);
dlip->dli_sname = NULL;
dlip->dli_saddr = NULL;
/*
* Determine the nearest symbol to this address.
*/
LM_DLADDR(clmp)((ulong_t)addr, clmp, dlip, info, flags);
}
#pragma weak _dladdr = dladdr
/*
* External entry for dladdr(3dl) and dladdr1(3dl). Returns an information
* structure that reflects the symbol closest to the address specified.
*/
int
dladdr(void *addr, Dl_info_t *dlip)
{
int entry, error;
Rt_map *clmp;
entry = enter(0);
/*
* Use our calling technique to determine what object is associated
* with the supplied address. If a caller can't be determined,
* indicate the failure.
*/
if ((clmp = _caller(addr, CL_NONE)) == NULL) {
eprintf(0, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
EC_NATPTR(addr));
error = 0;
} else {
dladdr_core(clmp, addr, dlip, 0, 0);
error = 1;
}
if (entry)
leave(0, 0);
return (error);
}
#pragma weak _dladdr1 = dladdr1
int
dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags)
{
int entry, error = 0;
Rt_map *clmp;
/*
* Validate any flags.
*/
if (flags) {
int request;
if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) &&
(request != RTLD_DL_LINKMAP)) {
eprintf(0, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS),
flags);
return (0);
}
if (info == NULL) {
eprintf(0, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO), flags);
return (0);
}
}
entry = enter(0);
/*
* Use our calling technique to determine what object is associated
* with the supplied address. If a caller can't be determined,
* indicate the failure.
*/
if ((clmp = _caller(addr, CL_NONE)) == NULL) {
eprintf(0, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
EC_NATPTR(addr));
error = 0;
} else {
dladdr_core(clmp, addr, dlip, info, flags);
error = 1;
}
if (entry)
leave(0, 0);
return (error);
}
/*
* Core dldump activity.
*/
static int
dldump_core(Lm_list *lml, const char *ipath, const char *opath, int flags)
{
Addr addr = 0;
Rt_map *lmp;
/*
* Verify any arguments first.
*/
if ((!opath || (*opath == '\0')) || (ipath && (*ipath == '\0'))) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
return (1);
}
/*
* If an input file is specified make sure its one of our dependencies
* on the main link-map list. Note, this has really all evolved for
* crle(), which uses libcrle.so on an alternative link-map to trigger
* dumping objects from the main link-map list. If we ever want to
* dump objects from alternative link-maps, this model is going to
* have to be revisited.
*/
if (ipath) {
if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE),
ipath);
return (1);
}
if (FLAGS(lmp) & FLG_RT_ALTER) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath);
return (1);
}
if (FLAGS(lmp) & FLG_RT_NODUMP) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP),
ipath);
return (1);
}
} else
lmp = lml_main.lm_head;
DBG_CALL(Dbg_file_dldump(lmp, opath, flags));
/*
* If the object being dump'ed isn't fixed identify its mapping.
*/
if (!(FLAGS(lmp) & FLG_RT_FIXED))
addr = ADDR(lmp);
/*
* As rt_dldump() will effectively lazy load the necessary support
* libraries, make sure ld.so.1 is initialized for plt relocations.
*/
if (elf_rtld_load() == 0)
return (0);
/*
* Dump the required image.
*/
return (rt_dldump(lmp, opath, flags, addr));
}
#pragma weak _dldump = dldump
/*
* External entry for dldump(3c). Returns 0 on success, non-zero otherwise.
*/
int
dldump(const char *ipath, const char *opath, int flags)
{
int error, entry;
Rt_map *clmp;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
error = dldump_core(LIST(clmp), ipath, opath, flags);
if (entry)
leave(LIST(clmp), 0);
return (error);
}
/*
* get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by
* the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is
* one of the primary ones and if so returns it's special token:
* LM_ID_BASE
* LM_ID_LDSO
*
* If it's not one of the primary link_map id's it will instead returns a
* pointer to the Lm_list structure which uniquely identifies the Link_map.
*/
Lmid_t
get_linkmap_id(Lm_list *lml)
{
if (lml->lm_flags & LML_FLG_BASELM)
return (LM_ID_BASE);
if (lml->lm_flags & LML_FLG_RTLDLM)
return (LM_ID_LDSO);
return ((Lmid_t)lml);
}
/*
* Extract information for a dlopen() handle.
*/
static int
dlinfo_core(void *handle, int request, void *p, Rt_map *clmp)
{
Lm_list *lml = LIST(clmp);
Rt_map *lmp;
if ((request > RTLD_DI_MAX) || (p == NULL)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL));
return (-1);
}
/*
* Return configuration cache name and address.
*/
if (request == RTLD_DI_CONFIGADDR) {
Dl_info_t *dlip = (Dl_info_t *)p;
if ((config->c_name == NULL) || (config->c_bgn == 0) ||
(config->c_end == 0)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG));
return (-1);
}
dlip->dli_fname = config->c_name;
dlip->dli_fbase = (void *)config->c_bgn;
return (0);
}
/*
* Return profiled object name (used by ldprof audit library).
*/
if (request == RTLD_DI_PROFILENAME) {
if (profile_name == NULL) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME));
return (-1);
}
*(const char **)p = profile_name;
return (0);
}
if (request == RTLD_DI_PROFILEOUT) {
/*
* If a profile destination directory hasn't been specified
* provide a default.
*/
if (profile_out == NULL)
profile_out = MSG_ORIG(MSG_PTH_VARTMP);
*(const char **)p = profile_out;
return (0);
}
/*
* Obtain or establish a termination signal.
*/
if (request == RTLD_DI_GETSIGNAL) {
*(int *)p = killsig;
return (0);
}
if (request == RTLD_DI_SETSIGNAL) {
sigset_t set;
int sig = *(int *)p;
/*
* Determine whether the signal is in range.
*/
(void) sigfillset(&set);
if (sigismember(&set, sig) != 1) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig);
return (-1);
}
killsig = sig;
return (0);
}
/*
* For any other request a link-map is required. Verify the handle.
*/
if (handle == RTLD_SELF)
lmp = clmp;
else {
Grp_hdl *ghp = (Grp_hdl *)handle;
if (!hdl_validate(ghp)) {
eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
EC_NATPTR(handle));
return (-1);
}
lmp = ghp->gh_ownlmp;
}
/*
* Obtain the process arguments, environment and auxv. Note, as the
* environment can be modified by the user (putenv(3c)), reinitialize
* the environment pointer on each request.
*/
if (request == RTLD_DI_ARGSINFO) {
Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p;
Lm_list *lml = LIST(lmp);
*aip = argsinfo;
if (lml->lm_flags & LML_FLG_ENVIRON)
aip->dla_envp = *(lml->lm_environ);
return (0);
}
/*
* Return Lmid_t of the Link-Map list that the specified object is
* loaded on.
*/
if (request == RTLD_DI_LMID) {
*(Lmid_t *)p = get_linkmap_id(LIST(lmp));
return (0);
}
/*
* Return a pointer to the Link-Map structure associated with the
* specified object.
*/
if (request == RTLD_DI_LINKMAP) {
*(Link_map **)p = (Link_map *)lmp;
return (0);
}
/*
* Return search path information, or the size of the buffer required
* to store the information.
*/
if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) {
Spath_desc sd = { search_rules, NULL, 0 };
Pdesc *pdp;
Dl_serinfo_t *info;
Dl_serpath_t *path;
char *strs;
size_t size = sizeof (Dl_serinfo_t);
uint_t cnt = 0;
info = (Dl_serinfo_t *)p;
path = &info->dls_serpath[0];
strs = (char *)&info->dls_serpath[info->dls_cnt];
/*
* Traverse search path entries for this object.
*/
while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) {
size_t _size;
if (pdp->pd_pname == NULL)
continue;
/*
* If configuration information exists, it's possible
* this path has been identified as non-existent, if so
* ignore it.
*/
if (pdp->pd_info) {
Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info;
if (dobj->co_flags & RTC_OBJ_NOEXIST)
continue;
}
/*
* Keep track of search path count and total info size.
*/
if (cnt++)
size += sizeof (Dl_serpath_t);
_size = pdp->pd_plen + 1;
size += _size;
if (request == RTLD_DI_SERINFOSIZE)
continue;
/*
* If we're filling in search path information, confirm
* there's sufficient space.
*/
if (size > info->dls_size) {
eprintf(lml, ERR_FATAL,
MSG_INTL(MSG_ARG_SERSIZE),
EC_OFF(info->dls_size));
return (-1);
}
if (cnt > info->dls_cnt) {
eprintf(lml, ERR_FATAL,
MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt);
return (-1);
}
/*
* Append the path to the information buffer.
*/
(void) strcpy(strs, pdp->pd_pname);
path->dls_name = strs;
path->dls_flags = pdp->pd_flags;
strs = strs + _size;
path++;
}
/*
* If we're here to size the search buffer fill it in.
*/
if (request == RTLD_DI_SERINFOSIZE) {
info->dls_size = size;
info->dls_cnt = cnt;
}
return (0);
}
/*
* Return the origin of the object associated with this link-map.
* Basically return the dirname(1) of the objects fullpath.
*/
if (request == RTLD_DI_ORIGIN) {
char *str = (char *)p;
(void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp));
str += DIRSZ(lmp);
*str = '\0';
return (0);
}
/*
* Return the number of object mappings, or the mapping information for
* this object.
*/
if (request == RTLD_DI_MMAPCNT) {
uint_t *cnt = (uint_t *)p;
*cnt = MMAPCNT(lmp);
return (0);
}
if (request == RTLD_DI_MMAPS) {
Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p;
if (mip->dlm_acnt && mip->dlm_maps) {
uint_t cnt = 0;
while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) {
mip->dlm_maps[cnt] = MMAPS(lmp)[cnt];
cnt++;
}
mip->dlm_rcnt = cnt;
}
return (0);
}
return (0);
}
#pragma weak _dlinfo = dlinfo
/*
* External entry for dlinfo(3dl).
*/
int
dlinfo(void *handle, int request, void *p)
{
int error, entry;
Rt_map *clmp;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
error = dlinfo_core(handle, request, p, clmp);
if (entry)
leave(LIST(clmp), 0);
return (error);
}
/*
* GNU defined function to iterate through the program headers for all
* currently loaded dynamic objects. The caller supplies a callback function
* which is called for each object.
*
* entry:
* callback - Callback function to call. The arguments to the callback
* function are:
* info - Address of dl_phdr_info structure
* size - sizeof (struct dl_phdr_info)
* data - Caller supplied value.
* data - Value supplied by caller, which is passed to callback without
* examination.
*
* exit:
* callback is called for each dynamic ELF object in the process address
* space, halting when a non-zero value is returned, or when the last
* object has been processed. The return value from the last call
* to callback is returned.
*
* note:
* The Linux implementation has added additional fields to the
* dl_phdr_info structure over time. The callback function is
* supposed to use the size field to determine which fields are
* present, and to avoid attempts to access non-existent fields.
* We have added those fields that are compatible with Solaris, and
* which are used by GNU C++ (g++) runtime exception handling support.
*
* note:
* We issue a callback for every ELF object mapped into the process
* address space at the time this routine is entered. These callbacks
* are arbitrary functions that can do anything, including possibly
* causing new objects to be mapped into the process, or unmapped.
* This complicates matters:
*
* - Adding new objects can cause the alists to be reallocated
* or for contents to move. This can happen explicitly via
* dlopen(), or implicitly via lazy loading. One might consider
* simply banning dlopen from a callback, but lazy loading must
* be allowed, in which case there's no reason to ban dlopen().
*
* - Removing objects can leave us holding references to freed
* memory that must not be accessed, and can cause the list
* items to move in a way that would cause us to miss reporting
* one, or double report others.
*
* - We cannot allocate memory to build a separate data structure,
* because the interface to dl_iterate_phdr() does not have a
* way to communicate allocation errors back to the caller.
* Even if we could, it would be difficult to do so efficiently.
*
* - It is possible for dl_iterate_phdr() to be called recursively
* from a callback, and there is no way for us to detect or manage
* this effectively, particularly as the user might use longjmp()
* to skip past us on return. Hence, we must be reentrant
* (stateless), further precluding the option of building a
* separate data structure.
*
* Despite these constraints, we are able to traverse the link-map
* lists safely:
*
* - Once interposer (preload) objects have been processed at
* startup, we know that new objects are always placed at the
* end of the list. Hence, if we are reading a list when that
* happens, the new object will not alter the part of the list
* that we've already processed.
*
* - The alist _TRAVERSE macros recalculate the address of the
* current item from scratch on each iteration, rather than
* incrementing a pointer. Hence, alist additions that occur
* in mid-traverse will not cause confusion.
*
* There is one limitation: We cannot continue operation if an object
* is removed from the process from within a callback. We detect when
* this happens and return immediately with a -1 return value.
*
* note:
* As currently implemented, if a callback causes an object to be loaded,
* that object may or may not be reported by the current invocation of
* dl_iterate_phdr(), based on whether or not we have already processed
* the link-map list that receives it. If we want to prevent this, it
* can be done efficiently by associating the current value of cnt_map
* with each new Rt_map entered into the system. Then this function can
* use that to detect and skip new objects that enter the system in
* mid-iteration. However, the Linux documentation is ambiguous on whether
* this is necessary, and it does not appear to matter in practice.
* We have therefore chosen not to do so at this time.
*/
int
dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *),
void *data)
{
struct dl_phdr_info info;
u_longlong_t l_cnt_map = cnt_map;
u_longlong_t l_cnt_unmap = cnt_unmap;
Lm_list *lml;
Lm_cntl *lmc;
Rt_map *lmp, *clmp;
Aliste idx1, idx2;
Ehdr *ehdr;
int ret = 0;
int entry;
entry = enter(0);
clmp = _caller(caller(), CL_EXECDEF);
DBG_CALL(Dbg_cb_iphdr_enter(LIST(clmp), cnt_map, cnt_unmap));
/* Issue a callback for each ELF object in the process */
for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
#if defined(_sparc) && !defined(_LP64)
/*
* On 32-bit sparc, the possibility exists that
* this object is not ELF.
*/
if (THIS_IS_NOT_ELF(lmp))
continue;
#endif
/* Prepare the object information structure */
ehdr = (Ehdr *) ADDR(lmp);
info.dlpi_addr = (ehdr->e_type == ET_EXEC) ?
0 : ADDR(lmp);
info.dlpi_name = lmp->rt_pathname;
info.dlpi_phdr = (Phdr *)
(ADDR(lmp) + ehdr->e_phoff);
info.dlpi_phnum = ehdr->e_phnum;
info.dlpi_adds = cnt_map;
info.dlpi_subs = cnt_unmap;
/* Issue the callback */
DBG_CALL(Dbg_cb_iphdr_callback(LIST(clmp),
&info));
leave(LIST(clmp), thr_flg_reenter);
ret = (* callback)(&info, sizeof (info), data);
(void) enter(thr_flg_reenter);
/* Return immediately on non-zero result */
if (ret != 0)
goto done;
/* Adapt to object mapping changes */
if ((cnt_map != l_cnt_map) ||
(cnt_unmap != l_cnt_unmap)) {
DBG_CALL(Dbg_cb_iphdr_mapchange(
LIST(clmp), cnt_map, cnt_unmap));
/* Stop if an object was unmapped */
if (cnt_unmap != l_cnt_unmap) {
ret = -1;
DBG_CALL(Dbg_cb_iphdr_unmap_ret(
LIST(clmp)));
goto done;
}
l_cnt_map = cnt_map;
}
}
}
}
done:
if (entry)
leave(LIST(clmp), 0);
return (ret);
}