xlate.m4 revision 7257d1b4d25bfac0c802847390e98a464fd787ac
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <memory.h>
#include <libelf.h>
#include <link.h>
#include <sys/elf_SPARC.h>
#include <sys/elf_amd64.h>
#include <decl.h>
#include <msg.h>
#include <sgs.h>
/*
* fmsize: Array used to determine what size the the structures
* are (for memory image & file image).
*
* x32: Translation routines - to file & to memory.
*
* What must be done when adding a new type for conversion:
*
* The first question is whether you need a new ELF_T_* type
* to be created. If you've introduced a new structure - then
* it will need to be described - this is done by:
*
* o adding a new type ELF_T_* to usr/src/head/libelf.h
* o Create a new macro to define the bytes contained in the structure. Take a
* look at the 'Syminfo_1' macro defined below. The declarations describe
* the structure based off of the field size of each element of the structure.
* o Add a entry to the fmsize table for the new ELF_T_* type.
* o Create a <newtype>_11_tof macro. Take a look at 'syminfo_11_tof'.
* o Create a <newtype>_11_tom macro. Take a look at 'syminfo_11_tom'.
* o The <newtype>_11_tof & <newtype>_11_tom results in conversion routines
* <newtype>_2L11_tof, <newtype>_2L11_tom, <newtype>_2M11_tof,
* <newtype>_2M11_tom being created in xlate.c. These routines
* need to be added to the 'x32[]' array.
* o Add entries to getdata.c::align32[] and getdata.c::align64[]. These
* tables define what the alignment requirements for a data type are.
*
* In order to tie a section header type (SHT_*) to a data
* structure you need to update elf32_mtype() so that it can
* make the association. If you are introducing a new section built
* on a basic datatype (SHT_INIT_ARRAY) then this is all the updating
* that needs to be done.
*
*
* ELF translation routines
* These routines make a subtle implicit assumption.
* The file representations of all structures are "packed,"
* meaning no implicit padding bytes occur. This might not
* be the case for the memory representations. Consequently,
* the memory representations ALWAYS contain at least as many
* bytes as the file representations. Otherwise, the memory
* structures would lose information, meaning they're not
* implemented properly.
*
* The words above apply to structures with the same members.
* If a future version changes the number of members, the
* relative structure sizes for different version must be
* tested with the compiler.
*/
#define HI32 0x80000000UL
#define LO31 0x7fffffffUL
/*
* These macros create indexes for accessing the bytes of
* words and halfwords for ELFCLASS32 data representations
* (currently ELFDATA2LSB and ELFDATA2MSB). In all cases,
*
* w = (((((X_3 << 8) + X_2) << 8) + X_1) << 8) + X_0
* h = (X_1 << 8) + X_0
*
* These assume the file representations for Addr, Off,
* Sword, and Word use 4 bytes, but the memory def's for
* the types may differ.
*
* Naming convention:
* ..._L ELFDATA2LSB
* ..._M ELFDATA2MSB
*
* enuma_*(n) define enum names for addr n
* enumb_*(n) define enum names for byte n
* enumh_*(n) define enum names for half n
* enumo_*(n) define enum names for off n
* enumw_*(n) define enum names for word n
* enuml_*(n) define enum names for Lword n
* tofa(d,s,n) xlate addr n from mem s to file d
* tofb(d,s,n) xlate byte n from mem s to file d
* tofh(d,s,n) xlate half n from mem s to file d
* tofo(d,s,n) xlate off n from mem s to file d
* tofw(d,s,n) xlate word n from mem s to file d
* tofl(d,s,n) xlate Lword n from mem s to file d
* toma(s,n) xlate addr n from file s to expression value
* tomb(s,n) xlate byte n from file s to expression value
* tomh(s,n) xlate half n from file s to expression value
* tomo(s,n) xlate off n from file s to expression value
* tomw(s,n) xlate word n from file s to expression value
* toml(s,n) xlate Lword n from file s to expression value
*
* tof*() macros must move a multi-byte value into a temporary
* because ``in place'' conversions are allowed. If a temp is not
* used for multi-byte objects, storing an initial destination byte
* may clobber a source byte not yet examined.
*
* tom*() macros compute an expression value from the source
* without touching the destination; so they're safe.
*/
define(enuma_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl
define(enuma_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl
define(enumb_L, `$1_L')dnl
define(enumb_M, `$1_M')dnl
define(enumh_L, `$1_L0, $1_L1')dnl
define(enumh_M, `$1_M1, $1_M0')dnl
define(enumo_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl
define(enumo_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl
define(enumw_L, `$1_L0, $1_L1, $1_L2, $1_L3')dnl
define(enumw_M, `$1_M3, $1_M2, $1_M1, $1_M0')dnl
define(enuml_L, `$1_L0, $1_L1, $1_L2, $1_L3, $1_L4, $1_L5, $1_L6, $1_L7')dnl
define(enuml_M, `$1_M7, $1_M6, $1_M5, $1_M4, $1_M3, $1_M2, $1_M1, $1_M0')dnl
define(tofa, `{ register Elf32_Addr _t_ = $2;
($1)[$3`'0] = (unsigned char)_t_,
($1)[$3`'1] = (unsigned char)(_t_>>8),
($1)[$3`'2] = (unsigned char)(_t_>>16),
($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl
define(tofb, `($1)[$3] = (unsigned char)($2)')dnl
define(tofh, `{ register Elf32_Half _t_ = $2;
($1)[$3`'0] = (unsigned char)_t_,
($1)[$3`'1] = (unsigned char)(_t_>>8); }')dnl
define(tofo, `{ register Elf32_Off _t_ = $2;
($1)[$3`'0] = (unsigned char)_t_,
($1)[$3`'1] = (unsigned char)(_t_>>8),
($1)[$3`'2] = (unsigned char)(_t_>>16),
($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl
define(tofw, `{ register Elf32_Word _t_ = $2;
($1)[$3`'0] = (unsigned char)_t_,
($1)[$3`'1] = (unsigned char)(_t_>>8),
($1)[$3`'2] = (unsigned char)(_t_>>16),
($1)[$3`'3] = (unsigned char)(_t_>>24); }')dnl
define(tofl, `{ Elf32_Lword _t_ = $2;
($1)[$3`'0] = (Byte)_t_,
($1)[$3`'1] = (Byte)(_t_>>8),
($1)[$3`'2] = (Byte)(_t_>>16),
($1)[$3`'3] = (Byte)(_t_>>24),
($1)[$3`'4] = (Byte)(_t_>>32),
($1)[$3`'5] = (Byte)(_t_>>40),
($1)[$3`'6] = (Byte)(_t_>>48),
($1)[$3`'7] = (Byte)(_t_>>56); }')dnl
define(toma, `(((((((Elf32_Addr)($1)[$2`'3]<<8)
+($1)[$2`'2])<<8)
+($1)[$2`'1])<<8)
+($1)[$2`'0])')dnl
define(tomb, `((unsigned char)($1)[$2])')dnl
define(tomh, `(((Elf32_Half)($1)[$2`'1]<<8)+($1)[$2`'0])')dnl
define(tomo, `(((((((Elf32_Off)($1)[$2`'3]<<8)
+($1)[$2`'2])<<8)
+($1)[$2`'1])<<8)
+($1)[$2`'0])')dnl
define(tomw, `(((((((Elf32_Word)($1)[$2`'3]<<8)
+($1)[$2`'2])<<8)
+($1)[$2`'1])<<8)
+($1)[$2`'0])')dnl
define(toml, `(((((((((((Elf32_Lword)($1)[$2`'7]<<8)
+($1)[$2`'6]<<8)
+($1)[$2`'5]<<8)
+($1)[$2`'4]<<8)
+($1)[$2`'3]<<8)
+($1)[$2`'2])<<8)
+($1)[$2`'1])<<8)
+($1)[$2`'0])')dnl
/*
* ELF data object indexes
* The enums are broken apart to get around deficiencies
* in some compilers.
*/
define(Addr, `
enum
{
enuma_$1(A)`'ifelse(`$2', `', `', `,
A_sizeof')
};')
Addr(L)
Addr(M,1)
define(Half, `
enum
{
enumh_$1(H)`'ifelse(`$2', `', `', `,
H_sizeof')
};')
Half(L)
Half(M,1)
define(Lword, `
enum
{
enuml_$1(L)`'ifelse(`$2', `', `', `,
L_sizeof')
};')
Lword(L)
Lword(M,1)
define(Move_1, `
enum
{
enuml_$1(M1_value),
enumw_$1(M1_info),
enumw_$1(M1_poffset),
enumh_$1(M1_repeat),
enumh_$1(M1_stride)`'ifelse(`$2', `', `', `,
M1_sizeof')
};')
Move_1(L)
Move_1(M,1)
define(MoveP_1, `
enum
{
enuml_$1(MP1_value),
enumw_$1(MP1_info),
enumw_$1(MP1_poffset),
enumh_$1(MP1_repeat),
enumh_$1(MP1_stride),
enumw_$1(MP1_padding)`'ifelse(`$2', `', `', `,
MP1_sizeof')
};')
MoveP_1(L)
MoveP_1(M,1)
define(Off, `
enum
{
enumo_$1(O)`'ifelse(`$2', `', `', `,
O_sizeof')
};')
Off(L)
Off(M,1)
define(Word, `
enum
{
enumw_$1(W)`'ifelse(`$2', `', `', `,
W_sizeof')
};')
Word(L)
Word(M,1)
define(Dyn_1, `
enum
{
enumw_$1(D1_tag),
enumw_$1(D1_val)`'ifelse(`$2', `', `', `,
D1_sizeof')
};')
Dyn_1(L)
Dyn_1(M,1)
#define E1_Nident 16
define(Ehdr_1, `
enum
{
ifelse(`$2', `', `E1_ident, ')E1_ident_$1_Z = E1_Nident - 1,
enumh_$1(E1_type),
enumh_$1(E1_machine),
enumw_$1(E1_version),
enuma_$1(E1_entry),
enumo_$1(E1_phoff),
enumo_$1(E1_shoff),
enumw_$1(E1_flags),
enumh_$1(E1_ehsize),
enumh_$1(E1_phentsize),
enumh_$1(E1_phnum),
enumh_$1(E1_shentsize),
enumh_$1(E1_shnum),
enumh_$1(E1_shstrndx)`'ifelse(`$2', `', `', `,
E1_sizeof')
};')
Ehdr_1(L)
Ehdr_1(M,1)
define(Nhdr_1, `
enum
{
enumw_$1(N1_namesz),
enumw_$1(N1_descsz),
enumw_$1(N1_type)`'ifelse(`$2', `', `', `,
N1_sizeof')
};')
Nhdr_1(L)
Nhdr_1(M,1)
define(Phdr_1, `
enum
{
enumw_$1(P1_type),
enumo_$1(P1_offset),
enuma_$1(P1_vaddr),
enuma_$1(P1_paddr),
enumw_$1(P1_filesz),
enumw_$1(P1_memsz),
enumw_$1(P1_flags),
enumw_$1(P1_align)`'ifelse(`$2', `', `', `,
P1_sizeof')
};')
Phdr_1(L)
Phdr_1(M,1)
define(Rel_1, `
enum
{
enuma_$1(R1_offset),
enumw_$1(R1_info)`'ifelse(`$2', `', `', `,
R1_sizeof')
};')
Rel_1(L)
Rel_1(M,1)
define(Rela_1, `
enum
{
enuma_$1(RA1_offset),
enumw_$1(RA1_info),
enumw_$1(RA1_addend)`'ifelse(`$2', `', `', `,
RA1_sizeof')
};')
Rela_1(L)
Rela_1(M,1)
define(Shdr_1, `
enum
{
enumw_$1(SH1_name),
enumw_$1(SH1_type),
enumw_$1(SH1_flags),
enuma_$1(SH1_addr),
enumo_$1(SH1_offset),
enumw_$1(SH1_size),
enumw_$1(SH1_link),
enumw_$1(SH1_info),
enumw_$1(SH1_addralign),
enumw_$1(SH1_entsize)`'ifelse(`$2', `', `', `,
SH1_sizeof')
};')
Shdr_1(L)
Shdr_1(M,1)
define(Sym_1, `
enum
{
enumw_$1(ST1_name),
enuma_$1(ST1_value),
enumw_$1(ST1_size),
enumb_$1(ST1_info),
enumb_$1(ST1_other),
enumh_$1(ST1_shndx)`'ifelse(`$2', `', `', `,
ST1_sizeof')
};')
Sym_1(L)
Sym_1(M,1)
define(Syminfo_1, `
enum
{
enumh_$1(SI1_boundto),
enumh_$1(SI1_flags)`'ifelse(`$2', `', `', `,
SI1_sizeof')
};')
Syminfo_1(L)
Syminfo_1(M,1)
define(Cap_1, `
enum
{
enumw_$1(C1_tag),
enumw_$1(C1_val)`'ifelse(`$2', `', `', `,
C1_sizeof')
};')
Cap_1(L)
Cap_1(M,1)
define(Verdef_1, `
enum
{
enumh_$1(VD1_version),
enumh_$1(VD1_flags),
enumh_$1(VD1_ndx),
enumh_$1(VD1_cnt),
enumw_$1(VD1_hash),
enumw_$1(VD1_aux),
enumw_$1(VD1_next)`'ifelse(`$2', `', `', `,
VD1_sizeof')
};')
Verdef_1(L)
Verdef_1(M,1)
define(Verdaux_1, `
enum
{
enuma_$1(VDA1_name),
enumw_$1(VDA1_next)`'ifelse(`$2', `', `', `,
VDA1_sizeof')
};')
Verdaux_1(L)
Verdaux_1(M,1)
define(Verneed_1, `
enum
{
enumh_$1(VN1_version),
enumh_$1(VN1_cnt),
enuma_$1(VN1_file),
enumw_$1(VN1_aux),
enumw_$1(VN1_next)`'ifelse(`$2', `', `', `,
VN1_sizeof')
};')
Verneed_1(L)
Verneed_1(M,1)
define(Vernaux_1, `
enum
{
enumw_$1(VNA1_hash),
enumh_$1(VNA1_flags),
enumh_$1(VNA1_other),
enuma_$1(VNA1_name),
enumw_$1(VNA1_next)`'ifelse(`$2', `', `', `,
VNA1_sizeof')
};')
Vernaux_1(L)
Vernaux_1(M,1)
/*
* Translation function declarations.
*
* <object>_<data><dver><sver>_tof
* <object>_<data><dver><sver>_tom
* where
* <data> 2L ELFDATA2LSB
* 2M ELFDATA2MSB
*/
static void addr_2L_tof(), addr_2L_tom(),
addr_2M_tof(), addr_2M_tom(),
byte_to(),
dyn_2L11_tof(), dyn_2L11_tom(),
dyn_2M11_tof(), dyn_2M11_tom(),
ehdr_2L11_tof(), ehdr_2L11_tom(),
ehdr_2M11_tof(), ehdr_2M11_tom(),
half_2L_tof(), half_2L_tom(),
half_2M_tof(), half_2M_tom(),
move_2L11_tof(), move_2L11_tom(),
move_2M11_tof(), move_2M11_tom(),
movep_2L11_tof(), movep_2L11_tom(),
movep_2M11_tof(), movep_2M11_tom(),
off_2L_tof(), off_2L_tom(),
off_2M_tof(), off_2M_tom(),
note_2L11_tof(), note_2L11_tom(),
note_2M11_tof(), note_2M11_tom(),
phdr_2L11_tof(), phdr_2L11_tom(),
phdr_2M11_tof(), phdr_2M11_tom(),
rel_2L11_tof(), rel_2L11_tom(),
rel_2M11_tof(), rel_2M11_tom(),
rela_2L11_tof(), rela_2L11_tom(),
rela_2M11_tof(), rela_2M11_tom(),
shdr_2L11_tof(), shdr_2L11_tom(),
shdr_2M11_tof(), shdr_2M11_tom(),
sword_2L_tof(), sword_2L_tom(),
sword_2M_tof(), sword_2M_tom(),
sym_2L11_tof(), sym_2L11_tom(),
sym_2M11_tof(), sym_2M11_tom(),
syminfo_2L11_tof(), syminfo_2L11_tom(),
syminfo_2M11_tof(), syminfo_2M11_tom(),
word_2L_tof(), word_2L_tom(),
word_2M_tof(), word_2M_tom(),
verdef_2L11_tof(), verdef_2L11_tom(),
verdef_2M11_tof(), verdef_2M11_tom(),
verneed_2L11_tof(), verneed_2L11_tom(),
verneed_2M11_tof(), verneed_2M11_tom(),
cap_2L11_tof(), cap_2L11_tom(),
cap_2M11_tof(), cap_2M11_tom();
/* x32 [dst_version - 1] [src_version - 1] [encode - 1] [type]
*/
static struct {
void (*x_tof)(),
(*x_tom)();
} x32 [EV_CURRENT] [EV_CURRENT] [ELFDATANUM - 1] [ELF_T_NUM] =
{
{
{
{ /* [1-1][1-1][2LSB-1][.] */
/* BYTE */ { byte_to, byte_to },
/* ADDR */ { addr_2L_tof, addr_2L_tom },
/* DYN */ { dyn_2L11_tof, dyn_2L11_tom },
/* EHDR */ { ehdr_2L11_tof, ehdr_2L11_tom },
/* HALF */ { half_2L_tof, half_2L_tom },
/* OFF */ { off_2L_tof, off_2L_tom },
/* PHDR */ { phdr_2L11_tof, phdr_2L11_tom },
/* RELA */ { rela_2L11_tof, rela_2L11_tom },
/* REL */ { rel_2L11_tof, rel_2L11_tom },
/* SHDR */ { shdr_2L11_tof, shdr_2L11_tom },
/* SWORD */ { sword_2L_tof, sword_2L_tom },
/* SYM */ { sym_2L11_tof, sym_2L11_tom },
/* WORD */ { word_2L_tof, word_2L_tom },
/* VERDEF */ { verdef_2L11_tof, verdef_2L11_tom},
/* VERNEED */ { verneed_2L11_tof, verneed_2L11_tom},
/* SXWORD */ { 0, 0 }, /* illegal 32-bit op */
/* XWORD */ { 0, 0 }, /* illegal 32-bit op */
/* SYMINFO */ { syminfo_2L11_tof, syminfo_2L11_tom },
/* NOTE */ { note_2L11_tof, note_2L11_tom },
/* MOVE */ { move_2L11_tof, move_2L11_tom },
/* MOVEP */ { movep_2L11_tof, movep_2L11_tom },
/* CAP */ { cap_2L11_tof, cap_2L11_tom },
},
{ /* [1-1][1-1][2MSB-1][.] */
/* BYTE */ { byte_to, byte_to },
/* ADDR */ { addr_2M_tof, addr_2M_tom },
/* DYN */ { dyn_2M11_tof, dyn_2M11_tom },
/* EHDR */ { ehdr_2M11_tof, ehdr_2M11_tom },
/* HALF */ { half_2M_tof, half_2M_tom },
/* OFF */ { off_2M_tof, off_2M_tom },
/* PHDR */ { phdr_2M11_tof, phdr_2M11_tom },
/* RELA */ { rela_2M11_tof, rela_2M11_tom },
/* REL */ { rel_2M11_tof, rel_2M11_tom },
/* SHDR */ { shdr_2M11_tof, shdr_2M11_tom },
/* SWORD */ { sword_2M_tof, sword_2M_tom },
/* SYM */ { sym_2M11_tof, sym_2M11_tom },
/* WORD */ { word_2M_tof, word_2M_tom },
/* VERDEF */ { verdef_2M11_tof, verdef_2M11_tom},
/* VERNEED */ { verneed_2M11_tof, verneed_2M11_tom},
/* SXWORD */ { 0, 0 }, /* illegal 32-bit op */
/* XWORD */ { 0, 0 }, /* illegal 32-bit op */
/* SYMINFO */ { syminfo_2M11_tof, syminfo_2M11_tom },
/* NOTE */ { note_2M11_tof, note_2M11_tom },
/* MOVE */ { move_2M11_tof, move_2M11_tom },
/* MOVEP */ { movep_2M11_tof, movep_2M11_tom },
/* CAP */ { cap_2M11_tof, cap_2M11_tom },
},
},
},
};
/*
* size [version - 1] [type]
*/
static const struct {
size_t s_filesz,
s_memsz;
} fmsize [EV_CURRENT] [ELF_T_NUM] =
{
{ /* [1-1][.] */
/* BYTE */ { 1, 1 },
/* ADDR */ { A_sizeof, sizeof (Elf32_Addr) },
/* DYN */ { D1_sizeof, sizeof (Elf32_Dyn) },
/* EHDR */ { E1_sizeof, sizeof (Elf32_Ehdr) },
/* HALF */ { H_sizeof, sizeof (Elf32_Half) },
/* OFF */ { O_sizeof, sizeof (Elf32_Off) },
/* PHDR */ { P1_sizeof, sizeof (Elf32_Phdr) },
/* RELA */ { RA1_sizeof, sizeof (Elf32_Rela) },
/* REL */ { R1_sizeof, sizeof (Elf32_Rel) },
/* SHDR */ { SH1_sizeof, sizeof (Elf32_Shdr) },
/* SWORD */ { W_sizeof, sizeof (Elf32_Sword) },
/* SYM */ { ST1_sizeof, sizeof (Elf32_Sym) },
/* WORD */ { W_sizeof, sizeof (Elf32_Word) },
/* VERDEF */ { 1, 1}, /* because bot VERDEF & VERNEED have varying */
/* VERNEED */ { 1, 1}, /* sized structures we set their sizes */
/* to 1 byte */
/* SXWORD */ { 0, 0 }, /* illegal 32-bit op */
/* XWORD */ { 0, 0 }, /* illegal 32-bit op */
/* SYMINFO */ { SI1_sizeof, sizeof (Elf32_Syminfo) },
/* NOTE */ { 1, 1}, /* NOTE has varying sized data we can't */
/* use the usual table magic. */
/* MOVE */ { M1_sizeof, sizeof (Elf32_Move) },
/* MOVEP */ { MP1_sizeof, sizeof (Elf32_Move) },
/* CAP */ { C1_sizeof, sizeof (Elf32_Cap) },
},
};
/*
* memory type [version - 1] [section type]
*/
static const Elf_Type mtype[EV_CURRENT][SHT_NUM] =
{
{ /* [1-1][.] */
/* NULL */ ELF_T_BYTE,
/* PROGBITS */ ELF_T_BYTE,
/* SYMTAB */ ELF_T_SYM,
/* STRTAB */ ELF_T_BYTE,
/* RELA */ ELF_T_RELA,
/* HASH */ ELF_T_WORD,
/* DYNAMIC */ ELF_T_DYN,
/* NOTE */ ELF_T_NOTE,
/* NOBITS */ ELF_T_BYTE,
/* REL */ ELF_T_REL,
/* SHLIB */ ELF_T_BYTE,
/* DYNSYM */ ELF_T_SYM,
/* UNKNOWN12 */ ELF_T_BYTE,
/* UNKNOWN13 */ ELF_T_BYTE,
/* INIT_ARRAY */ ELF_T_ADDR,
/* FINI_ARRAY */ ELF_T_ADDR,
/* PREINIT_ARRAY */ ELF_T_ADDR,
/* GROUP */ ELF_T_WORD,
/* SYMTAB_SHNDX */ ELF_T_WORD
},
};
size_t
elf32_fsize(Elf_Type type, size_t count, unsigned ver)
{
if (--ver >= EV_CURRENT) {
_elf_seterr(EREQ_VER, 0);
return (0);
}
if ((unsigned)type >= ELF_T_NUM) {
_elf_seterr(EREQ_TYPE, 0);
return (0);
}
return (fmsize[ver][type].s_filesz * count);
}
size_t
_elf32_msize(Elf_Type type, unsigned ver)
{
return (fmsize[ver - 1][type].s_memsz);
}
Elf_Type
_elf32_mtype(Elf * elf, Elf32_Word shtype, unsigned ver)
{
Elf32_Ehdr * ehdr = (Elf32_Ehdr *)elf->ed_ehdr;
if (shtype < SHT_NUM)
return (mtype[ver - 1][shtype]);
switch (shtype) {
case SHT_SUNW_symsort:
case SHT_SUNW_tlssort:
return (ELF_T_WORD);
case SHT_SUNW_LDYNSYM:
return (ELF_T_SYM);
case SHT_SUNW_dof:
return (ELF_T_BYTE);
case SHT_SUNW_cap:
return (ELF_T_CAP);
case SHT_SUNW_SIGNATURE:
return (ELF_T_BYTE);
case SHT_SUNW_ANNOTATE:
return (ELF_T_BYTE);
case SHT_SUNW_DEBUGSTR:
return (ELF_T_BYTE);
case SHT_SUNW_DEBUG:
return (ELF_T_BYTE);
case SHT_SUNW_move:
/*
* 32bit sparc binaries have a padded
* MOVE structure. So - return the
* appropriate type.
*/
if ((ehdr->e_machine == EM_SPARC) ||
(ehdr->e_machine == EM_SPARC32PLUS)) {
return (ELF_T_MOVEP);
}
return (ELF_T_MOVE);
case SHT_SUNW_COMDAT:
return (ELF_T_BYTE);
case SHT_SUNW_syminfo:
return (ELF_T_SYMINFO);
case SHT_SUNW_verdef:
return (ELF_T_VDEF);
case SHT_SUNW_verneed:
return (ELF_T_VNEED);
case SHT_SUNW_versym:
return (ELF_T_HALF);
};
/*
* Check for the sparc specific section types
* below.
*/
if (((ehdr->e_machine == EM_SPARC) ||
(ehdr->e_machine == EM_SPARC32PLUS) ||
(ehdr->e_machine == EM_SPARCV9)) &&
(shtype == SHT_SPARC_GOTDATA))
return (ELF_T_BYTE);
/*
* Check for the amd64 specific section types
* below.
*/
if ((ehdr->e_machine == EM_AMD64) &&
(shtype == SHT_AMD64_UNWIND))
return (ELF_T_BYTE);
/*
* And the default is ELF_T_BYTE - but we should
* certainly have caught any sections we know about
* above. This is for unknown sections to libelf.
*/
return (ELF_T_BYTE);
}
size_t
_elf32_entsz(Elf *elf, Elf32_Word shtype, unsigned ver)
{
Elf_Type ttype;
ttype = _elf32_mtype(elf, shtype, ver);
return ((ttype == ELF_T_BYTE) ? 0 : fmsize[ver - 1][ttype].s_filesz);
}
/*
* Determine the data encoding used by the current system.
*/
uint_t
_elf_sys_encoding(void)
{
union {
Elf32_Word w;
unsigned char c[W_sizeof];
} u;
u.w = 0x10203;
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1 && tomw(u.c, W_L) == 0x10203)
return (ELFDATA2LSB);
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1 && tomw(u.c, W_M) == 0x10203)
return (ELFDATA2MSB);
/* Not expected to occur */
return (ELFDATANONE);
}
/*
* XX64 This routine is also used to 'version' interactions with Elf64
* applications, but there's no way to figure out if the caller is
* asking Elf32 or Elf64 questions, even though it has Elf32
* dependencies. Ick.
*/
unsigned
elf_version(unsigned ver)
{
register unsigned j;
if (ver == EV_NONE)
return EV_CURRENT;
if (ver > EV_CURRENT)
{
_elf_seterr(EREQ_VER, 0);
return EV_NONE;
}
(void) mutex_lock(&_elf_globals_mutex);
if (_elf_work != EV_NONE)
{
j = _elf_work;
_elf_work = ver;
(void) mutex_unlock(&_elf_globals_mutex);
return j;
}
_elf_work = ver;
_elf_encode = _elf_sys_encoding();
(void) mutex_unlock(&_elf_globals_mutex);
return ver;
}
static Elf_Data *
xlate(Elf_Data *dst, const Elf_Data *src, unsigned encode, int tof)
/* tof !0 -> xlatetof */
{
size_t cnt, dsz, ssz;
unsigned type;
unsigned dver, sver;
void (*f)();
unsigned _encode;
if (dst == 0 || src == 0)
return (0);
if (--encode >= (ELFDATANUM - 1)) {
_elf_seterr(EREQ_ENCODE, 0);
return (0);
}
if ((dver = dst->d_version - 1) >= EV_CURRENT ||
(sver = src->d_version - 1) >= EV_CURRENT) {
_elf_seterr(EREQ_VER, 0);
return (0);
}
if ((type = src->d_type) >= ELF_T_NUM) {
_elf_seterr(EREQ_TYPE, 0);
return (0);
}
if (tof) {
dsz = fmsize[dver][type].s_filesz;
ssz = fmsize[sver][type].s_memsz;
f = x32[dver][sver][encode][type].x_tof;
} else {
dsz = fmsize[dver][type].s_memsz;
ssz = fmsize[sver][type].s_filesz;
f = x32[dver][sver][encode][type].x_tom;
}
cnt = src->d_size / ssz;
if (dst->d_size < dsz * cnt) {
_elf_seterr(EREQ_DSZ, 0);
return (0);
}
ELFACCESSDATA(_encode, _elf_encode)
if ((_encode == (encode + 1)) && (dsz == ssz)) {
/*
* ld(1) frequently produces empty sections (eg. .dynsym,
* .dynstr, .symtab, .strtab, etc) so that the initial
* output image can be created of the correct size. Later
* these sections are filled in with the associated data.
* So that we don't have to pre-allocate buffers for
* these segments, allow for the src destination to be 0.
*/
if (src->d_buf && src->d_buf != dst->d_buf)
(void) memcpy(dst->d_buf, src->d_buf, src->d_size);
dst->d_type = src->d_type;
dst->d_size = src->d_size;
return (dst);
}
if (cnt)
(*f)(dst->d_buf, src->d_buf, cnt);
dst->d_size = dsz * cnt;
dst->d_type = src->d_type;
return (dst);
}
Elf_Data *
elf32_xlatetof(Elf_Data *dst, const Elf_Data *src, unsigned encode)
{
return (xlate(dst, src, encode, 1));
}
Elf_Data *
elf32_xlatetom(Elf_Data *dst, const Elf_Data *src, unsigned encode)
{
return (xlate(dst, src, encode, 0));
}
/*
* xlate to file format
*
* ..._tof(name, data) -- macros
*
* Recall that the file format must be no larger than the
* memory format (equal versions). Use "forward" copy.
* All these routines require non-null, non-zero arguments.
*/
define(addr_tof, `
static void
$1(unsigned char *dst, Elf32_Addr *src, size_t cnt)
{
Elf32_Addr *end = src + cnt;
do {
tofa(dst, *src, A_$2);
dst += A_sizeof;
} while (++src < end);
}')
addr_tof(addr_2L_tof,L)
addr_tof(addr_2M_tof,M)
static void
byte_to(unsigned char *dst, unsigned char *src, size_t cnt)
{
if (dst != src)
(void) memcpy(dst, src, cnt);
}
define(dyn_11_tof, `
static void
$1(unsigned char *dst, Elf32_Dyn *src, size_t cnt)
{
Elf32_Dyn *end = src + cnt;
do {
tofw(dst, src->d_tag, D1_tag_$2);
tofo(dst, src->d_un.d_val, D1_val_$2);
dst += D1_sizeof;
} while (++src < end);
}')
dyn_11_tof(dyn_2L11_tof,L)
dyn_11_tof(dyn_2M11_tof,M)
define(ehdr_11_tof, `
static void
$1(unsigned char *dst, Elf32_Ehdr *src, size_t cnt)
{
Elf32_Ehdr *end = src + cnt;
do {
if (&dst[E1_ident] != src->e_ident)
(void) memcpy(&dst[E1_ident], src->e_ident, E1_Nident);
tofh(dst, src->e_type, E1_type_$2);
tofh(dst, src->e_machine, E1_machine_$2);
tofw(dst, src->e_version, E1_version_$2);
tofa(dst, src->e_entry, E1_entry_$2);
tofo(dst, src->e_phoff, E1_phoff_$2);
tofo(dst, src->e_shoff, E1_shoff_$2);
tofw(dst, src->e_flags, E1_flags_$2);
tofh(dst, src->e_ehsize, E1_ehsize_$2);
tofh(dst, src->e_phentsize, E1_phentsize_$2);
tofh(dst, src->e_phnum, E1_phnum_$2);
tofh(dst, src->e_shentsize, E1_shentsize_$2);
tofh(dst, src->e_shnum, E1_shnum_$2);
tofh(dst, src->e_shstrndx, E1_shstrndx_$2);
dst += E1_sizeof;
} while (++src < end);
}')
ehdr_11_tof(ehdr_2L11_tof,L)
ehdr_11_tof(ehdr_2M11_tof,M)
define(half_tof, `
static void
$1(unsigned char *dst, Elf32_Half *src, size_t cnt)
{
Elf32_Half *end = src + cnt;
do {
tofh(dst, *src, H_$2);
dst += H_sizeof;
} while (++src < end);
}')
half_tof(half_2L_tof,L)
half_tof(half_2M_tof,M)
define(move_11_tof, `
static void
$1(unsigned char *dst, Elf32_Move *src, size_t cnt)
{
Elf32_Move *end = src + cnt;
do {
tofl(dst, src->m_value, M1_value_$2);
tofw(dst, src->m_info, M1_info_$2);
tofw(dst, src->m_poffset, M1_poffset_$2);
tofh(dst, src->m_repeat, M1_repeat_$2);
tofh(dst, src->m_stride, M1_stride_$2);
dst += M1_sizeof;
} while (++src < end);
}')
move_11_tof(move_2L11_tof,L)
move_11_tof(move_2M11_tof,M)
define(movep_11_tof, `
static void
$1(unsigned char *dst, Elf32_Move *src, size_t cnt)
{
Elf32_Move *end = src + cnt;
do {
tofl(dst, src->m_value, MP1_value_$2);
tofw(dst, src->m_info, MP1_info_$2);
tofw(dst, src->m_poffset, MP1_poffset_$2);
tofh(dst, src->m_repeat, MP1_repeat_$2);
tofh(dst, src->m_stride, MP1_stride_$2);
dst += MP1_sizeof;
} while (++src < end);
}')
movep_11_tof(movep_2L11_tof,L)
movep_11_tof(movep_2M11_tof,M)
define(off_tof, `
static void
$1(unsigned char *dst, Elf32_Off *src, size_t cnt)
{
Elf32_Off *end = src + cnt;
do {
tofo(dst, *src, O_$2);
dst += O_sizeof;
} while (++src < end);
}')
off_tof(off_2L_tof,L)
off_tof(off_2M_tof,M)
define(note_11_tof, `
static void
$1(unsigned char *dst, Elf32_Nhdr *src, size_t cnt)
{
/* LINTED */
Elf32_Nhdr * end = (Elf32_Nhdr *)((char *)src + cnt);
do {
Elf32_Word descsz, namesz;
/*
* cache size of desc & name fields - while rounding
* up their size.
*/
namesz = S_ROUND(src->n_namesz, sizeof (Elf32_Word));
descsz = src->n_descsz;
/*
* Copy contents of Elf32_Nhdr
*/
tofw(dst, src->n_namesz, N1_namesz_$2);
tofw(dst, src->n_descsz, N1_descsz_$2);
tofw(dst, src->n_type, N1_type_$2);
/*
* Copy contents of Name field
*/
dst += N1_sizeof;
src++;
(void)memcpy(dst, src, namesz);
/*
* Copy contents of desc field
*/
dst += namesz;
src = (Elf32_Nhdr *)((uintptr_t)src + namesz);
(void)memcpy(dst, src, descsz);
descsz = S_ROUND(descsz, sizeof (Elf32_Word));
dst += descsz;
src = (Elf32_Nhdr *)((uintptr_t)src + descsz);
} while (src < end);
}')
note_11_tof(note_2L11_tof,L)
note_11_tof(note_2M11_tof,M)
define(phdr_11_tof, `
static void
$1(unsigned char *dst, Elf32_Phdr *src, size_t cnt)
{
Elf32_Phdr *end = src + cnt;
do {
tofw(dst, src->p_type, P1_type_$2);
tofo(dst, src->p_offset, P1_offset_$2);
tofa(dst, src->p_vaddr, P1_vaddr_$2);
tofa(dst, src->p_paddr, P1_paddr_$2);
tofw(dst, src->p_filesz, P1_filesz_$2);
tofw(dst, src->p_memsz, P1_memsz_$2);
tofw(dst, src->p_flags, P1_flags_$2);
tofw(dst, src->p_align, P1_align_$2);
dst += P1_sizeof;
} while (++src < end);
}')
phdr_11_tof(phdr_2L11_tof,L)
phdr_11_tof(phdr_2M11_tof,M)
define(rel_11_tof, `
static void
$1(unsigned char *dst, Elf32_Rel *src, size_t cnt)
{
Elf32_Rel *end = src + cnt;
do {
tofa(dst, src->r_offset, R1_offset_$2);
tofw(dst, src->r_info, R1_info_$2);
dst += R1_sizeof;
} while (++src < end);
}')
rel_11_tof(rel_2L11_tof,L)
rel_11_tof(rel_2M11_tof,M)
define(rela_11_tof, `
static void
$1(unsigned char *dst, Elf32_Rela *src, size_t cnt)
{
Elf32_Rela *end = src + cnt;
do {
tofa(dst, src->r_offset, RA1_offset_$2);
tofw(dst, src->r_info, RA1_info_$2);
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1) { /* 2s comp */
tofw(dst, src->r_addend, RA1_addend_$2);
} else {
Elf32_Word w;
if (src->r_addend < 0) {
w = - src->r_addend;
w = ~w + 1;
} else
w = src->r_addend;
tofw(dst, w, RA1_addend_$2);
}
dst += RA1_sizeof;
} while (++src < end);
}')
rela_11_tof(rela_2L11_tof,L)
rela_11_tof(rela_2M11_tof,M)
define(shdr_11_tof, `
static void
$1(unsigned char *dst, Elf32_Shdr *src, size_t cnt)
{
Elf32_Shdr *end = src + cnt;
do {
tofw(dst, src->sh_name, SH1_name_$2);
tofw(dst, src->sh_type, SH1_type_$2);
tofw(dst, src->sh_flags, SH1_flags_$2);
tofa(dst, src->sh_addr, SH1_addr_$2);
tofo(dst, src->sh_offset, SH1_offset_$2);
tofw(dst, src->sh_size, SH1_size_$2);
tofw(dst, src->sh_link, SH1_link_$2);
tofw(dst, src->sh_info, SH1_info_$2);
tofw(dst, src->sh_addralign, SH1_addralign_$2);
tofw(dst, src->sh_entsize, SH1_entsize_$2);
dst += SH1_sizeof;
} while (++src < end);
}')
shdr_11_tof(shdr_2L11_tof,L)
shdr_11_tof(shdr_2M11_tof,M)
define(sword_tof, `
static void
$1(unsigned char *dst, Elf32_Sword *src, size_t cnt)
{
Elf32_Sword *end = src + cnt;
do {
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1) { /* 2s comp */
tofw(dst, *src, W_$2);
} else {
Elf32_Word w;
if (*src < 0) {
w = - *src;
w = ~w + 1;
} else
w = *src;
tofw(dst, w, W_$2);
}
dst += W_sizeof;
} while (++src < end);
}')
sword_tof(sword_2L_tof,L)
sword_tof(sword_2M_tof,M)
define(cap_11_tof, `
static void
$1(unsigned char *dst, Elf32_Cap *src, size_t cnt)
{
Elf32_Cap *end = src + cnt;
do {
tofw(dst, src->c_tag, C1_tag_$2);
tofw(dst, src->c_un.c_val, C1_val_$2);
dst += C1_sizeof;
} while (++src < end);
}')
cap_11_tof(cap_2L11_tof,L)
cap_11_tof(cap_2M11_tof,M)
define(syminfo_11_tof, `
static void
$1(unsigned char *dst, Elf32_Syminfo *src, size_t cnt)
{
Elf32_Syminfo *end = src + cnt;
do {
tofh(dst, src->si_boundto, SI1_boundto_$2);
tofh(dst, src->si_flags, SI1_flags_$2);
dst += SI1_sizeof;
} while (++src < end);
}')
syminfo_11_tof(syminfo_2L11_tof,L)
syminfo_11_tof(syminfo_2M11_tof,M)
define(sym_11_tof, `
static void
$1(unsigned char *dst, Elf32_Sym *src, size_t cnt)
{
Elf32_Sym *end = src + cnt;
do {
tofw(dst, src->st_name, ST1_name_$2);
tofa(dst, src->st_value, ST1_value_$2);
tofw(dst, src->st_size, ST1_size_$2);
tofb(dst, src->st_info, ST1_info_$2);
tofb(dst, src->st_other, ST1_other_$2);
tofh(dst, src->st_shndx, ST1_shndx_$2);
dst += ST1_sizeof;
} while (++src < end);
}')
sym_11_tof(sym_2L11_tof,L)
sym_11_tof(sym_2M11_tof,M)
define(word_tof, `
static void
$1(unsigned char *dst, Elf32_Word *src, size_t cnt)
{
Elf32_Word *end = src + cnt;
do {
tofw(dst, *src, W_$2);
dst += W_sizeof;
} while (++src < end);
}')
word_tof(word_2L_tof,L)
word_tof(word_2M_tof,M)
define(verdef_11_tof, `
static void
$1(unsigned char *dst, Elf32_Verdef *src, size_t cnt)
{
/* LINTED */
Elf32_Verdef *end = (Elf32_Verdef *)((char *)src + cnt);
do {
Elf32_Verdef *next_verdef;
Elf32_Verdaux *vaux;
Elf32_Half i;
unsigned char *vaux_dst;
unsigned char *dst_next;
/* LINTED */
next_verdef = (Elf32_Verdef *)(src->vd_next ?
(char *)src + src->vd_next : (char *)end);
dst_next = dst + src->vd_next;
/* LINTED */
vaux = (Elf32_Verdaux *)((char *)src + src->vd_aux);
vaux_dst = dst + src->vd_aux;
/*
* Convert auxilary structures
*/
for (i = 0; i < src->vd_cnt; i++) {
Elf32_Verdaux *vaux_next;
unsigned char *vaux_dst_next;
/*
* because our source and destination can be
* the same place we need to figure out the next
* location now.
*/
/* LINTED */
vaux_next = (Elf32_Verdaux *)((char *)vaux +
vaux->vda_next);
vaux_dst_next = vaux_dst + vaux->vda_next;
tofa(vaux_dst, vaux->vda_name, VDA1_name_$2);
tofw(vaux_dst, vaux->vda_next, VDA1_next_$2);
vaux_dst = vaux_dst_next;
vaux = vaux_next;
}
/*
* Convert Elf32_Verdef structure.
*/
tofh(dst, src->vd_version, VD1_version_$2);
tofh(dst, src->vd_flags, VD1_flags_$2);
tofh(dst, src->vd_ndx, VD1_ndx_$2);
tofh(dst, src->vd_cnt, VD1_cnt_$2);
tofw(dst, src->vd_hash, VD1_hash_$2);
tofw(dst, src->vd_aux, VD1_aux_$2);
tofw(dst, src->vd_next, VD1_next_$2);
src = next_verdef;
dst = dst_next;
} while (src < end);
}')
verdef_11_tof(verdef_2L11_tof, L)
verdef_11_tof(verdef_2M11_tof, M)
define(verneed_11_tof, `
static void
$1(unsigned char *dst, Elf32_Verneed *src, size_t cnt)
{
/* LINTED */
Elf32_Verneed *end = (Elf32_Verneed *)((char *)src + cnt);
do {
Elf32_Verneed *next_verneed;
Elf32_Vernaux *vaux;
Elf32_Half i;
unsigned char *vaux_dst;
unsigned char *dst_next;
/* LINTED */
next_verneed = (Elf32_Verneed *)(src->vn_next ?
(char *)src + src->vn_next : (char *)end);
dst_next = dst + src->vn_next;
/* LINTED */
vaux = (Elf32_Vernaux *)((char *)src + src->vn_aux);
vaux_dst = dst + src->vn_aux;
/*
* Convert auxilary structures first
*/
for (i = 0; i < src->vn_cnt; i++) {
Elf32_Vernaux * vaux_next;
unsigned char * vaux_dst_next;
/*
* because our source and destination can be
* the same place we need to figure out the
* next location now.
*/
/* LINTED */
vaux_next = (Elf32_Vernaux *)((char *)vaux +
vaux->vna_next);
vaux_dst_next = vaux_dst + vaux->vna_next;
tofw(vaux_dst, vaux->vna_hash, VNA1_hash_$2);
tofh(vaux_dst, vaux->vna_flags, VNA1_flags_$2);
tofh(vaux_dst, vaux->vna_other, VNA1_other_$2);
tofa(vaux_dst, vaux->vna_name, VNA1_name_$2);
tofw(vaux_dst, vaux->vna_next, VNA1_next_$2);
vaux_dst = vaux_dst_next;
vaux = vaux_next;
}
/*
* Convert Elf32_Verneed structure.
*/
tofh(dst, src->vn_version, VN1_version_$2);
tofh(dst, src->vn_cnt, VN1_cnt_$2);
tofa(dst, src->vn_file, VN1_file_$2);
tofw(dst, src->vn_aux, VN1_aux_$2);
tofw(dst, src->vn_next, VN1_next_$2);
src = next_verneed;
dst = dst_next;
} while (src < end);
}')
verneed_11_tof(verneed_2L11_tof, L)
verneed_11_tof(verneed_2M11_tof, M)
/* xlate to memory format
*
* ..._tom(name, data) -- macros
*
* Recall that the memory format may be larger than the
* file format (equal versions). Use "backward" copy.
* All these routines require non-null, non-zero arguments.
*/
define(addr_tom, `
static void
$1(Elf32_Addr *dst, unsigned char *src, size_t cnt)
{
Elf32_Addr *end = dst;
dst += cnt;
src += cnt * A_sizeof;
while (dst-- > end) {
src -= A_sizeof;
*dst = toma(src, A_$2);
}
}')
addr_tom(addr_2L_tom,L)
addr_tom(addr_2M_tom,M)
define(dyn_11_tom, `
static void
$1(Elf32_Dyn *dst, unsigned char *src, size_t cnt)
{
Elf32_Dyn *end = dst + cnt;
do {
dst->d_tag = tomw(src, D1_tag_$2);
dst->d_un.d_val = tomw(src, D1_val_$2);
src += D1_sizeof;
} while (++dst < end);
}')
dyn_11_tom(dyn_2L11_tom,L)
dyn_11_tom(dyn_2M11_tom,M)
define(ehdr_11_tom, `
static void
$1(Elf32_Ehdr *dst, unsigned char *src, size_t cnt)
{
Elf32_Ehdr *end = dst;
dst += cnt;
src += cnt * E1_sizeof;
while (dst-- > end) {
src -= E1_sizeof;
dst->e_shstrndx = tomh(src, E1_shstrndx_$2);
dst->e_shnum = tomh(src, E1_shnum_$2);
dst->e_shentsize = tomh(src, E1_shentsize_$2);
dst->e_phnum = tomh(src, E1_phnum_$2);
dst->e_phentsize = tomh(src, E1_phentsize_$2);
dst->e_ehsize = tomh(src, E1_ehsize_$2);
dst->e_flags = tomw(src, E1_flags_$2);
dst->e_shoff = tomo(src, E1_shoff_$2);
dst->e_phoff = tomo(src, E1_phoff_$2);
dst->e_entry = toma(src, E1_entry_$2);
dst->e_version = tomw(src, E1_version_$2);
dst->e_machine = tomh(src, E1_machine_$2);
dst->e_type = tomh(src, E1_type_$2);
if (dst->e_ident != &src[E1_ident])
(void) memcpy(dst->e_ident, &src[E1_ident], E1_Nident);
}
}')
ehdr_11_tom(ehdr_2L11_tom,L)
ehdr_11_tom(ehdr_2M11_tom,M)
define(half_tom, `
static void
$1(Elf32_Half *dst, unsigned char *src, size_t cnt)
{
Elf32_Half *end = dst;
dst += cnt;
src += cnt * H_sizeof;
while (dst-- > end) {
src -= H_sizeof;
*dst = tomh(src, H_$2);
}
}')
half_tom(half_2L_tom,L)
half_tom(half_2M_tom,M)
define(move_11_tom, `
static void
$1(Elf32_Move *dst, unsigned char *src, size_t cnt)
{
Elf32_Move *end = dst + cnt;
do {
dst->m_value = toml(src, M1_value_$2);
dst->m_info = tomw(src, M1_info_$2);
dst->m_poffset = tomw(src, M1_poffset_$2);
dst->m_repeat = tomh(src, M1_repeat_$2);
dst->m_stride = tomh(src, M1_stride_$2);
src += M1_sizeof;
} while (++dst < end);
}')
move_11_tom(move_2L11_tom,L)
move_11_tom(move_2M11_tom,M)
define(movep_11_tom, `
static void
$1(Elf32_Move *dst, unsigned char *src, size_t cnt)
{
Elf32_Move *end = dst + cnt;
do
{
dst->m_value = toml(src, MP1_value_$2);
dst->m_info = tomw(src, MP1_info_$2);
dst->m_poffset = tomw(src, MP1_poffset_$2);
dst->m_repeat = tomh(src, MP1_repeat_$2);
dst->m_stride = tomh(src, MP1_stride_$2);
src += MP1_sizeof;
} while (++dst < end);
}')
movep_11_tom(movep_2L11_tom,L)
movep_11_tom(movep_2M11_tom,M)
define(note_11_tom, `
static void
$1(Elf32_Nhdr *dst, unsigned char *src, size_t cnt)
{
/* LINTED */
Elf32_Nhdr *end = (Elf32_Nhdr *)((char *)dst + cnt);
while (dst < end) {
Elf32_Nhdr * nhdr;
unsigned char * namestr;
void * desc;
Elf32_Word field_sz;
dst->n_namesz = tomw(src, N1_namesz_$2);
dst->n_descsz = tomw(src, N1_descsz_$2);
dst->n_type = tomw(src, N1_type_$2);
nhdr = dst;
/* LINTED */
dst = (Elf32_Nhdr *)((char *)dst + sizeof (Elf32_Nhdr));
namestr = src + N1_sizeof;
field_sz = S_ROUND(nhdr->n_namesz, sizeof (Elf32_Word));
(void)memcpy((void *)dst, namestr, field_sz);
desc = namestr + field_sz;
/* LINTED */
dst = (Elf32_Nhdr *)((char *)dst + field_sz);
field_sz = nhdr->n_descsz;
(void)memcpy(dst, desc, field_sz);
field_sz = S_ROUND(field_sz, sizeof (Elf32_Word));
/* LINTED */
dst = (Elf32_Nhdr *)((char *)dst + field_sz);
src = (unsigned char *)desc + field_sz;
}
}')
note_11_tom(note_2L11_tom,L)
note_11_tom(note_2M11_tom,M)
define(off_tom, `
static void
$1(Elf32_Off *dst, unsigned char *src, size_t cnt)
{
Elf32_Off *end = dst;
dst += cnt;
src += cnt * O_sizeof;
while (dst-- > end) {
src -= O_sizeof;
*dst = tomo(src, O_$2);
}
}')
off_tom(off_2L_tom,L)
off_tom(off_2M_tom,M)
define(phdr_11_tom, `
static void
$1(Elf32_Phdr *dst, unsigned char *src, size_t cnt)
{
Elf32_Phdr *end = dst;
dst += cnt;
src += cnt * P1_sizeof;
while (dst-- > end) {
src -= P1_sizeof;
dst->p_align = tomw(src, P1_align_$2);
dst->p_flags = tomw(src, P1_flags_$2);
dst->p_memsz = tomw(src, P1_memsz_$2);
dst->p_filesz = tomw(src, P1_filesz_$2);
dst->p_paddr = toma(src, P1_paddr_$2);
dst->p_vaddr = toma(src, P1_vaddr_$2);
dst->p_offset = tomo(src, P1_offset_$2);
dst->p_type = tomw(src, P1_type_$2);
}
}')
phdr_11_tom(phdr_2L11_tom,L)
phdr_11_tom(phdr_2M11_tom,M)
define(rel_11_tom, `
static void
$1(Elf32_Rel *dst, unsigned char *src, size_t cnt)
{
Elf32_Rel *end = dst;
dst += cnt;
src += cnt * R1_sizeof;
while (dst-- > end) {
src -= R1_sizeof;
dst->r_info = tomw(src, R1_info_$2);
dst->r_offset = toma(src, R1_offset_$2);
}
}')
rel_11_tom(rel_2L11_tom,L)
rel_11_tom(rel_2M11_tom,M)
define(rela_11_tom, `
static void
$1(Elf32_Rela *dst, unsigned char *src, size_t cnt)
{
Elf32_Rela *end = dst;
dst += cnt;
src += cnt * RA1_sizeof;
while (dst-- > end) {
src -= RA1_sizeof;
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1 && /* 2s comp */
~(~(Elf32_Word)0 >> 1) == HI32) {
dst->r_addend = tomw(src, RA1_addend_$2);
} else {
union {
Elf32_Word w;
Elf32_Sword sw;
} u;
if ((u.w = tomw(src, RA1_addend_$2)) & HI32) {
u.w |= ~(Elf32_Word)LO31;
u.w = ~u.w + 1;
u.sw = -u.w;
}
dst->r_addend = u.sw;
}
dst->r_info = tomw(src, RA1_info_$2);
dst->r_offset = toma(src, RA1_offset_$2);
}
}')
rela_11_tom(rela_2L11_tom,L)
rela_11_tom(rela_2M11_tom,M)
define(shdr_11_tom, `
static void
$1(Elf32_Shdr *dst, unsigned char *src, size_t cnt)
{
Elf32_Shdr *end = dst;
dst += cnt;
src += cnt * SH1_sizeof;
while (dst-- > end) {
src -= SH1_sizeof;
dst->sh_entsize = tomw(src, SH1_entsize_$2);
dst->sh_addralign = tomw(src, SH1_addralign_$2);
dst->sh_info = tomw(src, SH1_info_$2);
dst->sh_link = tomw(src, SH1_link_$2);
dst->sh_size = tomw(src, SH1_size_$2);
dst->sh_offset = tomo(src, SH1_offset_$2);
dst->sh_addr = toma(src, SH1_addr_$2);
dst->sh_flags = tomw(src, SH1_flags_$2);
dst->sh_type = tomw(src, SH1_type_$2);
dst->sh_name = tomw(src, SH1_name_$2);
}
}')
shdr_11_tom(shdr_2L11_tom,L)
shdr_11_tom(shdr_2M11_tom,M)
define(sword_tom, `
static void
$1(Elf32_Sword *dst, unsigned char *src, size_t cnt)
{
Elf32_Sword *end = dst;
dst += cnt;
src += cnt * W_sizeof;
while (dst-- > end) {
src -= W_sizeof;
/*CONSTANTCONDITION*/
if (~(Elf32_Word)0 == -(Elf32_Sword)1 && /* 2s comp */
~(~(Elf32_Word)0 >> 1) == HI32) {
*dst = tomw(src, W_$2);
} else {
union {
Elf32_Word w;
Elf32_Sword sw;
} u;
if ((u.w = tomw(src, W_$2)) & HI32) {
u.w |= ~(Elf32_Word)LO31;
u.w = ~u.w + 1;
u.sw = -u.w;
}
*dst = u.sw;
}
}
}')
sword_tom(sword_2L_tom,L)
sword_tom(sword_2M_tom,M)
define(cap_11_tom, `
static void
$1(Elf32_Cap *dst, unsigned char *src, size_t cnt)
{
Elf32_Cap *end = dst + cnt;
do {
dst->c_tag = tomw(src, C1_tag_$2);
dst->c_un.c_val = tomw(src, C1_val_$2);
src += C1_sizeof;
} while (++dst < end);
}')
cap_11_tom(cap_2L11_tom,L)
cap_11_tom(cap_2M11_tom,M)
define(syminfo_11_tom, `
static void
$1(Elf32_Syminfo *dst, unsigned char *src, size_t cnt)
{
Elf32_Syminfo *end = dst;
dst += cnt;
src += cnt * SI1_sizeof;
while (dst-- > end) {
src -= SI1_sizeof;
dst->si_boundto = tomh(src, SI1_boundto_$2);
dst->si_flags = tomh(src, SI1_flags_$2);
}
}')
syminfo_11_tom(syminfo_2L11_tom,L)
syminfo_11_tom(syminfo_2M11_tom,M)
define(sym_11_tom, `
static void
$1(Elf32_Sym *dst, unsigned char *src, size_t cnt)
{
Elf32_Sym *end = dst;
dst += cnt;
src += cnt * ST1_sizeof;
while (dst-- > end) {
src -= ST1_sizeof;
dst->st_shndx = tomh(src, ST1_shndx_$2);
dst->st_other = tomb(src, ST1_other_$2);
dst->st_info = tomb(src, ST1_info_$2);
dst->st_size = tomw(src, ST1_size_$2);
dst->st_value = toma(src, ST1_value_$2);
dst->st_name = tomw(src, ST1_name_$2);
}
}')
sym_11_tom(sym_2L11_tom,L)
sym_11_tom(sym_2M11_tom,M)
define(word_tom, `
static void
$1(Elf32_Word *dst, unsigned char *src, size_t cnt)
{
Elf32_Word *end = dst;
dst += cnt;
src += cnt * W_sizeof;
while (dst-- > end) {
src -= W_sizeof;
*dst = tomw(src, W_$2);
}
}')
word_tom(word_2L_tom,L)
word_tom(word_2M_tom,M)
define(verdef_11_tom, `
static void
$1(Elf32_Verdef *dst, unsigned char *src, size_t cnt)
{
/* LINTED */
Elf32_Verdef *end = (Elf32_Verdef *)((char *)dst + cnt);
while (dst < end) {
Elf32_Verdaux *vaux;
unsigned char *src_vaux;
Elf32_Half i;
dst->vd_version = tomh(src, VD1_version_$2);
dst->vd_flags = tomh(src, VD1_flags_$2);
dst->vd_ndx = tomh(src, VD1_ndx_$2);
dst->vd_cnt = tomh(src, VD1_cnt_$2);
dst->vd_hash = tomw(src, VD1_hash_$2);
dst->vd_aux = tomw(src, VD1_aux_$2);
dst->vd_next = tomw(src, VD1_next_$2);
src_vaux = src + dst->vd_aux;
/* LINTED */
vaux = (Elf32_Verdaux*)((char *)dst + dst->vd_aux);
for (i = 0; i < dst->vd_cnt; i++) {
vaux->vda_name = toma(src_vaux, VDA1_name_$2);
vaux->vda_next = toma(src_vaux, VDA1_next_$2);
src_vaux += vaux->vda_next;
/* LINTED */
vaux = (Elf32_Verdaux *)((char *)vaux +
vaux->vda_next);
}
src += dst->vd_next;
/* LINTED */
dst = (Elf32_Verdef *)(dst->vd_next ?
(char *)dst + dst->vd_next : (char *)end);
}
}')
verdef_11_tom(verdef_2L11_tom,L)
verdef_11_tom(verdef_2M11_tom,M)
define(verneed_11_tom, `
static void
$1(Elf32_Verneed *dst, unsigned char *src, size_t cnt)
{
/* LINTED */
Elf32_Verneed *end = (Elf32_Verneed *)((char *)dst + cnt);
while (dst < end) {
Elf32_Vernaux * vaux;
unsigned char * src_vaux;
Elf32_Half i;
dst->vn_version = tomh(src, VN1_version_$2);
dst->vn_cnt = tomh(src, VN1_cnt_$2);
dst->vn_file = toma(src, VN1_file_$2);
dst->vn_aux = tomw(src, VN1_aux_$2);
dst->vn_next = tomw(src, VN1_next_$2);
src_vaux = src + dst->vn_aux;
/* LINTED */
vaux = (Elf32_Vernaux *)((char *)dst + dst->vn_aux);
for (i = 0; i < dst->vn_cnt; i++) {
vaux->vna_hash = tomw(src_vaux, VNA1_hash_$2);
vaux->vna_flags = tomh(src_vaux, VNA1_flags_$2);
vaux->vna_other = tomh(src_vaux, VNA1_other_$2);
vaux->vna_name = toma(src_vaux, VNA1_name_$2);
vaux->vna_next = tomw(src_vaux, VNA1_next_$2);
src_vaux += vaux->vna_next;
/* LINTED */
vaux = (Elf32_Vernaux *)((char *)vaux +
vaux->vna_next);
}
src += dst->vn_next;
/* LINTED */
dst = (Elf32_Verneed *)(dst->vn_next ?
(char *)dst + dst->vn_next : (char *)end);
}
}')
verneed_11_tom(verneed_2L11_tom,L)
verneed_11_tom(verneed_2M11_tom,M)